CN116844673A - 一种基于机器学习的高性能镁合金的逆向设计方法 - Google Patents
一种基于机器学习的高性能镁合金的逆向设计方法 Download PDFInfo
- Publication number
- CN116844673A CN116844673A CN202310805810.3A CN202310805810A CN116844673A CN 116844673 A CN116844673 A CN 116844673A CN 202310805810 A CN202310805810 A CN 202310805810A CN 116844673 A CN116844673 A CN 116844673A
- Authority
- CN
- China
- Prior art keywords
- performance
- machine learning
- model
- magnesium alloy
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000013461 design Methods 0.000 title claims abstract description 64
- 238000010801 machine learning Methods 0.000 title claims abstract description 35
- 239000000956 alloy Substances 0.000 claims abstract description 53
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 50
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 36
- 238000005457 optimization Methods 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 25
- 238000005516 engineering process Methods 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims description 41
- 238000012549 training Methods 0.000 claims description 25
- 238000005070 sampling Methods 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 13
- 238000007637 random forest analysis Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 6
- 230000002068 genetic effect Effects 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 210000000349 chromosome Anatomy 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims description 3
- 230000037430 deletion Effects 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 10
- 238000011161 development Methods 0.000 abstract description 10
- 229910000967 As alloy Inorganic materials 0.000 abstract description 2
- 238000005556 structure-activity relationship Methods 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 description 7
- 238000011160 research Methods 0.000 description 3
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000010220 Pearson correlation analysis Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C60/00—Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/26—Composites
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Physiology (AREA)
- Genetics & Genomics (AREA)
- Feedback Control In General (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310805810.3A CN116844673A (zh) | 2023-07-03 | 2023-07-03 | 一种基于机器学习的高性能镁合金的逆向设计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310805810.3A CN116844673A (zh) | 2023-07-03 | 2023-07-03 | 一种基于机器学习的高性能镁合金的逆向设计方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116844673A true CN116844673A (zh) | 2023-10-03 |
Family
ID=88161189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310805810.3A Pending CN116844673A (zh) | 2023-07-03 | 2023-07-03 | 一种基于机器学习的高性能镁合金的逆向设计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116844673A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118248269A (zh) * | 2024-04-26 | 2024-06-25 | 广东腐蚀科学与技术创新研究院 | 一种增材制造铝合金工艺参数优化方法 |
CN118446084A (zh) * | 2024-04-24 | 2024-08-06 | 广东腐蚀科学与技术创新研究院 | 一种电解铜箔工艺参数优化方法、系统及设备 |
CN118486405A (zh) * | 2024-05-27 | 2024-08-13 | 西南交通大学 | 一种基于集成学习的改性沥青性能靶向制备工艺设计方法 |
-
2023
- 2023-07-03 CN CN202310805810.3A patent/CN116844673A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118446084A (zh) * | 2024-04-24 | 2024-08-06 | 广东腐蚀科学与技术创新研究院 | 一种电解铜箔工艺参数优化方法、系统及设备 |
CN118248269A (zh) * | 2024-04-26 | 2024-06-25 | 广东腐蚀科学与技术创新研究院 | 一种增材制造铝合金工艺参数优化方法 |
CN118486405A (zh) * | 2024-05-27 | 2024-08-13 | 西南交通大学 | 一种基于集成学习的改性沥青性能靶向制备工艺设计方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116844673A (zh) | 一种基于机器学习的高性能镁合金的逆向设计方法 | |
Li et al. | High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy | |
Wang et al. | A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation | |
Guo et al. | Breaking the curse of space explosion: Towards efficient nas with curriculum search | |
CN112508104B (zh) | 一种基于快速网络架构搜索的跨任务图像分类方法 | |
Lu et al. | A multi-objective optimizer-based model for predicting composite material properties | |
Niu et al. | Machine learning-based beta transus temperature prediction for titanium alloys | |
CN116680976A (zh) | 基于机器学习的增材制造金属材料逆向设计方法 | |
Yang et al. | Research on composition-process-property prediction of die casting Al alloys via combining feature creation and attention mechanisms | |
CN110442954A (zh) | 基于物理冶金学指导下机器学习的超高强不锈钢设计方法 | |
CN117577244A (zh) | 一种基于机器学习实现铝锂合金力学性能预测的方法 | |
Cai et al. | EST-NAS: An evolutionary strategy with gradient descent for neural architecture search | |
Zhang et al. | Optimization of LPDC process parameters using the combination of artificial neural network and genetic algorithm method | |
CN113343566B (zh) | 基于深度学习的镍基合金断裂韧性预测方法及系统 | |
CN110415769A (zh) | 基于物理冶金学指导下机器学习的低活化钢的设计方法 | |
CN113468794B (zh) | 一种小型密闭空间温湿度预测及反向优化方法 | |
CN105117559A (zh) | 基于模糊决策图与灰色关联分析的枪械设计方案评价方法 | |
CN105719006A (zh) | 基于流特征的因果结构学习方法 | |
Sun et al. | Optimization of chemical composition for TC11 titanium alloy based on artificial neural network and genetic algorithm | |
CN117313474A (zh) | 一种代理模型辅助的混合整数变量连杆结构优化方法 | |
You et al. | Advancements and prospects of deep learning in biomaterials evolution | |
CN106548188A (zh) | 一种基于样本寻优支持向量机的镍价预测方法 | |
CN105373831A (zh) | 一种基于群体阶段性样本训练的k-近邻预测全局优化方法 | |
CN115728290A (zh) | 一种土壤中铬元素的检测方法、系统、设备及存储介质 | |
CN110442953B (zh) | 基于物理冶金学指导下机器学习的q&p钢的设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Tang Aitao Inventor after: Zhang Ang Inventor after: Bai Shengwen Inventor after: Song Jiangfeng Inventor after: Pan Fusheng Inventor after: Dong Zhihua Inventor after: Mi Xiaoxi Inventor after: Cheng Yunchuan Inventor after: Kang Jing Inventor after: Jiang Bin Inventor after: Qian Xiaoying Inventor after: Zheng Zhiying Inventor after: Wang Cuihong Inventor before: Dong Zhihua Inventor before: Pan Fusheng Inventor before: Cheng Yunchuan Inventor before: Jiang Bin Inventor before: Qian Xiaoying Inventor before: Zheng Zhiying Inventor before: Wang Cuihong Inventor before: Zhang Ang Inventor before: Bai Shengwen Inventor before: Song Jiangfeng |