CN116776543A - A power big data application method for smart grid - Google Patents
A power big data application method for smart grid Download PDFInfo
- Publication number
- CN116776543A CN116776543A CN202310522331.0A CN202310522331A CN116776543A CN 116776543 A CN116776543 A CN 116776543A CN 202310522331 A CN202310522331 A CN 202310522331A CN 116776543 A CN116776543 A CN 116776543A
- Authority
- CN
- China
- Prior art keywords
- data
- power
- big data
- power big
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005516 engineering process Methods 0.000 claims abstract description 94
- 238000012545 processing Methods 0.000 claims abstract description 73
- 238000007405 data analysis Methods 0.000 claims abstract description 19
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 238000012423 maintenance Methods 0.000 claims abstract description 6
- 230000008030 elimination Effects 0.000 claims abstract description 4
- 238000003379 elimination reaction Methods 0.000 claims abstract description 4
- 238000003860 storage Methods 0.000 claims description 41
- 238000007726 management method Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000013523 data management Methods 0.000 claims description 9
- 238000013500 data storage Methods 0.000 claims description 9
- 230000010354 integration Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 5
- 238000012502 risk assessment Methods 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 2
- 238000013507 mapping Methods 0.000 claims description 2
- 238000013058 risk prediction model Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 238000011161 development Methods 0.000 description 6
- 239000000306 component Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013075 data extraction Methods 0.000 description 2
- 238000013499 data model Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 208000011380 COVID-19–associated multisystem inflammatory syndrome in children Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011234 economic evaluation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/242—Query formulation
- G06F16/2433—Query languages
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/04—Power grid distribution networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Human Resources & Organizations (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Databases & Information Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical field
本发明涉及电力系统技术领域,特别涉及了一种面向智能电网的电力大数据应用方法。The present invention relates to the technical field of power systems, and in particular to a power big data application method for smart grids.
背景技术Background technique
随着我国电力行业的迅速发展,行业内相关的电力数据呈爆发式增长。而传统的数据处理技术已经无法解决爆发式增长的电力数据,导致智能电网无法跟上市场变化,阻碍着电力行业的发展。With the rapid development of my country's power industry, the relevant power data in the industry has grown explosively. However, traditional data processing technology can no longer handle the explosive growth of power data, causing smart grids to be unable to keep up with market changes and hindering the development of the power industry.
在实际应用中,智能电网实际的数据量非常大,传统的数据存储容量有限,其处理能力有所欠缺;传统的数据存储空间有限,且存储状态不稳定,可能造成数据丢失、排列失序等情况。智能电网对数据分析处理的速度有很高的要求,分析数据的快慢、处理效率的高低是衡量数据分析处理能力的重要指标。智能电网的电力系统,每天都会获取海量的电力信息,及时对数据进行评估,这对电力行业的发展是非常重要的。传统的数据处理平台具有同构性等技术特点,且所有资源采用同种类型的接口,这种规模状态很难达到。且传统的电力数据平台在使用时需要不断地更换核心部件来提高系统的数据分析能力,但是这种方法有一定的局限性,一旦扩展到器件上限,就需要重新更换器件设备。In practical applications, the actual amount of data in smart grids is very large. Traditional data storage capacity is limited and its processing capabilities are lacking. Traditional data storage space is limited and the storage state is unstable, which may cause data loss, disorder, etc. . Smart grid has high requirements on the speed of data analysis and processing. The speed of data analysis and processing efficiency are important indicators to measure the data analysis and processing capabilities. The power system of the smart grid acquires massive amounts of power information every day and evaluates the data in a timely manner, which is very important for the development of the power industry. Traditional data processing platforms have technical characteristics such as isomorphism, and all resources use the same type of interface. This scale is difficult to achieve. In addition, the traditional power data platform needs to continuously replace core components to improve the data analysis capabilities of the system. However, this method has certain limitations. Once it extends to the upper limit of the device, the device equipment needs to be replaced.
随着智能电网的发展,传统的数据分析平台已经不能满足智能电网数据分析的需求,只有不断地改革和创新,研究新的处理技术,才能够真正地解决智能电网在发展中存在的问题。With the development of smart grids, traditional data analysis platforms can no longer meet the needs of smart grid data analysis. Only through continuous reform and innovation and research into new processing technologies can we truly solve the problems existing in the development of smart grids.
发明内容Contents of the invention
本发明的目的是克服现有技术中传统的数据分析平台不能满足智能电网数据分析的需求,导致智能电网运行效率低、运行风险大的问题,提供了一种面向智能电网的电力大数据应用方法,将电力大数据应用在智能电网中,提升了智能电网系统的运行速率,提高了企业的供电效率,保证用户的用电质量,从而使电力系统更加安全稳定。The purpose of the present invention is to overcome the problems in the prior art that traditional data analysis platforms cannot meet the needs of smart grid data analysis, resulting in low smart grid operation efficiency and high operational risks, and provide a power big data application method for smart grids. , the application of power big data in smart grids improves the operation speed of smart grid systems, improves the power supply efficiency of enterprises, and ensures users' power quality, thereby making the power system more secure and stable.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种面向智能电网的电力大数据应用方法,包括下列步骤:A power big data application method for smart grids, including the following steps:
S1:利用MR增强型虚拟技术,对智能电网进行实时监控;S1: Use MR enhanced virtual technology to monitor smart grids in real time;
S2:采集智能电网的电力大数据,获取电力大数据处理技术,将采集的电力大数据分类排列,建立数据库;S2: Collect power big data from smart grids, obtain power big data processing technology, classify and arrange the collected power big data, and establish a database;
S3:获取智能电网业务需求,根据业务需求从数据库中获取相应的电力大数据以及选择相应的电力大数据处理技术;S3: Obtain smart grid business requirements, obtain corresponding power big data from the database according to business requirements, and select corresponding power big data processing technology;
S4:基于获取的电力大数据以及电力大数据处理技术,对所述业务需求进行处理并进行相关决策,得到决策结果;S4: Based on the obtained electric power big data and electric power big data processing technology, process the business requirements and make relevant decisions, and obtain the decision results;
S5:基于决策结果,进行智能电网的运行维护和故障消除。S5: Based on the decision-making results, perform operation, maintenance and fault elimination of the smart grid.
将电力大数据应用在实际的电网建设中,可实现对智能电网内部的用、发电等数据的采集与处理。大数据具有强大的信息采集与存储功能,基于电力大数据的智能电网具有数量大、多元化、速度快、准确率高和价值性高等特征。以电力大数据为基础的智能电网,可提升智能电网系统的运行速率,提高企业的供电效率,保证用户的用电质量,从而使电力系统更加安全稳定。Applying power big data in actual power grid construction can realize the collection and processing of data on consumption and power generation within the smart grid. Big data has powerful information collection and storage functions. Smart grids based on power big data have the characteristics of large quantity, diversification, fast speed, high accuracy and high value. Smart grids based on power big data can improve the operation speed of smart grid systems, improve the power supply efficiency of enterprises, and ensure the quality of power consumption for users, thereby making the power system more secure and stable.
作为优选,对所述业务需求进行处理包括:Preferably, processing the business requirements includes:
利用谐波数据分析谐波产生原因,预测谐波对智能电网造成的风险;Use harmonic data to analyze the causes of harmonics and predict the risks harmonics pose to smart grids;
利用电力大数据的分层处理,关联各个电力系统,进行数据共享;Utilize hierarchical processing of power big data to correlate various power systems for data sharing;
利用电力大数据的分层处理与混合存储技术,构建智能电网多功能信息化管理系统。Utilize the hierarchical processing and hybrid storage technology of power big data to build a multi-functional information management system for smart grids.
在智能电网中,电力系统内部各种类型的测量仪器都会受到谐波的影响从而产生误差,因此谐波会影响整个电力系统的运行;另外一些电力设备也会产生谐波,部分高谐波分量甚至会对设备的使用造成危害。利用电力大数据可以依据谐波数据分析其产生的原因,预测谐波对电力系统造成的风险,进而为谐波治理提供更加切实可靠的依据。分层处理与混合存储技术为构建多功能的信息化管理提供了技术支持,提高了电力信息的收集与存储能力,同时还能够根据实际业务需求,利用分层处理技术来实现电力系统之间的关联,确保数据之间能够信息共享。极大程度提升大数据的处理效率、扩大数据存储容量。In smart grids, various types of measuring instruments within the power system will be affected by harmonics and produce errors. Therefore, harmonics will affect the operation of the entire power system; in addition, some power equipment will also produce harmonics, and some high harmonic components It may even cause harm to the use of the equipment. Power big data can be used to analyze the causes of harmonic data and predict the risks caused by harmonics to the power system, thereby providing a more practical and reliable basis for harmonic control. Hierarchical processing and hybrid storage technology provide technical support for building multi-functional information management and improve the collection and storage capabilities of power information. At the same time, hierarchical processing technology can also be used to realize communication between power systems based on actual business needs. Association to ensure information sharing between data. Greatly improve the processing efficiency of big data and expand data storage capacity.
作为优选,预测谐波对智能电网造成的风险包括:As a priority, the risks posed by harmonics to smart grids include:
通过划分相关元件和参数,将有功、无功的基波与谐波数据存储在一个表中;By dividing relevant components and parameters, the fundamental wave and harmonic data of active and reactive power are stored in a table;
计算基波和谐波的电流,根据计算出来的电流生成相应的谐波含量;Calculate the fundamental and harmonic currents, and generate the corresponding harmonic content based on the calculated current;
将谐波含量输入训练得到的谐波风险预测模型中,对谐波进行风险评估。Input the harmonic content into the harmonic risk prediction model obtained by training, and perform risk assessment on harmonics.
在评估电力数据谐波风险的过程中,需要将谐波带入到预测模型中,一般使用的是 ARIMA 模型。在使用该模型时要先进行训练,然后根据谐波数据预测谐波未来的变化趋势,为谐波的治理提供保障。In the process of assessing the harmonic risk of power data, harmonics need to be brought into the prediction model, and the ARIMA model is generally used. When using this model, training must be performed first, and then the future change trend of harmonics can be predicted based on harmonic data to provide guarantee for harmonic management.
作为优选,所述电力大数据关键技术包括:Preferably, the key technologies for power big data include:
进行智能电网安全在线分析的数据分析技术;Data analysis technology for online security analysis of smart grids;
提取有效数据信息,建立统一的数据结构体系的数据管理技术;Data management technology to extract effective data information and establish a unified data structure system;
对电力大数据内部进行处理的数据处理技术;Data processing technology for internal processing of power big data;
将电力大数据进行三维虚拟展示的数据展示技术。Data display technology for three-dimensional virtual display of power big data.
智能电网大数据具有多样性,在清洗和过滤数据信息时,需要充分保证数据的质量,因此电力大数据的数据管理技术融合了多种数据处理技术,如数据融合技术、数据集成技术、数据清洗技术、数据过滤技术和数据提取技术等,能够从海量的数据中提取出来有效的数据信息,并整理好数据之间的关系,形成一种统一的数据结构体系。电力大数据的数据展现技术是用来显示系统内部数据信息的,一般以一种三维虚拟的形式展现出来,以实现对系统内部数据的实时监控功能。数据展现技术包括可视化技术、信息流展示技术等,并通过屏幕互动与互动地图等技术使数据展示的更加简洁。Smart grid big data is diverse. When cleaning and filtering data information, it is necessary to fully ensure the quality of the data. Therefore, the data management technology of power big data integrates a variety of data processing technologies, such as data fusion technology, data integration technology, and data cleaning. Technology, data filtering technology and data extraction technology can extract effective data information from massive data, and sort out the relationship between data to form a unified data structure system. The data display technology of power big data is used to display the internal data information of the system, usually in a three-dimensional virtual form, to realize the real-time monitoring function of the internal data of the system. Data display technology includes visualization technology, information flow display technology, etc., and uses screen interaction and interactive map technologies to make data display more concise.
作为优选,所述数据分析技术包括:Preferably, the data analysis technology includes:
从多个维度对电力大数据的单位和时间代码进行索引,自动过滤干扰数据;Index the unit and time codes of power big data from multiple dimensions and automatically filter out interference data;
解析电力大数据中的SQL语言,并将SQL语句翻译成多个HQL语段;Parse the SQL language in power big data and translate SQL statements into multiple HQL segments;
利用混合存储技术,将主表与附表结合,实时更新存储的电力大数据,并根据智能电网数据运行要求,分配电力大数据存储的位置;Use hybrid storage technology to combine the main table with the attached table to update the stored power big data in real time, and allocate the storage location of the power big data according to the smart grid data operation requirements;
利用分层次处理技术对电力大数据进行综合处理。Use hierarchical processing technology to comprehensively process power big data.
智能电网的电力系统内部的存储数据巨多,而存储功能可能会影响内部资料进而无法发挥其本身的价值。以往都是通过分析计算等方式来获取相应的数据信息的,但这种方式的处理效率并不高。通过使用数据分析技术,可在之前的内部存储系统上进行优化,从而提高对数据的处理能力,保证数据处理的效率与质量。There is a huge amount of stored data within the power system of the smart grid, and the storage function may affect the internal data and fail to exert its own value. In the past, corresponding data information was obtained through analysis and calculation, but the processing efficiency of this method was not high. By using data analysis technology, optimization can be performed on the previous internal storage system, thereby improving data processing capabilities and ensuring the efficiency and quality of data processing.
作为优选,所述数据处理技术包括:Preferably, the data processing technology includes:
对电力大数据内部进行分布式预处理的分布式计算技术;Distributed computing technology for distributed preprocessing of power big data;
进行电力大数据在线实时计算的内存计算技术;Memory computing technology for online real-time calculation of power big data;
处理适时到达的、速度和规模不受控制的电力大数据的流处理技术。Stream processing technology for processing power big data that arrives at just the right time, with uncontrolled speed and scale.
电力大数据的数据处理技术一般包括分布式计算技术、流处理技术和内存计算技术等。The data processing technology of power big data generally includes distributed computing technology, stream processing technology and memory computing technology.
作为优选,所述分布式计算技术包括构建电力云体系结构模型,所述电力云体系结构模型包括:Preferably, the distributed computing technology includes building a power cloud architecture model, and the power cloud architecture model includes:
高级访问层,为智能电网的分析评估提供计算支持;The advanced access layer provides computing support for smart grid analysis and evaluation;
应用接口层,用于认证权限操作;Application interface layer, used for authentication authority operations;
基础应用层,提供存储服务,实现数据的权限与加密和数据的备份;The basic application layer provides storage services, implements data permissions and encryption, and data backup;
物理存储层,定位智能电网的存储设备,进行实时数据存储,并使存储虚拟化,对存储进行集中化管理。The physical storage layer locates the storage devices of the smart grid, performs real-time data storage, virtualizes the storage, and centrally manages the storage.
电力云能够在不改变电力系统内部网络与设备的情况下,整合系统的数据资源处理器,为数据提供最大的存储空间。The power cloud can integrate the system's data resource processor without changing the internal network and equipment of the power system to provide maximum storage space for data.
作为优选,所述步骤S4还包括:将得到的整合结果映射在地理信息系统GIS平台上。Preferably, the step S4 further includes: mapping the obtained integration results on the geographic information system GIS platform.
充分利用 GIS 系统提高对电网系统问题的判断能力,帮助工作人员能够更加方便地分配电力资源,寻求电力应用效益的最大化。Make full use of the GIS system to improve the ability to judge power grid system problems, help staff allocate power resources more conveniently, and seek to maximize the benefits of power application.
因此,本发明具有如下有益效果:1、将电力大数据应用在实际的电网建设中,可实现对智能电网内部的用、发电等数据的采集与处理;2、大数据具有强大的信息采集与存储功能,基于电力大数据的智能电网具有数量大、多元化、速度快、准确率高和价值性高等特征;3、以电力大数据为基础的智能电网,可提升智能电网系统的运行速率,提高企业的供电效率,保证用户的用电质量,从而使电力系统更加安全稳定。Therefore, the present invention has the following beneficial effects: 1. Applying power big data in actual power grid construction can realize the collection and processing of usage, power generation and other data within the smart grid; 2. Big data has powerful information collection and processing capabilities. Storage function, smart grid based on power big data has the characteristics of large quantity, diversification, fast speed, high accuracy and high value; 3. Smart grid based on power big data can improve the operation speed of smart grid system, Improve the power supply efficiency of enterprises and ensure the quality of power consumption of users, thus making the power system more secure and stable.
附图说明Description of drawings
图1为本发明方法的步骤流程图。Figure 1 is a flow chart of the steps of the method of the present invention.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本发明作进一步详细描述:The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments:
实施例:Example:
如图1所示的实施例中,可以看到一种面向智能电网的电力大数据应用方法,包括:步骤一,利用MR增强型虚拟技术,对智能电网进行实时监控;步骤二,采集智能电网的电力大数据,获取电力大数据处理技术,将采集的电力大数据分类排列,建立数据库;步骤三,获取智能电网业务需求,根据业务需求从数据库中获取相应的电力大数据以及选择相应的电力大数据处理技术;步骤四,基于获取的电力大数据以及电力大数据处理技术,对所述业务需求进行处理并进行相关决策,得到决策结果;步骤五,基于决策结果,进行智能电网的运行维护和故障消除。As shown in the embodiment shown in Figure 1, we can see a power big data application method for smart grids, including: Step 1, using MR enhanced virtual technology to monitor the smart grid in real time; Step 2, collecting smart grid data Electric power big data, obtain electric power big data processing technology, classify and arrange the collected electric power big data, and establish a database; Step 3: Obtain the smart grid business needs, obtain the corresponding electric power big data from the database according to the business needs, and select the corresponding electric power Big data processing technology; step four, based on the obtained power big data and power big data processing technology, process the business requirements and make relevant decisions to obtain decision results; step five, based on the decision results, perform operation and maintenance of the smart grid and troubleshooting.
电力系统一般包括发电、用电、调度以及生产管理等环节。在大数据的时代背景下,智能电网的信息化改革是电力行业发展的必经之路。大数据具有强大的信息采集与存储功能,基于电力大数据的智能电网具有数量大、多元化、速度快、准确率高和价值性高等特征。Power systems generally include power generation, electricity consumption, dispatching, and production management. In the era of big data, the informatization reform of smart grid is the only way for the development of the power industry. Big data has powerful information collection and storage functions. Smart grids based on power big data have the characteristics of large quantity, diversification, fast speed, high accuracy and high value.
智能电网增加了各个网络节点的设备数量,电力数据资源非常巨大。在分析并处理这些数据时,基于电力大数据的智能电网可高效进行搜集与分析。由于数据资源系统不断扩大,使用智能电表的用户以及产生的电力数据不断增多,因此电力大数据在采集以及处理上一直保持着高效率。Smart grid increases the number of devices in each network node, and the power data resources are very huge. When analyzing and processing these data, smart grids based on power big data can collect and analyze efficiently. As the data resource system continues to expand, the number of users using smart meters and the power data generated continues to increase, so the collection and processing of power big data have always maintained high efficiency.
电力大数据能够通过网络技术对数据进行分析与处理,具有很强的数据存储功能,它与互联网也是紧密联系的。电力大数据能够利用软硬件等设备,如存储设备、移动终端和服务器等,来为智能电网提供相应的服务。将电力大数据应用在实际的电网建设中,可实现对智能电网内部的用、发电等数据的采集与处理。大数据具有强大的信息采集与存储功能,基于电力大数据的智能电网具有数量大、多元化、速度快、准确率高和价值性高等特征。以电力大数据为基础的智能电网,可提升智能电网系统的运行速率,提高企业的供电效率,保证用户的用电质量,从而使电力系统更加安全稳定。Electric power big data can analyze and process data through network technology and has a strong data storage function. It is also closely connected with the Internet. Power big data can use software and hardware equipment, such as storage devices, mobile terminals and servers, to provide corresponding services for smart grids. Applying power big data in actual power grid construction can realize the collection and processing of data on consumption and power generation within the smart grid. Big data has powerful information collection and storage functions. Smart grids based on power big data have the characteristics of large quantity, diversification, fast speed, high accuracy and high value. Smart grids based on power big data can improve the operation speed of smart grid systems, improve the power supply efficiency of enterprises, and ensure the quality of power consumption for users, thereby making the power system more secure and stable.
电力大数据处理信息时,其条件参数不受器件和硬件设备的限制,在不更换设备的情况下可以无期限地扩大应用空间,减少扩展设备的成本。When power big data processes information, its conditional parameters are not limited by devices and hardware equipment. The application space can be expanded indefinitely without replacing equipment, reducing the cost of expanding equipment.
下面对本实施例的方案进行进一步详细说明:The solution of this embodiment is further described in detail below:
第一步:利用MR增强型虚拟技术,对智能电网进行实时监控。The first step: Use MR enhanced virtual technology to monitor the smart grid in real time.
第二步:采集智能电网的电力大数据,获取电力大数据处理技术,将采集的电力大数据分类排列,建立数据库。Step 2: Collect power big data from smart grids, obtain power big data processing technology, classify and arrange the collected power big data, and establish a database.
传统的数据存储空间有限,且存储状态不稳定,可能造成数据丢失、排列失序等情况。电力大数据在计算机网络技术的支持下,对电力数据进行分析与处理,将服务器上的不同组织进行连接,将数据分门别类地规整在一起,将无序的数据有序地整合起来,有序排列,提高了数据的稳定性。另外在处理信息时,不容易受到周围环境的影响,更容易形成智能化的信息处理方式,进一步提高信息处理效率。Traditional data storage space is limited and the storage state is unstable, which may cause data loss, disorder, etc. With the support of computer network technology, power big data analyzes and processes power data, connects different organizations on the server, organizes data into categories, integrates disordered data in an orderly manner, and arranges them in an orderly manner. , improving the stability of data. In addition, when processing information, it is not easily affected by the surrounding environment, and it is easier to form an intelligent information processing method, further improving information processing efficiency.
智能电网需要对数据进行采集、分析与处理,还要解决一些无法处理的文件、故障图片、监控视频等,因此需要相对较高的技术水平才能实现。面对智能电网的电力大数据处理技术包括数据分析技术、数据管理技术、数据处理技术以及数据展现技术。Smart grids need to collect, analyze and process data, and also solve some unprocessable files, fault pictures, surveillance videos, etc., so they require a relatively high technical level to implement. Power big data processing technology for smart grids includes data analysis technology, data management technology, data processing technology and data presentation technology.
具体的:specific:
1、进行智能电网安全在线分析的数据分析技术。1. Data analysis technology for online security analysis of smart grids.
通过分析计算等方式来获取相应的数据信息的方式,处理效率并不高。通过使用数据分析技术,可在之前的内部存储系统上进行优化,从而提高对数据的处理能力,保证数据处理的效率与质量。电力系统的在线跟踪、智能决策以及自动识别等功能都可以采用在线安全分析技术来实现,而基于 MES 的数据模型能够实现系统的信息管理功能。The processing efficiency of obtaining corresponding data information through analysis and calculation is not high. By using data analysis technology, optimization can be performed on the previous internal storage system, thereby improving data processing capabilities and ensuring the efficiency and quality of data processing. Functions such as online tracking, intelligent decision-making, and automatic identification of the power system can all be implemented using online security analysis technology, and the MES-based data model can realize the information management function of the system.
数据分析技术包括:Data analysis techniques include:
电力大数据需要具备多维度的查询功能,并固定每个查询维度,维度可能存在轻微的变化。从多个维度对电力大数据的单位和时间代码进行索引,自动过滤干扰数据,保证了资源利用率。Electric power big data needs to have multi-dimensional query functions and fix each query dimension. There may be slight changes in the dimensions. Index the unit and time codes of power big data from multiple dimensions, automatically filter out interference data, and ensure resource utilization.
解析电力大数据中的SQL语言,并将SQL语句翻译成多个HQL语段,既避免了人工翻译的错误,又降低了分析与处理的难度,保证了对数据的翻译效率,从而为电力系统整体的运行提供了保障。Analyze the SQL language in power big data and translate SQL statements into multiple HQL segments, which not only avoids manual translation errors, but also reduces the difficulty of analysis and processing, ensuring the efficiency of data translation, thereby providing benefits to the power system. The overall operation is guaranteed.
利用混合存储技术,将主表与附表结合,实时更新存储的电力大数据,并根据智能电网数据运行要求,分配电力大数据存储的位置,实现对资源的最大化利用。Using hybrid storage technology, the main table is combined with the attached table to update the stored power big data in real time. According to the smart grid data operation requirements, the storage location of the power big data is allocated to maximize the utilization of resources.
利用分层次处理技术对电力大数据进行综合处理,保证电力系统之间的关联与独立,对实现大数据管理系统结构化管理具有重要作用。Using hierarchical processing technology to comprehensively process power big data to ensure the correlation and independence between power systems plays an important role in realizing structured management of big data management systems.
2、提取有效数据信息,建立统一的数据结构体系的数据管理技术。2. Extract effective data information and establish data management technology for a unified data structure system.
智能电网大数据具有多样性,在清洗和过滤数据信息时,需要充分保证数据的质量,因此电力大数据的数据管理技术融合了多种数据处理技术,如数据融合技术、数据集成技术、数据清洗技术、数据过滤技术和数据提取技术等,能够从海量的数据中提取出来有效的数据信息,并整理好数据之间的关系,形成一种统一的数据结构体系。Smart grid big data is diverse. When cleaning and filtering data information, it is necessary to fully ensure the quality of the data. Therefore, the data management technology of power big data integrates a variety of data processing technologies, such as data fusion technology, data integration technology, and data cleaning. Technology, data filtering technology and data extraction technology can extract effective data information from massive data, and sort out the relationship between data to form a unified data structure system.
本实施例采用电力数据统一公共模型进行数据管理,电力数据统一公共模型是一种全局性的数据模型,并不针对系统中某一特定业务。该模型可关联与耦合系统中的多个类,实现系统内部之间的数据交换。该模型通过数据描述与视图的方法,实现数据之间的共享,使数据交换变得更加方便,为整个电力系统的扩展提供基础。This embodiment adopts the unified public model of electric power data for data management. The unified public model of electric power data is a global data model and is not targeted at a specific business in the system. This model can associate and couple multiple classes in the system to achieve data exchange within the system. This model realizes data sharing through data description and view methods, making data exchange more convenient and providing a basis for the expansion of the entire power system.
3、对电力大数据内部进行处理的数据处理技术。3. Data processing technology for internal processing of power big data.
数据处理技术包括:对电力大数据内部程序进行拆分、实现分布式预处理的分布式计算技术、进行电力大数据在线实时计算的内存计算技术、处理适时到达的、速度和规模不受控制的电力大数据的流处理技术。Data processing technology includes: splitting the internal programs of power big data, distributed computing technology to achieve distributed pre-processing, memory computing technology for online real-time calculation of power big data, processing data that arrives in a timely manner and the speed and scale are not controlled. Stream processing technology for electric power big data.
对于分布式电力系统,包括一级电网、二级电网以及三级电网等,以及电网作为主云,其余电网作为子云,形成电力云。For the distributed power system, it includes the first-level power grid, the second-level power grid, the third-level power grid, etc., and the power grid serves as the main cloud, and the other power grids serve as sub-clouds to form a power cloud.
电力云能够在不改变电力系统内部网络与设备的情况下,整合系统的数据资源处理器,为数据提供最大的存储空间。为保证电力系统内部数据计算的要求,电力云可以对系统进行分层开发,构建电力云体系结构模型。The power cloud can integrate the system's data resource processor without changing the internal network and equipment of the power system to provide maximum storage space for data. In order to ensure the internal data calculation requirements of the power system, the power cloud can develop the system in layers and build a power cloud architecture model.
电力云体系结构模型包括:The power cloud architecture model includes:
高级访问层,为模型顶层,一般包含基础与高级的应用,能够为各个应用提供运行平台,为电力系统的稳定分析、经济评估、潮流分析和状态估计等提供计算支持;The advanced access layer is the top layer of the model and generally includes basic and advanced applications. It can provide an operating platform for each application and provide computing support for stability analysis, economic evaluation, power flow analysis and state estimation of the power system;
电力系统内部的广域网位于应用接口层,应用接口层用于连接、认证以及权限操作等,是整个电力云中最活跃的部分;The wide area network within the power system is located at the application interface layer. The application interface layer is used for connection, authentication, and permission operations, and is the most active part of the entire power cloud;
基础应用层,用于电力云调度冲突机制、内容的分发与共享、数据的权限与加密和数据的备份等,为上层结构提供更好的存储服务,实现系统内的协同;The basic application layer is used for the power cloud scheduling conflict mechanism, content distribution and sharing, data permissions and encryption, and data backup, etc., to provide better storage services for the upper structure and achieve collaboration within the system;
物理存储层,可以定位电力系统内部的存储设备,并通过一定的技术手段使这些存储设备联系起来,实现实时的数据存储功能,另外该层能够使存储虚拟化,实现对存储的集中化管理,电力系统内部的状态监控、维护升级等都在该层实现。The physical storage layer can locate storage devices within the power system and connect these storage devices through certain technical means to achieve real-time data storage functions. In addition, this layer can virtualize storage and achieve centralized management of storage. Status monitoring, maintenance and upgrades within the power system are all implemented at this layer.
4、将电力大数据进行三维虚拟展示的数据展示技术。4. Data display technology for three-dimensional virtual display of power big data.
电力大数据的数据展现技术是用来显示电力系统内部数据信息的,一般以一种三维虚拟的形式展现出来,以实现对电力系统内部数据的实时监控功能。数据展现技术包括可视化技术、信息流展示技术等,并通过屏幕互动与互动地图等技术使数据展示的更加简洁。The data display technology of power big data is used to display the internal data information of the power system, usually in a three-dimensional virtual form, to realize the real-time monitoring function of the internal data of the power system. Data display technology includes visualization technology, information flow display technology, etc., and uses screen interaction and interactive map technologies to make data display more concise.
具体的:三维虚拟变电站主要实现的是对数据的可视化管理与监控,一般由 2 个部分组成,分别是变电站三维可视化展示平台和应用服务集成接口。前者的虚拟展示平台可结合三维虚拟与数字可视化技术,形成一种能够实时监控的系统,包括 PMIS 系统、SCADA 系统、安全防控系统以及火灾报警系统,从而实现变电站的三维虚拟一体化的展示功能。三维虚拟一体化展示服务的基础是系统内部之间的服务器,一般使用应用服务集成接口来完成。Specifically: The three-dimensional virtual substation mainly implements the visual management and monitoring of data. It generally consists of two parts, namely the three-dimensional visual display platform of the substation and the application service integration interface. The former's virtual display platform can combine three-dimensional virtual and digital visualization technology to form a system capable of real-time monitoring, including PMIS system, SCADA system, safety prevention and control system and fire alarm system, thereby realizing the three-dimensional virtual integrated display function of the substation . The basis of the three-dimensional virtual integrated display service is the server within the system, which is generally completed using the application service integration interface.
第三步:获取智能电网业务需求,根据业务需求从数据库中获取相应的电力大数据以及选择相应的电力大数据处理技术。Step 3: Obtain the smart grid business requirements, obtain the corresponding power big data from the database according to the business requirements, and select the corresponding power big data processing technology.
业务需求包括智能电网运行风险评估、智能电网电力资源分配、智能电网的数据管理等。Business requirements include smart grid operation risk assessment, smart grid power resource allocation, smart grid data management, etc.
第四步:基于获取的电力大数据以及电力大数据处理技术,对所述业务需求进行处理并进行相关决策,得到决策结果。Step 4: Based on the obtained electric power big data and electric power big data processing technology, process the business requirements and make relevant decisions to obtain decision results.
对业务需求进行处理包括:Addressing business requirements includes:
1、利用谐波数据分析谐波产生原因,预测谐波对智能电网造成的风险。1. Use harmonic data to analyze the causes of harmonics and predict the risks harmonics pose to smart grids.
电力系统内部各种类型的测量仪器都会受到谐波的影响从而产生误差,因此谐波会影响整个电力系统的运行。产生谐波的原因有很多,例如系统在输电的过程中会产生微小的谐波分量,另外一些电力设备也会产生谐波,部分高谐波分量甚至会对设备的使用造成危害。电力大数据技术可以依据谐波数据分析其产生的原因,预测谐波对电力系统造成的风险,进而为谐波治理提供更加切实可靠的依据。Various types of measuring instruments within the power system will be affected by harmonics and produce errors. Therefore, harmonics will affect the operation of the entire power system. There are many reasons for the generation of harmonics. For example, the system will produce tiny harmonic components during the power transmission process. In addition, some power equipment will also produce harmonics. Some high harmonic components may even cause harm to the use of the equipment. Power big data technology can analyze the causes of harmonics based on data and predict the risks harmonics pose to the power system, thereby providing a more practical and reliable basis for harmonic control.
具体方式为:The specific methods are:
通过划分相关元件和参数,将有功、无功的基波与谐波数据存储在一个表中,更有利于对数据的查询与提取;By dividing relevant components and parameters, the fundamental wave and harmonic data of active and reactive power are stored in a table, which is more conducive to data query and extraction;
计算基波和谐波的电流,根据计算出来的电流生成相应的谐波含量;Calculate the fundamental and harmonic currents, and generate the corresponding harmonic content based on the calculated current;
在完成谐波数据的存储与计算后,需要对谐波进行风险评估,可进一步保证电力系统的安全性。在评估电力数据谐波风险的过程中,需要将谐波带入到预测模型中,一般使用的是 ARIMA 模型。在使用该模型时要先进行训练,然后根据谐波数据预测谐波未来的变化趋势,为谐波的治理提供保障。After completing the storage and calculation of harmonic data, harmonic risk assessment needs to be carried out to further ensure the safety of the power system. In the process of assessing the harmonic risk of power data, harmonics need to be brought into the prediction model, and the ARIMA model is generally used. When using this model, training must be performed first, and then the future change trend of harmonics can be predicted based on harmonic data to provide guarantee for harmonic management.
2、利用电力大数据的分层处理,关联各个电力系统,进行数据共享。2. Utilize hierarchical processing of power big data to correlate various power systems for data sharing.
3、利用电力大数据的分层处理与混合存储技术,构建智能电网多功能信息化管理系统,提高了电力信息的收集与存储能力,同时还能够根据实际业务需求。3. Utilize the hierarchical processing and hybrid storage technology of power big data to build a smart grid multi-functional information management system, which improves the collection and storage capabilities of power information and can also be based on actual business needs.
4、云计算、SQL 技术可以对数据进行实时的分析与计算,极大程度提升大数据的处理效率、扩大数据存储容量。4. Cloud computing and SQL technology can perform real-time analysis and calculation on data, greatly improving the processing efficiency of big data and expanding data storage capacity.
将得到的整合结果映射在地理信息系统GIS平台上Map the obtained integration results on the GIS platform
以地理信息系统GIS为基础,充分利用 GIS 系统提高对电网系统问题的判断能力,通过大数据平台得到的展示数据与地理信息关联起来,直观展现电网生产运营的全貌,为运营者的运营管理提供技术支撑,帮助工作人员能够更加方便地分配电力资源,寻求电力应用效益的最大化。Based on the geographical information system GIS, the GIS system is fully utilized to improve the ability to judge power grid system problems. The display data obtained through the big data platform is associated with geographical information to intuitively display the full picture of power grid production and operation, and provide operators with operational management Technical support helps staff allocate power resources more conveniently and seek to maximize the benefits of power application.
第五步:基于决策结果,进行智能电网的运行维护和故障消除。Step 5: Based on the decision-making results, carry out operation, maintenance and fault elimination of the smart grid.
合理有效地利用电力大数据信息,保证智能电网安全、稳定运行,提升电力系统的整体性能。Reasonably and effectively utilize power big data information to ensure the safe and stable operation of smart grids and improve the overall performance of the power system.
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。The above-described embodiment is only a preferred solution of the present invention and does not limit the present invention in any form. There are other variations and modifications without exceeding the technical solution described in the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310522331.0A CN116776543A (en) | 2023-05-10 | 2023-05-10 | A power big data application method for smart grid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310522331.0A CN116776543A (en) | 2023-05-10 | 2023-05-10 | A power big data application method for smart grid |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116776543A true CN116776543A (en) | 2023-09-19 |
Family
ID=87984978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310522331.0A Pending CN116776543A (en) | 2023-05-10 | 2023-05-10 | A power big data application method for smart grid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116776543A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117767299A (en) * | 2023-12-26 | 2024-03-26 | 国网吉林省电力有限公司经济技术研究院 | Construction method of digital transformation system framework based on power grid system |
-
2023
- 2023-05-10 CN CN202310522331.0A patent/CN116776543A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117767299A (en) * | 2023-12-26 | 2024-03-26 | 国网吉林省电力有限公司经济技术研究院 | Construction method of digital transformation system framework based on power grid system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107133255B (en) | Panoramic security defense method and system for large power grid | |
CN105046327B (en) | A kind of intelligent grid information system and method based on machine learning techniques | |
CN109523446A (en) | A kind of big data processing analysis system towards price field | |
CN105574652A (en) | Planning big data management and control system of smart power distribution network and method | |
CN107864222A (en) | A kind of industrial big data computing architecture based on PaaS platform | |
CN104156810A (en) | Power dispatching production management system based on cloud computing and realization method of power dispatching production management system | |
CN104463492A (en) | Operation management method of electric power system cloud simulation platform | |
CN104462314A (en) | Power grid data processing method and device | |
CN103825755A (en) | Power secondary system modeling method and system | |
Ma et al. | Review of power spatio-temporal big data technologies for mobile computing in smart grid | |
CN115858651A (en) | Support platform is used in integration of wisdom city | |
CN110932405A (en) | Intelligent monitoring and analyzing system for power transformation equipment based on big data | |
CN113516331A (en) | Building data processing method and device | |
Wu et al. | An Auxiliary Decision‐Making System for Electric Power Intelligent Customer Service Based on Hadoop | |
CN107085597A (en) | A kind of storage of BIM models and browsing environment building method based on cloud framework | |
CN113535846B (en) | Big data platform and construction method thereof | |
CN116776543A (en) | A power big data application method for smart grid | |
Lee et al. | Refining micro services placement over multiple kubernetes-orchestrated clusters employing resource monitoring | |
CN115310923A (en) | Energy management service system and method | |
Guo et al. | Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things | |
Cao et al. | Design and application of big data platform architecture for typical scenarios of power system | |
Hu | Library information resource sharing cloud service based on cloud computing mode | |
Zhou et al. | Research review on big data of the smart grid | |
Tang et al. | Research and application of improving the field service ability of electric power marketing measuring mobile operating based on cloud computing technology | |
Li et al. | The fast simulation architecture construction for integrated electric transmission and distribution power grid based on big data platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |