Nothing Special   »   [go: up one dir, main page]

CN116761624A - Stable coronavirus proteins and vaccine compositions thereof - Google Patents

Stable coronavirus proteins and vaccine compositions thereof Download PDF

Info

Publication number
CN116761624A
CN116761624A CN202180088941.3A CN202180088941A CN116761624A CN 116761624 A CN116761624 A CN 116761624A CN 202180088941 A CN202180088941 A CN 202180088941A CN 116761624 A CN116761624 A CN 116761624A
Authority
CN
China
Prior art keywords
coronavirus
polypeptide
seq
sequence
rbd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180088941.3A
Other languages
Chinese (zh)
Inventor
D·埃利斯
N·金
J·布鲁姆
T·思达
A·格雷尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Washington
Fred Hutchinson Cancer Center
Original Assignee
University of Washington
Fred Hutchinson Cancer Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Washington, Fred Hutchinson Cancer Center filed Critical University of Washington
Priority claimed from PCT/US2021/037341 external-priority patent/WO2022146484A1/en
Publication of CN116761624A publication Critical patent/CN116761624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

Provided herein are compositions and methods comprising a mutant coronavirus "S" spike protein or receptor binding domain thereof that has increased expression levels, yields, and stability under the same expression, culture, or storage conditions as its corresponding native or wild-type coronavirus spike protein. These mutated spike proteins can be used to produce protein-based vaccines against one or more coronaviruses.

Description

稳定的冠状病毒蛋白及其疫苗组合物Stable coronavirus protein and vaccine composition thereof

政府支持Government support

本发明根据国立卫生研究院(National Institutes of Health)授予的AI141707在政府支持下产生。政府对本发明具有一定权利。This invention was made with government support under Grant AI 141707 from the National Institutes of Health. The government has certain rights in this invention.

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请根据35U.S.C.§119(e)要求于2020年12月31日提交的美国临时申请号63/132,863和于2021年5月14日提交的美国临时申请号63/188,651的权益,所述美国临时申请中的每一者的内容通过引用方式以其整体并入本文。This application claims the benefit of U.S. Provisional Application No. 63/132,863, filed on December 31, 2020, and U.S. Provisional Application No. 63/188,651, filed on May 14, 2021, under 35 U.S.C. §119(e), the contents of each of which are incorporated herein by reference in their entirety.

技术领域Technical Field

本发明的领域涉及用于提高基于蛋白质的疫苗的稳定性的方法和组合物。The field of the invention relates to methods and compositions for improving the stability of protein-based vaccines.

背景技术Background Art

冠状病毒仍然是突出的大流行威胁,其中由SARS-CoV-2病毒诱发的2019/2020大流行导致全球数十万人死亡并且经济大幅放缓。即使在当前的大流行减弱之后,SARS-CoV-2也可能会维持持续流行。因此,非常需要针对SARS-CoV-2或其他未来出现的冠状病毒的有效疫苗。Coronaviruses remain a prominent pandemic threat, with the 2019/2020 pandemic caused by the SARS-CoV-2 virus resulting in hundreds of thousands of deaths and a significant economic slowdown worldwide. SARS-CoV-2 is likely to remain a persistent epidemic even after the current pandemic abates. Therefore, effective vaccines against SARS-CoV-2 or other future emerging coronaviruses are highly desirable.

发明内容Summary of the invention

本文所述的组合物和方法部分地基于SARS-CoV-2S“刺突”蛋白氨基酸序列中的提高所表达的蛋白质的产量和稳定性两者(在相同或相似的培养条件下)的单个或成对的氨基酸突变的发现。这种增强的刺突蛋白(在本文中也被称为“刺突蛋白衍生的抗原”)稳定性允许生产比基于野生型或天然蛋白的疫苗具有更长保质期(在相同或类似储存条件下)的疫苗。The compositions and methods described herein are based in part on the discovery of single or paired amino acid mutations in the amino acid sequence of the SARS-CoV-2S "spike" protein that increase both the yield and stability of the expressed protein (under the same or similar culture conditions). This enhanced spike protein (also referred to herein as "spike protein-derived antigen") stability allows the production of vaccines with longer shelf lives (under the same or similar storage conditions) than vaccines based on wild-type or native proteins.

因此,在一个方面中,本文提供了一种非天然存在的多肽,所述非天然存在的多肽包含第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少两个突变,其中所述至少两个突变选自由以下组成的组:F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或在如通过使用Blast-p(Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.&Lipman,D.J.(1990)"Basic local alignment search tool."J.Mol.Biol.215:403-410)将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒受体结合结构域的对应残基处。在一个实施方案中,所使用的Blast-p程序是国家生物技术信息中心(NCBI)在线比对工具。或者,可以将Blast-p程序下载到设备上并在本地使用。本领域的技术人员将很容易理解Blast-p比对工具的使用,然而为了避免疑义,随本文提供协议1和协议2以分别用于在线和下载的比对工具。Thus, in one aspect, a non-naturally occurring polypeptide is provided herein, comprising a first coronavirus receptor binding domain (RBD), wherein the first coronavirus RBD comprises at least 90% identity to residues 328-531 of SEQ ID NO: 1, and further comprising residues 328-531 of SEQ ID NO: 1. NO: at least two mutations of the RBD of 1, wherein the at least two mutations are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513M; I358F/Y365W/F377V 92W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or by using Blast-p (Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J.Mol.Biol.215:403-410) SEQ ID NO: 1 is aligned with the sequence of the second coronavirus receptor binding domain to determine the corresponding residues of the second coronavirus receptor binding domain. In one embodiment, the Blast-p program used is the National Center for Biotechnology Information (NCBI) online alignment tool. Alternatively, the Blast-p program can be downloaded to the device and used locally. Those skilled in the art will readily understand the use of the Blast-p alignment tool, however, for the avoidance of doubt, Protocols 1 and 2 are provided herein for use with online and downloaded alignment tools, respectively.

协议1:用于与来自国家生物技术信息中心(NCBI)服务器的在线BLASTp比对一起使用。 Protocol 1 : For use with online BLASTp alignments from the National Center for Biotechnology Information (NCBI) server.

1.使用以下设置来设置BLAST比对:1. Set up a BLAST alignment using the following settings:

使用“Align two or more sequences(比对两个或更多个序列)”选项Use the "Align two or more sequences" option

向“Enter Query Sequence(输入查询序列)”区段中输入相关SARS-CoV-2蛋白的参考株序列(即,SEQ ID NO:1)Enter the reference strain sequence of the relevant SARS-CoV-2 protein (i.e., SEQ ID NO: 1) into the "Enter Query Sequence" section

向“Enter Subject Sequence(输入主题序列)”区段中输入任何对应的冠状病毒刺突蛋白序列Enter any corresponding coronavirus spike protein sequence into the "Enter Subject Sequence" section

算法:blastp(蛋白质-蛋白质BLAST)Algorithm: blastp (protein-protein BLAST)

预期阈值:0.1Expected threshold: 0.1

字长:6Word length: 6

查询范围内的最大匹配:0Maximum matches within query range: 0

矩阵:BLOSUM62Matrix: BLOSUM62

空位成本:Vacancy cost:

存在:11Presence: 11

延伸:1Extension: 1

过滤低复杂度区域?:否Filter low complexity areas?: No

掩码:Mask:

仅用于查找表?:否For lookup table only? : No

小写字母?:否。Lowercase letters?: No.

2.通过点击“BLAST”按钮运行分析。2. Run the analysis by clicking the "BLAST" button.

3.点击“Alignments(比对)”标记以显示两个序列之间的比对。3. Click the "Alignments" tab to display the alignment between the two sequences.

4.对于每个感兴趣的序列位置,根据“Query(查询)”序列鉴定编号。然后鉴定已与“Query(查询)”序列的位置比对的“Sbjct”序列中的对应残基位置。4. For each sequence position of interest, identify the number according to the "Query" sequence. Then identify the corresponding residue position in the "Sbjct" sequence that has been aligned with the position of the "Query" sequence.

协议2:用于与下载到本地计算机或服务器上的蛋白质BLASTp比对工具一起使用。 Protocol 2 : For use with the protein BLASTp alignment tool downloaded to a local computer or server.

1.使用制造商的使用说明安装BLAST以执行命令行,或确定已安装BLAST的计算机或服务器。1. Install BLAST using the manufacturer's instructions for command line execution, or identify a computer or server where BLAST is installed.

2.生成FASTA格式的文件,该文件包含所需的SARS-CoV-2蛋白亚型特异性参考菌株(即,SEQ ID NO:1)。在以下命令中,这个文件将被命名为“query.fasta”。2. Generate a FASTA formatted file containing the desired SARS-CoV-2 protein subtype-specific reference strain (i.e., SEQ ID NO: 1). In the following commands, this file will be named "query.fasta".

3.生成FASTA格式的第二文件,该第二文件包含来自同一亚型的不同冠状病毒的对应蛋白质序列。在以下命令中,这个文件将被命名为“sbjct.fasta”。3. Generate a second file in FASTA format, which contains the corresponding protein sequences of different coronaviruses from the same subtype. In the following command, this file will be named "sbjct.fasta".

4.使用诸如Terminal、iTerm2、Windows Console、Linux console或其他类似终端仿真器的程序执行以下命令。这将在名为“results.txt”的文件中生成结果。blastp-查询query.fasta-主题sbjct.fasta-矩阵BLOSUM62-evalue 0.1-4. Execute the following command using a program such as Terminal, iTerm2, Windows Console, Linux console, or other similar terminal emulator. This will generate the results in a file called "results.txt". blastp -query query.fasta -subject sbjct.fasta -matrix BLOSUM62 -evalue 0.1 -

字长6-空位打开11-空位延伸1-输出results.txtWord length 6-space open 11-space extension 1-output results.txt

(blastp-query query.fasta-subject sbjct.fasta-matrix BLOSUM62-evalue0.1-(blastp-query query.fasta-subject sbjct.fasta-matrix BLOSUM62-evalue0.1-

word size 6-gapopen 11-gapextend 1-out results.txt)。word size 6-gapopen 11-gapextend 1-out results.txt).

5.打开results.txt并查看显示两个序列的比对的区段。对于每个感兴趣的序列位置,根据“Query(查询)”序列鉴定编号。然后鉴定已与“Query(查询)”序列的位置比对的“Sbjct”序列中对应的残基位置。5. Open results.txt and view the section showing the alignment of the two sequences. For each sequence position of interest, identify the number according to the "Query" sequence. Then identify the corresponding residue position in the "Sbjct" sequence that has been aligned with the position of the "Query" sequence.

对于本领域技术人员来说将显而易见的是,其他蛋白质比对工具也可用于鉴定查询序列与参考序列(例如,SEQ ID NO:1)之间的序列同一性。鉴于查询序列和参考序列共享显著的序列同一性,预计其他蛋白质比对工具将产生与使用本文所述的协议的Blast-p相似(如果不是相同)的结果。本文所述的协议已被证明对于此目的是准确和有效的,并且在本文提供以帮助技术人员鉴定要在查询序列中突变的氨基酸残基。It will be apparent to those skilled in the art that other protein alignment tools can also be used to identify sequence identity between a query sequence and a reference sequence (e.g., SEQ ID NO: 1). Given that the query sequence and the reference sequence share significant sequence identity, it is expected that other protein alignment tools will produce similar (if not identical) results to Blast-p using the protocol described herein. The protocol described herein has been shown to be accurate and effective for this purpose, and is provided herein to assist the skilled artisan in identifying amino acid residues to be mutated in the query sequence.

本文提供的另一方面包括一种非天然存在的多肽,所述非天然存在的多肽包含:第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少两个突变,其中所述至少两个突变选自由以下组成的组:F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M;或第二冠状病毒RBD,所述第二冠状病毒RBD包含对应于SEQ ID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;或F338L/I358F/A363L/Y365M的至少两个突变,其中对应位点通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的刺突蛋白序列进行序列比对来确定。Another aspect provided herein includes a non-naturally occurring polypeptide comprising: a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising at least 90% identity to residues 328-531 of SEQ ID NO: 1, and further comprising at least two mutations relative to the RBD of SEQ ID NO: 1, wherein the at least two mutations are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/ Y365W/L513M; I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M; or a second coronavirus RBD comprising a fragment corresponding to SEQ ID NO:1's F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; ;F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513M; I358F/Y3 65W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; or at least two mutations of F338L/I358F/A363L/Y365M, wherein the corresponding positions are determined by sequence alignment of SEQ ID NO:1 with the spike protein sequence of the second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2.

本文提供的另一方面包括一种非天然存在的多肽,所述非天然存在的多肽包含:第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531或与通过使用Blast-p将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒的受体结合结构域的对应残基的至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD或第二冠状病毒中的对应残基的至少两个突变,其中相对于缺乏所述至少两个突变的野生型多肽的稳定性,所述至少两个突变增强所述多肽的稳定性。在某些实施方案中,在相同条件下评定非天然存在的冠状病毒受体结合结构域多肽的稳定性及其对应的野生型多肽的稳定性。Another aspect provided herein includes a non-naturally occurring polypeptide, the non-naturally occurring polypeptide comprising: a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising at least 90% identity with residues 328-531 of SEQ ID NO:1 or with the corresponding residues of the receptor binding domain of the second coronavirus determined by using Blast-p to align SEQ ID NO:1 with the sequence of the second coronavirus receptor binding domain, and further comprising at least two mutations relative to the corresponding residues in the RBD of SEQ ID NO:1 or the second coronavirus, wherein the at least two mutations enhance the stability of the polypeptide relative to the stability of the wild-type polypeptide lacking the at least two mutations. In certain embodiments, the stability of the non-naturally occurring coronavirus receptor binding domain polypeptide and the stability of its corresponding wild-type polypeptide are assessed under the same conditions.

在此方面和本文提供的所有其他方面的一个实施方案中,所述至少两个突变在SEQ ID NO:1的以下氨基酸处:338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365,或在通过使用Blast-p将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒受体结合结构域的对应残基处。In one embodiment of this aspect and all other aspects provided herein, the at least two mutations are in the range of SEQ ID NO:1 at the following amino acids: 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or 338, 358, 363 and 365, or by using Blast-p to convert SEQ ID NO: 1 is aligned with the sequence of the second coronavirus receptor binding domain to determine the corresponding residues of the second coronavirus receptor binding domain.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少两个突变选自由以下组成的组:SEQ ID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或在通过使用Blast-p将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒的对应残基处。In another embodiment of this aspect and all other aspects provided herein, the at least two mutations are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513I of SEQ ID NO: 1. 3M; I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or at the corresponding residues of a second coronavirus determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus receptor binding domain using Blast-p.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述受体结合结构域多肽进一步包含SEQ ID NO:1的RBD之外的附加氨基酸残基。在这个方面和本文提供的所有其他方面的另一实施方案中,如本文所述的受体结合结构域多肽由冠状病毒刺突蛋白多肽构成。在这个方面和本文提供的所有其他方面的另一实施方案中,所述受体结合结构域多肽或冠状病毒刺突蛋白多肽可包括例如融合多肽。受体结合结构域多肽或冠状病毒刺突蛋白多肽还可包含例如(例如用于分泌的)前导序列。在各种实施方案中,可以存在或者替代地可以去除(例如通过蛋白酶解切割)前导序列和/或氨基末端甲硫氨酸。In another embodiment of this aspect and all other aspects provided herein, the receptor binding domain polypeptide further comprises additional amino acid residues outside the RBD of SEQ ID NO: 1. In another embodiment of this aspect and all other aspects provided herein, the receptor binding domain polypeptide as described herein is composed of a coronavirus spike protein polypeptide. In another embodiment of this aspect and all other aspects provided herein, the receptor binding domain polypeptide or coronavirus spike protein polypeptide may include, for example, a fusion polypeptide. The receptor binding domain polypeptide or coronavirus spike protein polypeptide may also include, for example, a leader sequence (e.g., for secretion). In various embodiments, the leader sequence and/or the amino-terminal methionine may be present or alternatively may be removed (e.g., by proteolytic cleavage).

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒受体结合结构域(RBD)包含与SEQ ID NO:1的残基328-531至少95%的同一性。In another embodiment of this aspect and all other aspects provided herein, the coronavirus receptor binding domain (RBD) comprises at least 95% identity to residues 328-531 of SEQ ID NO:1.

在这个方面和本文提供的所有其他方面的另一实施方案中,在SEQ ID NO:1的氨基酸338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处或在第二冠状病毒受体结合结构域的对应残基处的至少两个突变是在受体结合结构域中相对于野生型的唯一突变。In another embodiment of this aspect and all other aspects provided herein, in the amino acids 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or at least two mutations at 338, 358, 363 and 365 or at corresponding residues in a second coronavirus receptor binding domain are unique mutations in the receptor binding domain relative to wild type.

在这个方面和本文提供的所有其他方面的另一实施方案中,当在细胞中表达时,RBD多肽的表达与缺乏该至少两个突变的野生型RBD多肽的表达相比增多(即,在相同或相似的表达条件或培养条件下)。In another embodiment of this aspect and all other aspects provided herein, when expressed in a cell, expression of the RBD polypeptide is increased compared to expression of a wild-type RBD polypeptide lacking the at least two mutations (i.e., under the same or similar expression or culture conditions).

在这个方面和本文提供的所有其他方面的另一实施方案中,RBD多肽结合冠状病毒抗体或结合冠状病毒同源受体。In another embodiment of this aspect and all other aspects provided herein, the RBD polypeptide binds to a coronavirus antibody or binds to a coronavirus cognate receptor.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒抗体包括SARS-CoV-2抗体。In another embodiment of this aspect and all other aspects provided herein, the coronavirus antibody comprises a SARS-CoV-2 antibody.

在这个方面和本文提供的所有其他方面的另一实施方案中,与所述多肽对应的冠状病毒受体包括血管紧张素转换酶(ACE)受体。In another embodiment of this aspect and all other aspects provided herein, the coronavirus receptor corresponding to the polypeptide comprises angiotensin converting enzyme (ACE) receptor.

在这个方面和本文提供的所有其他方面的另一实施方案中,ACE受体是ACE2受体。In another embodiment of this aspect and all other aspects provided herein, the ACE receptor is an ACE2 receptor.

在这个方面和本文提供的所有其他方面的另一实施方案中,第二冠状病毒包含选自以下的冠状病毒的序列:严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2)、严重急性呼吸综合征相关冠状病毒(SARS-CoV);中东呼吸综合征(MERS);229E;NL63;OC43;HKU1,或其天然存在的变体。In another embodiment of this aspect and all other aspects provided herein, the second coronavirus comprises a sequence of a coronavirus selected from: severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-associated coronavirus (SARS-CoV); Middle East respiratory syndrome (MERS); 229E; NL63; OC43; HKU1, or a naturally occurring variant thereof.

在这个方面和本文提供的所有其他方面的另一实施方案中,受体结合结构域多肽包含与SEQ ID NO:1至少90%的序列同一性。In another embodiment of this aspect and all other aspects provided herein, the receptor binding domain polypeptide comprises at least 90% sequence identity to SEQ ID NO:1.

在这个方面和本文提供的所有其他方面的另一实施方案中,RBD与第二异源多肽融合。In another embodiment of this aspect and all other aspects provided herein, the RBD is fused to a second heterologous polypeptide.

在这个方面和本文提供的所有其他方面的另一实施方案中,RBD融合到纳米粒子、纳米结构或异源蛋白质支架。在某些实施方案中,异源蛋白质支架包含SEQ ID NO:3的I53-50三聚体“A”组分。在其他实施方案中,异源蛋白质支架包含如在美国专利号10,351,603的表1中所述的异源蛋白质支架,该美国专利的内容全文以引用方式并入本文。In another embodiment of this aspect and all other aspects provided herein, the RBD is fused to a nanoparticle, nanostructure or a heterologous protein scaffold. In certain embodiments, the heterologous protein scaffold comprises the I53-50 trimer "A" component of SEQ ID NO: 3. In other embodiments, the heterologous protein scaffold comprises a heterologous protein scaffold as described in Table 1 of U.S. Patent No. 10,351,603, the contents of which are incorporated herein by reference in their entirety.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽和/或第二多肽是抗原性多肽。In another embodiment of this aspect and all other aspects provided herein, the polypeptide and/or the second polypeptide is an antigenic polypeptide.

本文提供的另一方面是一种冠状病毒刺突蛋白,所述冠状病毒刺突蛋白包含根据权利要求1所述的多肽。Another aspect provided herein is a coronavirus spike protein comprising the polypeptide of claim 1.

本文提供的另一方面是一种组合物,所述组合物包含如本文所述的多肽和药学上可接受的载体。在一个实施方案中,所述多肽是与药学上可接受的载体的掺和物的形式。在一个实施方案中,所述多肽和所述药学上可接受的载体作为悬浮液提供。Another aspect provided herein is a composition comprising a polypeptide as described herein and a pharmaceutically acceptable carrier. In one embodiment, the polypeptide is in the form of an admixture with a pharmaceutically acceptable carrier. In one embodiment, the polypeptide and the pharmaceutically acceptable carrier are provided as a suspension.

在这个方面和本文提供的所有其他方面的一个实施方案中,所述药物组合物进一步包含佐剂。In one embodiment of this aspect and all other aspects provided herein, the pharmaceutical composition further comprises an adjuvant.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述组合物的保质期比包含缺乏该至少有两个突变的野生型RBD多肽的组合物更长。In another embodiment of this aspect and all other aspects provided herein, the composition has a longer shelf life than a composition comprising a wild-type RBD polypeptide lacking the at least two mutations.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述组合物被配制为疫苗。In another embodiment of this aspect and all other aspects provided herein, the composition is formulated as a vaccine.

在另一方面中,本文还提供了一种包含至少两个突变的非天然存在的冠状病毒刺突蛋白亚基1多肽,其中所述至少两个突变包括至少一个空腔填充突变和至少一个第二突变。In another aspect, also provided herein is a non-naturally occurring coronavirus spike protein subunit 1 polypeptide comprising at least two mutations, wherein the at least two mutations include at least one cavity filling mutation and at least one second mutation.

在这个方面和本文提供的所有其他方面的另一实施方案中,相对于缺乏所述至少一个空腔填充突变和至少第二突变的野生型多肽的稳定性,所述至少两个突变增强了所述冠状病毒多肽的稳定性。In another embodiment of this aspect and all other aspects provided herein, the at least two mutations enhance the stability of the coronavirus polypeptide relative to the stability of a wild-type polypeptide lacking the at least one cavity-filling mutation and the at least second mutation.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少一个空腔填充突变包括在冠状病毒刺突蛋白亚基1的亚油酸结合袋中的残基的突变。In another embodiment of this aspect and all other aspects provided herein, the at least one cavity-filling mutation comprises a mutation of a residue in the linoleic acid binding pocket of subunit 1 of the coronavirus spike protein.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少一个空腔填充突变包括SEQ ID NO:1的残基328-531内的残基的突变,或在如通过使用Blast-p(例如,如本文所述的协议1或协议2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基处的突变。In another embodiment of this aspect and all other aspects provided herein, the at least one cavity-filling mutation comprises a mutation of a residue within residues 328-531 of SEQ ID NO: 1, or a mutation at the corresponding residue of the second coronavirus spike protein subunit 1 as determined by sequence alignment of SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using Blast-p (e.g., Protocol 1 or Protocol 2 as described herein).

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少一个空腔填充突变包括SEQ ID NO:1的在残基335-345;355-375、或378-395之间的残基的突变,或在如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基处的突变。In another embodiment of this aspect and all other aspects provided herein, the at least one cavity-filling mutation comprises a mutation of a residue between residues 335-345; 355-375, or 378-395 of SEQ ID NO:1, or a mutation at the corresponding residue of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO:1 with the sequence of the second coronavirus spike protein subunit 1 using Blast-p (e.g., protocol 1 or 2 as described herein).

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少一个空腔填充突变包括SEQ ID NO:1的在氨基酸336、338、341、342、358、361、363、365、368、374、377、387或392处的残基的突变,或在如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQID NO:1与第二冠状病毒的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基处的突变。In another embodiment of this aspect and all other aspects provided herein, the at least one cavity-filling mutation comprises a mutation of a residue at amino acid 336, 338, 341, 342, 358, 361, 363, 365, 368, 374, 377, 387 or 392 of SEQ ID NO: 1, or a mutation at the corresponding residue of the spike protein subunit 1 of a second coronavirus as determined by aligning SEQ ID NO: 1 with the sequence of a second coronavirus using Blast-p (e.g., protocol 1 or 2 as described herein).

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少一个空腔填充突变和所述至少一个第二突变在SEQ ID NO:1的残基338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处,或在如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基处。In another embodiment of this aspect and all other aspects provided herein, the at least one cavity filling mutation and the at least one second mutation are at residues 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 377 of SEQ ID NO: 1. 92; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or 338, 358, 363 and 365, or at the corresponding residues of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using Blast-p (e.g., Protocol 1 or 2 as described herein).

在这个方面和本文提供的所有其他方面的另一实施方案中,所述至少一个空腔填充突变和所述至少一个第二突变选自由以下组成的组:SEQ ID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或选自如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基。In another embodiment of this aspect and all other aspects provided herein, the at least one cavity filling mutation and the at least one second mutation are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513M; I358F/ Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or selected from the corresponding residues of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using Blast-p (e.g., protocol 1 or 2 as described herein).

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒刺突蛋白亚基1多肽包含与SEQ ID NO:1的残基328-531或如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的受体结合结构域序列的至少95%的同一性。In another embodiment of this aspect and all other aspects provided herein, the coronavirus spike protein subunit 1 polypeptide comprises at least 95% identity to residues 328-531 of SEQ ID NO: 1 or to the receptor binding domain sequence of a second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of a second coronavirus spike protein subunit 1 using Blast-p (e.g., protocol 1 or 2 as described herein).

在这个方面和本文提供的所有其他方面的另一实施方案中,在SEQ ID NO:1的氨基酸338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处或在第二冠状病毒受体结合结构域的对应残基处的至少两个突变是在刺突蛋白亚基1中相对于SEQ ID NO:1的唯一突变。In another embodiment of this aspect and all other aspects provided herein, in the amino acids 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392; 3 38, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or at least two mutations at 338, 358, 363 and 365 or at corresponding residues in the second coronavirus receptor binding domain are unique mutations in spike protein subunit 1 relative to SEQ ID NO: 1.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒多肽包含与SEQ ID NO:1或与第二冠状病毒的野生型刺突蛋白亚基1氨基酸序列至少95%的同一性。In another embodiment of this aspect and all other aspects provided herein, the coronavirus polypeptide comprises at least 95% identity to SEQ ID NO: 1 or to the wild-type spike protein subunit 1 amino acid sequence of a second coronavirus.

在这个方面和本文提供的所有其他方面的另一实施方案中,当在细胞中表达时,冠状病毒多肽的表达与缺乏所述至少一个空腔填充突变和所述至少一个第二突变的野生型多肽在相同表达条件下的表达相比增多。In another embodiment of this aspect and all other aspects provided herein, when expressed in a cell, expression of the coronavirus polypeptide is increased compared to expression of a wild-type polypeptide lacking the at least one cavity-filling mutation and the at least one second mutation under the same expression conditions.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒多肽结合冠状病毒抗体或结合同源冠状病毒受体。In another embodiment of this aspect and all other aspects provided herein, the coronavirus polypeptide binds to a coronavirus antibody or binds to a cognate coronavirus receptor.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒抗体包括SARS-CoV-2抗体。In another embodiment of this aspect and all other aspects provided herein, the coronavirus antibody comprises a SARS-CoV-2 antibody.

在这个方面和本文提供的所有其他方面的另一实施方案中,同源冠状病毒受体包括血管紧张素转换酶(ACE)受体。In another embodiment of this aspect and all other aspects provided herein, the cognate coronavirus receptor comprises an angiotensin converting enzyme (ACE) receptor.

在这个方面和本文提供的所有其他方面的另一实施方案中,ACE受体是ACE2受体。In another embodiment of this aspect and all other aspects provided herein, the ACE receptor is an ACE2 receptor.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒多肽是选自以下的冠状病毒的经工程化的突变多肽:严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2),严重急性呼吸综合征相关冠状病毒(SARS-CoV);中东呼吸综合征(MERS);229E;NL63;OC43;或HKU1。In another embodiment of this aspect and all other aspects provided herein, the coronavirus polypeptide is an engineered mutant polypeptide of a coronavirus selected from: severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-associated coronavirus (SARS-CoV); Middle East respiratory syndrome (MERS); 229E; NL63; OC43; or HKU1.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒刺突蛋白亚基1多肽包含与SEQ ID NO:1至少90%的序列同一性。In another embodiment of this aspect and all other aspects provided herein, the coronavirus spike protein subunit 1 polypeptide comprises at least 90% sequence identity to SEQ ID NO:1.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒多肽与第二异源多肽融合。In another embodiment of this aspect and all other aspects provided herein, the coronavirus polypeptide is fused to a second heterologous polypeptide.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒多肽融合到纳米粒子、纳米结构或蛋白质支架。在某些实施方案中,异源蛋白质支架包含SEQ ID NO:3的I53-50三聚体“A”组分。在其他实施方案中,异源蛋白质支架包含如在美国专利号10,351,603的表1中所述的异源蛋白质支架,该美国专利的内容全文以引用方式并入本文。In another embodiment of this aspect and all other aspects provided herein, the coronavirus polypeptide is fused to a nanoparticle, nanostructure or protein scaffold. In certain embodiments, the heterologous protein scaffold comprises the I53-50 trimer "A" component of SEQ ID NO: 3. In other embodiments, the heterologous protein scaffold comprises a heterologous protein scaffold as described in Table 1 of U.S. Patent No. 10,351,603, the contents of which are incorporated herein by reference in their entirety.

在这个方面和本文提供的所有其他方面的另一实施方案中,冠状病毒多肽或第二异源多肽是抗原性多肽。In another embodiment of this aspect and all other aspects provided herein, the coronavirus polypeptide or the second heterologous polypeptide is an antigenic polypeptide.

在另一方面中,本文还提供了一种组合物,所述组合物包含如本文所述的冠状病毒多肽和药学上可接受的载体(例如,掺和物形式或形成悬浮液)。In another aspect, the present invention also provides a composition comprising a coronavirus polypeptide as described herein and a pharmaceutically acceptable carrier (eg, in admixture form or as a suspension).

在这个方面和本文提供的所有其他方面的一个实施方案中,所述包含冠状病毒多肽和药学上可接受的载体的组合物进一步包含佐剂。In one embodiment of this aspect and all other aspects provided herein, the composition comprising a coronavirus polypeptide and a pharmaceutically acceptable carrier further comprises an adjuvant.

在这个方面和本文提供的所有其他方面的另一实施方案中,当在相同或相似的储存条件下储存时,所述组合物的保质期比包含缺乏所述至少一个空腔填充突变和所述至少第二突变的野生型冠状病毒多肽的组合物更长。In another embodiment of this aspect and all other aspects provided herein, the composition has a longer shelf life than a composition comprising a wild-type coronavirus polypeptide lacking the at least one cavity-filling mutation and the at least second mutation when stored under the same or similar storage conditions.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述包含冠状病毒多肽和药学上可接受的载体的组合物被配制为疫苗。In another embodiment of this aspect and all other aspects provided herein, the composition comprising a coronavirus polypeptide and a pharmaceutically acceptable carrier is formulated as a vaccine.

本文提供的另一方面涉及一种细胞,所述细胞表达具有如本文所述的至少两个突变的受体结合结构域,或具有如本文所述的至少两个突变的冠状病毒多肽。Another aspect provided herein relates to a cell expressing a receptor binding domain having at least two mutations as described herein, or a coronavirus polypeptide having at least two mutations as described herein.

本文提供的另一方面涉及一种核酸序列,所述核酸序列编码具有如本文所述的至少两个突变的受体结合结构域,或具有如本文所述的至少两个突变的冠状病毒多肽。Another aspect provided herein relates to a nucleic acid sequence encoding a receptor binding domain having at least two mutations as described herein, or a coronavirus polypeptide having at least two mutations as described herein.

在另一方面中,本文还提供了一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向受试者施用如本文所述的药物或疫苗组合物。In another aspect, also provided herein is a method for vaccinating a subject against a coronavirus, the method comprising administering to the subject a drug or vaccine composition as described herein.

本文提供的另一方面涉及一种制备疫苗的方法,所述方法包括将包含具有如本文所述的至少两个突变的受体结合结构域或具有如本文所述的至少两个突变的冠状病毒多肽的组合物与佐剂及药学上可接受的载体组合。Another aspect provided herein relates to a method of preparing a vaccine, comprising combining a composition comprising a receptor binding domain having at least two mutations as described herein or a coronavirus polypeptide having at least two mutations as described herein with an adjuvant and a pharmaceutically acceptable carrier.

本文提供的另一方面涉及一种融合多肽组合物,所述融合多肽组合物包含与异源蛋白质支架融合的冠状病毒受体结合结构域(RBD),所述冠状病毒RBD包含相对于SEQ IDNO:1的冠状病毒多肽的选自由以下组成的组的突变:I358F、Y365F、Y365W、V367F和F392W。在一个实施方案中,所述异源蛋白质支架包含SEQ ID NO:3的多肽。在另一实施方案中,SEQID NO:3的多肽中的每个半胱氨酸突变为丙氨酸。Another aspect provided herein relates to a fusion polypeptide composition comprising a coronavirus receptor binding domain (RBD) fused to a heterologous protein scaffold, the coronavirus RBD comprising a mutation selected from the group consisting of I358F, Y365F, Y365W, V367F and F392W relative to the coronavirus polypeptide of SEQ ID NO: 1. In one embodiment, the heterologous protein scaffold comprises a polypeptide of SEQ ID NO: 3. In another embodiment, each cysteine in the polypeptide of SEQ ID NO: 3 is mutated to alanine.

在另一实施方案中,异源蛋白质支架包含如美国专利号10,351,603的表1中所述的异源蛋白质支架,该美国专利的内容全文以引用方式并入本文。In another embodiment, the heterologous protein scaffold comprises a heterologous protein scaffold as described in Table 1 of US Patent No. 10,351,603, the contents of which are incorporated herein by reference in their entirety.

在另一实施方案中,所述融合多肽组合物进一步包含药学上可接受的载体。In another embodiment, the fusion polypeptide composition further comprises a pharmaceutically acceptable carrier.

在另一实施方案中,所述融合多肽组合物进一步包含佐剂。In another embodiment, the fusion polypeptide composition further comprises an adjuvant.

在另一实施方案中,本文提供了一种包含所述融合多肽组合物的疫苗组合物。In another embodiment, provided herein is a vaccine composition comprising the fusion polypeptide composition.

在另一实施方案中,本文提供了一种表达所述融合多肽的细胞。In another embodiment, provided herein is a cell expressing the fusion polypeptide.

在另一实施方案中,本文提供了一种包含编码所述融合多肽的核酸的组合物。In another embodiment, provided herein is a composition comprising a nucleic acid encoding the fusion polypeptide.

在另一实施方案中,本文提供了一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向所述受试者施用包含如本文所述的融合多肽组合物的组合物。In another embodiment, provided herein is a method of vaccinating a subject against a coronavirus, the method comprising administering to the subject a composition comprising a fusion polypeptide composition as described herein.

在另一实施方案中,本文提供了一种制备疫苗的方法,所述方法包括将如本文所述的融合多肽组合物或编码此类融合多肽组合物的核酸与佐剂及药学上可接受的载体组合。In another embodiment, provided herein is a method for preparing a vaccine, the method comprising combining a fusion polypeptide composition as described herein or a nucleic acid encoding such a fusion polypeptide composition with an adjuvant and a pharmaceutically acceptable carrier.

本文提供的另一方面涉及一种包含冠状病毒受体结合结构域(RBD)的多肽,所述冠状病毒RBD包含相对于SEQ ID NO:1的冠状病毒多肽的选自由以下组成的组的突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。Another aspect provided herein relates to a polypeptide comprising a coronavirus receptor binding domain (RBD), wherein the coronavirus RBD comprises a mutation relative to the coronavirus polypeptide of SEQ ID NO: 1 selected from the group consisting of: I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L.

在这个方面和本文提供的所有其他方面的一个实施方案中,所述突变选自由以下组成的组:I358F、Y365F、Y365W、V367F和F392W。In one embodiment of this aspect and all other aspects provided herein, the mutation is selected from the group consisting of: I358F, Y365F, Y365W, V367F and F392W.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含选自由以下组成的组的第二突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises a second mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含选自由以下组成的组的第三突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises a third mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含SEQ IDNO:4或SEQ ID NO:5的多肽序列。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises the polypeptide sequence of SEQ ID NO:4 or SEQ ID NO:5.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含异源蛋白质支架。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises a heterologous protein scaffold.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述异源蛋白质支架与SEQ ID NO:3的多肽序列具有至少90%、至少95%、或至少98%的同一性。In another embodiment of this aspect and all other aspects provided herein, the heterologous protein scaffold is at least 90%, at least 95%, or at least 98% identical to the polypeptide sequence of SEQ ID NO:3.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述异源蛋白质支架包含SEQ ID NO:3的多肽。In another embodiment of this aspect and all other aspects provided herein, the heterologous protein scaffold comprises the polypeptide of SEQ ID NO:3.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含SEQ IDNO:6或SEQ ID NO:7的多肽序列。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises the polypeptide sequence of SEQ ID NO:6 or SEQ ID NO:7.

本文提供的另一方面涉及一种多肽复合物,所述多肽复合物包含或由以下组成:由根据权利要求59-62中任一项所述的多肽组成的第一组分和与SEQ ID NO:13-18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性的第二组分。Another aspect provided herein relates to a polypeptide complex comprising or consisting of: a first component consisting of a polypeptide according to any one of claims 59-62 and a second component having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity with any one of SEQ ID NOs: 13-18.

在另一方面中,本文还提供了一种包含如本文所述的组合物或多肽复合物的疫苗组合物。In another aspect, also provided herein is a vaccine composition comprising the composition or polypeptide complex as described herein.

在这个方面和本文提供的所有其他方面的一个实施方案中,所述组合物进一步包含药学上可接受的载体。In one embodiment of this aspect and all other aspects provided herein, the composition further comprises a pharmaceutically acceptable carrier.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述疫苗组合物进一步包含佐剂。In another embodiment of this aspect and all other aspects provided herein, the vaccine composition further comprises an adjuvant.

本文提供的另一方面涉及一种表达如本文所述的多肽的细胞。Another aspect provided herein relates to a cell expressing a polypeptide as described herein.

本文提供的另一方面涉及一种编码如本文所述的多肽的核酸。Another aspect provided herein relates to a nucleic acid encoding a polypeptide as described herein.

本文提供的另一方面涉及一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向所述受试者施用如本文所述的多肽、蛋白质复合物或疫苗组合物。Another aspect provided herein relates to a method of vaccinating a subject against a coronavirus, the method comprising administering to the subject a polypeptide, protein complex, or vaccine composition as described herein.

本文提供的另一方面涉及一种制备疫苗的方法,所述方法包括将本文所述的多肽与佐剂和药学上可接受的载体组合。Another aspect provided herein relates to a method of preparing a vaccine, the method comprising combining a polypeptide described herein with an adjuvant and a pharmaceutically acceptable carrier.

本文提供的另一方面涉及一种制备疫苗的方法,所述方法包括将以下进行组合:由如本文所述的多肽组成的第一组分;与SEQ ID NO:13-18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%同一性的第二组分;药学上可接受的载体;以及任选的佐剂。Another aspect provided herein relates to a method for preparing a vaccine, comprising combining: a first component consisting of a polypeptide as described herein; a second component having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to any one of SEQ ID NOs: 13-18; a pharmaceutically acceptable carrier; and optionally an adjuvant.

因此,在一个方面中,本文提供了一种非天然存在的多肽,所述非天然存在的多肽包含第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少一个突变,其中所述至少一个突变选自由以下组成的组:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L,或在如通过使用Blast-p(Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.&Lipman,D.J.(1990)"Basic local alignment search tool."J.Mol.Biol.215:403-410)将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒受体结合结构域的对应残基处。在一个实施方案中,所使用的Blast-p程序是国家生物技术信息中心(NCBI)在线比对工具。或者,可以将Blast-p程序下载到设备上并在本地使用。Thus, in one aspect, a non-naturally occurring polypeptide is provided herein, comprising a first coronavirus receptor binding domain (RBD), wherein the first coronavirus RBD comprises at least 90% identity to residues 328-531 of SEQ ID NO: 1, and further comprising residues 328-531 of SEQ ID NO: 1. NO:1, wherein the at least one mutation is selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L, or at the corresponding residue of the second coronavirus receptor binding domain as determined by aligning SEQ ID NO:1 with the sequence of the second coronavirus receptor binding domain using Blast-p (Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215: 403-410). In one embodiment, the Blast-p program used is the National Center for Biotechnology Information (NCBI) online alignment tool. Alternatively, the Blast-p program can be downloaded to the device and used locally.

在这个方面和本文提供的所有其他方面的一个实施方案中,所述突变选自由以下组成的组:I358F、Y365F、Y365W、V367F和F392W。In one embodiment of this aspect and all other aspects provided herein, the mutation is selected from the group consisting of: I358F, Y365F, Y365W, V367F and F392W.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含选自由以下组成的组的第二突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises a second mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L.

在这个方面和本文提供的所有其他方面的另一实施方案中,所述多肽包含选自由以下组成的组的第二突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。In another embodiment of this aspect and all other aspects provided herein, the polypeptide comprises a second mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L.

本文所述的另一方面涉及一种多肽,所述多肽包含:第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少两个突变,其中所述至少两个突变选自由以下组成的组:Another aspect described herein relates to a polypeptide comprising: a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising at least 90% identity to residues 328-531 of SEQ ID NO: 1, and further comprising at least two mutations relative to the RBD of SEQ ID NO: 1, wherein the at least two mutations are selected from the group consisting of:

F338L/Y365W;F338L/Y365W;

Y365W/L513M;Y365W/L513M;

Y365W/F392W;Y365W/F392W;

F338M/A363L/Y365F/F377V;F338M/A363L/Y365F/F377V;

Y365F/F392W;Y365F/F392W;

Y365F/V395I;Y365F/V395I;

Y365F/F392W/V395I;Y365F/F392W/V395I;

Y365W/L513I/F515L;Y365W/L513I/F515L;

F338L/A363L/Y365M;F338L/A363L/Y365M;

F338L/I358F/Y365W;F338L/I358F/Y365W;

I358F/Y365W/L513M;I358F/Y365W/L513M;

I358F/Y365W/F392W;I358F/Y365W/F392W;

F338M/I358F/A363L/Y365F/F377V;F338M/I358F/A363L/Y365F/F377V;

I358F/Y365F/F392W;I358F/Y365F/F392W;

I358F/Y365F/V395I;I358F/Y365F/V395I;

I358F/Y365F/F392W/V395I;I358F/Y365F/F392W/V395I;

I358F/Y365W/L513I/F515L;和I358F/Y365W/L513I/F515L; and

F338L/I358F/A363L/Y365M;F338L/I358F/A363L/Y365M;

或者,第二冠状病毒RBD,所述第二冠状病毒RBD包含对应于以下的至少两个突变:SEQ ID NO:1的F338L/Y365W;Alternatively, a second coronavirus RBD, wherein the second coronavirus RBD comprises at least two mutations corresponding to: F338L/Y365W of SEQ ID NO: 1;

Y365W/L513M;Y365W/L513M;

Y365W/F392W;Y365W/F392W;

F338M/A363L/Y365F/F377V;F338M/A363L/Y365F/F377V;

Y365F/F392W;Y365F/F392W;

Y365F/V395I;Y365F/V395I;

Y365F/F392W/V395I;Y365F/F392W/V395I;

Y365W/L513I/F515L;Y365W/L513I/F515L;

F338L/A363L/Y365M;F338L/A363L/Y365M;

F338L/I358F/Y365W;F338L/I358F/Y365W;

I358F/Y365W/L513M;I358F/Y365W/L513M;

I358F/Y365W/F392W;I358F/Y365W/F392W;

F338M/I358F/A363L/Y365F/F377V;F338M/I358F/A363L/Y365F/F377V;

I358F/Y365F/F392W;I358F/Y365F/F392W;

I358F/Y365F/V395I;I358F/Y365F/V395I;

I358F/Y365F/F392W/V395I;I358F/Y365F/F392W/V395I;

I358F/Y365W/L513I/F515L;和I358F/Y365W/L513I/F515L; and

F338L/I358F/A363L/Y365M,其中对应位点通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的刺突蛋白序列进行序列比对确定。F338L/I358F/A363L/Y365M, where the corresponding sites were determined by aligning SEQ ID NO:1 with the spike protein sequence of the second coronavirus receptor binding domain using the Blast-p parameters of protocol 1 or protocol 2.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1A至图1B.示例性非天然存在的SARS-CoV-2稳定化受体结合结构域,其具有一个或多个突变并且与起始构建体(即,天然或野生型SARS-CoV-2刺突蛋白)相比表现出增强的表达。图1A对用于表达遗传融合至I53-50A三聚体纳米粒子组分的设计的重包装RBD(“Rpk”)变体的上清液的还原和非还原SDS-PAGE分析。野生型对照不含RBD突变,并且阴性对照使用不编码任何分泌蛋白的质粒。标记了单体和氧化二聚体种类的迁移。图1B所有构建体中所包含的突变的列表。以粗体列出的突变已在Starr等人,2020中单独验证。Figure 1A to Figure 1B. Exemplary non-naturally occurring SARS-CoV-2 stabilized receptor binding domains, which have one or more mutations and show enhanced expression compared to the starting construct (i.e., natural or wild-type SARS-CoV-2 spike protein). Figure 1A is a reduction and non-reduction SDS-PAGE analysis of the supernatant of the repackaged RBD ("Rpk") variants for expressing genetic fusions to the I53-50A trimer nanoparticle component. The wild-type control does not contain RBD mutations, and the negative control uses a plasmid that does not encode any secreted protein. The migration of monomers and oxidized dimer species is marked. Figure 1B is a list of mutations contained in all constructs. The mutations listed in bold have been verified separately in Starr et al., 2020.

图2A至图2C.显示SARS-CoV-2RBD的稳定化突变的位置的结构模型。图2A基于PDB-ID 6VYB(左)的SARS-CoV-2刺突蛋白的表面表示,其中方框突出显示RBD;以及具有透明表面表示的RBD的放大图,包括N-聚糖的表示。图2B对包含大多数设计突变的SARS-CoV-2受体结合结构域的区域的放大。图2C两组代表性设计突变的结构化模型,该两组代表性设计突变被命名为Rpk4和Rpk9,可稳定化RBD。FIG2A to FIG2C. Structural models showing the locations of stabilizing mutations of the SARS-CoV-2 RBD. FIG2A Surface representation of the SARS-CoV-2 spike protein based on PDB-ID 6VYB (left), with the box highlighting the RBD; and a zoomed-in view of the RBD with a transparent surface representation, including a representation of the N-glycans. FIG2B Zoomed-in view of the region of the SARS-CoV-2 receptor binding domain containing the majority of designed mutations. FIG2C Structural models of two sets of representative designed mutations, named Rpk4 and Rpk9, that stabilize the RBD.

图3.生物层干涉测量(BLI)测量人ACE2受体和CR3022抗体与用于表达与I53-50A三聚体组分遗传融合的稳定化RBD的上清液的结合。ACE2和CR3022在暴露于上清液之前固定化在传感器上。来自(i)所有设计、(ii)包含野生型RBD的构建体和(iii)阴性对照血清的数据示出在图表中。图1的每个突变的SARS-CoV-2刺突蛋白当针对SARS-CoV-2同源受体、血管紧张素转换酶2(ACE2)受体和识别SARS-CoV-2刺突蛋白的CR3022 mAb进行测试时,被确定为在抗原上完整的。来自上清液的测量结果也证实,这些突变体中的每个突变体都以远高于起始构建体的水平表达。Figure 3. Biolayer interferometry (BLI) measures the binding of human ACE2 receptors and CR3022 antibodies to supernatants for expressing stabilized RBD genetically fused to I53-50A trimer components. ACE2 and CR3022 are immobilized on the sensor before exposure to the supernatant. Data from (i) all designs, (ii) constructs containing wild-type RBD, and (iii) negative control serum are shown in the chart. Each mutant SARS-CoV-2 spike protein of Figure 1 was determined to be antigenically intact when tested for SARS-CoV-2 homologous receptors, angiotensin-converting enzyme 2 (ACE2) receptors, and CR3022 mAbs that recognize SARS-CoV-2 spike proteins. Measurements from the supernatant also confirmed that each of these mutants was expressed at a level much higher than the starting construct.

图4A至图4E.含有单体形式的Rpk4或Rpk9突变且当融合到I53-50A三聚体(通过添加“-I53-50A”标示)的稳定化RBD的生化、生物物理学和抗原表征。表达、热稳定性和局部结构次序均得到改善,与此同时维持了与野生型SARS-CoV-2RBD相似的抗原性。图4A在从等体积的HEK293F培养物表达然后进行IMAC纯化和浓缩之后野生型和稳定化的RBD的尺寸排阻色谱(SEC)纯化。单体RBD(左)使用Superdex 75Increase 10/300GL纯化,而与I53-50A三聚体的融合体(右)则使用Superdex 200Increase 10/300GL纯化。经裁剪的凝胶显示等效稀释的SEC负载样品。图4B通过nanoDSF使用固有色氨酸荧光监测的野生型和稳定化的RBD单体(左)以及与I53-50A三聚体的融合体(右)的热变性。顶部小图示出了作为温度的函数的每个荧光发射光谱的重心均值(BCM),而底部小图示出了用于计算解链温度的平滑化一阶导数。图4C与I53-50A三聚体融合的野生型和稳定化的RBD的氢/氘交换质谱(HDX-MS)。结构化模型(顶部,来自PDB 6W41)示出了Rpk4-I53-50A和Rpk9-I53-50A三聚体二者与野生型RBD-I53-50A三聚体相比的全景差异摄取结果,其中阴影是基于在1min时测量的突变三聚体的摄取水平降低所确定的。该方框突出显示了来自残基392-399的肽区段,其中示出了在多个时间点对此肽的交换:3秒、15秒、1分钟、30分钟和20小时(底部)。每个点是两次测量结果的平均值。示出了标准偏差,除非小于绘制的点。图4D当与等浓度的野生型和稳定化的RBD单体混合时的SYPRO Orange的荧光,其中较大的信号指示较高的暴露疏水性水平。图4E如通过BLI评定的固定化的CV30和CR3022单克隆抗体对单体野生型和稳定化的RBD的结合动力学。使用描述1:1相互作用的结合方程拟合(黑线)两倍稀释系列(灰色迹线)中五个浓度的RBD的实验数据。结构化模型(左)是通过与CV30 Fab(PDB 6XE1)和CR3022 Fab(PDB6W41)结合的SARS-CoV-2的结构比对生成的。Figures 4A to 4E. Biochemical, biophysical and antigenic characterization of stabilized RBDs containing Rpk4 or Rpk9 mutations in monomeric form and when fused to the I53-50A trimer (indicated by the addition of "-I53-50A"). Expression, thermal stability and local structural order were improved while maintaining antigenicity similar to that of wild-type SARS-CoV-2 RBD. Figure 4A Size exclusion chromatography (SEC) purification of wild-type and stabilized RBDs after expression from equal volumes of HEK293F cultures followed by IMAC purification and concentration. Monomeric RBDs (left) were purified using Superdex 75Increase 10/300GL, while fusions with the I53-50A trimer (right) were purified using Superdex 200Increase 10/300GL. The cropped gel shows equivalently diluted SEC load samples. Fig. 4B uses the wild-type and stabilized RBD monomer (left) monitored by intrinsic tryptophan fluorescence by nanoDSF and the thermal denaturation of the fusion body (right) with I53-50A trimer.The top inset shows the center of gravity mean (BCM) of each fluorescence emission spectrum as a function of temperature, and the bottom inset shows the smoothing first-order derivative for calculating the melting temperature.The hydrogen/deuterium exchange mass spectrometry (HDX-MS) of the wild-type and stabilized RBD fused to the I53-50A trimer of Fig. 4C.The structural model (top, from PDB 6W41) shows the panoramic difference uptake results of Rpk4-I53-50A and Rpk9-I53-50A trimers compared with wild-type RBD-I53-50A trimers, wherein the shadow is determined by the reduction of the uptake level of the mutant trimer measured at 1min. The box highlights the peptide segment from residues 392-399, where the exchange of this peptide at multiple time points is shown: 3 seconds, 15 seconds, 1 minute, 30 minutes and 20 hours (bottom). Each point is the average of two measurements. Standard deviations are shown unless less than the plotted points. Fig. 4D shows the fluorescence of SYPRO Orange when mixed with equal concentrations of wild-type and stabilized RBD monomers, where larger signals indicate higher levels of exposed hydrophobicity. Fig. 4E shows the binding kinetics of immobilized CV30 and CR3022 monoclonal antibodies to monomeric wild-type and stabilized RBD as assessed by BLI. Experimental data of five concentrations of RBD in a two-fold dilution series (grey trace) are fitted (black line) using a binding equation describing a 1:1 interaction. The structural model (left) is generated by the structural alignment of SARS-CoV-2 bound to CV30 Fab (PDB 6XE1) and CR3022 Fab (PDB6W41).

图5A至图5E.与野生型RBD相比,在装配的I53-50纳米粒子上呈递的稳定化的RBD增强了溶液稳定性。图5A展示RBD抗原的I53-50纳米粒子免疫原(通过添加“-I53-50”标示)的装配的示意图。图5B野生型RBD-I53-50、Rpk4-I53-50和Rpk9-I53-50的负染色电子显微镜(nsEM)(比例尺,200nm)。图5C至图5E示出了野生型RBD-I53-50、Rpk4-I53-50和Rpk9-I53-50在四种不同缓冲液中单次冷冻/融化循环之前和之后的汇总的质量控制结果。图5CUV-Vis光谱中320nm至280nm处的吸光度比率,其为可溶性聚集体的存在的指标。图5D动态光散射(DLS)测量结果,其监测适当的纳米粒子装配和聚集体的形成两者。图5E I53-50纳米粒子免疫原对固定化的hACE2-Fc受体(顶部)和CR3022(底部)的部分反应性。冷冻前和冷冻后数据单独归一化为每个纳米粒子的相应含CHAPS的样品。Fig. 5A to Fig. 5E. Compared with wild-type RBD, the stabilized RBD presented on the assembled I53-50 nanoparticles enhances solution stability. Fig. 5A shows the schematic diagram of the assembly of the I53-50 nanoparticle immunogen (marked by adding "-I53-50") of the RBD antigen. Fig. 5B Negative staining electron microscopy (nsEM) of wild-type RBD-I53-50, Rpk4-I53-50 and Rpk9-I53-50 (scale bar, 200nm). Fig. 5C to Fig. 5E show the quality control results of the summary of wild-type RBD-I53-50, Rpk4-I53-50 and Rpk9-I53-50 before and after a single freeze/thaw cycle in four different buffers. Fig. 5C Absorbance ratio at 320nm to 280nm in UV-Vis spectrum, which is an indicator of the presence of soluble aggregates. FIG5D Dynamic light scattering (DLS) measurements, which monitor both proper nanoparticle assembly and aggregate formation. FIG5E Partial reactivity of I53-50 nanoparticle immunogen to immobilized hACE2-Fc receptor (top) and CR3022 (bottom). Pre-freezing and post-freezing data were normalized to the corresponding CHAPS-containing sample for each nanoparticle individually.

图6A至图6C.亲本野生型RBD-I53-50纳米粒子免疫原的强免疫原性通过添加Rpk突变而得以维持。图6A雌性BALB/c小鼠(每组6只)在第0周和第3周进行免疫。每组接受等摩尔量的RBD抗原辅以AddaVax,其以总抗原计相当于对于HexaPro-foldon为每剂量5μg,并且对于所有其他免疫原为每剂量0.88μg。在第2周和第5周执行血清收集。将RBD-I53-50免疫原在两种不同的缓冲液条件下制备,其中一个组包含CHAPS作为赋形剂。图6B在第2周和第5周时针对HexaPro-foldon的结合效价,如通过AUC从血清的连续稀释的ELISA测量评定的。每个圆圈表示来自单独小鼠的AUC测量值,并且水平线示出每组的几何平均值。第四组的在第2周时AUC接近零的一只小鼠未绘制,但仍被包括在几何平均值计算中。图6C使用慢病毒骨架的自体(D614G)假病毒中和。每个圆圈表示在单独小鼠50%抑制下的中和抗体效价(IC50),并且水平线示出每组的几何平均值。使用单侧非参数Kruskal-Wallis检验和Dunn的多重比较执行统计分析。*,p<0.05;**,p<0.01;***,p<0.001。Figure 6A to Figure 6C. The strong immunogenicity of the parent wild-type RBD-I53-50 nanoparticle immunogen is maintained by adding Rpk mutations. Figure 6A Female BALB/c mice (6 per group) were immunized at weeks 0 and 3. Each group received an equimolar amount of RBD antigen supplemented with AddaVax, which was equivalent to 5 μg per dose for HexaPro-foldon in terms of total antigen, and 0.88 μg per dose for all other immunogens. Serum collection was performed at weeks 2 and 5. The RBD-I53-50 immunogen was prepared under two different buffer conditions, one of which contained CHAPS as an excipient. Figure 6B shows the binding titer for HexaPro-foldon at weeks 2 and 5, as assessed by ELISA measurements of serial dilutions of serum from AUC. Each circle represents the AUC measurement from a single mouse, and the horizontal line shows the geometric mean of each group. One mouse in the fourth group with an AUC close to zero at week 2 was not drawn, but was still included in the geometric mean calculation. Figure 6C uses autologous (D614G) pseudovirus neutralization of the lentiviral backbone. Each circle represents the neutralizing antibody titer ( IC50 ) at 50% inhibition in a single mouse, and the horizontal line shows the geometric mean of each group. Statistical analysis was performed using a one-sided nonparametric Kruskal-Wallis test and Dunn's multiple comparisons. *, p<0.05; **, p<0.01; ***, p<0.001.

图7A至图7C.通过Rpk突变提高了基于RBD的纳米粒子免疫原的保质期稳定性。图7A四个星期内的DLS测量结果的汇总。在35-40℃下除野生型RBD-I53-50外,所有纳米粒子的流体动力学直径保持一致,野生型RBD-I53-50在储存28天后显示出聚集迹象。图7B BLI对固定化的hACE2-Fc受体(虚线)和CR3022 mAb(实线)的结合,所述结合被归一化为每个时间点的-80℃样品。稳定化的纳米粒子免疫原的抗原完整性保持一致,而在35-40℃孵育的野生型RBD-I53-50的结合信号降低了60%(hACE2-Fc)和30%(CR3022)。图7C在四个星期内的SDS-PAGE和nsEM的汇总。通过SDS-PAGE未观察到降解。在第28天通过nsEM仅观察到了在35-40℃储存的WT纳米粒子的部分聚集。示出了在35-40℃下储存后第28天的电子显微照片,其中方框指示聚集体的实例(比例尺,200nm)。所有样品均在TBS、5%甘油、100mM L-精氨酸中配制。Figure 7A to Figure 7C. Improved shelf life stability of RBD-based nanoparticle immunogens by Rpk mutations. Figure 7A Summary of DLS measurements over four weeks. The hydrodynamic diameters of all nanoparticles remained consistent at 35-40°C except for wild-type RBD-I53-50, which showed signs of aggregation after 28 days of storage. Figure 7B BLI binding to immobilized hACE2-Fc receptor (dashed line) and CR3022 mAb (solid line), which was normalized to -80°C samples at each time point. The antigenic integrity of the stabilized nanoparticle immunogens remained consistent, while the binding signal of wild-type RBD-I53-50 incubated at 35-40°C was reduced by 60% (hACE2-Fc) and 30% (CR3022). Figure 7C Summary of SDS-PAGE and nsEM over four weeks. No degradation was observed by SDS-PAGE. Only partial aggregation of WT nanoparticles stored at 35-40°C was observed by nsEM at day 28. Electron micrographs at day 28 after storage at 35-40°C are shown, where boxes indicate examples of aggregates (scale bar, 200 nm). All samples were formulated in TBS, 5% glycerol, 100 mM L-arginine.

图8A至图8D.Rpk9突变可以掺入到含有HexaPro突变的全长SARS-CoV-2S胞外域中。图8A从等体积的HEK293F培养物表达,然后进行IMAC纯化和浓缩之后,对野生型(HexaPro-foldon)和Rpk9(Rpk9-HexaPro-foldon)预融合稳定化的S胞外域的SEC纯化。使用Superose 6Increase 10/300GL纯化S胞外域。图8B HexaPro-foldon和Rpk9-HexaPro-foldon纯化期间中间体和最终产物的还原和非还原SDS-PAGE。图8C通过nanoDSF使用固有色氨酸荧光监测的HexaPro-foldon和Rpk9-HexaPro-foldon的热变性。荧光发射光谱的重心均值(BCM)被绘制为温度的函数。图8D HexaPro-foldon和Rpk9-HexaPro-foldon的nsEM(比例尺,100nm)。Figures 8A to 8D. Rpk9 mutations can be incorporated into the full-length SARS-CoV-2 S extracellular domain containing HexaPro mutations. Figure 8A SEC purification of the pre-fused stabilized S extracellular domain of wild type (HexaPro-foldon) and Rpk9 (Rpk9-HexaPro-foldon) from an equal volume of HEK293F culture expression followed by IMAC purification and concentration. The S extracellular domain was purified using Superose 6Increase 10/300GL. Figure 8B Reducing and non-reducing SDS-PAGE of intermediates and final products during purification of HexaPro-foldon and Rpk9-HexaPro-foldon. Figure 8C Thermal denaturation of HexaPro-foldon and Rpk9-HexaPro-foldon monitored by nanoDSF using intrinsic tryptophan fluorescence. The center of gravity mean (BCM) of the fluorescence emission spectrum is plotted as a function of temperature. Figure 8D nsEM of HexaPro-foldon and Rpk9-HexaPro-foldon (scale bar, 100 nm).

图9.当添加到B.1.351变体的RBD时,Rpk9突变提高了在更简单的缓冲液制剂中以适当的SEC洗脱体积对展示所述RBD的I53-50纳米粒子的相对回收率,这表明Rpk突变提高了含有来自不同变体的RBD的免疫原的完整性。对于展示Wuhan-1 RBD(无Rpk突变)、无Rpk9突变的B.1.351RBD和具有Rpk9突变的B.1.351RBD的I53-50纳米粒子,在50mM Tris pH7.4、185mM NaCl、100mM L-精氨酸、0.75% CHAPS、4.5%甘油或50mM Tris pH 8、150mMNaCl、100mM L-精氨酸、5%甘油中执行装配和SEC。虽然与没有Rpk9突变的等效样品相比,Rpk9突变在任一缓冲液条件下增加了产率和RBD稳定性的其他度量,但是展示具有Rpk9突变的B.1.351RBD的纳米粒子在没有CHAPS洗涤剂的情况下更好地维持了相对产率和SEC迁移。Figure 9. When added to the RBD of the B.1.351 variant, the Rpk9 mutation improves the relative recovery of I53-50 nanoparticles displaying the RBD in a simpler buffer formulation with an appropriate SEC elution volume, indicating that the Rpk mutation improves the integrity of the immunogen containing RBDs from different variants. For I53-50 nanoparticles displaying the Wuhan-1 RBD (without the Rpk mutation), the B.1.351 RBD without the Rpk9 mutation, and the B.1.351 RBD with the Rpk9 mutation, assembly and SEC were performed in 50mM Tris pH7.4, 185mM NaCl, 100mM L-arginine, 0.75% CHAPS, 4.5% glycerol or 50mM Tris pH 8, 150mM NaCl, 100mM L-arginine, 5% glycerol. While the Rpk9 mutation increased yield and other measures of RBD stability under either buffer condition compared to equivalent samples without the Rpk9 mutation, nanoparticles displaying the B.1.351 RBD with the Rpk9 mutation better maintained relative yield and SEC mobility in the absence of CHAPS detergent.

图10在TBS、5%甘油、0.75% CHAPS、100mM L-精氨酸中的纳米粒子的SDS-PAGE。通过SDS-PAGE分析在50mM Tris pH 7.4、185mM NaCl、4.5%甘油、0.75% CHAPS、100mM L-精氨酸中样品的完整性。标准品的分子量以kDa表示。每个样品都经过+/-还原剂(DTT)、冻融前和冻融后(F/T)分析。FIG. 10 SDS-PAGE of nanoparticles in TBS, 5% glycerol, 0.75% CHAPS, 100 mM L-arginine. The integrity of the samples in 50 mM Tris pH 7.4, 185 mM NaCl, 4.5% glycerol, 0.75% CHAPS, 100 mM L-arginine was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed +/- reducing agent (DTT), before freeze-thaw, and after freeze-thaw (F/T).

图11在TBS、5%甘油、0.75% CHAPS、100mM L-精氨酸中纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析50mM Tris pH 7.4、185mM NaCl、4.5%甘油、0.75%CHAPS、100mM L-精氨酸中抗原的hACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 11 hACE2-Fc binding of nanoparticles in TBS, 5% glycerol, 0.75% CHAPS, 100mM L-arginine. hACE2-Fc binding of antigens in 50mM Tris pH 7.4, 185mM NaCl, 4.5% glycerol, 0.75% CHAPS, 100mM L-arginine was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图12在TBS、5%甘油、0.75% CHAPS、100mM L-精氨酸中纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析50mM Tris pH 7.4、185mM NaCl、4.5%甘油、0.75% CHAPS、100mM L-精氨酸中抗原的CR3022 IgG结合。将负载有CR3022 IgG的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 12 CR3022 binding of nanoparticles in TBS, 5% glycerol, 0.75% CHAPS, 100 mM L-arginine. CR3022 IgG binding of antigen in 50 mM Tris pH 7.4, 185 mM NaCl, 4.5% glycerol, 0.75% CHAPS, 100 mM L-arginine was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 IgG were incubated with immunogen (association, x = 590-889 s) and then with buffer (dissociation, x = 890-1190 s).

图13在TBS、5%甘油、0.75% CHAPS、100mM L-精氨酸中的纳米粒子的动态光散射。在50mM Tris pH 7.4、185mM NaCl、4.5%甘油、0.75% CHAPS、100mM L-精氨酸中每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 13 Dynamic light scattering of nanoparticles in TBS, 5% glycerol, 0.75% CHAPS, 100 mM L-arginine. Hydrodynamic diameter (nm) of each sample in 50 mM Tris pH 7.4, 185 mM NaCl, 4.5% glycerol, 0.75% CHAPS, 100 mM L-arginine, plotted as normalized intensity.

图14在TBS、5%甘油、0.75% CHAPS、100mM L-精氨酸中的纳米粒子的UV-Vis。在50mM Tris pH 7.4、185mM NaCl、4.5%甘油、0.75% CHAPS、100mM L-精氨酸中每个样品的UV-Vis光谱(nm),其绘制为归一化的吸光度。Figure 14 UV-Vis of nanoparticles in TBS, 5% glycerol, 0.75% CHAPS, 100 mM L-arginine. UV-Vis spectra (nm) of each sample in 50 mM Tris pH 7.4, 185 mM NaCl, 4.5% glycerol, 0.75% CHAPS, 100 mM L-arginine, plotted as normalized absorbance.

图15在TBS、5%甘油、100mM L-精氨酸中的纳米粒子的SDS-PAGE。通过SDS-PAGE分析在50mM Tris pH 8、150mM NaCl、5%甘油、100mM L-精氨酸中样品的完整性。标准品的分子量以kDa表示。每个样品都经过+/-还原剂(DTT)、冻融前和冻融后(F/T)分析。FIG. 15 SDS-PAGE of nanoparticles in TBS, 5% glycerol, 100 mM L-arginine. The integrity of the samples in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol, 100 mM L-arginine was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed +/- reducing agent (DTT), before freeze-thaw, and after freeze-thaw (F/T).

图16在TBS、5%甘油、100mM L-精氨酸中纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析在50mM Tris pH 8、150mM NaCl、5%甘油、100mM L-精氨酸中抗原的hACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 16 hACE2-Fc binding of nanoparticles in TBS, 5% glycerol, 100mM L-arginine. hACE2-Fc binding of antigens in 50mM Tris pH 8, 150mM NaCl, 5% glycerol, 100mM L-arginine was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图17在TBS、5%甘油、100mM L-精氨酸中纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析在50mM Tris pH 8、150mM NaCl、5%甘油、100mM L-精氨酸中抗原的CR3022IgG结合。将负载有CR3022 IgG的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。FIG. 17 CR3022 binding of nanoparticles in TBS, 5% glycerol, 100 mM L-arginine. CR3022 IgG binding of antigen in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol, 100 mM L-arginine was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 IgG were incubated with immunogen (association, x=590-889 s) and then with buffer (dissociation, x=890-1190 s).

图18在TBS、5%甘油、100mM L-精氨酸中的纳米粒子的动态光散射。在50mM TrispH 8、150mM NaCl、5%甘油、100mM L-精氨酸中每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 18 Dynamic light scattering of nanoparticles in TBS, 5% glycerol, 100 mM L-arginine. Hydrodynamic diameter (nm) of each sample in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol, 100 mM L-arginine, plotted as normalized intensity.

图19在TBS、5%甘油、100mM L-精氨酸中的纳米粒子的UV-Vis。在50mM Tris pH8、150mM NaCl、5%甘油、100mM L-精氨酸中每个样品的UV-Vis光谱(nm),其绘制为归一化的吸光度。Figure 19 UV-Vis of nanoparticles in TBS, 5% glycerol, 100 mM L-arginine. UV-Vis spectra (nm) of each sample in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol, 100 mM L-arginine, plotted as normalized absorbance.

图20在TBS、5%甘油中的纳米粒子的SDS-PAGE。通过SDS-PAGE分析在50mM TrispH 8、150mM NaCl、5%甘油中样品的完整性。标准品的分子量以kDa表示。每个样品都经过+/-还原剂(DTT)、冻融前和冻融后(F/T)分析。Figure 20 SDS-PAGE of nanoparticles in TBS, 5% glycerol. The integrity of samples in 50mM Tris pH 8, 150mM NaCl, 5% glycerol was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed +/- reducing agent (DTT), before freeze-thaw and after freeze-thaw (F/T).

图21在TBS、5%甘油中纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析在50mM Tris pH 8、150mM NaCl、5%甘油中抗原的ACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 21 hACE2-Fc binding of nanoparticles in TBS, 5% glycerol. ACE2-Fc binding of antigens in 50mM Tris pH 8, 150mM NaCl, 5% glycerol was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图22在TBS、5%甘油中纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析在50mM Tris pH 8、150mM NaCl、5%甘油中抗原的CR3022 IgG结合。将负载有CR3022 IgG的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 22 CR3022 binding of nanoparticles in TBS, 5% glycerol. CR3022 IgG binding of antigen in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 IgG were incubated with immunogen (association, x = 590-889 s) and then with buffer (dissociation, x = 890-1190 s).

图23在TBS、5%甘油中的纳米粒子的动态光散射。在50mM Tris pH 8、150mMNaCl、5%甘油中每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 23 Dynamic light scattering of nanoparticles in TBS, 5% glycerol. Hydrodynamic diameter (nm) of each sample in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol, plotted as normalized intensity.

图24在TBS、5%甘油中的纳米粒子的UV-Vis。在50mM Tris pH 8、150mM NaCl、5%甘油中每个样品的UV-Vis光谱(nm),其绘制为归一化的吸光度。Figure 24 UV-Vis of nanoparticles in TBS, 5% glycerol. UV-Vis spectra (nm) of each sample in 50 mM Tris pH 8, 150 mM NaCl, 5% glycerol, plotted as normalized absorbance.

图25在TBS中的纳米粒子的SDS-PAGE。通过SDS-PAGE分析在50mM Tris pH 8、150mM NaCl中样品的完整性。标准品的分子量以kDa表示。每个样品都经过+/-还原剂(DTT)、冻融前和冻融后(F/T)分析。Figure 25 SDS-PAGE of nanoparticles in TBS. The integrity of samples in 50mM Tris pH 8, 150mM NaCl was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed +/- reducing agent (DTT), before freeze-thaw and after freeze-thaw (F/T).

图26在TBS中纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析在50mMTris pH 8、150mM NaCl中抗原的HACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 26 hACE2-Fc binding of nanoparticles in TBS. HACE2-Fc binding of antigens in 50mMTris pH 8, 150mM NaCl was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x=590-889s) and then with buffer (dissociation, x=890-1190s).

图27在TBS中纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析在50mM TrispH 8、150mM NaCl中抗原的CR3022 IgG结合。将负载有CR3022IgG的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 27 CR3022 binding of nanoparticles in TBS. CR3022 IgG binding of antigen in 50 mM Tris pH 8, 150 mM NaCl was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 IgG were incubated with immunogen (association, x = 590-889 s) and then with buffer (dissociation, x = 890-1190 s).

图28在TBS中的纳米粒子的动态光散射。在50mM Tris pH 8、150mM NaCl中每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 28 Dynamic light scattering of nanoparticles in TBS. Hydrodynamic diameter (nm) of each sample in 50 mM Tris pH 8, 150 mM NaCl, plotted as normalized intensity.

图29在TBS中的纳米粒子的UV-Vis。在50mM Tris pH 8、150mM NaCl中每个样品的UV-Vis光谱(nm),其绘制为归一化的吸光度。Figure 29 UV-Vis of nanoparticles in TBS. UV-Vis spectra (nm) of each sample in 50 mM Tris pH 8, 150 mM NaCl, plotted as normalized absorbance.

图30RBD-I53-50纳米粒子的SDS-PAGE。通过SDS-PAGE分析在28天(D)研究中在四个温度下孵育后样品的完整性。标准品的分子量以kDa表示。每个样品都用+/-还原剂(DTT)进行分析。Figure 30 SDS-PAGE of RBD-I53-50 nanoparticles. The integrity of the samples after incubation at four temperatures in the 28-day (D) study was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed with +/- reducing agent (DTT).

图31RBD-I53-50纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析在四种不同温度下孵育28天(D)的抗原的hACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 31 hACE2-Fc binding of RBD-I53-50 nanoparticles. hACE2-Fc binding of antigens incubated for 28 days (D) at four different temperatures was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图32RBD-I53-50纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析在四种不同温度下孵育28天(D)的抗原的CR3022 IgG结合。将负载有CR3022的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 32 CR3022 binding of RBD-I53-50 nanoparticles. CR3022 IgG binding of antigens incubated for 28 days (D) at four different temperatures was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 were incubated with immunogens (association, x=590-889s) and then with buffer (dissociation, x=890-1190s).

图33RBD-I53-50纳米粒子的nsEM。在四种温度下孵育后第1天(D)和第28天每个样品的代表性负染色电子显微照片。比例尺,50nm。Figure 33 nsEM of RBD-I53-50 nanoparticles. Representative negative staining electron micrographs of each sample at day 1 (D) and day 28 after incubation at four temperatures. Scale bar, 50 nm.

图34RBD-I53-50纳米粒子的动态光散射。在28天(D)时段内每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 34 Dynamic light scattering of RBD-I53-50 nanoparticles. The hydrodynamic diameter (nm) of each sample over a period of 28 days (D), plotted as normalized intensity.

图35Rpk4-I53-50纳米粒子的SDS-PAGE。通过SDS-PAGE分析在28天(D)研究中在四个温度下孵育后样品的完整性。标准品的分子量以kDa表示。每个样品都用+/-还原剂(DTT)进行分析。Figure 35 SDS-PAGE of Rpk4-I53-50 nanoparticles. The integrity of the samples after incubation at four temperatures in the 28-day (D) study was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed with +/- reducing agent (DTT).

图36Rpk4-I53-50纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析在四种不同温度下孵育28天(D)的抗原的hACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 36 hACE2-Fc binding of Rpk4-I53-50 nanoparticles. hACE2-Fc binding of antigens incubated for 28 days (D) at four different temperatures was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图37Rpk4-I53-50纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析在四种不同温度下孵育28天(D)的抗原的CR3022 IgG结合。将负载有CR3022的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 37 CR3022 binding of Rpk4-I53-50 nanoparticles. CR3022 IgG binding of antigens incubated for 28 days (D) at four different temperatures was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 were incubated with immunogen (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图38Rpk4-I53-50纳米粒子的nsEM。在四种温度下孵育后第1天(D)和第28天每个样品的代表性负染色电子显微照片。比例尺,50nm。Figure 38 nsEM of Rpk4-I53-50 nanoparticles. Representative negative staining electron micrographs of each sample at day 1 (D) and day 28 after incubation at four temperatures. Scale bar, 50 nm.

图39Rpk4-I53-50纳米粒子的动态光散射。在28天(D)时段内每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 39 Dynamic light scattering of Rpk4-I53-50 nanoparticles. The hydrodynamic diameter (nm) of each sample over a 28 day (D) period, plotted as normalized intensity.

图40Rpk9-I53-50纳米粒子的SDS-PAGE。通过SDS-PAGE分析在28天(D)研究中在四个温度下孵育后样品的完整性。标准品的分子量以kDa表示。每个样品都用+/-还原剂(DTT)进行分析。Figure 40 SDS-PAGE of Rpk9-I53-50 nanoparticles. The integrity of the samples after incubation at four temperatures in the 28-day (D) study was analyzed by SDS-PAGE. The molecular weight of the standards is expressed in kDa. Each sample was analyzed with +/- reducing agent (DTT).

图41Rpk9-I53-50纳米粒子的hACE2-Fc结合。通过生物层干涉法(BLI)分析在四种不同温度下孵育28天(D)的抗原的hACE2-Fc结合。将负载有hACE2-Fc的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 41 hACE2-Fc binding of Rpk9-I53-50 nanoparticles. hACE2-Fc binding of antigens incubated for 28 days (D) at four different temperatures was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with hACE2-Fc were incubated with immunogens (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图42Rpk9-I53-50纳米粒子的CR3022结合。通过生物层干涉法(BLI)分析在四种不同温度下孵育28天(D)的抗原的CR3022 IgG结合。将负载有CR3022的蛋白A生物传感器与免疫原(缔合,x=590-889s)并且然后与缓冲液(解离,x=890-1190s)一起孵育。Figure 42 CR3022 binding of Rpk9-I53-50 nanoparticles. CR3022 IgG binding of antigens incubated for 28 days (D) at four different temperatures was analyzed by biolayer interferometry (BLI). Protein A biosensors loaded with CR3022 were incubated with immunogen (association, x = 590-889s) and then with buffer (dissociation, x = 890-1190s).

图43Rpk9-I53-50纳米粒子的nsEM。在四种温度下孵育后第1天(D)和第28天每个样品的代表性负染色电子显微照片。比例尺,50nm。Figure 43 nsEM of Rpk9-I53-50 nanoparticles. Representative negative staining electron micrographs of each sample at day 1 (D) and day 28 after incubation at four temperatures. Scale bar, 50 nm.

图44Rpk9-I53-50纳米粒子的动态光散射。在28天(D)时段内每个样品的流体动力学直径(nm),其绘制为归一化的强度。Figure 44 Dynamic light scattering of Rpk9-I53-50 nanoparticles. The hydrodynamic diameter (nm) of each sample over a 28 day (D) period, plotted as normalized intensity.

具体实施方式DETAILED DESCRIPTION

本文提供了包含具有至少一个、两个或更多个氨基酸突变的冠状病毒“S”刺突蛋白的组合物和方法,在相同的表达、培养或储存条件下,所述冠状病毒“S”刺突蛋白与天然或野生型冠状病毒刺突蛋白(例如,SARS-CoV-2S蛋白)相比提高了其表达水平、产率和/或稳定性。这些突变的刺突蛋白可用于生成针对SARS-CoV-2(一种已知会感染人类的不同冠状病毒)的基于蛋白质的疫苗,或可针对已知会感染人类的多种冠状病毒提供保护的泛冠状病毒疫苗。Provided herein are compositions and methods comprising coronavirus "S" spike proteins having at least one, two or more amino acid mutations, which have increased expression levels, yields and/or stability compared to native or wild-type coronavirus spike proteins (e.g., SARS-CoV-2 S proteins) under the same expression, culture or storage conditions. These mutant spike proteins can be used to generate protein-based vaccines against SARS-CoV-2 (a different coronavirus known to infect humans), or pan-coronavirus vaccines that can provide protection against multiple coronaviruses known to infect humans.

在一个实施方案中,S蛋白包含单个突变,与天然或野生型冠状病毒刺突蛋白相比,该单个突变在特定表达、培养、或储存条件下增加了突变冠状病毒刺突蛋白的表达水平、产率和/或稳定性。在替代实施方案中,S蛋白包含多个突变(例如,2个、3个、4个或5个)。In one embodiment, the S protein comprises a single mutation that increases the expression level, yield and/or stability of the mutant coronavirus spike protein under specific expression, culture, or storage conditions compared to the native or wild-type coronavirus spike protein. In alternative embodiments, the S protein comprises multiple mutations (e.g., 2, 3, 4, or 5).

定义definition

如本文所用的术语“非天然存在的”或“突变体”是指这样的冠状病毒多肽(例如,稳定化的冠状病毒S蛋白或RBD多肽),该冠状病毒多肽包含至少一个或至少两个氨基酸残基突变并且优选地包含与其对应的天然或野生型冠状病毒序列相比增强的稳定性和/或表达。在一些实施方案中,例如除了所述至少两个突变之外,本文所述的突变多肽与其天然对应物“基本上相似”。在一些实施方案中,所述天然对应物可包括天然存在的冠状病毒变体。As used herein, the term "non-naturally occurring" or "mutant" refers to a coronavirus polypeptide (e.g., a stabilized coronavirus S protein or RBD polypeptide) that comprises at least one or at least two amino acid residue mutations and preferably comprises enhanced stability and/or expression compared to its corresponding natural or wild-type coronavirus sequence. In some embodiments, for example, in addition to the at least two mutations, the mutant polypeptides described herein are "substantially similar" to their natural counterparts. In some embodiments, the natural counterparts may include naturally occurring coronavirus variants.

为免疑义,冠状病毒序列的天然存在的变体(例如,SARS-Cov-2变体:B.1.1.7;B.1.351;P.1;B.1.427;B.1.429;B.1.526;B.1.526.1;B.1.525;P.2;B.1.617;B.1.617.1;B.1.617.2;和B.1.617.3)不被视为“非天然存在的”或“突变的”冠状病毒序列,然而如该术语在本文中所使用,此类变体可用作参考冠状病毒序列。For the avoidance of doubt, naturally occurring variants of coronavirus sequences (e.g., SARS-Cov-2 variants: B.1.1.7; B.1.351; P.1; B.1.427; B.1.429; B.1.526; B.1.526.1; B.1.525; P.2; B.1.617; B.1.617.1; B.1.617.2; and B.1.617.3) are not considered "non-naturally occurring" or "mutated" coronavirus sequences, however such variants may be used as reference coronavirus sequences as that term is used herein.

如本文所用,术语“非天然存在的冠状病毒刺突蛋白亚基1多肽”是指这样的多肽,所述多肽至少包含允许亚油酸结合袋的结构形成的受体结合结构域序列残基(SEQ ID NO:1的残基328-531),以及至少一个或至少两个氨基酸突变。在一个实施方案中,所述至少两个突变中的一个突变包括“空腔填充突变”,如该术语在本文中所用。As used herein, the term "non-naturally occurring coronavirus spike protein subunit 1 polypeptide" refers to a polypeptide that comprises at least the receptor binding domain sequence residues that allow for the structural formation of the linoleic acid binding pocket (residues 328-531 of SEQ ID NO: 1), and at least one or at least two amino acid mutations. In one embodiment, one of the at least two mutations comprises a "cavity filling mutation," as the term is used herein.

如果一个分子和另一分子具有基本上相似的结构(即如通过在默认参数下设置的Blast-p比对确定的,它们在氨基酸序列上至少90%相似)并且在至少一个相关功能(例如,通过结合天然冠状病毒对应物的抗体对多肽的识别所确定的抗原活性)上基本上相似,则称这两个分子“基本上相似”。也就是说,突变多肽与天然存在的多肽或核酸相差一个或多个氨基酸或核酸缺失、添加、取代或侧链修饰,但保留了天然存在的分子的一种或多种特定功能或生物活性。氨基酸取代包括其中氨基酸被不同的天然存在的或非常规的氨基酸残基替代的改变。一些取代可被归类为“保守的”,在这种情况下,多肽中所包含的氨基酸残基被另一种在极性、侧链功能性或大小方面具有相似特性的天然存在的氨基酸替代。如本文所述的变体所涵盖的取代也可以是“非保守的”,其中存在于肽中的氨基酸残基被具有不同性质的氨基酸取代(例如,用不带电的或亲水性氨基酸取代带电的或疏水性氨基酸),或者替代地,其中天然存在的氨基酸被非常规氨基酸取代。在涉及多肽使用术语“突变体”时,术语“突变体”还涵盖如与参考多肽相比(例如,如与野生型冠状病毒多肽相比),在一级结构、二级结构或三级结构中的变化。突变体还可包括通常不会出现在作为变体基础的肽序列中的氨基酸的插入、缺失或取代(包括氨基酸和其他分子的插入和取代),包括但不限于通常不会出现在人类蛋白质中的鸟氨酸插入。If one molecule and another molecule have a substantially similar structure (i.e., as determined by a Blast-p comparison set under default parameters, they are at least 90% similar in amino acid sequence) and are substantially similar in at least one relevant function (e.g., antigenic activity determined by recognition of the polypeptide by antibodies binding to natural coronavirus counterparts), then the two molecules are said to be "substantially similar". That is, the mutant polypeptide differs from the naturally occurring polypeptide or nucleic acid by one or more amino acid or nucleic acid deletions, additions, substitutions or side chain modifications, but retains one or more specific functions or biological activities of the naturally occurring molecule. Amino acid substitutions include changes in which amino acids are replaced by different naturally occurring or unconventional amino acid residues. Some substitutions can be classified as "conservative", in which case the amino acid residues contained in the polypeptide are replaced by another naturally occurring amino acid having similar properties in terms of polarity, side chain functionality or size. Substitutions covered by variants as described herein can also be "non-conservative", in which amino acid residues present in the peptide are replaced by amino acids having different properties (e.g., replacing charged or hydrophobic amino acids with uncharged or hydrophilic amino acids), or alternatively, in which naturally occurring amino acids are replaced by unconventional amino acids. When the term "mutant" is used in relation to a polypeptide, the term "mutant" also encompasses changes in primary structure, secondary structure, or tertiary structure as compared to a reference polypeptide (e.g., as compared to a wild-type coronavirus polypeptide). Mutants may also include insertions, deletions, or substitutions of amino acids that do not normally appear in the peptide sequence underlying the variant (including insertions and substitutions of amino acids and other molecules), including but not limited to ornithine insertions that do not normally appear in human proteins.

如本文所用,术语“对应于”或“对应的野生型冠状病毒”是指产生非天然存在的冠状病毒多肽(例如,刺突多肽)或RBD多肽的野生型冠状病毒多肽序列(或其天然存在的变体)。通常,野生型冠状病毒序列(或其天然存在的变体)来自与非天然存在的冠状病毒多肽相同的毒株。例如,本文所述的突变SARS-CoV-2多肽将对应于SARS-CoV-2序列的野生型冠状病毒多肽或其天然存在的变体(例如,南非变体、巴西变体、洛杉矶变体等)。As used herein, the term "corresponding to" or "corresponding wild-type coronavirus" refers to a wild-type coronavirus polypeptide sequence (or a naturally occurring variant thereof) that produces a non-naturally occurring coronavirus polypeptide (e.g., a spike polypeptide) or an RBD polypeptide. Typically, the wild-type coronavirus sequence (or a naturally occurring variant thereof) is from the same strain as the non-naturally occurring coronavirus polypeptide. For example, the mutant SARS-CoV-2 polypeptides described herein will correspond to a wild-type coronavirus polypeptide or a naturally occurring variant thereof (e.g., a South African variant, a Brazilian variant, a Los Angeles variant, etc.) of a SARS-CoV-2 sequence.

如本文所用,术语“天然存在的变体”是指在易感个体群体中自发产生的冠状病毒序列。As used herein, the term "naturally occurring variant" refers to a coronavirus sequence that arises spontaneously within a population of susceptible individuals.

如本文所用,术语“稳定性增加”或“稳定性增强”是指突变冠状病毒蛋白序列在细胞、溶液或制剂中以在相同条件下比对应天然或野生型冠状病毒蛋白序列(或其天然存在的变体)更慢的速率降解并且因此比对应的天然或野生型冠状病毒蛋白序列(或其天然存在的变体)持续存在至少12h的更长时间,例如如本文工作实施例中所述使用热熔化测定所评定。在某些示例中,与对应的天然或野生型冠状病毒蛋白序列的持续存在相比,突变冠状病毒蛋白序列在细胞、溶液或制剂中持续存在至少24h、36h、48h、72h、7天、8天、9天、10天、2周、1个月、2个月、3个月、4个月、5个月、6个月、9个月、一年、两年或更长时间。在一些实施方案中,较高的表达水平也可以指示多肽的稳定性增强,或是多肽的稳定性增强的结果。As used herein, the term "increased stability" or "enhanced stability" refers to that the mutant coronavirus protein sequence is degraded at a slower rate than the corresponding natural or wild-type coronavirus protein sequence (or its naturally occurring variant) under the same conditions in a cell, solution or preparation and therefore persists for at least 12h longer than the corresponding natural or wild-type coronavirus protein sequence (or its naturally occurring variant), for example, as described in the working examples herein, the hot melt assay is used to assess. In some examples, compared with the persistence of the corresponding natural or wild-type coronavirus protein sequence, the mutant coronavirus protein sequence persists in a cell, solution or preparation for at least 24h, 36h, 48h, 72h, 7 days, 8 days, 9 days, 10 days, 2 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 9 months, one year, two years or longer. In some embodiments, higher expression levels can also indicate that the stability of the polypeptide is enhanced, or the result of the enhanced stability of the polypeptide.

如本文所用,术语“产率增加”或“产率增强”是指从产生蛋白质的细胞系统回收的突变冠状病毒蛋白质的量与在相同生长和分离条件下从相同细胞系统回收的天然或野生型蛋白质(或其天然存在的变体)的量相比增加至少10%。在某些实施方案中,“产率增强”是指从产生蛋白质的细胞系统回收的突变冠状病毒蛋白质与在相同生长条件下从相同细胞系统回收的天然或野生型蛋白质的量相比增加了至少20%、至少30%、至少50%、至少75%、至少90%、至少1倍、至少2倍、至少5倍、至少10倍、至少100倍或更多。As used herein, the term "yield increase" or "yield enhancement" refers to an increase of at least 10% in the amount of a mutant coronavirus protein recovered from a cell system producing a protein compared to the amount of a natural or wild-type protein (or its naturally occurring variant) recovered from the same cell system under the same growth and separation conditions. In certain embodiments, "yield enhancement" refers to an increase of at least 20%, at least 30%, at least 50%, at least 75%, at least 90%, at least 1 times, at least 2 times, at least 5 times, at least 10 times, at least 100 times or more in the amount of a mutant coronavirus protein recovered from a cell system producing a protein compared to the amount of a natural or wild-type protein recovered from the same cell system under the same growth conditions.

如本文所用,术语“空腔填充突变”是指野生型冠状病毒刺突蛋白中的氨基酸残基被预计将“填充”成熟冠状病毒刺突蛋白的内部空腔的氨基酸取代。例如,经取代的氨基酸具有适当的大小或电荷,使得所述经取代的氨基酸突出到空腔中并在空间上减小空腔大小和/或削弱同源配体在空腔或袋内的结合。As used herein, the term "cavity-filling mutation" refers to the substitution of an amino acid residue in a wild-type coronavirus spike protein with an amino acid that is expected to "fill" the internal cavity of the mature coronavirus spike protein. For example, the substituted amino acid has an appropriate size or charge such that the substituted amino acid protrudes into the cavity and sterically reduces the size of the cavity and/or weakens the binding of a cognate ligand within the cavity or pocket.

如本文所用,术语“佐剂”是指当与疫苗抗原一起施用时增强对疫苗抗原的免疫反应的蛋白质或化学物质。佐剂与抗原部分或载体蛋白的区别在于佐剂不与免疫原或抗原化学偶联。佐剂是本领域中众所周知的,并且包括例如矿物油乳剂,诸如弗氏完全佐剂或弗氏不完全佐剂(Freund,Adv.Tuberc.Res.7:130(1956);Calbiochem,San Diego Calif.);铝盐,尤其是氢氧化铝或ALHYDROGELTM(由美国食品和药物管理局(U.S.Food and DrugAdministration)批准用于人类);胞壁酰二肽(MDP)及其类似物,诸如[Thr1]-MDP(Byers和Allison,Vaccine 5:223(1987))、单磷酰脂质A(Johnson等人,Rev.Infect.Dis.9:S512(1987)),等等。As used herein, the term "adjuvant" refers to a protein or chemical substance that enhances the immune response to a vaccine antigen when administered with the vaccine antigen. The difference between an adjuvant and an antigenic moiety or a carrier protein is that the adjuvant is not chemically coupled to an immunogen or antigen. Adjuvants are well known in the art and include, for example, mineral oil emulsions, such as Freund's complete adjuvant or Freund's incomplete adjuvant (Freund, Adv. Tuberc. Res. 7: 130 (1956); Calbiochem, San Diego Calif.); aluminum salts, especially aluminum hydroxide or ALHYDROGEL TM (approved for use in humans by the U.S. Food and Drug Administration (US Food and Drug Administration)); muramyl dipeptide (MDP) and its analogs, such as [Thr1]-MDP (Byers and Allison, Vaccine 5: 223 (1987)), monophosphoryl lipid A (Johnson et al., Rev. Infect. Dis. 9: S512 (1987)), etc.

如本文所用,术语“包含”意指除了给出的定义要素之外还可以存在其他要素。“包含”的使用指示包括而不是限制。As used herein, the term "comprising" means that there may be other elements in addition to the defined elements given. The use of "comprising" indicates inclusion rather than limitation.

如本文所用,术语“基本上由......组成”是指给定实施方案所需的那些要素。该术语允许存在不会实质上影响本发明的实施方案的基本的和新颖的或功能性的特性的附加要素。As used herein, the term "consisting essentially of" refers to those elements required for a given embodiment. The term permits the presence of additional elements that do not materially affect the basic and novel or functional characteristics of the embodiments of the invention.

术语“由......组成”是指如本文所述的组合物、方法及其相应组分不包含在实施方案的描述中未列举的任何要素。The term "consisting of" means that the compositions, methods, and corresponding components thereof, as described herein, do not include any elements not recited in the description of the embodiment.

此外,除非上下文另有要求,否则单数术语应包括复数,并且复数术语应包括单数。Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.

除了在操作示例中或另有说明外,本文所用的表示成分的量或反应条件的所有数字均应理解为在所有情况下均由术语“约”修饰。当与百分比结合使用时,术语“约”可意指±1%。Except in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term “about.” When used in conjunction with a percentage, the term “about” may mean ±1%.

冠状病毒Coronavirus

冠状病毒是由可引起发烧、呼吸系统问题并且有时还会引起胃肠道症状的数百种病毒组成的家族。SARS-CoV-2是导致2019年冠状病毒病(COVID-19)的病毒,是此家族的已知会感染人类的七个成员之一,并且是过去三十年中第三个从动物传染给人类的病毒。其他已知会感染人类的冠状病毒包括甲型冠状病毒229E和NL63、和乙型冠状病毒OC43、HKU1、SARS-CoV(导致严重急性呼吸综合征或SARS的冠状病毒)、和MERS-CoV(导致中东呼吸系统综合征或MERS的冠状病毒)。Coronaviruses are a family of hundreds of viruses that can cause fever, respiratory problems, and sometimes gastrointestinal symptoms. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is one of seven members of this family known to infect humans and the third to jump from animals to humans in the past three decades. Other coronaviruses known to infect humans include alphacoronaviruses 229E and NL63, and betacoronaviruses OC43, HKU1, SARS-CoV (the coronavirus that causes severe acute respiratory syndrome, or SARS), and MERS-CoV (the coronavirus that causes Middle East respiratory syndrome, or MERS).

虽然本文所述的方法和组合物是在感染人类的冠状病毒的背景下讨论的,但本文所述的方法和组合物也可用于从感染其他哺乳动物(包括宠物或家畜(例如,猪、牛、狗等))的病毒中产生稳定的冠状病毒蛋白。此类病毒包括但不限于猪传染性胃肠炎病毒、猪呼吸道冠状病毒、猪流行性腹泻病毒(PEDV)、猪血凝性脑脊髓炎病毒、猪丁型冠状病毒(PDCoV)、牛冠状病毒(BCV)、猫冠状病毒(FCoV)、犬冠状病毒(CCoV)、禽传染性支气管炎病毒(IBV)和火鸡冠状病毒(TCV)。此外,本文所述的冠状病毒包括目前已知的和后来发现的那些冠状病毒。本文特别考虑的是作为正在进行的或未来的流行病或大流行病的原因的冠状病毒。Although the methods and compositions described herein are discussed in the context of coronaviruses that infect humans, the methods and compositions described herein can also be used to produce stable coronavirus proteins from viruses that infect other mammals, including pets or livestock (e.g., pigs, cattle, dogs, etc.). Such viruses include, but are not limited to, porcine transmissible gastroenteritis virus, porcine respiratory coronavirus, porcine epidemic diarrhea virus (PEDV), porcine hemagglutinating encephalomyelitis virus, porcine delta coronavirus (PDCoV), bovine coronavirus (BCV), feline coronavirus (FCoV), canine coronavirus (CCoV), avian infectious bronchitis virus (IBV), and turkey coronavirus (TCV). In addition, the coronaviruses described herein include those currently known and later discovered coronaviruses. Specifically contemplated herein are coronaviruses that are the cause of ongoing or future epidemics or pandemics.

如本文所用,术语“冠状病毒”是指具有正义单链RNA基因组和螺旋对称性的包膜病毒。冠状病毒的基因组大小范围为约27千碱基至32千碱基,这是任何已知RNA病毒中最长的大小。大刺突(S)糖蛋白从病毒粒子中突出,使冠状病毒在由电子显微镜可视化时具有独特的冠状外观。冠状病毒感染多种物种,包括犬科动物、猫科动物、猪科动物、鼠科动物、牛科动物、禽类和人类(Holmes等人,1996.Coronaviridae:the viruses and theirreplication,第1075-1094页.在D.M.K.a.P.M.H.B.N.Fields(编辑),FieldsVirology.Lippincott-Raven,Philadelphia,Pa.中)。然而,每种冠状病毒毒株的自然宿主范围都很窄,通常由单一物种组成。As used herein, the term "coronavirus" refers to an enveloped virus with a positive single-stranded RNA genome and helical symmetry. The genome size of coronavirus ranges from about 27 kilobases to 32 kilobases, which is the longest size of any known RNA virus. The large spike (S) glycoprotein protrudes from the virion, giving the coronavirus a unique crown appearance when visualized by an electron microscope. Coronavirus infects a variety of species, including canines, felines, swine, murines, bovines, birds and humans (Holmes et al., 1996. Coronaviridae: the viruses and their replication, pp. 1075-1094. In D.M.K.a.P.M.H.B.N.Fields (ed.), Fields Virology.Lippincott-Raven, Philadelphia, Pa.). However, the natural host range of each coronavirus strain is very narrow, usually consisting of a single species.

冠状病毒通常经由刺突受体相互作用与靶细胞结合,并通过受体介导的内吞作用或与质膜融合而进入细胞(Holmes等人,1996,出处同上)。正如针对第1群和第2群冠状病毒两者所证明的,刺突受体相互作用是物种特异性的重要决定因素。SARS-CoV的基因组包含单链(+)有义RNA。已经报道了几种SARS冠状病毒分离株的完整和部分基因组序列,包括SARS冠状病毒Urbani(GenBank登录号AY278741)、SARS冠状病毒Tor2(GenBank登录号AY274119)、SARS冠状病毒CUHK-W1(GenBank登录号AY278554)、SARS-CoV上海LY(GenBank登录号H012999;GenBank登录号AY322205;GenBank登录号AY322206)、SARS-CoV上海QXC(GenBank登录号AH013000;GenBank登录号AY322208;GenBank登录号AY322197;GenBank登录号AY322199)和SARS-CoV ZJ-HZ01(GenBank登录号AY322206)、gi|31416292|gb|AY278487.3|SARS冠状病毒BJ02、gi|30248028|gb|AY274119.3|SARS冠状病毒TOR2、gi|30698326|gb|AY291451.1|SARS冠状病毒TW1、gi|33115118|gb|AY323977.2|SARS冠状病毒HSR 1、gi|35396382|gb|AY394850.1|SARS冠状病毒WHU、gi|33411459|dbj|AP006561.1|SARS冠状病毒TWY、gi|33411444|dbj|AP006560.1|SARS冠状病毒TWS、gi|33411429|dbj|AP006559.1|SARS冠状病毒TWK、gi|33411414|dbj|AP006558.1|SARS冠状病毒TWJ、gi|33411399|dbj|AP006557.1|SARS冠状病毒TWH、gi|30023963|gb|AY278491.2|SARS冠状病毒HKU-39849、gi|33578015|gb|AY310120.1|SARS冠状病毒FRA、gi|33518725|gb|AY362699.1|SARS冠状病毒TWC3、gi|33518724|gb|AY362698.1|SARS冠状病毒TWC2、gi|30027617|gb|AY278741.1|SARS冠状病毒Urbani、gi|31873092|gb|AY321118.1|SARS冠状病毒TWC、gi|33304219|gb|AY351680.1|SARS冠状病毒ZMY 1、gi|31416305|gb|AY278490.3|SARS冠状病毒BJ03、gi|30910859|gb|AY297028.1|SARS冠状病毒ZJ01、gi|30421451|gb|AY282752.1|SARS冠状病毒CUHK-Su10、gi|34482146|gb|AY304495.1|SARS冠状病毒GZ50、gi|34482139|gb|AY304488.1|SARS冠状病毒SZ16、gi|34482137|gb|AY304486.1|SARS冠状病毒SZ3、gi|30027610|gb|AY278554.2|SARS冠状病毒CUHK-W1、gi|31416306|gb|AY279354.2|SARS冠状病毒BJ04、gi|37576845|gb|AY427439.1|SARS冠状病毒AS、gi|37361915|gb|AY283798.2|SARS冠状病毒Sin2774、gi|31416290|gb|AY278489.2|SARS冠状病毒GD01、gi|30468042|gb|AY283794.1|SARS冠状病毒Sin2500、gi|30468043|gb|AY283795.1|SARS冠状病毒Sin2677、gi|30468044|gb|AY283796.1|SARS冠状病毒Sin2679、gi|30468045|gb|AY283797.1|SARS冠状病毒Sin2748、gi|31982987|gb|AY286320.2|SARS冠状病毒分离株ZJ-HZ01、gi|30275666|gb|AY278488.2|SARS冠状病毒BJ0 1。Coronaviruses typically bind to target cells via spike receptor interactions and enter cells by receptor-mediated endocytosis or fusion with the plasma membrane (Holmes et al., 1996, supra). As demonstrated for both group 1 and group 2 coronaviruses, spike receptor interactions are an important determinant of species specificity. The genome of SARS-CoV contains single-stranded (+) sense RNA. The complete and partial genome sequences of several SARS coronavirus isolates have been reported, including SARS coronavirus Urbani (GenBank accession number AY278741), SARS coronavirus Tor2 (GenBank accession number AY274119), SARS coronavirus CUHK-W1 (GenBank accession number AY278554), SARS-CoV Shanghai LY (GenBank accession number H012999; GenBank accession number AY322205; GenBank accession number AY322206), SARS-CoV Shanghai QXC (GenBank accession number AH013000; GenBank accession number AY322208; GenBank accession number AY322197; GenBank accession number AY322199), and SARS-CoV Shanghai LY (GenBank accession number H012999; GenBank accession number AY322205; GenBank accession number AY322206). ZJ-HZ01 (GenBank accession number AY322206), gi|31416292|gb|AY278487.3|SARS coronavirus BJ02, gi|30248028|gb|AY274119.3|SARS coronavirus TOR2, gi|30698326|gb|AY291451.1|SARS coronavirus TW1, gi|33115118|gb|AY323977.2|SARS coronavirus HSR 1. gi|35396382|gb|AY394850.1|SARS coronavirus WHU, gi|33411459|dbj|AP006561.1|SARS coronavirus TWY, gi|33411444|dbj|AP006560.1|SARS coronavirus TWS, gi|33411429|dbj|AP006559.1|SARS coronavirus TWK, gi|33411414|dbj|AP006558.1|SARS coronavirus TWJ, gi|33411399|dbj|AP006557.1|SARS coronavirus TWH, gi|30023963|gb|AY278 491.2|SARS coronavirus HKU-39849、gi|33578015|gb|AY310120.1|SARS coronavirus FRA、gi|33518725|gb|AY362699.1|SARS coronavirus TWC3、gi|33518724|gb|AY362698.1|SARS coronavirus TWC2、gi|30027617|gb|AY278741.1|SARS coronavirus Urbani、gi|31873092|gb|AY321118.1|SARS coronavirus TWC、gi|33304219|gb|AY351680.1|SARS coronavirus ZMY 1. gi|31416305|gb|AY278490.3|SARS coronavirus BJ03, gi|30910859|gb|AY297028.1|SARS coronavirus ZJ01, gi|30421451|gb|AY282752.1|SARS coronavirus CUHK-Su10, gi|34482146|gb|AY304495.1|SARS coronavirus GZ50, gi|344821 39|gb|AY304488.1|SARS coronavirus SZ16、gi|34482137|gb|AY304486.1|SARS coronavirus SZ3、gi|30027610|gb|AY278554.2|SARS coronavirus CUHK-W1、gi|31416306|gb|AY279354.2|SARS coronavirus BJ04、gi|37576845|gb|AY427439 .1|SARS coronavirus AS, gi|37361915|gb|AY283798.2|SARS coronavirus Sin2774, gi|31416290|gb|AY278489.2|SARS coronavirus GD01, gi|30468042|gb|AY283794.1|SARS coronavirus Sin2500, gi|30468043|gb|AY283795.1|SARS coronavirus S in2677, gi|30468044|gb|AY283796.1|SARS coronavirus Sin2679, gi|30468045|gb|AY283797.1|SARS coronavirus Sin2748, gi|31982987|gb|AY286320.2|SARS coronavirus isolate ZJ-HZ01, gi|30275666|gb|AY278488.2|SARS coronavirus BJ0 1.

S(刺突)蛋白可形成非共价连接的同源三聚体(寡聚体),该非共价连接的同源三聚体可介导受体结合和病毒感染性。S蛋白的同源三聚体对于呈现受体结合结构域的正确天然构象和引发中和抗体反应可能是必需的。此外,S蛋白的细胞内加工与显著的翻译后寡糖修饰相关联。N-聚糖基序分析所预期的翻译后寡糖修饰(糖基化)表明S蛋白具有多达23个此类修饰位点。此外,C末端半胱氨酸残基也可能参与蛋白质折叠并保持天然(功能性)S蛋白构象。一些冠状病毒(例如,第II群和第III群病毒的一些毒株)的S蛋白可以在S蛋白的中心附近被高尔基体中的胰蛋白酶样蛋白酶或被细胞外定位的酶蛋白水解加工成连接的多肽,包含N末端S1多肽和C末端S2多肽。第II群冠状病毒和第III群病毒类型的一些成员可能不会这样加工。S (spike) protein can form non-covalently linked homotrimers (oligomers), which can mediate receptor binding and viral infectivity. The homotrimers of S protein may be necessary for presenting the correct native conformation of the receptor binding domain and eliciting neutralizing antibody reactions. In addition, the intracellular processing of S protein is associated with significant post-translational oligosaccharide modifications. The post-translational oligosaccharide modifications (glycosylation) expected by N-glycan motif analysis indicate that S protein has up to 23 such modification sites. In addition, the C-terminal cysteine residue may also be involved in protein folding and maintain the native (functional) S protein conformation. The S protein of some coronaviruses (e.g., some strains of Group II and Group III viruses) can be processed into connected polypeptides by trypsin-like proteases in the Golgi apparatus or by extracellularly located enzyme proteases near the center of the S protein, including N-terminal S1 polypeptides and C-terminal S2 polypeptides. Some members of Group II coronavirus and Group III virus types may not be processed in this way.

诊断:基于诊断测试结果,受试者(例如,人)被诊断为患有冠状病毒感染。基于一种或多种表现出的症状,诸如发烧、发冷、咳嗽、呼吸短促/呼吸困难、疲劳、肌肉/身体疼痛、头痛、新出现的味觉或嗅觉丧失、喉咙痛、充血或流鼻涕、恶心、呕吐或腹泻,受试者可能被怀疑患有冠状病毒感染(例如,COVID-19、SARS、MERS等)。然而,某些受试者可能表现出无症状感染(例如,SARS-CoV-2感染),并且因此当与患有冠状病毒感染的受试者接触时可能会被怀疑患有冠状病毒感染。在这两种情况下,活性冠状病毒感染可以使用本领域已知的检测取自受试者的样品中的病毒抗原和病毒核酸中的一者或多者的方法来确认。示例包括使用来自鼻咽拭子或痰液的逆转录酶聚合酶链式反应(RT-PCR)诊断测定来检测病毒RNA。其他核酸扩增方法(例如许多等温扩增方法中的任何一种等温扩增方法)也可以使用,并且具有即使不等于RT-PCR,也接近于RT-PCR的灵敏度。等温扩增方法具有不需要热循环仪来产生扩增产物的优点,并且可以以高度灵敏的方式更快速地提供结果。在另一实施方案中,活性冠状病毒感染可以通过检测从受试者获得的生物样品中的一种或多种冠状病毒多肽(诸如抗原)来确定。病毒抗原的侧向流测定可提供定性的,并且有时是定量的诊断结果。病毒多肽也可以通过本领域已知的其他方法(诸如蛋白质印迹法)检测。Diagnosis: Based on the diagnostic test results, the subject (e.g., a person) is diagnosed with a coronavirus infection. Based on one or more symptoms presented, such as fever, chills, cough, shortness of breath/dyspnea, fatigue, muscle/body pain, headache, new loss of taste or smell, sore throat, congestion or runny nose, nausea, vomiting, or diarrhea, the subject may be suspected of having a coronavirus infection (e.g., COVID-19, SARS, MERS, etc.). However, some subjects may exhibit asymptomatic infection (e.g., SARS-CoV-2 infection), and therefore may be suspected of having a coronavirus infection when in contact with a subject with a coronavirus infection. In both cases, active coronavirus infection can be confirmed using methods known in the art to detect one or more of viral antigens and viral nucleic acids in samples taken from the subject. Examples include the use of reverse transcriptase polymerase chain reaction (RT-PCR) diagnostic assays from nasopharyngeal swabs or sputum to detect viral RNA. Other nucleic acid amplification methods (e.g., any of many isothermal amplification methods) can also be used, and have a sensitivity close to that of RT-PCR, if not equal to RT-PCR. Isothermal amplification methods have the advantage of not needing a thermal cycler to produce an amplified product, and can provide results more quickly in a highly sensitive manner. In another embodiment, active coronavirus infection can be determined by detecting one or more coronavirus polypeptides (such as antigens) in a biological sample obtained from a subject. The lateral flow assay of viral antigens can provide qualitative and sometimes quantitative diagnostic results. Viral polypeptides can also be detected by other methods known in the art (such as Western blotting).

评定冠状病毒抗体的存在可用于确定受试者是否过去已经暴露于冠状病毒,或者替代地作为监测疫苗有效性(即,突变刺突蛋白提高免疫反应的能力)的手段。评定冠状病毒抗体存在的方法是本领域已知的,并且本文不详细讨论。Assessing the presence of coronavirus antibodies can be used to determine whether a subject has been exposed to coronavirus in the past, or alternatively as a means of monitoring vaccine effectiveness (i.e., the ability of mutant spike proteins to increase immune response). Methods for assessing the presence of coronavirus antibodies are known in the art and are not discussed in detail herein.

或者,冠状病毒病毒体的存在或产生可以通过使用例如电子显微镜来直接或间接地确定。Alternatively, the presence or production of coronavirus virions can be determined directly or indirectly by using, for example, electron microscopy.

蛋白质序列:天然或野生型SARS-CoV-2S蛋白亚基1的氨基酸序列为:MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAA(SEQ ID NO:1)。Protein sequence: The amino acid sequence of the native or wild-type SARS-CoV-2 S protein subunit 1 is: MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVD LPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLD SKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPL QSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENS VAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQY GSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVV NQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAA (SEQ ID NO: 1).

贯穿本说明书,SEQ ID NO:1用作可以使用本领域已知的比对程序(例如,Blast-p)与其他冠状病毒氨基酸序列进行比对的‘基础’或‘参考’序列。不同(或第二)冠状病毒序列的刺突蛋白序列与SEQ ID NO:1的SARS-CoV-2刺突蛋白序列的比对可用于确定该不同(或第二)冠状病毒中的要引入一种或多种给定的氨基酸突变以实现如本文所述的稳定化的对应位点。在一个实施方案中,使用Blast-p(Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.&Lipman,D.J.(1990)"Basic local alignment search tool."J.Mol.Biol.215:403-410)将不同的冠状病毒序列与SEQ ID NO:1进行比对。在一个实施方案中,所使用的Blast-p程序是国家生物技术信息中心(NCBI)在线比对工具。或者,可以将Blast-p程序下载到设备上并在本地使用。本领域的技术人员将很容易理解Blast-p比对工具的使用,然而为了避免疑义,随本文提供协议1和协议2以分别用于在线和下载的比对工具。Throughout this specification, SEQ ID NO: 1 is used as a 'base' or 'reference' sequence that can be aligned with other coronavirus amino acid sequences using alignment programs known in the art (e.g., Blast-p). The alignment of the spike protein sequence of a different (or second) coronavirus sequence with the SARS-CoV-2 spike protein sequence of SEQ ID NO: 1 can be used to determine the corresponding sites in the different (or second) coronavirus to introduce one or more given amino acid mutations to achieve stabilization as described herein. In one embodiment, Blast-p (Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J.Mol.Biol.215: 403-410) is used to align different coronavirus sequences with SEQ ID NO: 1. In one embodiment, the Blast-p program used is the National Center for Biotechnology Information (NCBI) online alignment tool. Alternatively, the Blast-p program can be downloaded to the device and used locally. The use of the Blast-p alignment tool will be readily understood by those skilled in the art, however for the avoidance of doubt, Protocols 1 and 2 are provided herein for use with the online and downloaded alignment tools respectively.

协议1:用于与来自国家生物技术信息中心(NCBI)服务器的在线BLASTp比对一起使用。 Protocol 1 : For use with online BLASTp alignments from the National Center for Biotechnology Information (NCBI) server.

1.使用以下设置来设置BLAST比对:1. Set up a BLAST alignment using the following settings:

使用“Align two or more sequences(比对两个或更多个序列)”选项Use the "Align two or more sequences" option

向“Enter Query Sequence(输入查询序列)”区段中输入相关SARS-CoV-2蛋白的参考株序列(即,SEQ ID NO:1)Enter the reference strain sequence of the relevant SARS-CoV-2 protein (i.e., SEQ ID NO: 1) into the "Enter Query Sequence" section

向“Enter Subject Sequence(输入主题序列)”区段中输入任何对应的冠状病毒刺突蛋白序列Enter any corresponding coronavirus spike protein sequence into the "Enter Subject Sequence" section

算法:blastp(蛋白质-蛋白质BLAST)Algorithm: blastp (protein-protein BLAST)

预期阈值:0.1Expected threshold: 0.1

字长:6Word length: 6

查询范围内的最大匹配:0Maximum matches within query range: 0

矩阵:BLOSUM62Matrix: BLOSUM62

空位成本:Vacancy cost:

存在:11Presence: 11

延伸:1Extension: 1

过滤低复杂度区域?:否Filter low complexity areas?: No

掩码:Mask:

仅用于查找表?:否For lookup table only? : No

小写字母?:否。Lowercase letters?: No.

2.通过点击“BLAST”按钮运行分析。2. Run the analysis by clicking the "BLAST" button.

3.点击“Alignments(比对)”标记以显示两个序列之间的比对。3. Click the "Alignments" tab to display the alignment between the two sequences.

4.对于每个感兴趣的序列位置,根据“Query(查询)”序列鉴定编号。然后鉴定已与“Query(查询)”序列的位置比对的“Sbjct”序列中的对应残基位置。4. For each sequence position of interest, identify the number according to the "Query" sequence. Then identify the corresponding residue position in the "Sbjct" sequence that has been aligned with the position of the "Query" sequence.

协议2:用于与下载到本地计算机或服务器上的蛋白质BLASTp比对工具一起使用。 Protocol 2 : For use with the protein BLASTp alignment tool downloaded to a local computer or server.

1.使用制造商的使用说明安装BLAST以执行命令行,或确定已安装BLAST的计算机或服务器。1. Install BLAST using the manufacturer's instructions for command line execution, or identify a computer or server where BLAST is installed.

2.生成FASTA格式的文件,该文件包含所需的SARS-CoV-2蛋白亚型特异性参考菌株(即,SEQ ID NO:1)。在以下命令中,这个文件将被命名为“query.fasta”。2. Generate a FASTA formatted file containing the desired SARS-CoV-2 protein subtype-specific reference strain (i.e., SEQ ID NO: 1). In the following commands, this file will be named "query.fasta".

3.生成FASTA格式的第二文件,该第二文件包含来自同一亚型的不同冠状病毒的对应蛋白质序列。在以下命令中,这个文件将被命名为“sbjct.fasta”。3. Generate a second file in FASTA format, which contains the corresponding protein sequences of different coronaviruses from the same subtype. In the following command, this file will be named "sbjct.fasta".

4.使用诸如Terminal、iTerm2、Windows Console、Linux console或其他类似终端仿真器的程序执行以下命令。这将在名为“results.txt”的文件中生成结果。4. Execute the following command using a program such as Terminal, iTerm2, Windows Console, Linux console, or other similar terminal emulator. This will generate the results in a file called "results.txt".

blastp-query query.fasta-subject sbjct.fasta-matrix BLOSUM62-evalue0.1-blastp-query query.fasta-subject sbjct.fasta-matrix BLOSUM62-evalue0.1-

word size 6-gapopen 11-gapextend 1-out results.txtword size 6-gapopen 11-gapextend 1-out results.txt

5.打开results.txt并查看显示两个序列的比对的区段。对于每个感兴趣的序列位置,根据“Query(查询)”序列鉴定编号。然后鉴定已与“Query(查询)”序列的位置比对的“Sbjct”序列中对应的残基位置。5. Open results.txt and view the section showing the alignment of the two sequences. For each sequence position of interest, identify the number according to the "Query" sequence. Then identify the corresponding residue position in the "Sbjct" sequence that has been aligned with the position of the "Query" sequence.

对于本领域技术人员来说将显而易见的是,其他蛋白质比对工具(例如,Clustalw或Clustal-omega)也可用于鉴定查询序列与参考序列(例如,SEQ ID NO:1)之间的序列同一性。鉴于查询序列和参考序列共享显著的序列同一性,预计其他蛋白质比对工具将产生与使用本文所述的协议的Blast-p相似(如果不是相同)的结果。本文所述的协议已被证明对于此目的是准确和有效的,并且在本文提供以帮助技术人员鉴定要在查询序列中突变的氨基酸残基。It will be apparent to those skilled in the art that other protein alignment tools (e.g., Clustalw or Clustal-omega) can also be used to identify sequence identity between a query sequence and a reference sequence (e.g., SEQ ID NO: 1). Given that the query sequence and the reference sequence share significant sequence identity, it is expected that other protein alignment tools will produce similar (if not identical) results to Blast-p using the protocol described herein. The protocol described herein has been shown to be accurate and effective for this purpose, and is provided herein to assist the skilled artisan in identifying amino acid residues to be mutated in the query sequence.

受体结合结构域(RBD)多肽Receptor Binding Domain (RBD) Peptides

病毒表面“刺突”蛋白介导冠状病毒进入宿主细胞。SARS-CoV和SARS-CoV-2的刺突蛋白均包含特异性地识别血管紧张素转换酶2(ACE2)作为其受体的受体结合结构域。鉴于这种结构域在病毒摄取和功能中的重要性,受体结合结构域在已知会感染人类的冠状病毒中相对充分地保守。SARS-CoV-2的刺突蛋白的受体结合结构域的序列为:The viral surface "spike" protein mediates coronavirus entry into host cells. The spike proteins of both SARS-CoV and SARS-CoV-2 contain a receptor binding domain that specifically recognizes angiotensin-converting enzyme 2 (ACE2) as its receptor. Given the importance of this domain in viral uptake and function, the receptor binding domain is relatively well conserved among coronaviruses known to infect humans. The sequence of the receptor binding domain of the spike protein of SARS-CoV-2 is:

RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCY

GVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGC

VIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK(SEQ ID NO:2)。VIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK (SEQ ID NO: 2).

贯穿本说明书,SEQ ID NO:2用作可以使用本领域已知的比对程序(例如,Blast-p、ClustalW等)与其他冠状病毒RBD序列进行比对的‘基础’或‘参考’受体结合结构域序列。至少第二冠状病毒RBD序列与SEQ ID NO:2的比对可用于针对SARS-CoV-2中的给定氨基酸突变确定第二冠状病毒RBD序列中的对应位点。在此类实施方案中,Blast-p可用于使用本文所述的协议1或协议2将冠状病毒RBD查询序列与SEQ ID NO:2进行比对。受体结合结构域多肽在SEQ ID NO:2(或不同冠状病毒的等同物)内包含至少两个突变。在一些实施方案中,受体结合结构域多肽可包含附加突变。这种附加突变也可以在RBD区域中,或可发生在RBD区域之外。通常,至少一个、两个或更多个氨基酸突变不包括在给定冠状病毒序列的天然存在的变体中发现的那些突变。例如,存在于SARS-CoV-2的天然存在的变体中的L452R和E484K不计为如本文所述的至少一个、两个或更多个氨基酸突变。Throughout this specification, SEQ ID NO: 2 is used as a 'base' or 'reference' receptor binding domain sequence that can be compared with other coronavirus RBD sequences using alignment programs known in the art (e.g., Blast-p, ClustalW, etc.). The alignment of at least a second coronavirus RBD sequence with SEQ ID NO: 2 can be used to determine the corresponding site in the second coronavirus RBD sequence for a given amino acid mutation in SARS-CoV-2. In such embodiments, Blast-p can be used to compare the coronavirus RBD query sequence with SEQ ID NO: 2 using Protocol 1 or Protocol 2 described herein. The receptor binding domain polypeptide comprises at least two mutations within SEQ ID NO: 2 (or the equivalent of a different coronavirus). In some embodiments, the receptor binding domain polypeptide may comprise additional mutations. Such additional mutations may also be in the RBD region, or may occur outside the RBD region. Typically, at least one, two or more amino acid mutations do not include those found in naturally occurring variants of a given coronavirus sequence. For example, L452R and E484K present in naturally occurring variants of SARS-CoV-2 are not counted as at least one, two or more amino acid mutations as described herein.

在一些实施方案中,本文所述的受体结合结构域多肽用于产生针对一种或多种冠状病毒的蛋白质疫苗。如本领域技术人员应理解的并且特别是当用于疫苗的设置时,突变冠状病毒蛋白不必保留与其同源受体的受体结合性质;因此,不需要设计至少一个氨基酸突变或至少两个氨基酸突变来保留RBD的功能。鉴于冠状病毒蛋白功能的维持不是必需的,因此在本文中特别考虑了与SEQ ID NO:1或SEQ ID NO:2具有至少90%同一性(例如,与SEQID NO:1或SEQ ID NO:2至少95%、至少99%同一性)的冠状病毒蛋白,前提条件是它们保留充当冠状病毒抗原(即,刺激在受试者中产生冠状病毒结合抗体或结合针对对应的野生型冠状病毒的冠状病毒抗体)的能力。也就是说,本文所述的受体结合结构域多肽是“免疫原性的”,即用受体结合结构域多肽(任选地结合到合适的载体(诸如蛋白质、脂质或多肽))对受试者进行免疫,诱导针对RBD多肽的(B细胞类型和/或T细胞类型的)免疫反应。In some embodiments, the receptor binding domain polypeptides described herein are used to produce protein vaccines against one or more coronaviruses. As will be understood by those skilled in the art and particularly when used in the setting of a vaccine, the mutant coronavirus protein does not have to retain the receptor binding properties of its cognate receptor; therefore, it is not necessary to design at least one amino acid mutation or at least two amino acid mutations to retain the function of the RBD. In view of the fact that the maintenance of the function of the coronavirus protein is not necessary, coronavirus proteins having at least 90% identity with SEQ ID NO: 1 or SEQ ID NO: 2 (e.g., at least 95%, at least 99% identity with SEQ ID NO: 1 or SEQ ID NO: 2) are particularly contemplated herein, provided that they retain the ability to act as coronavirus antigens (i.e., stimulate the production of coronavirus binding antibodies in a subject or bind to coronavirus antibodies against the corresponding wild-type coronavirus). That is, the receptor binding domain polypeptides described herein are "immunogenic", i.e., the subject is immunized with a receptor binding domain polypeptide (optionally bound to a suitable carrier (such as a protein, lipid or polypeptide)) to induce an immune response (of the B cell type and/or T cell type) against the RBD polypeptide.

术语“表位”是指分子(诸如抗原)中的抗原决定簇,即该分子的被免疫系统识别(例如被T细胞或B细胞识别的)的部分或片段,特别是在出现于MHC分子的背景中的情况下。蛋白质抗原的表位可包含所述蛋白质的连续或不连续部分,并且长度可在5个氨基酸与100个氨基酸之间、在5个氨基酸与50个氨基酸之间、在8个氨基酸与30个氨基酸之间、在10个氨基酸与25个氨基酸之间,例如,表位的长度可优选地为9个氨基酸、10个氨基酸、11个氨基酸、12个氨基酸、13个氨基酸、14个氨基酸、15个氨基酸、16个氨基酸、17个氨基酸、18个氨基酸、19个氨基酸、20个氨基酸、21个氨基酸、22个氨基酸、23个氨基酸、24个氨基酸或25个氨基酸。The term "epitope" refers to an antigenic determinant in a molecule such as an antigen, i.e., a portion or fragment of the molecule that is recognized by the immune system (e.g., by a T cell or B cell), particularly when presented in the context of an MHC molecule. An epitope of a protein antigen may comprise a continuous or discontinuous portion of the protein and may be between 5 and 100 amino acids, between 5 and 50 amino acids, between 8 and 30 amino acids, between 10 and 25 amino acids in length, for example, an epitope may preferably be 9 amino acids, 10 amino acids, 11 amino acids, 12 amino acids, 13 amino acids, 14 amino acids, 15 amino acids, 16 amino acids, 17 amino acids, 18 amino acids, 19 amino acids, 20 amino acids, 21 amino acids, 22 amino acids, 23 amino acids, 24 amino acids, or 25 amino acids in length.

蛋白质提高免疫反应的能力可部分归因于其二级结构和蛋白质折叠的构象。在一些实施方案中,某种构象对于产生抗原反应和/或增加蛋白质的稳定性是优选的。与ACE2受体结合的SARS-CoV-2的二级结构描述于Shang等人,“Structural Basis of ReceptorRecognition by SARS-CoV-2”Nature 581:221-224(2020)中,该文献的内容全文以引用方式并入本文。通过了解SARS-CoV-2的晶体结构后,本领域技术人员可以使用有根据的推理或计算软件来确定给定的受体结合结构域多肽是否有可能包含会诱导受试者中的免疫反应的形状或二级结构。The ability of a protein to improve an immune response can be attributed in part to its secondary structure and the conformation of protein folding. In some embodiments, a certain conformation is preferred for producing an antigenic response and/or increasing the stability of the protein. The secondary structure of SARS-CoV-2 bound to the ACE2 receptor is described in Shang et al., "Structural Basis of Receptor Recognition by SARS-CoV-2" Nature 581:221-224 (2020), the contents of which are incorporated herein by reference in their entirety. By understanding the crystal structure of SARS-CoV-2, those skilled in the art can use well-founded reasoning or computational software to determine whether a given receptor binding domain polypeptide is likely to contain a shape or secondary structure that will induce an immune response in a subject.

在某些实施方案中,至少两个氨基酸在冠状病毒受体结合结构域中发生突变,这提高了细胞系统中蛋白质的产率和/或增强了冠状病毒蛋白与其对应的野生型蛋白相比在细胞、溶液或制剂中的稳定性。在其他实施方案中,至少一个氨基酸在冠状病毒受体结合结构域中发生突变,这提高了细胞系统中蛋白质的产率和/或增强了冠状病毒蛋白质与其对应的野生型蛋白相比在细胞、溶液或制剂中的稳定性。In certain embodiments, at least two amino acids are mutated in the coronavirus receptor binding domain, which increases the yield of the protein in the cell system and/or enhances the stability of the coronavirus protein in cells, solutions or formulations compared to its corresponding wild-type protein. In other embodiments, at least one amino acid is mutated in the coronavirus receptor binding domain, which increases the yield of the protein in the cell system and/or enhances the stability of the coronavirus protein in cells, solutions or formulations compared to its corresponding wild-type protein.

在一些实施方案中,至少两个突变包括在刺突蛋白的RBD区域(SEQ ID NO:2,或SEQ ID NO:1的残基328-531)内引入的至少两个突变。在一些实施方案中,至少一个氨基酸突变被引入刺突蛋白的RBD区域内。In some embodiments, the at least two mutations include at least two mutations introduced within the RBD region of the spike protein (SEQ ID NO: 2, or residues 328-531 of SEQ ID NO: 1). In some embodiments, at least one amino acid mutation is introduced within the RBD region of the spike protein.

在某些实施方案中,所述至少两个突变在SEQ ID NO:1的以下氨基酸残基处:338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365,或在通过使用Blast-p将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒受体结合结构域的对应残基处。In certain embodiments, the at least two mutations are in SEQ ID NO:1 at the following amino acid residues: 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or 338, 358, 363 and 365, or by using Blast-p to convert SEQ ID NO: 1 is aligned with the sequence of the second coronavirus receptor binding domain to determine the corresponding residues of the second coronavirus receptor binding domain.

在某些实施方案中,所述至少一个氨基酸突变在以下氨基酸残基处:338、358、363、365、367、377、392、395;498、501、502、513或515。在其他实施方案中,所述至少一个氨基酸突变是:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M、或F515L。In certain embodiments, the at least one amino acid mutation is at the following amino acid residues: 338, 358, 363, 365, 367, 377, 392, 395; 498, 501, 502, 513 or 515. In other embodiments, the at least one amino acid mutation is: I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M, or F515L.

在某些实施方案中,所述至少两个突变选自由以下组成的组:SEQ ID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或在通过使用Blast-p将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒的对应残基处。In certain embodiments, the at least two mutations are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513I of SEQ ID NO: 1. 3M; I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or at the corresponding residues of a second coronavirus determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus receptor binding domain using Blast-p.

在一个实施方案中,所述受体结合结构域多肽包含融合蛋白。In one embodiment, the receptor binding domain polypeptide comprises a fusion protein.

亚油酸结合袋Linoleic acid binding pocket

SARS-CoV-2“S”(刺突)蛋白已被证明包含“袋”或“空腔”,该“袋”或“空腔”最近已被确定为亚油酸结合袋(Toelzer等人Science“Free fatty acid binding pocket in thelocked structure of SARS-CoV-2spike protein”(2020))。亚油酸结合袋中的残基在所有7种感染人类的冠状病毒中都是保守的(Toelzer,出处同上),表明此空腔在功能上是保守的。Toelzer等人还表明亚油酸与SARS-CoV-2S蛋白的结合稳定化S蛋白的闭合构象。本文预期亚油酸结合袋或亚油酸结合袋的子结构域内的突变可用于模拟亚油酸的效应和/或稳定化S蛋白的闭合构象。在一些实施方案中,此区域中的氨基酸突变是‘空腔填充’突变。The SARS-CoV-2 "S" (spike) protein has been shown to contain a "pocket" or "cavity" that has recently been identified as a linoleic acid binding pocket (Toelzer et al. Science "Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein" (2020)). The residues in the linoleic acid binding pocket are conserved in all seven coronaviruses that infect humans (Toelzer, supra), suggesting that this cavity is functionally conserved. Toelzer et al. also showed that binding of linoleic acid to the SARS-CoV-2 S protein stabilizes the closed conformation of the S protein. It is contemplated herein that mutations within the linoleic acid binding pocket or a subdomain of the linoleic acid binding pocket can be used to mimic the effects of linoleic acid and/or stabilize the closed conformation of the S protein. In some embodiments, the amino acid mutations in this region are 'cavity filling' mutations.

在一个实施方案中,“空腔填充突变”,如此术语在本文中所用,填充亚油酸结合袋内的位点(例如,空间上突出到该空腔中)。可以通过本领域已知的方法来鉴定天然冠状病毒刺突蛋白中的空腔,诸如通过目视检查例如SARS-CoV-2的刺突蛋白的晶体结构表示(参见例如,Shang等人,“Structural Basis of Receptor Recognition by SARS-CoV-2”Nature 581:221-224(2020)),或通过使用计算蛋白质设计软件(诸如BioLuminateTM(BioLuminate,Schrodinger LLC,New York)、Discovery StudioTM(Discovery StudioModeling Environment,Accelrys,San Diego)、MOETM(Molecular OperatingEnvironment,Chemical Computing Group Inc.,Montreal)、和RosettaTM(Rosetta,University of Washington,Seattle,)等)。此类模型允许本领域技术人员设计预期增强给定冠状病毒刺突蛋白的稳定性的空腔填充突变。In one embodiment, a "cavity-filling mutation," as that term is used herein, fills a site within the linoleic acid binding pocket (e.g., spatially protrudes into the cavity). Cavities in natural coronavirus spike proteins can be identified by methods known in the art, such as by visual inspection of crystal structure representations of, for example, spike proteins of SARS-CoV-2 (see, e.g., Shang et al., "Structural Basis of Receptor Recognition by SARS-CoV-2" Nature 581: 221-224 (2020)), or by using computational protein design software (such as BioLuminate TM (BioLuminate, Schrodinger LLC, New York), Discovery Studio TM (Discovery Studio Modeling Environment, Accelrys, San Diego), MOE TM (Molecular Operating Environment, Chemical Computing Group Inc., Montreal), and Rosetta TM (Rosetta, University of Washington, Seattle, etc.). Such models allow one skilled in the art to design cavity-filling mutations that are expected to enhance the stability of a given coronavirus spike protein.

待替换以进行空腔填充突变的氨基酸可包括小脂肪族氨基酸(例如Gly、Ala和Val)或小极性氨基酸(例如Ser和Thr),所述氨基酸被在空间上更大并且能够“填充”空腔的类似氨基酸(例如,大脂肪族氨基酸(Ile、Leu和Met)或大芳香族氨基酸(His、Phe、Tyr和Trp))替换。在其他实施方案中,带电氨基酸可替换不带电的氨基酸或被不带电的氨基酸替换,从而改变蛋白质和空腔的二级结构。此类用于替换的残基还可包括隐藏在给定蛋白质构象中但以第二构象暴露于溶剂的氨基酸。The amino acids to be replaced for cavity-filling mutations may include small aliphatic amino acids (e.g., Gly, Ala, and Val) or small polar amino acids (e.g., Ser and Thr) that are replaced by similar amino acids that are sterically larger and able to "fill" the cavity (e.g., large aliphatic amino acids (Ile, Leu, and Met) or large aromatic amino acids (His, Phe, Tyr, and Trp)). In other embodiments, charged amino acids may replace uncharged amino acids or be replaced by uncharged amino acids, thereby changing the secondary structure of the protein and the cavity. Such residues for replacement may also include amino acids that are hidden in a given protein conformation but exposed to the solvent in a second conformation.

在某些实施方案中,SARS-CoV-2刺突蛋白中的至少两个突变中的至少一个突变在参与亚油酸结合袋的残基处。在一些实施方案中,优选的是突变“填充”亚油酸结合袋(例如,使用具有相似电荷或疏水性的较大氨基酸)。与对应的野生型冠状病毒相比,此类突变可以稳定化蛋白质的特定构象和/或降低蛋白质的降解速率。为了便于参考,本文将参与亚油酸结合的残基分成三个子结构域。In certain embodiments, at least one of the at least two mutations in the SARS-CoV-2 spike protein is at a residue involved in the linoleic acid binding pocket. In some embodiments, it is preferred that the mutation "fills" the linoleic acid binding pocket (e.g., using larger amino acids with similar charge or hydrophobicity). Such mutations can stabilize a specific conformation of the protein and/or reduce the degradation rate of the protein compared to the corresponding wild-type coronavirus. For ease of reference, the residues involved in linoleic acid binding are divided into three subdomains herein.

这些子结构域仅基于参与亚油酸结合的几个残基的紧密接近。These subdomains are based solely on the close proximity of a few residues involved in linoleic acid binding.

非天然存在的冠状病毒刺突蛋白亚基1多肽可包含至少一个空腔填充突变或在亚油酸结合袋中残基的突变和至少一个附加突变,这些突变一起增强多肽的稳定性和/或产率,如那些术语在本文所用的。The non-naturally occurring coronavirus spike protein subunit 1 polypeptide may comprise at least one cavity filling mutation or a mutation of a residue in the linoleic acid binding pocket and at least one additional mutation that together enhance the stability and/or productivity of the polypeptide, as those terms are used herein.

在一些实施方案中,空腔填充突变包括SEQ ID NO:1的氨基酸336、338、341、342、358、361、363、365、368、374、377、387或392处的残基的突变,或如通过使用Blast-p将SEQID NO:1(或其天然存在的变体)与第二冠状病毒(或其天然存在的变体)的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基的突变。在其他实施方案中,所述空腔填充突变和所述至少一个第二突变在SEQ ID NO:1的残基338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处,或在如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基处。In some embodiments, the cavity filling mutation comprises a mutation of a residue at amino acid 336, 338, 341, 342, 358, 361, 363, 365, 368, 374, 377, 387, or 392 of SEQ ID NO: 1, or a mutation of a corresponding residue of the spike protein subunit 1 of a second coronavirus as determined by aligning SEQ ID NO: 1 (or a naturally occurring variant thereof) with the sequence of a second coronavirus (or a naturally occurring variant thereof) using Blast-p. In other embodiments, the cavity filling mutation and the at least one second mutation are in the range of SEQ ID NO: 1 to 336, 338, 341, 342, 358, 361, 363, 365, 368, 374, 377, 387, or 392 of SEQ ID NO: 1. Residues 338 and 365 of NO:1; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 358, 365 and 3 92; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or 338, 358, 363 and 365, or at the corresponding residues of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using Blast-p (e.g., Protocol 1 or 2 as described herein).

在一些实施方案中,空腔填充突变和至少一个第二突变选自由以下组成的组:SEQID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或选自如通过使用Blast-p(例如,如本文所述的协议1或2)将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基。In some embodiments, the cavity filling mutation and at least one second mutation are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513M; I358F/ Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or selected from the corresponding residues of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using Blast-p (e.g., protocol 1 or 2 as described herein).

在本文中特别考虑了具有如本文所述的空腔填充突变并且进一步与SEQ ID NO:1或SEQ ID NO:2具有至少90%的同一性(例如,与SEQ ID NO:1或SEQ ID NO:2至少95%、至少99%的同一性)的冠状病毒刺突蛋白,前提条件是它们保留充当冠状病毒抗原(即,刺激受试者中冠状病毒抗体的产生)的能力。也就是说,本文所述的非天然存在的冠状病毒刺突蛋白多肽是“免疫原性的”,即用该多肽(任选地结合到适当的载体(诸如蛋白质、脂质或多肽))对受试者进行免疫,诱导针对该多肽的(B细胞类型和/或T细胞类型的)免疫反应。Specifically contemplated herein are coronavirus spike proteins having cavity-filling mutations as described herein and further having at least 90% identity to SEQ ID NO: 1 or SEQ ID NO: 2 (e.g., at least 95%, at least 99% identity to SEQ ID NO: 1 or SEQ ID NO: 2), provided that they retain the ability to act as coronavirus antigens (i.e., stimulate the production of coronavirus antibodies in a subject). That is, the non-naturally occurring coronavirus spike protein polypeptides described herein are "immunogenic", i.e., immunizing a subject with the polypeptide (optionally bound to an appropriate carrier (such as a protein, lipid or polypeptide)) induces an immune response (of the B cell type and/or T cell type) against the polypeptide.

如本文所述的RBD多肽或刺突多肽可能具有来自冠状病毒的已知变体的一个或多个氨基酸取代。例如但并非限制,多肽可以包含选自由以下组成的组的相对于SEQ ID NO:1的1个、2个、3个、4个、5个、6个、7个或全部8个位置:L18F、T20N、P26S、残基69-70的缺失、D80A、D138Y、R190S、D215G、K417N、K417T、G446S、L452R、Y453F、T478I、E484K、S494P、N501Y、A570D、D614G、H655Y、P681H、A701V和T716L。多肽可包含以下天然存在的突变或突变组合之一:RBD polypeptides or spike polypeptides as described herein may have one or more amino acid substitutions from known variants of coronaviruses. For example, but not limitation, the polypeptide may comprise 1, 2, 3, 4, 5, 6, 7, or all 8 positions relative to SEQ ID NO: 1 selected from the group consisting of: L18F, T20N, P26S, deletion of residues 69-70, D80A, D138Y, R190S, D215G, K417N, K417T, G446S, L452R, Y453F, T478I, E484K, S494P, N501Y, A570D, D614G, H655Y, P681H, A701V, and T716L. The polypeptide may comprise one of the following naturally occurring mutations or combinations of mutations:

N501Y,任选地进一步包括以下中的1个、2个、3个、4个或5个:残基69-70中的一者或两者的缺失、A570D、D614G、P681H和/或T716L(UK变体);N501Y, optionally further comprising 1, 2, 3, 4 or 5 of the following: a deletion of one or both of residues 69-70, A570D, D614G, P681H and/or T716L (UK variant);

K417N/E484K/N501Y,任选地进一步包括以下中的1个、2个、3个、4个或5个:L18F、D80A、D215G、D614G和/或A701V(南非变体);K417N/E484K/N501Y, optionally further comprising 1, 2, 3, 4 or 5 of the following: L18F, D80A, D215G, D614G and/or A701V (South African variant);

K417N或T/E484K/N501Y,任选地进一步包括以下中的1个、2个、3个、4个或5个:L18F、T20N、P26S、D138Y、R190S、D614G和/或H655Y(巴西变体);或者K417N or T/E484K/N501Y, optionally further comprising 1, 2, 3, 4 or 5 of: L18F, T20N, P26S, D138Y, R190S, D614G and/or H655Y (Brazilian variant); or

L452R(洛杉矶变体)。L452R (Los Angeles variant).

在一些实施方案中,如本文所公开的多肽包含SEQ ID NO:4或SEQ ID NO:5的多肽序列。In some embodiments, a polypeptide as disclosed herein comprises the polypeptide sequence of SEQ ID NO:4 or SEQ ID NO:5.

RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYGRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYG

VSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVI

AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKK(SEQ ID NO:4)AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKK(SEQ ID NO:4)

RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYGRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYG

VSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVI

AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKK(SEQ ID NO:5)AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKK(SEQ ID NO:5)

氨基酸突变/取代Amino acid mutation/substitution

本文提供了突变冠状病毒S蛋白或其受体结合结构域,所述突变冠状病毒S蛋白或其受体结合结构域与其对应的天然或野生型冠状病毒S蛋白相比具有赋予突变蛋白增强的稳定性的至少两个氨基酸突变或取代。本说明书中例示了突变的SARS-CoV-2S蛋白或其受体结合结构域,然而本文所述的方法和组合物可应用于任何冠状病毒S蛋白,包括感染人类的冠状病毒和感染其他哺乳动物(即,蝙蝠、牛、猪等......)的冠状病毒。通过将另一冠状病毒的氨基酸序列与SARS-CoV-2的氨基酸序列(即,SEQ ID NO:1或SEQ ID NO:2)进行比对,本领域技术人员可以容易地鉴定出与本说明书中列出的SARS-CoV-2的残基相对应的残基。Provided herein is a mutant coronavirus S protein or its receptor binding domain, wherein the mutant coronavirus S protein or its receptor binding domain has at least two amino acid mutations or substitutions that confer enhanced stability to the mutant protein compared to its corresponding natural or wild-type coronavirus S protein. The mutated SARS-CoV-2 S protein or its receptor binding domain is exemplified in this specification, but the methods and compositions described herein can be applied to any coronavirus S protein, including coronaviruses that infect humans and coronaviruses that infect other mammals (i.e., bats, cattle, pigs, etc. ......). By comparing the amino acid sequence of another coronavirus with the amino acid sequence of SARS-CoV-2 (i.e., SEQ ID NO: 1 or SEQ ID NO: 2), those skilled in the art can easily identify the residues corresponding to the residues of SARS-CoV-2 listed in this specification.

比对可以提供关于对于功能可能必需的残基的指导,而无论所述功能是一个或多个给定残基与受体的直接接触,还是例如,参与维持允许其他残基进行此类接触的构象的残基;后者的非限制性示例包括那些可能排列在亚油酸结合袋中或有助于维持刺突蛋白的给定构象的残基。例如在比对显示在对应位置处有两个相同或相似的氨基酸的情况下,该位点更有可能在功能上(即,亚油酸结合或受体结合)是重要的。变体氨基酸序列可以与天然或参考序列(例如,SEQ ID NO:1)至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或更多同一。可以确定天然序列和突变序列之间的同源性程度(同一性百分比),例如通过使用通常用于此目的并可在万维网上免费获得的计算机程序比较这两个序列。变体氨基酸或DNA序列可以与衍生所述变体氨基酸或DNA序列的序列(在本文中称为“原始”、“天然”或“野生型”序列)至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或更多相似。可以例如通过使用相似性矩阵来确定原始序列与突变序列之间的相似性程度(相似性百分比)。相似性矩阵在本领域中是众所周知的并且许多使用相似性矩阵来比较两个序列的工具可在线免费获得,例如BLASTp(可在万维网上在http://blast.ncbi.nlm.nih.gov处获得),其中设置默认参数或使用如本文所述的协议1或协议2。Alignment can provide guidance about residues that may be essential for function, whether the function is direct contact of one or more given residues with the receptor, or, for example, residues involved in maintaining a conformation that allows other residues to make such contacts; non-limiting examples of the latter include those residues that may be arranged in the linoleic acid binding pocket or help maintain a given conformation of the spike protein. For example, where the alignment shows that there are two identical or similar amino acids at corresponding positions, it is more likely that the site is important in function (i.e., linoleic acid binding or receptor binding). The variant amino acid sequence may be at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or more identical to the native or reference sequence (e.g., SEQ ID NO: 1). The degree of homology (percent identity) between the native sequence and the mutant sequence can be determined, for example, by comparing the two sequences using a computer program commonly used for this purpose and freely available on the World Wide Web. The variant amino acid or DNA sequence can be at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or more similar to the sequence from which the variant amino acid or DNA sequence was derived (referred to herein as "original," "native" or "wild-type" sequence). The degree of similarity (similarity percentage) between the original sequence and the mutant sequence can be determined, for example, by using a similarity matrix. Similarity matrices are well known in the art and many tools that use similarity matrices to compare two sequences are available online for free, such as BLASTp (available on the World Wide Web at http://blast.ncbi.nlm.nih.gov), with default parameters set or using Protocol 1 or Protocol 2 as described herein.

当需要空腔填充突变时,给定的氨基酸可以被具有相似生理化学特征的残基替代,例如,用一个脂肪族残基取代另一个(诸如Ile、Val、Leu或Ala彼此间的取代),或用一个极性残基取代另一个(诸如在Lys与Arg之间;Glu与Asp之间;或Gln与Asn之间),优选地其中较小的残基被更大的残基取代,该更大的残基在空间上“填充”空腔或在电荷上改变以诱发空腔大小和/或结构的变化。其他此类取代,例如具有相似疏水性特性的整个区域的取代,是众所周知的并且可以保留功能。可以在本文所述的测定中的任何一种测定中测试包含所需氨基酸取代的多肽,以确认(i)所需构象得到维持,使得基本上保留天然或参考多肽的抗原活性,或(ii)蛋白质的稳定性得到增强。When a cavity-filling mutation is desired, a given amino acid may be substituted with a residue having similar physiochemical characteristics, for example, one aliphatic residue for another (such as substitution of Ile, Val, Leu or Ala for each other), or one polar residue for another (such as between Lys and Arg; between Glu and Asp; or between Gln and Asn), preferably where a smaller residue is substituted with a larger residue that "fills" the cavity spatially or changes in charge to induce a change in the size and/or structure of the cavity. Other such substitutions, such as substitutions of entire regions with similar hydrophobic properties, are well known and may retain function. Polypeptides comprising the desired amino acid substitutions may be tested in any of the assays described herein to confirm that (i) the desired conformation is maintained, such that the antigenic activity of the native or reference polypeptide is substantially retained, or (ii) the stability of the protein is enhanced.

在一些实施方案中,氨基酸取代可包括保守氨基酸取代。术语“保守氨基酸取代”是本领域众所周知的,并且涉及通过具有相似特性(例如,相似电荷或疏水性)的氨基酸取代特定氨基酸。本文所述的保守突变可包括取代具有相似的电荷或疏水性,但大小或体积不同的氨基酸残基,(例如,以提供空腔填充功能)。In some embodiments, amino acid substitutions may include conservative amino acid substitutions. The term "conservative amino acid substitution" is well known in the art and relates to the replacement of a particular amino acid by an amino acid having similar properties (e.g., similar charge or hydrophobicity). Conservative mutations described herein may include replacing amino acid residues having similar charge or hydrophobicity, but different sizes or volumes, (e.g., to provide a cavity-filling function).

下表中给出了示例性保守氨基酸取代的列表。A list of exemplary conservative amino acid substitutions is given in the table below.

或者,例如当需要根除天然冠状病毒S蛋白二级结构的柔性部分时,非保守氨基酸取代可为优选的,例如通过添加半胱氨酸残基(或反之亦然)。“非保守取代”是指用一类的氨基酸取代另一类的氨基酸;例如,用Asp、Asn、Glu或Gln取代Ala。非保守取代的附加非限制性示例包括用非极性(疏水性)氨基酸残基诸如异亮氨酸、缬氨酸、亮氨酸、丙氨酸、甲硫氨酸取代极性(亲水)残基,诸如半胱氨酸、谷氨酰胺、谷氨酸或赖氨酸和/或用极性残基取代非极性残基。Alternatively, non-conservative amino acid substitutions may be preferred, for example, by adding cysteine residues (or vice versa), for example, when it is desired to eradicate the flexible portion of the secondary structure of the native coronavirus S protein. "Non-conservative substitutions" refer to substitutions of one class of amino acids for another class of amino acids; for example, substitutions of Ala with Asp, Asn, Glu or Gln. Additional non-limiting examples of non-conservative substitutions include substitutions of polar (hydrophilic) residues such as cysteine, glutamine, glutamic acid or lysine with non-polar (hydrophobic) amino acid residues such as isoleucine, valine, leucine, alanine, methionine and/or substitutions of non-polar residues with polar residues.

如本领域技术人员将理解,如本文所述的突变冠状病毒多肽(例如,RBD多肽或稳定化的冠状病毒S多肽)可以具有任何所需构型的保守和非保守氨基酸取代的混合。可以使用本领域已知的或在实施例中描述的方法测试本文所述的多肽的抗原活性、受体结合结构域活性或构象。As will be appreciated by those skilled in the art, mutant coronavirus polypeptides as described herein (e.g., RBD polypeptides or stabilized coronavirus S polypeptides) can have a mixture of conservative and non-conservative amino acid substitutions of any desired configuration. Antigenic activity, receptor binding domain activity or conformation of polypeptides described herein can be tested using methods known in the art or described in the Examples.

半胱氨酸残基对于蛋白质二级结构或构象可能很重要。本文考虑了半胱氨酸残基的突变,前提条件是突变蛋白的二级结构是功能性和/或抗原性的,如例如通过评定与其同源受体(例如,ACE2受体)的结合,使用结晶学或EM评定二级结构,或确认与针对天然或野生型蛋白质的抗体的结合。不参与维持多肽的合适构象的半胱氨酸残基也可以被例如丝氨酸取代,以改善分子的氧化稳定性并防止异常交联。相反,可将半胱氨酸键添加至多肽以改善该多肽的稳定性或促进寡聚化。Cysteine residues may be important for protein secondary structure or conformation. Mutations of cysteine residues are contemplated herein, provided that the secondary structure of the mutant protein is functional and/or antigenic, such as, for example, by assessing the binding to its cognate receptor (e.g., ACE2 receptor), using crystallography or EM to assess the secondary structure, or confirming the binding to antibodies against natural or wild-type proteins. Cysteine residues that are not involved in maintaining the appropriate conformation of a polypeptide may also be replaced by, for example, serine, to improve the oxidative stability of the molecule and prevent abnormal cross-linking. On the contrary, cysteine bonds may be added to a polypeptide to improve the stability of the polypeptide or to promote oligomerization.

在一些实施方案中,如本文所述的稳定化的冠状病毒S蛋白或RBD多肽可包含多肽和/或由活生物体产生的蛋白质中常见的天然存在的氨基酸,例如Ala(A)、Val(V)、Leu(L)、Ile(I)、Pro(P)、Phe(F)、Trp(W)、Met(M)、Gly(G)、Ser(S)、Thr(T)、Cys(C)、Tyr(Y)、Asn(N)、Gln(Q)、Asp(D)、Glu(E)、Lys(K)、Arg(R)、和His(H)。在一些实施方案中,如本文所述的稳定化的冠状病毒S蛋白或RBD多肽可包含替代氨基酸。替代氨基酸的非限制性示例包括D-氨基酸;β-氨基酸;同型半胱氨酸、磷酸丝氨酸、磷酸苏氨酸、磷酸酪氨酸、羟脯氨酸、γ-羧基谷氨酸;马尿酸、八氢吲哚-2-羧酸、他汀、1,2,3,4-四氢异喹啉-3-羧酸、青霉胺(3-巯基-D-缬氨酸)、鸟氨酸、瓜氨酸、α-甲基-丙氨酸、对苯甲酰基苯丙氨酸、对氨基苯丙氨酸、对氟苯丙氨酸、苯基甘氨酸、炔丙基甘氨酸、肌氨酸和叔丁基甘氨酸)、二氨基丁酸、7-羟基-四氢异喹啉羧酸、萘基丙氨酸、联苯丙氨酸、环己基丙氨酸、氨基-异丁酸、正缬氨酸、正亮氨酸、叔亮氨酸、四氢异喹啉羧酸、哌可酸、苯基甘氨酸、高苯丙氨酸、环己基甘氨酸、脱氢亮氨酸、2,2-二乙基甘氨酸、1-氨基-1-环戊烷羧酸、1-氨基-1-环己烷羧酸、氨基-苯甲酸、氨基-萘甲酸、γ-氨基丁酸、二氟苯丙氨酸、六氢烟碱酸、α-氨基丁酸、噻吩基-丙氨酸、叔丁基甘氨酸、三氟缬氨酸;六氟亮氨酸;氟化类似物;叠氮修饰的氨基酸;炔烃修饰的氨基酸;氰基修饰的氨基酸;以及它们的衍生物。In some embodiments, the stabilized coronavirus S protein or RBD polypeptide as described herein may comprise naturally occurring amino acids commonly found in polypeptides and/or proteins produced by living organisms, such as Ala (A), Val (V), Leu (L), Ile (I), Pro (P), Phe (F), Trp (W), Met (M), Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gln (Q), Asp (D), Glu (E), Lys (K), Arg (R), and His (H). In some embodiments, the stabilized coronavirus S protein or RBD polypeptide as described herein may comprise alternative amino acids. Non-limiting examples of alternative amino acids include D-amino acids; β-amino acids; homocysteine, phosphoserine, phosphothreonine, phosphotyrosine, hydroxyproline, γ-carboxyglutamate; hippuric acid, octahydroindole-2-carboxylic acid, statins, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, penicillamine (3-mercapto-D-valine), ornithine, citrulline, α-methyl-alanine, p-benzoylphenylalanine, p-aminophenylalanine, p-fluorophenylalanine, phenylglycine, propargylglycine, sarcosine and t-butylglycine), diaminobutyric acid, 7-hydroxy-tetrahydroisoquinolinecarboxylic acid, naphthylalanine, biphenylalanine , cyclohexylalanine, amino-isobutyric acid, norvaline, norleucine, tert-leucine, tetrahydroisoquinolinecarboxylic acid, pipecolic acid, phenylglycine, homophenylalanine, cyclohexylglycine, dehydroleucine, 2,2-diethylglycine, 1-amino-1-cyclopentanecarboxylic acid, 1-amino-1-cyclohexanecarboxylic acid, amino-benzoic acid, amino-naphthoic acid, γ-aminobutyric acid, difluorophenylalanine, hexahydronicotinic acid, α-aminobutyric acid, thienyl-alanine, tert-butylglycine, trifluorovaline; hexafluoroleucine; fluorinated analogs; azide-modified amino acids; alkyne-modified amino acids; cyano-modified amino acids; and their derivatives.

在一些实施方案中,可以修饰多肽,例如突变冠状病毒多肽,例如通过向一起构成肽的氨基酸中的一个或多个氨基酸中添加某一部分。修饰和/或部分的非限制性示例包括聚乙二醇化;糖基化;HES化;ELP化;脂化;乙酰化;酰胺化;封端修饰;氰基;磷酸化;白蛋白缀合和环化。在本文中特别考虑了改进在给定溶液(即,水溶液)中的溶解性的修饰或部分。In some embodiments, the polypeptide can be modified, such as a mutant coronavirus polypeptide, for example, by adding a moiety to one or more of the amino acids that together make up the peptide. Non-limiting examples of modifications and/or moieties include PEGylation; glycosylation; HESylation; ELPylation; lipidation; acetylation; amidation; end-capping modification; cyano; phosphorylation; albumin conjugation and cyclization. Modifications or moieties that improve solubility in a given solution (i.e., aqueous solution) are particularly contemplated herein.

原始氨基酸序列的改变可以通过本领域技术人员已知的许多技术中的任何一种技术来实现。可以在核酸水平上引入突变,例如,通过合成含有侧接有允许与天然序列的片段连接的限制性位点的突变序列的寡核苷酸来在特定位点引入突变。在连接后,所得的重建序列编码具有所需氨基酸插入、取代或缺失的类似物。或者,可以采用寡核苷酸定向的位点特异性诱变程序来提供改变的核苷酸序列,所述改变的核苷酸序列具有根据所需的取代、缺失或插入而改变的特定密码子。用于进行此类改变的技术包括由Khudyakov等人,“Artificial DNA:Methods and Applications”CRC Press,2002;Braman“In VitroMutagenesis Protocols”Springer,2004;以及Rapley“The Nucleic Acid ProtocolsHandbook”Springer 2000公开的技术;这些文献的全部内容以引用方式并入本文。在一些实施方案中,可以化学合成如本文所述的多肽并且可以掺入突变作为化学合成过程的一部分。The change of the original amino acid sequence can be achieved by any of many techniques known to those skilled in the art. Mutations can be introduced at the nucleic acid level, for example, by synthesizing oligonucleotides containing mutant sequences flanked by restriction sites that allow connection to fragments of the native sequence to introduce mutations at specific sites. After connection, the resulting reconstructed sequence encodes an analog with the desired amino acid insertion, substitution or deletion. Alternatively, an oligonucleotide-directed site-specific mutagenesis program can be used to provide a changed nucleotide sequence with a specific codon changed according to the desired substitution, deletion or insertion. Techniques for making such changes include those disclosed by Khudyakov et al., "Artificial DNA: Methods and Applications" CRC Press, 2002; Braman "In Vitro Mutagenesis Protocols" Springer, 2004; and Rapley "The Nucleic Acid Protocols Handbook" Springer 2000; the entire contents of these documents are incorporated herein by reference. In some embodiments, polypeptides as described herein can be chemically synthesized and mutations can be incorporated as part of the chemical synthesis process.

本文所述的突变刺突蛋白或RBC多肽可以使用众所周知的方法,包括重组方法和化学合成来合成。通过将包含编码多肽的核酸的载体引入合适的宿主细胞来产生多肽的重组方法是本领域中众所周知的,例如如在Sambrook等人,Molecular Cloning:ALaboratory Manual,第2版,第1卷至第8卷,Cold Spring Harbor,NY(1989);M.W.Pennington和B.M.Dunn,Methods in Molecular Biology:Peptide SynthesisProtocols,第35卷,Humana Press,Totawa,NJ(1994)中所述,这两篇文献的内容以引用方式并入本文。也可以使用本领域众所周知的方法化学合成肽。参见例如Merrifield等人,J.Am.Chem.Soc.85:2149(1964);Bodanszky,M.,Principles of Peptide Synthesis,Springer-Verlag,New York,NY(1984);Kimmerlin,T.和Seebach,D.J.Pept.Res.65:229-260(2005);Nilsson等人,Annu.Rev.Biophys.Biomol.Struct.(2005)34:91-118;W.C.Chan和P.D.White(编辑)Fmoc Solid Phase Peptide Synthesis:A Practical Approach,Oxford University Press,Cary,NC(2000);N.L.Benoiton,Chemistry of PeptideSynthesis,CRC Press,Boca Raton,FL(2005);J.Jones,Amino Acid and PeptideSynthesis,第2版,Oxford University Press,Cary,NC(2002);和P.Lloyd-Williams、F.Albericio和E.Giralt,Chemical Approaches to the synthesis of peptides andproteins,CRC Press,Boca Raton,FL(1997),所有这些文献的内容均以引用方式并入本文。肽衍生物也可以如美国专利号4,612,302;4,853,371;和4,684,620,以及美国专利申请公开号2009/0263843中所述进行制备,这些专利/专利申请的内容均以引用方式并入本文。The mutant spike protein or RBC polypeptide described herein can be synthesized using well-known methods, including recombinant methods and chemical synthesis. Recombinant methods for producing polypeptides by introducing a vector containing a nucleic acid encoding a polypeptide into a suitable host cell are well known in the art, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Vol. 1 to Vol. 8, Cold Spring Harbor, NY (1989); M. W. Pennington and B. M. Dunn, Methods in Molecular Biology: Peptide Synthesis Protocols, Vol. 35, Humana Press, Totawa, NJ (1994), the contents of which are incorporated herein by reference. Peptides can also be chemically synthesized using methods well known in the art. See, for example, Merrifield et al., J. Am. Chem. Soc. 85:2149 (1964); Bodanszky, M., Principles of Peptide Synthesis, Springer-Verlag, New York, NY (1984); Kimmerlin, T. and Seebach, D.J. Pept. Res. 65:229-260 (2005); Nilsson et al., Annu. Rev. Biophy s.Biomol.Struct.(2005)34:91-118; W.C.Chan and P.D.White (editors) Fmoc Solid Phase Peptide Synthesis: A Practical Approach, Oxford University Press, Cary, NC (2000); N.L.Benoiton, Chemistry of PeptideSynthesis, CRC Press, Boca Raton, FL (2005); J.Jones, Amino Acid and Peptide Synthesis, 2nd Edition, Oxford University Press, Cary, NC (2002); and P. Lloyd-Williams, F. Albericio and E. Giralt, Chemical Approaches to the synthesis of peptides and proteins, CRC Press, Boca Raton, FL (1997), the contents of all of which are incorporated herein by reference. Peptide derivatives can also be prepared as described in U.S. Patent Nos. 4,612,302; 4,853,371; and 4,684,620, and U.S. Patent Application Publication No. 2009/0263843, the contents of which are incorporated herein by reference.

RBD多肽或突变冠状病毒S蛋白的生产和纯化Production and purification of RBD peptides or mutant coronavirus S proteins

RBD多肽或突变冠状病毒S蛋白(如那些术语在本文中所用)可以通过例如溶液或固相肽合成,或在溶液中从通过常规溶液方法偶联的蛋白质片段开始的半合成来化学生产,如由Dugas等人(1981)所述。然而,通常优选的是使用重组方法来合成本文所述的多肽。RBD polypeptides or mutant coronavirus S proteins (as those terms are used herein) can be produced chemically by, for example, solution or solid phase peptide synthesis, or semi-synthesis in solution starting from protein fragments coupled by conventional solution methods, as described by Dugas et al. (1981). However, it is generally preferred to use recombinant methods to synthesize the polypeptides described herein.

可用于本文所述的方法和组合物的用于克隆和表达多肽的系统包括在重组技术中众所周知并且因此在本文中未详细描述的各种微生物和细胞。这些包括例如大肠杆菌(E.coli)、芽孢杆菌属(Bacillus)、链霉菌属(Streptomyces)和酵母属(Saccharomyces)的各种菌株,以及哺乳动物、酵母和昆虫细胞。如果需要的话,则如本文所述的多肽可以作为肽或融合蛋白产生。用于产生肽和多肽的合适载体是已知的并且可从私营和公共实验室和保藏机构以及从商业供应商处获得。然后转染能够表达基因产物的受体细胞。将转染的受体细胞在允许重组基因产物表达的条件下培养,从培养物中回收所述重组基因产物。可以使用宿主哺乳动物细胞,诸如中国仓鼠卵巢细胞(CHO)或COS-1细胞。这些宿主可与痘病毒表达载体(例如牛痘或猪痘病毒)结合使用。可以被工程化以将合成基因携带到宿主细胞中的合适的非致病性病毒表达载体包括痘病毒表达载体,诸如牛痘病毒、腺病毒、逆转录病毒等。许多此类非致病性病毒表达载体通常用于人类基因疗法,并作为其他疫苗试剂的载体,并且是本领域技术人员已知和可选择的。其他合适的宿主细胞和用于转化、培养、扩增、筛选和产物生产和纯化的方法的选择可由本领域技术人员参照已知技术执行。Systems for cloning and expressing polypeptides that can be used for the methods and compositions described herein include various microorganisms and cells that are well known in recombinant technology and therefore not described in detail herein. These include various strains of, for example, E. coli, Bacillus, Streptomyces, and Saccharomyces, as well as mammals, yeast, and insect cells. If desired, polypeptides as described herein can be produced as peptides or fusion proteins. Suitable vectors for producing peptides and polypeptides are known and available from private and public laboratories and depository institutions and from commercial suppliers. Receptor cells capable of expressing gene products are then transfected. The transfected receptor cells are cultured under conditions that allow expression of the recombinant gene product, and the recombinant gene product is recovered from the culture. Host mammalian cells, such as Chinese hamster ovary cells (CHO) or COS-1 cells can be used. These hosts can be used in combination with poxvirus expression vectors (e.g., vaccinia or swine poxvirus). Suitable non-pathogenic viral expression vectors that can be engineered to carry synthetic genes into host cells include poxvirus expression vectors, such as vaccinia virus, adenovirus, retrovirus, etc. Many such non-pathogenic viral expression vectors are commonly used in human gene therapy and as carriers for other vaccine agents, and are known and selectable by those skilled in the art. Other suitable host cells and methods for transformation, culture, amplification, screening, and product production and purification can be selected by those skilled in the art with reference to known techniques.

在一些实施方案中,如本文所述,可能需要分离和/或纯化合成的突变多肽。蛋白质纯化技术是本领域技术人员众所周知的,并且因此不在本文中详细描述。这些技术可涉及在一个水平上将细胞、组织或器官的均质化和粗分级分离成多肽和非多肽级分。突变冠状病毒刺突蛋白或受体结合结构域多肽可以使用色谱法和电泳技术进一步纯化以实现部分或完全纯化(或纯化至均质)。特别适合于制备纯肽或多肽的分析方法是离子交换色谱法、凝胶排阻色谱法、聚丙烯酰胺凝胶电泳、亲和色谱、免疫亲和色谱法和等电聚焦。特别有效的纯化肽/多肽的方法是快速高效液相色谱法(FPLC)或甚至高效液相色谱法(HPLC)。In some embodiments, as described herein, it may be necessary to separate and/or purify the synthesized mutant polypeptide. Protein purification techniques are well known to those skilled in the art and are therefore not described in detail herein. These techniques may involve homogenization and coarse fractionation of cells, tissues or organs into polypeptide and non-polypeptide fractions at one level. Mutated coronavirus spike protein or receptor binding domain polypeptides can be further purified using chromatography and electrophoresis techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suitable for preparing pure peptides or polypeptides are ion exchange chromatography, gel exclusion chromatography, polyacrylamide gel electrophoresis, affinity chromatography, immunoaffinity chromatography and isoelectric focusing. Particularly effective methods for purifying peptides/polypeptides are fast high performance liquid chromatography (FPLC) or even high performance liquid chromatography (HPLC).

“纯化的多肽”旨在指与其他组分可分离的组合物,其中突变冠状病毒S多肽或其受体结合结构域被纯化至相对于产生重组蛋白的生物体的任何程度或其天然可获得的状态。因此,分离或纯化的多肽也指从所述多肽可天然存在的环境分离的多肽。在一个实施方案中,“纯化的”将指已经过分级分离以去除各种其他组分的多肽组合物,并且所述组合物基本上保留了与结合天然或野生型冠状病毒S蛋白的冠状病毒抗体结合的能力。在使用术语“基本上纯化的”情况下,此名称将指这样的组合物,在所述组合物中冠状病毒多肽形成所述组合物的主要组分,诸如构成所述组合物中约50%、约60%、约70%、约80%、约90%、约95%或更多的蛋白质。"Purified polypeptide" is intended to refer to a composition separable from other components, wherein the mutant coronavirus S polypeptide or its receptor binding domain is purified to any degree relative to the organism producing the recombinant protein or its naturally obtainable state. Therefore, an isolated or purified polypeptide also refers to a polypeptide separated from an environment in which the polypeptide can naturally exist. In one embodiment, "purified" will refer to a polypeptide composition that has been fractionated to remove various other components, and the composition substantially retains the ability to bind to coronavirus antibodies that bind to natural or wild-type coronavirus S proteins. In the case of using the term "substantially purified", this name will refer to a composition in which the coronavirus polypeptide forms the main component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the protein in the composition.

没有以最纯化的状态提供本文所述的多肽的一般要求。事实上,预期纯化程度较低的产物将在某些实施方案中有用。部分纯化可以通过组合使用较少的纯化步骤,或通过利用相同的一般纯化方案的不同形式来完成。例如,应理解的是,利用HPLC装置执行的阳离子交换柱色谱法通常会比利用低压色谱系统的相同技术导致更大“倍数”的纯化。表现出较低程度的相对纯化的方法在蛋白质产物的总回收率方面或在维持所表达的蛋白质的活性方面可具有优势。There is no general requirement to provide the polypeptides described herein in the most purified state. In fact, it is expected that products with a lower degree of purification will be useful in certain embodiments. Partial purification can be accomplished by combining fewer purification steps, or by utilizing different forms of the same general purification scheme. For example, it should be understood that the cation exchange column chromatography performed using an HPLC device will generally result in a greater "fold" of purification than the same technology utilizing a low pressure chromatography system. Methods that exhibit a lower degree of relative purification may have advantages in terms of the total recovery of the protein product or in terms of maintaining the activity of the expressed protein.

用于量化给定多肽的纯化程度的各种方法是本领域技术人员已知的并且包括例如确定活性级分的比活性,或通过SDS/PAGE分析评定级分内的多肽量。Various methods for quantifying the extent of purification of a given polypeptide are known to those of skill in the art and include, for example, determining the specific activity of an active fraction, or assessing the amount of polypeptide within a fraction by SDS/PAGE analysis.

冠状病毒融合蛋白和支架Coronavirus fusion proteins and scaffolds

在一些实施方案中,本文所述的受体结合结构域多肽或突变冠状病毒S蛋白包含融合蛋白。在一些实施方案中,本文所述的RBD多肽或突变冠状病毒S蛋白与支架、纳米粒子、异源蛋白质支架或聚合物融合。在某些实施方案中,异源蛋白质支架包含SEQ ID NO:3的I53-50三聚体“A”组分。在其他实施方案中,异源蛋白质支架包含如在美国专利号10,351,603的表1中所述的异源蛋白质支架,该美国专利的内容全文以引用方式并入本文。In some embodiments, the receptor binding domain polypeptide or mutant coronavirus S protein described herein comprises a fusion protein. In some embodiments, the RBD polypeptide or mutant coronavirus S protein described herein is fused to a scaffold, a nanoparticle, a heterologous protein scaffold, or a polymer. In certain embodiments, the heterologous protein scaffold comprises the I53-50 trimer "A" component of SEQ ID NO:3. In other embodiments, the heterologous protein scaffold comprises a heterologous protein scaffold as described in Table 1 of U.S. Patent No. 10,351,603, the contents of which are incorporated herein by reference in their entirety.

在一些实施方案中,本文所述的突变冠状病毒多肽作为融合蛋白提供。此类融合蛋白可包含例如抗原部分以增强所得免疫反应。此类抗原部分可包括外源分子,诸如对于要使用本文所述的融合蛋白进行疫苗接种的个体而言是外来的载体蛋白。激活免疫反应并可与如本文所述的融合蛋白缀合的外源蛋白包括分子量为至少约20,000道尔顿,优选地至少约40,000道尔顿,更优选地至少约60,000道尔顿的蛋白质或其他分子。在这种情况下有用的载体蛋白包括例如GST、血蓝蛋白(诸如来自钥孔虫的血蓝蛋白)、血清白蛋白或阳离子化血清白蛋白、甲状腺球蛋白、卵清蛋白、各种类毒素蛋白(诸如破伤风类毒素或白喉类毒素)、免疫球蛋白、热休克蛋白等。In some embodiments, the mutant coronavirus polypeptide described herein is provided as a fusion protein. Such fusion proteins may include, for example, antigenic portions to enhance the resulting immune response. Such antigenic portions may include exogenous molecules, such as carrier proteins that are foreign to individuals to be vaccinated using the fusion proteins described herein. Exogenous proteins that activate immune responses and can be conjugated to fusion proteins as described herein include proteins or other molecules having a molecular weight of at least about 20,000 daltons, preferably at least about 40,000 daltons, and more preferably at least about 60,000 daltons. In this case, useful carrier proteins include, for example, GST, hemocyanin (such as hemocyanin from keyhole limpet), serum albumin or cationized serum albumin, thyroglobulin, ovalbumin, various toxoid proteins (such as tetanus toxoid or diphtheria toxoid), immunoglobulins, heat shock proteins, etc.

将一种蛋白质(例如,RBD多肽或突变冠状病毒S蛋白)化学偶联到另一种蛋白质(例如,载体或抗原性部分)的方法是本领域中众所周知的并且包括例如通过水溶性碳二亚胺(诸如1-乙基-3-(3二甲氨基丙基)碳二亚胺盐酸盐)缀合、通过具有例如NHS酯基或磺基-NHS酯类似物的同型双官能交联剂缀合、通过具有例如NHS酯和马来酰亚胺基团的异双官能交联剂(诸如磺基琥珀酰亚胺基-4-(N-马来酰亚胺甲基)环己烷-1-羧酸酯)缀合、和与戊二醛缀合。Methods for chemically coupling one protein (e.g., an RBD polypeptide or a mutant coronavirus S protein) to another protein (e.g., a carrier or an antigenic portion) are well known in the art and include, for example, conjugation via water-soluble carbodiimides (such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride), conjugation via homobifunctional cross-linkers having, for example, NHS ester groups or sulfo-NHS ester analogs, conjugation via heterobifunctional cross-linkers having, for example, NHS ester and maleimide groups (such as sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate), and conjugation with glutaraldehyde.

基于蛋白质的病毒样粒子Protein-based virus-like particles

本公开进一步提供了基于蛋白质的病毒样粒子(VLP)。pbVLP可包含所述的受体结合结构域多肽或突变冠状病毒S蛋白,包括融合蛋白,其中所述融合蛋白包含多聚化结构域,诸如如本文所述的“第一组分”。The present disclosure further provides protein-based virus-like particles (VLPs). pbVLPs may comprise the receptor binding domain polypeptide or mutant coronavirus S protein, including fusion proteins, wherein the fusion proteins comprise a multimerization domain, such as the "first component" as described herein.

用于与本文所述的方法和组合物一起使用的VLP可包含适合于展示RBD的胞外域或冠状病毒刺突蛋白的胞外域的多聚体蛋白质装配体,或其抗原片段。用于与本文所述的方法和组合物一起使用的VLP可包含至少第一多肽组(plurality of polypeptides)。所述第一多肽组(也称为“第一组分”)可以通过取代至少一个氨基酸残基或通过在一个或多个残基的N末端或C末端处附加氨基酸残基来从天然存在的蛋白质序列衍生。在一些情况下,第一组分包含通过计算方法确定的蛋白质序列。此第一组分可形成VLP的整个核心;或者VLP的核心可包含一种或多种附加多肽(也称为“第二组分”或第三、第四、第五组分等),使得VLP包含二种、三种、四种、五种、六种、七种或更多种多肽组。在一些情况下,第一组将形成通过3重旋转对称相关的三聚体并且第二组将形成通过5重旋转对称相关的五聚体。在这种情况下,VLP形成具有I53对称性的“二十面体粒子”。这些一种或多种多肽组可以一起布置,使得每种多肽组的成员通过对称算子彼此相关。美国专利公开号2015/0356240A1中公开了用于设计自装配蛋白质材料的一般计算方法,涉及蛋白质结构单元在靶对称架构中的对称对接,该美国专利公开的内容全文以引用方式并入本文。VLPs for use with the methods and compositions described herein may comprise a multimeric protein assembly suitable for displaying the extracellular domain of the RBD or the extracellular domain of the coronavirus spike protein, or an antigenic fragment thereof. VLPs for use with the methods and compositions described herein may comprise at least a first polypeptide group (plurality of polypeptides). The first polypeptide group (also referred to as the "first component") may be derived from a naturally occurring protein sequence by replacing at least one amino acid residue or by appending amino acid residues at the N-terminus or C-terminus of one or more residues. In some cases, the first component comprises a protein sequence determined by a computational method. This first component may form the entire core of the VLP; or the core of the VLP may comprise one or more additional polypeptides (also referred to as the "second component" or the third, fourth, fifth component, etc.), such that the VLP comprises two, three, four, five, six, seven or more polypeptide groups. In some cases, the first group will form trimers related by 3-fold rotational symmetry and the second group will form pentamers related by 5-fold rotational symmetry. In this case, the VLP forms an "icosahedral particle" with I53 symmetry. These one or more polypeptide groups can be arranged together so that the members of each polypeptide group are related to each other by a symmetry operator. A general computational method for designing self-assembling protein materials is disclosed in U.S. Patent Publication No. 2015/0356240A1, which is incorporated herein by reference in its entirety, involving symmetric docking of protein building blocks in a target symmetric framework.

本文使用VLP的“核心”来描述将由VLP展示的RBD或冠状病毒S蛋白胞外域的几个拷贝或其抗原性片段连接在一起的VLP的中心部分。在实施方案中,第一组分包括含有RBD的第一多肽、接头和含有多聚化结构域的第一多肽。The "core" of a VLP is used herein to describe the central portion of the VLP that links together several copies of the RBD or coronavirus S protein ectodomain displayed by the VLP, or antigenic fragments thereof. In embodiments, the first component includes a first polypeptide containing an RBD, a linker, and a first polypeptide containing a multimerization domain.

非限制性实施方案在图6A中示出,该图描绘了与VLP的组分遗传融合的RBD,所述RBD任选地在宿主细胞(例如,293F细胞)中重组表达;连同五聚体蛋白装配体,所述五聚体蛋白装配体任选地在相同或不同宿主细胞(例如,大肠杆菌细胞)中重组表达,这两种多肽组自装配成在二十面体核心周围展示20个抗原三聚体的VLP。A non-limiting embodiment is shown in Figure 6A, which depicts an RBD genetically fused to a component of a VLP, optionally recombinantly expressed in a host cell (e.g., a 293F cell); together with a pentameric protein assembly, optionally recombinantly expressed in the same or different host cell (e.g., an E. coli cell), the two polypeptide groups self-assemble into a VLP displaying 20 antigen trimers around an icosahedral core.

在一些情况下,VLP经调适以展示来自两种或更多种不同冠状病毒株的RBD或刺突蛋白。在非限制性示例中,相同的VLP展示蛋白质抗原的混合群体或来自不同冠状病毒毒株的蛋白质抗原的混合异源三聚体。In some cases, VLPs are adapted to display RBD or spike proteins from two or more different coronavirus strains. In a non-limiting example, the same VLP displays a mixed population of protein antigens or a mixed heterotrimer of protein antigens from different coronavirus strains.

用于与本文所述的方法和组合物一起使用的VLP以各种方式展示抗原蛋白,包括作为基因融合体或通过本文所公开的其他手段。如本文所用,“连接至”或“附接至”表示本领域已知的用于引起两个多肽缔合的任何手段。缔合可以是直接的或间接的、可逆的或不可逆的、弱或强的、共价的或非共价的、以及选择性的或非选择性的。VLPs for use with the methods and compositions described herein display antigenic proteins in various ways, including as gene fusions or by other means disclosed herein. As used herein, "connected to" or "attached to" means any means known in the art for causing the association of two polypeptides. The association can be direct or indirect, reversible or irreversible, weak or strong, covalent or non-covalent, and selective or non-selective.

在一些实施方案中,通过遗传工程化实现附接以产生抗原与构成VLP的多肽组中的一种多肽的N末端或C末端融合。因此,VLP可以由或基本上由展示一种、二种、三种、四种、五种、六种、七种、八种、九种或十种抗原组的一种、二种、三种、四种、五种、六种、七种、八种、九种或十种多肽组组成,其中所述抗原组中的至少一种抗原与所述多肽组中的至少一种多肽遗传融合。在一些情况下,VLP基本上由能够自装配并包含与其遗传融合的抗原性蛋白组的一种多肽组组成。在一些情况下,VLP基本上由以下组成:包含抗原组的第一多肽组;以及能够共装配成双组分VLP的第二多肽组,将抗原性蛋白连接至VLP的一种多肽组,以及促进VLP的自装配的其他多肽组。In some embodiments, realize attachment to produce antigen and the N-terminal or C-terminal fusion of a kind of polypeptide in the polypeptide group constituting VLP by genetic engineering.Therefore, VLP can be by or basically by displaying one, two, three, four, five, six, seven, eight, nine or ten kinds of one, two, three, four, five, six, seven, eight, nine or ten kinds of polypeptide groups of one, two, three, four, five, six, seven, eight, nine or ten kinds of antigen groups, wherein at least one antigen in the antigen group is genetically fused with at least one polypeptide in the polypeptide group.In some cases, VLP is basically composed of a kind of polypeptide group that can self-assemble and comprise the antigenic protein group that is genetically fused with it.In some cases, VLP is basically composed of the following: the first polypeptide group comprising antigen group; And the second polypeptide group that can be assembled into two-component VLP altogether, antigenic protein is connected to a kind of polypeptide group of VLP, and other polypeptide groups that promote the self-assembly of VLP.

在一些实施方案中,附接是通过一种或多种多肽组与一种或多种抗原性蛋白组之间的翻译后共价附接实现的。在一些情况下,化学交联用于将抗原非特异性地附接至VLP多肽。在一些情况下,化学交联用于将抗原性蛋白特异性附接至VLP多肽(例如,附接至第一多肽或第二多肽)。各种特异性和非特异性交联化学是本领域中已知的,诸如点击化学和其他方法。一般而言,用于连接两种蛋白质的任何交联化学可适用于与目前公开的VLP一起使用。特别地,可以使用用于产生免疫缀合物或抗体药物缀合物的化学法。在一些情况下,VLP是使用可切割或不可切割的接头创建的。用于将抗原与载体缀合的过程和方法由例如美国专利公开号US 2008/0145373 A1提供,该美国专利公开的内容全文以引用方式并入本文。In some embodiments, attachment is achieved by post-translational covalent attachment between one or more polypeptide groups and one or more antigenic protein groups. In some cases, chemical crosslinking is used for non-specific attachment of antigen to VLP polypeptide. In some cases, chemical crosslinking is used for antigenic protein specific attachment to VLP polypeptide (for example, attached to the first polypeptide or the second polypeptide). Various specific and non-specific crosslinking chemistries are known in the art, such as click chemistry and other methods. In general, any crosslinking chemistry for connecting two proteins can be applicable to use with currently disclosed VLP. In particular, the chemical method for producing immunoconjugates or antibody drug conjugates can be used. In some cases, VLP is created using a cleavable or non-cleavable joint. The process and method for conjugating antigen to a carrier are provided by, for example, U.S. Patent Publication No. US 2008/0145373 A1, and the content disclosed in this U.S. Patent is incorporated herein by reference in its entirety.

本公开的VLP的组分可以具有多种氨基酸序列中的任一种氨基酸序列。美国专利公开号US 2015/0356240 A1(其内容全文以引用方式并入本文)描述了用于设计蛋白质装配体的多种方法。如美国专利公开号US 2016/0122392 A1和国际专利公开号WO 2014/124301 A1中所述,所述多肽被设计具有成对自装配以形成VLP,诸如二十面体粒子的能力。该设计涉及针对可经装配以形成VLP的多肽对的每个成员设计合适的界面残基。如此形成的VLP包括对称重复的、非天然的、非共价的多肽-多肽界面,所述界面将第一装配体和第二装配体定向成VLP,诸如具有二十面体对称性的VLP。The component of VLP of the present disclosure can have any amino acid sequence in multiple amino acid sequences. U.S. Patent Publication No. US 2015/0356240 A1 (its content is incorporated herein by reference in its entirety) describes a variety of methods for designing protein assemblies. As described in U.S. Patent Publication No. US 2016/0122392 A1 and International Patent Publication No. WO 2014/124301 A1, the polypeptide is designed to have the ability of self-assembly in pairs to form VLP, such as icosahedral particles. The design relates to suitable interface residues for each member design of the polypeptide pair that can be assembled to form VLP. The VLP formed in this way comprises a symmetrically repeated, non-natural, non-covalent polypeptide-polypeptide interface, and the first assembly and the second assembly are directed into VLP by the interface, such as VLP with icosahedral symmetry.

在一些实施方案中,RBD或冠状病毒S蛋白胞外域或其抗原片段表达为具有第一多聚化结构域的融合蛋白。在一些实施方案中,第一多聚化结构域和RBD或冠状病毒S蛋白胞外域通过接头序列接合。在一些实施方案中,接头序列包含折叠子,其中所述折叠子序列是EKAAKAEEAARK(SEQ ID NO:8)。In some embodiments, the RBD or coronavirus S protein extracellular domain or its antigenic fragment is expressed as a fusion protein with a first multimerization domain. In some embodiments, the first multimerization domain and the RBD or coronavirus S protein extracellular domain are joined by a linker sequence. In some embodiments, the linker sequence comprises a foldon, wherein the foldon sequence is EKAAKAEEAARK (SEQ ID NO: 8).

可用于本公开的基于蛋白质的VLP的设计蛋白质复合物的非限制性示例包括在美国专利号9,630,994;国际专利公开号WO2018187325A1;美国专利公开号2018/0137234A1;美国专利公开号2019/0155988A2中公开的那些,这些专利中的每一者都通过引用方式以全文并入本文。表3中提供了说明性序列。Non-limiting examples of designed protein complexes that can be used for protein-based VLPs of the present disclosure include those disclosed in U.S. Pat. No. 9,630,994; International Patent Publication No. WO2018187325A1; U.S. Patent Publication No. 2018/0137234A1; U.S. Patent Publication No. 2019/0155988A2, each of which is incorporated herein by reference in its entirety. Illustrative sequences are provided in Table 3.

表3Table 3

在一些实施方案中,VLP包含:融合蛋白,所述融合蛋白与SEQ ID NO:9至SEQ IDNO:13中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%同一性并且包含如本文所公开的RBD或冠状病毒刺突蛋白;和第二组分,所述第二组分与SEQ IDNO:13至SEQ ID NO:18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性。In some embodiments, the VLP comprises: a fusion protein that is at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to any one of SEQ ID NO:9 to SEQ ID NO:13 and comprises an RBD or a coronavirus spike protein as disclosed herein; and a second component that is at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical to any one of SEQ ID NO:13 to SEQ ID NO:18.

在一些实施方案中,VLP包含:融合蛋白,所述融合蛋白与SEQ ID NO:19具有至少95%、至少96%、至少97%、至少98%、至少99%或100%同一性并且包含如本文所公开的RBD或冠状病毒刺突蛋白;和第二组分,所述第二组分与SEQ ID NO:20具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性。In some embodiments, the VLP comprises: a fusion protein that is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 19 and comprises an RBD or a coronavirus spike protein as disclosed herein; and a second component that is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to SEQ ID NO: 20.

在一些实施方案中,如本文所公开的多肽包含SEQ ID NO:6或SEQ ID NO:7的多肽序列。In some embodiments, a polypeptide as disclosed herein comprises the polypeptide sequence of SEQ ID NO:6 or SEQ ID NO:7.

RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYGRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYG

VSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVI

AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGF

NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSG

SGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFASGGSGGSGSEKAAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFA

GGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFI

VSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQ

FVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(SEQ ID NO:6)FVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(SEQ ID NO:6)

RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYGRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYG

VSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVIVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCVI

AWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGF

NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSG

SGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFASGGSGGSGSEKAAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFA

GGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFI

VSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQ

FVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(SEQ ID NO:7)。FVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 7).

蛋白质稳定性Protein stability

大多数生物产品都易降解,诸如热降解、光化学降解或氧化降解。因为诸如疫苗和胰岛素的生物产品需要在世界范围内分销,并且因为不同地区的环境温度差异很大,所以与快速降解的蛋白质/组合物相比,具有延长的保质期的疫苗(或其中稳定化的蛋白质)是优选的。增加的细胞内稳定性也可以提供更高的重组蛋白产率。本文所述的突变冠状病毒刺突蛋白或其受体结合结构域与其野生型对应物相比具有增加的稳定性。这些蛋白质的稳定性可以使用本领域已知的一种或多种测定或使用工作实施例中所述的方法来确定。示例性蛋白质稳定性测定包括但不限于差示扫描量热法、脉冲示踪法、漂白剂示踪法、环己酰胺示踪法、圆二色性光谱法和基于荧光的活性测定。Most biological products are susceptible to degradation, such as thermal degradation, photochemical degradation or oxidative degradation. Because biological products such as vaccines and insulin need to be distributed worldwide, and because the ambient temperature in different regions varies greatly, vaccines (or stabilized proteins therein) with extended shelf life are preferred compared to rapidly degradable proteins/compositions. Increased intracellular stability can also provide a higher recombinant protein yield. The mutant coronavirus spike protein or its receptor binding domain described herein has increased stability compared to its wild-type counterpart. The stability of these proteins can be determined using one or more assays known in the art or using the methods described in the working examples. Exemplary protein stability assays include, but are not limited to, differential scanning calorimetry, pulse tracer method, bleach tracer method, cyclohexamide tracer method, circular dichroism spectroscopy, and fluorescence-based activity assays.

给定组合物的稳定性,在本文中也称为当应用于分离的制备物或疫苗制备物时组合物的“保质期”,取决于组合物的储存条件以及组合物的配方(例如,添加化学组分)或提供组合物时的物理状态(例如,冻干、干燥、冷冻等)。The stability of a given composition, also referred to herein as the "shelf life" of the composition when applied to an isolated preparation or a vaccine preparation, depends on the storage conditions of the composition as well as the formulation of the composition (e.g., addition of chemical components) or the physical state in which the composition is provided (e.g., lyophilized, dried, frozen, etc.).

如本文所用的术语“冻干”或“冻干的”是指用于保存如本文所述的组合物或使所述组合物更便于存储和运输的脱水过程,通常称为“冷冻干燥”。冷冻干燥通过以下方式工作:冷冻组合物,然后降低周围压力以使组合物中的冷冻水直接从固相升华为气相。在一些实施方案中,冻干可用于保存如本文所述的疫苗组合物,从而允许疫苗组合物便于携带并在室温下存储,而不需要冷藏。The term "lyophilization" or "freeze-dried" as used herein refers to a dehydration process, commonly referred to as "freeze drying," used to preserve a composition as described herein or to make the composition more convenient for storage and transport. Freeze drying works by freezing the composition and then reducing the surrounding pressure to allow the frozen water in the composition to sublime directly from the solid phase to the gas phase. In some embodiments, lyophilization can be used to preserve a vaccine composition as described herein, thereby allowing the vaccine composition to be portable and stored at room temperature without the need for refrigeration.

除了由本文所述的突变提供的抗原稳定性增加外,本文还考虑了添加抗氧化剂或其他旨在延长疫苗组合物的保质期的试剂。在一些实施方案中,预期本文所述的组合物在室温下储存且无需冷藏。In addition to the increased antigenic stability provided by the mutations described herein, the addition of antioxidants or other agents intended to extend the shelf life of the vaccine compositions is also contemplated herein. In some embodiments, it is contemplated that the compositions described herein are stored at room temperature and without refrigeration.

无论储存方法如何,与对应野生型冠状病毒刺突蛋白或其RBD的蛋白质稳定性和组合物保质期相比,突变冠状病毒刺突蛋白或其RBD的蛋白质稳定性和组合物保质期二者都会增加。Regardless of the storage method, both the protein stability and the shelf life of the composition of the mutant coronavirus spike protein or its RBD are increased compared to the protein stability and the shelf life of the composition of the corresponding wild-type coronavirus spike protein or its RBD.

包含本文所述的突变冠状病毒蛋白或肽的制剂是稳定的,因为在指定温度下在给定时间段内它们的特性几乎没有变化。一般而言,如本文所述的制剂可稳定至少约一个月。在一些实施方案中,制剂稳定至少约6周、至少约2个月、至少约4个月、至少约6个月、至少约8个月、至少约10个月、至少约12个月(1年)、至少约14个月、至少约16个月、至少约18个月(1.5年)、至少约20个月、至少约22个月、至少约24个月(2年)、在至少约26个月、至少约28个月、至少约30个月、至少约32个月、至少约34个月、至少约36个月(3年)、至少约38个月、至少约40个月、至少约42个月、至少约44个月、至少约46个月或至少约48个月(4年)。The preparation comprising mutant coronavirus protein or peptide as described herein is stable, because their characteristics in a given time period at a specified temperature are almost unchanged. Generally speaking, preparations as described herein can be stabilized for at least about one month. In some embodiments, preparations are stabilized for at least about 6 weeks, at least about 2 months, at least about 4 months, at least about 6 months, at least about 8 months, at least about 10 months, at least about 12 months (1 year), at least about 14 months, at least about 16 months, at least about 18 months (1.5 years), at least about 20 months, at least about 22 months, at least about 24 months (2 years), at least about 26 months, at least about 28 months, at least about 30 months, at least about 32 months, at least about 34 months, at least about 36 months (3 years), at least about 38 months, at least about 40 months, at least about 42 months, at least about 44 months, at least about 46 months or at least about 48 months (4 years).

制剂通常在低于约30℃的温度下稳定。在一些实施方案中,制剂的稳定性是关于低于约25℃、约20℃、约15℃、约10℃、约8℃、约5℃、约4℃或约2℃的温度。因此,在一些实施方案中,温度在约25℃至约2℃、约20℃至约2℃、约15℃至约2℃、约10℃至约2℃,约8℃至约2℃,或约5℃至约2℃的范围内。在其他实施方案中,温度在约25℃至约5℃、约20℃至约5℃、约15℃至约5℃、约10℃至约5℃、或约8℃至约5℃的范围内。在其他实施方案中,温度在约25℃至约8℃、约20℃至约8℃、约15℃至约8℃、或约10℃至约8℃的范围内。在其他实施方案中,温度在约25℃至约10℃、约20℃至约10℃、约15℃至约10℃、约25℃至约15℃、约20℃至约15℃、或约25℃至约20℃的范围内。在一些实施方案中,组合物可在4℃或-20℃储存以实现更长期储存。The formulation is generally stable at temperatures below about 30°C. In some embodiments, the stability of the formulation is about temperatures below about 25°C, about 20°C, about 15°C, about 10°C, about 8°C, about 5°C, about 4°C, or about 2°C. Thus, in some embodiments, the temperature is in the range of about 25°C to about 2°C, about 20°C to about 2°C, about 15°C to about 2°C, about 10°C to about 2°C, about 8°C to about 2°C, or about 5°C to about 2°C. In other embodiments, the temperature is in the range of about 25°C to about 5°C, about 20°C to about 5°C, about 15°C to about 5°C, about 10°C to about 5°C, or about 8°C to about 5°C. In other embodiments, the temperature is in the range of about 25°C to about 8°C, about 20°C to about 8°C, about 15°C to about 8°C, or about 10°C to about 8°C. In other embodiments, the temperature is in the range of about 25° C. to about 10° C., about 20° C. to about 10° C., about 15° C. to about 10° C., about 25° C. to about 15° C., about 20° C. to about 15° C., or about 25° C. to about 20° C. In some embodiments, the composition can be stored at 4° C. or -20° C. for longer term storage.

疫苗组合物Vaccine composition

如本文所述的RBD多肽、突变冠状病毒S蛋白或包含它们的融合蛋白可用于生产疫苗制剂。此类疫苗制剂可以针对已知会感染人类的七种冠状病毒中的每种冠状病毒单独地提供保护,或者可以针对已知会感染人类的七种冠状病毒中的至少2种、至少3种、至少4种、至少5种或至少6种冠状病毒提供保护。在一个实施方案中,如本文所述的疫苗制剂可以针对所有7种已知会感染人类的冠状病毒提供保护。本文还特别考虑本文所述的疫苗制剂可以提供针对预期在未来从动物物种(例如,蝙蝠)转移到人类的冠状病毒的保护。在其他实施方案中,本文所述的疫苗制剂可以提供针对动物易感的一种或多种冠状病毒的对该动物的保护。在本文中也特别考虑了编码本文所述的突变刺突蛋白多肽的RNA和/或DNA疫苗制剂。RBD polypeptides, mutant coronavirus S proteins, or fusion proteins comprising them as described herein can be used to produce vaccine preparations. Such vaccine preparations can provide protection for each coronavirus in the seven coronaviruses known to infect humans individually, or can provide protection for at least 2, at least 3, at least 4, at least 5, or at least 6 coronaviruses in the seven coronaviruses known to infect humans. In one embodiment, the vaccine preparations as described herein can provide protection for all 7 coronaviruses known to infect humans. It is also particularly contemplated herein that the vaccine preparations described herein can provide protection for coronaviruses expected to be transferred from animal species (e.g., bats) to humans in the future. In other embodiments, the vaccine preparations described herein can provide protection for the animal against one or more coronaviruses to which the animal is susceptible. RNA and/or DNA vaccine preparations encoding mutant spike protein polypeptides described herein are also particularly contemplated herein.

在一些实施方案中,针对本文所述的冠状病毒抗原产生的免疫是持久的(例如,至少2年、至少5年、至少10年,至少20年、至少30年、至少40年,或甚至是受试者的整个生命周期)。或者,在一些实施方案中,本文考虑了本文所述的疫苗制剂以年度为基础施用,针对靶病毒的流行或预测流行的毒株定制,类似于用流感疫苗进行免疫,并且可以提供从最后一次施用起至少3个月、至少6个月、至少8个月、至少一年、至少1.5年或至少两年的保护。In some embodiments, immunity generated against coronavirus antigens described herein is long-lasting (e.g., at least 2 years, at least 5 years, at least 10 years, at least 20 years, at least 30 years, at least 40 years, or even the entire life span of the subject). Alternatively, in some embodiments, it is contemplated herein that the vaccine formulations described herein are administered on an annual basis, customized for the prevalence or predicted prevalence of the target virus, similar to immunization with influenza vaccines, and can provide protection for at least 3 months, at least 6 months, at least 8 months, at least one year, at least 1.5 years, or at least two years from the last administration.

本领域技术人员会认识到,不需要冠状病毒疫苗制剂具有100%的功效即可赋予针对一种或多种冠状病毒的基于社区的免疫或群体免疫。因此,在一些实施方案中,本文所述的疫苗制剂在接种疫苗的个体群体中至少40%有效,例如在接种疫苗的个体群体中至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%有效。Those skilled in the art will recognize that a coronavirus vaccine formulation need not be 100% effective to confer community-based immunity or herd immunity against one or more coronaviruses. Thus, in some embodiments, the vaccine formulations described herein are at least 40% effective in a population of vaccinated individuals, such as at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% effective in a population of vaccinated individuals.

在一些实施方案中,为了减少社区传播并预防/控制冠状病毒感染和传播,本文所述的疫苗可以作为对健康儿童和个体的普遍疫苗接种来施用。儿童可在冠状病毒在学校、家庭和社区内的传播中发挥重要作用,特别是因为他们趋向于具有较轻的症状并且不一定被诊断为患有冠状病毒感染。流感疫苗研究表明,向社区中约80%的学龄儿童接种疫苗已经减少了成年人的呼吸系统疾病和老年人的过量死亡(Reichert等人,2001)。这个概念被称为社区免疫或“群体免疫”,并且被认为在保护社区免受疾病侵害方面发挥着重要作用。由于接种疫苗的人具有中和特定病毒的抗体,因此他们将病毒传播给其他人的可能性要小得多。这个概念也可以应用于冠状病毒感染。因此,即使是没有接种疫苗的人(以及疫苗接种已经减弱或疫苗不完全有效的人)也常常可以受到群体免疫的保护,因为他们周围接种疫苗的人不会生病或传播病毒。随着接种疫苗的人的百分比增加,群体免疫会更有效。据认为,社区中约60%(但优选地更接近90-95%)的人必须受到疫苗的保护才能实现群体免疫。未进行免疫的人会增加他们和其他人感染该疾病的机会。In some embodiments, to reduce community transmission and prevent/control coronavirus infection and transmission, the vaccines described herein can be administered as universal vaccinations for healthy children and individuals. Children can play an important role in the spread of coronaviruses in schools, families, and communities, especially because they tend to have milder symptoms and are not necessarily diagnosed with coronavirus infection. Flu vaccine studies have shown that vaccinating about 80% of school-age children in the community has reduced respiratory diseases in adults and excess deaths in the elderly (Reichert et al., 2001). This concept is called community immunity or "herd immunity" and is believed to play an important role in protecting communities from disease. Since vaccinated people have antibodies that neutralize specific viruses, they are much less likely to spread the virus to others. This concept can also be applied to coronavirus infections. Therefore, even people who have not been vaccinated (and those whose vaccinations have weakened or the vaccines are not completely effective) can often be protected by herd immunity because the vaccinated people around them will not get sick or spread the virus. As the percentage of vaccinated people increases, herd immunity will be more effective. It is believed that about 60% (but preferably closer to 90-95%) of people in the community must be protected by vaccines to achieve herd immunity. People who are not immunized increase their chances of contracting the disease, as well as others.

因此,本文在另一个方面中提供了一种通过向社区中的群体施用本文所述的疫苗制剂,来向群体或社区诱导针对冠状病毒感染的充分保护性免疫,以降低免疫功能低下的个体或未接种疫苗的个体中冠状病毒感染的发生率的方法。在一个实施方案中,大多数学龄儿童通过施用如本文所述的疫苗来针对冠状病毒感染进行免疫(例如,至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或更多的学龄儿童进行了疫苗接种)。在另一实施方案中,社区中的大多数健康个体(例如,至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或更多)通过施用如本文所述的疫苗而针对给定冠状病毒或一组冠状病毒进行免疫。在另一实施方案中,本文所述的疫苗可用作“动态疫苗接种”策略的一部分。动态疫苗接种是与新出现或现有的大流行毒株相关的低效疫苗的稳定生产,但由于抗原漂移,可能无法在哺乳动物中提供完全保护(参见Germann等人,2006)。由于大流行毒株的未来特性的不确定性,几乎不可能贮存匹配良好的大流行毒株。然而,接种匹配不良的但可能有效的疫苗可能会减缓大流行病毒的传播和/或减轻大流行冠状病毒株症状的严重程度。在一个实施方案中,如本文所述的疫苗针对引起2019/2020COVID-19大流行的一种或多种SARS-CoV-2毒株。Therefore, in another aspect, a method is provided herein for inducing sufficient protective immunity for coronavirus infection to a group or community by administering a vaccine formulation as described herein to a group in a community, to reduce the incidence of coronavirus infection in an immunocompromised individual or an unvaccinated individual. In one embodiment, most school-age children are immunized against coronavirus infection by administering a vaccine as described herein (for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more school-age children have been vaccinated). In another embodiment, most healthy individuals in the community (for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more) are immunized against a given coronavirus or a group of coronaviruses by administering a vaccine as described herein. In another embodiment, vaccines as described herein can be used as part of a "dynamic vaccination" strategy. Dynamic vaccination is the stable production of inefficient vaccines associated with emerging or existing pandemic strains, but due to antigenic drift, it may not be possible to provide complete protection in mammals (see Germann et al., 2006). Due to the uncertainty of the future characteristics of pandemic strains, it is almost impossible to store well-matched pandemic strains. However, vaccination with a poorly matched but potentially effective vaccine may slow the spread of the pandemic virus and/or reduce the severity of the symptoms of pandemic coronavirus strains. In one embodiment, the vaccine as described herein is directed against one or more SARS-CoV-2 strains that caused the 2019/2020 COVID-19 pandemic.

本文所述的疫苗制剂可以预防与冠状病毒感染相关的症状中的至少一种症状,或者可以完全预防任何症状的出现。冠状病毒感染的常见症状包括但不限于发烧、发冷、咳嗽、呼吸短促/呼吸困难、疲劳、肌肉/身体疼痛、头痛、新出现的味觉或嗅觉丧失、喉咙痛、充血或流鼻涕、恶心、呕吐或腹泻。症状的减轻可以主观或客观地确定,例如由受试者自我评定、由临床医生评定或通过进行适当的测定或测量(例如体温、肺炎感染程度、肺瘢痕形成等),包括例如生活质量评定、冠状病毒感染或附加症状的进展减慢、冠状病毒相关疾病症状的严重程度降低或合适的测定(例如抗体效价和/或T细胞活化测定)。Vaccine formulations as described herein can prevent at least one symptom in the symptoms associated with coronavirus infection, or can completely prevent the appearance of any symptom. Common symptoms of coronavirus infection include, but are not limited to, fever, chills, cough, shortness of breath/dyspnea, fatigue, muscle/body pain, headache, new loss of taste or smell, sore throat, congestion or runny nose, nausea, vomiting or diarrhea. The alleviation of symptoms can be determined subjectively or objectively, such as by subject self-assessment, by clinician assessment or by performing appropriate determination or measurement (such as body temperature, pneumonia infection degree, lung scarring, etc.), including, for example, quality of life assessment, coronavirus infection or the progression of additional symptoms slows down, the severity of coronavirus-related disease symptoms is reduced or suitable determination (such as antibody titer and/or T cell activation determination).

优选地,本文所述的疫苗制剂将使活性冠状病毒从接种疫苗的个体向个体社区内的其他个体的传播或在两个不同个体之间的传播减少至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、至少99%或甚至100%(即,在接种疫苗的个体和两个或更多个个体之间无法检测到传播)。Preferably, the vaccine formulations described herein will reduce the transmission of active coronavirus from a vaccinated individual to other individuals within the individual's community or between two different individuals by at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99% or even 100% (i.e., no transmission can be detected between a vaccinated individual and two or more individuals).

在一些实施方案中,本文所述的疫苗制剂包含一种或多种佐剂。佐剂的非限制性示例包括弗氏完全佐剂(免疫反应的非特异性刺激剂,含有杀灭的结核分枝杆菌(Mycobacterium tuberculosis))、不完全弗氏佐剂和氢氧化铝佐剂。其他佐剂包括GMCSP、BCG、氢氧化铝、MDP化合物,诸如thur-MDP和nor-MDP、CGP(MTP-PE)、脂质A和单磷酰脂质A(MPL)。还考虑了RIBI,所述RIBI含有在2%角鲨烯/Tween 80乳液中从细菌中提取的三种组分MPL、海藻糖二霉菌酸酯(TDM)和细胞壁骨架(CWS)。也可以使用MF-59、MHC抗原。In some embodiments, the vaccine formulations described herein include one or more adjuvants. Non-limiting examples of adjuvants include Freund's complete adjuvant (a non-specific stimulator of the immune response, containing killed Mycobacterium tuberculosis), incomplete Freund's adjuvant, and aluminum hydroxide adjuvant. Other adjuvants include GMCSP, BCG, aluminum hydroxide, MDP compounds such as thur-MDP and nor-MDP, CGP (MTP-PE), lipid A, and monophosphoryl lipid A (MPL). RIBI is also considered, which contains three components extracted from bacteria in a 2% squalene/Tween 80 emulsion: MPL, trehalose dimycolate (TDM), and cell wall skeleton (CWS). MF-59, MHC antigens.

在一个方面中,佐剂效应通过使用以约0.05%至约0.1%的磷酸盐缓冲盐水溶液形式使用的试剂(诸如明矾)来实现。或者,如本文所述的疫苗可以制成与合成糖聚合物的掺和物,该掺和物以约0.25%的溶液使用。一些佐剂,例如从细菌中获得的某些有机分子,作用于宿主而不是抗原。示例是胞壁酰二肽(N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺(MDP)),其是一种细菌肽聚糖。在其他实施方案中,血蓝蛋白和血赤藓素也可与本文所述的疫苗制剂一起使用。来自钥孔虫(KLH)的血蓝蛋白可用于某些实施方案,但其他软体动物和节肢动物血蓝蛋白和血赤藓素可用于替代实施方案。In one aspect, the adjuvant effect is achieved by using an agent such as alum in the form of about 0.05% to about 0.1% phosphate buffered saline solution. Alternatively, the vaccines described herein can be formulated with synthetic sugar polymers. of a mixture which is used in about a 0.25% solution. Some adjuvants, such as certain organic molecules obtained from bacteria, act on the host rather than the antigen. An example is muramyl dipeptide (N-acetylmuramoyl-L-alanyl-D-isoglutamine (MDP)), which is a bacterial peptidoglycan. In other embodiments, hemocyanin and hemoerythrin may also be used with the vaccine formulations described herein. Hemocyanin from keyhole limpet (KLH) may be used in certain embodiments, but other mollusc and arthropod hemocyanins and hemoerythrin may be used in alternative embodiments.

也可以使用各种多糖佐剂。例如,已经描述了各种肺炎球菌多糖佐剂对小鼠抗体反应的影响(Yin等人,1989)。应按指示采用产生最佳反应或不产生抑制的剂量(Yin等人,1989)。多胺类多糖是特别优选的,诸如几丁质和壳聚糖,包括脱乙酰几丁质。在另一实施方案中,可以使用胞壁酰二肽的亲脂性二糖-三肽衍生物,所述衍生物被描述为用于由磷脂酰胆碱和磷脂酰甘油形成的人工脂质体。Various polysaccharide adjuvants can also be used. For example, the effects of various pneumococcal polysaccharide adjuvants on mouse antibody responses have been described (Yin et al., 1989). The dosage that produces the best response or does not produce inhibition should be adopted as indicated (Yin et al., 1989). Polyamine polysaccharides are particularly preferred, such as chitin and chitosan, including deacetylated chitin. In another embodiment, lipophilic disaccharide-tripeptide derivatives of muramyl dipeptide can be used, which are described as being used for artificial liposomes formed by phosphatidylcholine and phosphatidylglycerol.

两亲性和表面活性剂,例如皂苷和衍生物,诸如QS21(Cambridge Biotech),也形成用于如本文所述的疫苗制剂的另一组佐剂。也可以使用非离子嵌段共聚物表面活性剂(Rabinovich等人,1994)。寡核苷酸佐剂(Yamamoto等人,1988)、Quil A和香菇多糖是可用于某些实施方案的其他佐剂。Amphiphilic and surfactants, such as saponins and derivatives, such as QS21 (Cambridge Biotech), also form another group of adjuvants for vaccine formulations as described herein. Nonionic block copolymer surfactants (Rabinovich et al., 1994) may also be used. Oligonucleotide adjuvants (Yamamoto et al., 1988), Quil A and Lentinan are other adjuvants that may be used in certain embodiments.

此外,精制的脱毒内毒素可以单独或以多佐剂制剂形式用于在脊椎动物中产生辅助性反应。例如,本文考虑了脱毒内毒素与海藻糖二霉菌酸酯的组合或脱毒内毒素与海藻糖二霉菌酸酯和内毒素糖脂的组合。或者,也考虑了脱毒内毒素与细胞壁骨架(CWS)或CWS以及海藻糖二霉菌酸酯的组合,或者仅CWS和海藻糖二霉菌酸酯而不含脱毒内毒素的组合。In addition, refined detoxified endotoxins can be used alone or in the form of multiple adjuvant preparations to produce auxiliary reactions in vertebrates. For example, the combination of detoxified endotoxins and trehalose dimycolate or the combination of detoxified endotoxins and trehalose dimycolate and endotoxin glycolipids is contemplated herein. Alternatively, the combination of detoxified endotoxins and cell wall skeletons (CWS) or CWS and trehalose dimycolate, or only CWS and trehalose dimycolate without the combination of detoxified endotoxins is also contemplated.

本领域技术人员将了解可与如本文所述的疫苗缀合或掺混的不同种类的佐剂,并且这些佐剂包括烷基溶血磷脂(ALP);BCG;和生物素(包括生物素化的衍生物)等。特别考虑使用的某些佐剂是来自革兰氏阴性细菌细胞的磷壁酸。这些佐剂包括脂磷壁酸(LTA)、核糖醇磷壁酸(RTA)和甘油磷壁酸(GTA)。也可以使用它们的合成对应物的活性形式。Those skilled in the art will appreciate the different types of adjuvants that can be conjugated or admixed with vaccines as described herein, and these include alkyl lysophospholipids (ALP); BCG; and biotin (including biotinylated derivatives), among others. Certain adjuvants specifically contemplated for use are teichoic acids from gram-negative bacterial cells. These adjuvants include lipoteichoic acid (LTA), ribitol teichoic acid (RTA), and glyceroteichoic acid (GTA). Active forms of their synthetic counterparts may also be used.

各种佐剂,即使是那些不常用于人类的佐剂,也被预期用于其他脊椎动物的疫苗。A variety of adjuvants, even those not commonly used in humans, are anticipated to be useful in vaccines for other vertebrates.

疫苗制剂可包含如本文所述的冠状病毒多肽或其融合蛋白,所述冠状病毒多肽或其融合蛋白使用本领域众所周知的方法(例如,脂质体(参见例如,Garcon和Six,J.Immunol.146:3697(1991))微囊化或大囊化到例如牛轮状病毒的内衣壳蛋白中(Redmond等人,Mol.Immunol.28:269(1991))、到由皂苷(诸如Quil A)构成的免疫刺激分子(ISCOMS)中(Morein等人,Nature 308:457(1984));Morein等人,in Immunological Adjuvants andVaccines(G.Gregoriadis等人编辑)第153-162页,Plenum Press,NY(1987))、或到由例如丙交酯-乙交酯共聚物构成的控释可生物降解微球中(O'Hagan等人,Immunology 73:239(1991);O'Hagan等人,Vaccine 11:149(1993))。Vaccine formulations can include a coronavirus polypeptide or fusion protein thereof as described herein, microencapsulated or macroencapsulated, for example, into the inner capsid protein of bovine rotavirus (Redmond et al., Mol. Immunol. 28:269 (1991)), into immunostimulatory molecules (ISCOMS) composed of saponins such as Quil A (Morein et al., Nature 308:457 (1984)); Morein et al., in Immunological Adjuvants and Vaccines (G. Gregoriadis et al., eds.) pp. 153-162, Plenum Press, NY (1987)), or into controlled-release biodegradable microspheres composed of, for example, lactide-glycolide copolymers (O'Hagan et al., Immunology 73:239 (1991); O'Hagan et al., Vaccine 11:149 (1993)).

本文所述的稳定化的冠状病毒多肽或其融合蛋白也可以吸附到含有使用PLURONIC嵌段共聚物(诸如L-121)制备并用洗涤剂(诸如TWEEN 80)稳定化的角鲨烯或角鲨烷乳液的脂质微球表面(参见Allison和Byers,Vaccines:New Approaches toImmunological Problems(R.Ellis编辑)第431-449页,Butterworth-Hinemann,StonemanN.Y.(1992))。The stabilized coronavirus polypeptides or fusion proteins thereof described herein can also be adsorbed to the surface of lipid microspheres containing squalene or squalane emulsions prepared using PLURONIC block copolymers (such as L-121) and stabilized with detergents (such as TWEEN 80) (see Allison and Byers, Vaccines: New Approaches to Immunological Problems (R. Ellis, ed.) pp. 431-449, Butterworth-Hinemann, Stoneman N.Y. (1992)).

本文所述的疫苗制剂包含“有效量”或“治疗有效量”的如本文所述的稳定化的冠状病毒多肽或其融合蛋白。如本文所用,短语“有效量”或“治疗有效量”是指足以提供足够高以在其接受者中产生(或有助于产生)免疫反应的浓度的剂量。任何特定受试者的具体有效剂量水平将取决于多种因素,包括所治疗的疾患、疾患的严重程度、特定化合物的活性、施用途径、所施用药剂的清除率、治疗持续时间、与所施用的药剂联合使用或同时使用的药物、受试者的年龄、体重、性别、饮食和总体健康状况,以及医学艺术和科学中众所周知的类似因素。在确定“治疗有效量”时考虑的各种一般考虑因素是本领域技术人员已知的,并描述于例如Gilman等人编辑,Goodman and Gilman's:The Pharmacological Bases ofTherapeutics,第8版,Pergamon Press,1990;和Remington's Pharmaceutical Sciences,第17版,Mack Publishing Co.,Easton,Pa.,1990中。Vaccine formulations described herein include stabilized coronavirus polypeptides or fusion proteins thereof as described herein of an "effective amount" or "therapeutically effective amount". As used herein, the phrase "effective amount" or "therapeutically effective amount" refers to a dosage sufficient to provide a concentration high enough to produce (or contribute to the production of) an immune response in its recipient. The specific effective dose level of any particular subject will depend on a variety of factors, including the illness being treated, the severity of the illness, the activity of a particular compound, the route of administration, the clearance rate of the administered agent, the duration of treatment, the drug used in combination with the administered agent or used simultaneously, the age, weight, sex, diet and overall health of the subject, and similar factors well known in medical art and science. The various general considerations considered in determining a "therapeutically effective amount" are known to those skilled in the art and are described in, for example, Gilman et al., Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th edition, Pergamon Press, 1990; and Remington's Pharmaceutical Sciences, 17th edition, Mack Publishing Co., Easton, Pa., 1990.

制剂的pH也可能不同。通常,制剂的pH在约pH 6.2至约pH 8.0之间。在一些实施方案中,pH为约6.2、约6.4、约6.6、约6.8、约7.0、约7.2、约7.4、约7.6、约7.8或约8.0。当然,pH也可以在某些值的范围内。因此,在一些实施方案中,pH在约6.2与约8.0之间、在约6.2与7.8之间、在约6.2与7.6之间、在约6.2与7.4之间、在约6.2与7.2之间、在约6.2与7.0之间、在约6.2与6.8之间、在约6.2与约6.6之间、或在约6.2与6.4之间。在其他实施方案中,pH在6.4与约8.0之间、在约6.4与7.8之间、在约6.4与7.6之间、在约6.4与7.4之间、在约6.4与7.2之间、在约6.4与7.0之间、在约6.4与6.8之间、或在约6.4与约6.6之间。在又其他实施方案中,pH在约6.6与约8.0之间、在约6.6与7.8之间、在约6.6与7.6之间、在约6.6与7.4之间、在约6.6与7.2之间、在约6.6与7.0之间、或在约6.6与6.8之间。在其他实施方案中,其在约6.8与约8.0之间、在约6.8与7.8之间、在约6.8与7.6之间、在约6.8与7.4之间、在约6.8与7.2之间、或在约6.8与7.0之间。在其他实施方案中,其在约7.0与约8.0之间、在约7.0与7.8之间、在约7.0与7.6之间、在约7.0与7.4之间、在约7.0与7.2之间、在约7.2与8.0之间、在约7.2与7.8之间、在约7.2与约7.6之间、在约7.2与7.4之间、在约7.4与约8.0之间、在约7.4与约7.6之间、或在约7.6与约8.0。The pH of preparation may also be different. Typically, the pH of preparation is between about pH 6.2 and about pH 8.0. In some embodiments, the pH is about 6.2, about 6.4, about 6.6, about 6.8, about 7.0, about 7.2, about 7.4, about 7.6, about 7.8 or about 8.0. Of course, pH can also be in the range of certain values. Therefore, in some embodiments, the pH is between about 6.2 and about 8.0, between about 6.2 and 7.8, between about 6.2 and 7.6, between about 6.2 and 7.4, between about 6.2 and 7.2, between about 6.2 and 7.0, between about 6.2 and 6.8, between about 6.2 and about 6.6 or between about 6.2 and 6.4. In other embodiments, the pH is between 6.4 and about 8.0, between about 6.4 and 7.8, between about 6.4 and 7.6, between about 6.4 and 7.4, between about 6.4 and 7.2, between about 6.4 and 7.0, between about 6.4 and 6.8, or between about 6.4 and about 6.6. In still other embodiments, the pH is between about 6.6 and about 8.0, between about 6.6 and 7.8, between about 6.6 and 7.6, between about 6.6 and 7.4, between about 6.6 and 7.2, between about 6.6 and 7.0, or between about 6.6 and 6.8. In other embodiments, it is between about 6.8 and about 8.0, between about 6.8 and 7.8, between about 6.8 and 7.6, between about 6.8 and 7.4, between about 6.8 and 7.2, or between about 6.8 and 7.0. In other embodiments, it is between about 7.0 and about 8.0, between about 7.0 and 7.8, between about 7.0 and 7.6, between about 7.0 and 7.4, between about 7.0 and 7.2, between about 7.2 and 8.0, between about 7.2 and 7.8, between about 7.2 and about 7.6, between about 7.2 and 7.4, between about 7.4 and about 8.0, between about 7.4 and about 7.6, or between about 7.6 and about 8.0.

在一些实施方案中,制剂可包含一种或多种盐,诸如氯化钠、磷酸钠或它们的组合。通常,每种盐以约10mM至约200mM存在于制剂中。因此,在一些实施方案中,存在的任何盐以约10mM至约200mM、约20mM至约200mM、约25mM至约200mM、约30mM至约200mM、约40mM至约200mM、约50mM至约200mM、约75mM至约200mM、约100mM至约200mM、约125mM至约200mM、约150mM至约200mM、或约175mM至约200mM存在。在其他实施方案中,存在的任何盐以约10mM至约175mM、约20mM至约175mM、约25mM至约175mM、约30mM至约175mM、约40mM至约175mM、约50mM至约175mM、约75mM至约175mM、约100mM至约175mM、约125mM至约175mM、或约150mM至约175mM存在。在其他实施方案中,存在的任何盐以约10mM至约150mM、约20mM至约150mM、约25mM至约150mM、约30mM至约150mM、约40mM至约150mM、约50mM至约150mM、约75mM至约150mM、约100mM至约150mM、或约125mM至约150mM存在。在其他实施方案中,存在的任何盐以约10mM至约125mM、约20mM至约125mM、约25mM至约125mM、约30mM至约125mM、约40mM至约125mM、约50mM至约125mM、约75mM至约125mM、或约100mM至约125mM存在。在一些实施方案中,存在的任何盐以约10mM至约100mM、约20mM至约100mM、约25mM至约100mM、约30mM至约100mM、约40mM至约100mM、约50mM至约100mM、或约75mM至约100mM存在。在又其他实施方案中,存在的任何盐以约10mM至约75mM、约20mM至约75mM、约25mM至约75mM、约30mM至约75mM、约40mM至约75mM、或约50mM至约75mM存在。在更多其他实施方案中,存在的任何盐以约10mM至约50mM、约20mM至约50mM、约25mM至约50mM、约30mM至约50mM、或约40mM至约50mM存在。在其他实施方案中,存在的任何盐以约10mM至约40mM、约20mM至约40mM、约25mM至约40mM、约30mM至约40mM、约10mM至约30mM、约20mM至约30、约25mM至约30mM、约10mM至约25mM、约20mM至约25mM、或约10mM至约20mM存在。在一个实施方案中,氯化钠以约100mM存在于制剂中。在一个实施方案中,磷酸钠以约25mM存在于制剂中。In some embodiments, preparation can comprise one or more salts, such as sodium chloride, sodium phosphate or their combination.Usually, every kind of salt is present in preparation with about 10mM to about 200mM.Therefore, in some embodiments, any salt present is present with about 10mM to about 200mM, about 20mM to about 200mM, about 25mM to about 200mM, about 30mM to about 200mM, about 40mM to about 200mM, about 50mM to about 200mM, about 75mM to about 200mM, about 100mM to about 200mM, about 125mM to about 200mM, about 150mM to about 200mM or about 175mM to about 200mM. In other embodiments, any salt present is present at about 10 mM to about 175 mM, about 20 mM to about 175 mM, about 25 mM to about 175 mM, about 30 mM to about 175 mM, about 40 mM to about 175 mM, about 50 mM to about 175 mM, about 75 mM to about 175 mM, about 100 mM to about 175 mM, about 125 mM to about 175 mM, or about 150 mM to about 175 mM. In other embodiments, any salt present is present at about 10mM to about 150mM, about 20mM to about 150mM, about 25mM to about 150mM, about 30mM to about 150mM, about 40mM to about 150mM, about 50mM to about 150mM, about 75mM to about 150mM, about 100mM to about 150mM, or about 125mM to about 150mM. In other embodiments, any salt present is present at about 10mM to about 125mM, about 20mM to about 125mM, about 25mM to about 125mM, about 30mM to about 125mM, about 40mM to about 125mM, about 50mM to about 125mM, about 75mM to about 125mM, or about 100mM to about 125mM. In some embodiments, any salt present is present at about 10mM to about 100mM, about 20mM to about 100mM, about 25mM to about 100mM, about 30mM to about 100mM, about 40mM to about 100mM, about 50mM to about 100mM, or about 75mM to about 100mM. In other embodiments, any salt present is present at about 10mM to about 75mM, about 20mM to about 75mM, about 25mM to about 75mM, about 30mM to about 75mM, about 40mM to about 75mM, or about 50mM to about 75mM. In more other embodiments, any salt present is present at about 10mM to about 50mM, about 20mM to about 50mM, about 25mM to about 50mM, about 30mM to about 50mM, or about 40mM to about 50mM. In other embodiments, any salt present is present at about 10mM to about 40mM, about 20mM to about 40mM, about 25mM to about 40mM, about 30mM to about 40mM, about 10mM to about 30mM, about 20mM to about 30, about 25mM to about 30mM, about 10mM to about 25mM, about 20mM to about 25mM, or about 10mM to about 20mM. In one embodiment, sodium chloride is present in the formulation at about 100mM. In one embodiment, sodium phosphate is present in the formulation at about 25mM.

包含本文所述的突变冠状病毒蛋白的制剂可进一步包含增溶剂,诸如非离子洗涤剂。此类洗涤剂包括但不限于聚山梨醇酯80(80)、TritonX100和聚山梨醇酯20。The formulations comprising the mutant coronavirus proteins described herein may further comprise a solubilizing agent, such as a non-ionic detergent. Such detergents include, but are not limited to, polysorbate 80 ( 80), TritonX100 and polysorbate 20.

疫苗施用和功效Vaccine administration and efficacy

如本文所述的疫苗制剂可进一步包含药学上可接受的载体,包括任何合适的稀释剂或赋形剂,所述载体包括本身不诱导产生对接受该组合物的脊椎动物有害的免疫反应,并且可以在没有过度毒性的情况下施用的任何药剂。如本文所用,术语“药学上可接受的”意指被联邦或州政府的监管机构批准或在美国药典、欧洲药典或其他公认的药典中列出用于脊椎动物,更具体地用于人类。这些组合物可用作疫苗和/或抗原组合物以在脊椎动物中诱导保护性免疫反应。Vaccine formulations as described herein may further comprise a pharmaceutically acceptable carrier, including any suitable diluent or excipient, including any agent that does not itself induce an immune response harmful to the vertebrate receiving the composition and can be administered without excessive toxicity. As used herein, the term "pharmaceutically acceptable" means approved by a regulatory agency of a federal or state government or listed in the U.S. Pharmacopoeia, European Pharmacopoeia or other recognized pharmacopoeia for use in vertebrates, more specifically in humans. These compositions can be used as vaccines and/or antigenic compositions to induce a protective immune response in vertebrates.

药学上可接受的载体或赋形剂包括但不限于盐水、缓冲盐水、右旋糖、水、甘油、无菌等渗水性缓冲液,以及它们的组合。Remington's Pharmaceutical Sciences(MackPub.Co.NJ当前版本)中对药学上可接受的载体、稀释剂和其他赋形剂进行了全面讨论。制剂应适合施用模式。在一个优选实施方案中,该制剂适合施用于人类,优选是无菌的、无微粒的和/或非热原的。Pharmaceutically acceptable carriers or excipients include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, sterile isotonic aqueous buffer, and combinations thereof. Pharmaceutically acceptable carriers, diluents, and other excipients are discussed comprehensively in Remington's Pharmaceutical Sciences (Mack Pub. Co. NJ current edition). The formulation should be suitable for the mode of administration. In a preferred embodiment, the formulation is suitable for administration to humans, preferably sterile, particulate-free, and/or non-pyrogenic.

如果需要的话,所述组合物还可以含有少量的润湿剂或乳化剂、或pH缓冲剂。组合物可以是固体形式,诸如适合重构的冻干粉末、液体溶液、悬浮液、乳剂、片剂、丸剂、胶囊剂、缓释制剂或粉末。口服制剂可包含标准载体,诸如药物级甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、纤维素、碳酸镁等。If necessary, the composition may also contain a small amount of a wetting agent or emulsifier, or a pH buffer. The composition may be in solid form, such as a lyophilized powder, liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation or powder suitable for reconstitution. Oral formulations may include standard carriers, such as pharmaceutical grade mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, etc.

通常,本文所述的冠状病毒疫苗以有效量或足以刺激针对一种或多种冠状病毒毒株的免疫反应的量施用。优选地,疫苗制剂的施用引起针对至少一种冠状病毒的实质性免疫。通常,可以基于例如年龄、身体状况、体重、性别、饮食、施用时间和其他临床因素来调整剂量。Typically, the coronavirus vaccines described herein are administered in an effective amount or an amount sufficient to stimulate an immune response to one or more coronavirus strains. Preferably, the administration of the vaccine formulation causes substantial immunity to at least one coronavirus. Typically, the dosage can be adjusted based on, for example, age, physical condition, weight, sex, diet, administration time, and other clinical factors.

虽然用单剂量进行实质性免疫刺激是优选的,但可以通过相同或不同途径施用附加剂量,以达到预期效应。例如,在新生儿和婴儿中,可能需要多次施用才能产生足够的免疫水平。如有必要,施用可以在整个儿童时期间隔地持续进行,以维持针对冠状病毒感染的足够保护水平。同样,特别易患严重疾病或反复感染的成年人(诸如例如卫生保健工作者、日间护理工作者、幼儿的家庭成员、老人和心肺功能受损的人)可能需要多次免疫接种以建立和/或维持保护性免疫反应。可以监测诱导免疫的水平,例如通过测量中和分泌抗体和血清抗体的量,并根据需要调整剂量或重复接种疫苗以引发和维持所需的保护水平。Although it is preferred to carry out substantial immunostimulation with a single dose, additional doses can be applied by the same or different routes to achieve the desired effect. For example, in newborns and infants, multiple administrations may be required to produce sufficient immunity levels. If necessary, administration can be continued at intervals throughout childhood to maintain sufficient protection levels for coronavirus infection. Similarly, adults who are particularly susceptible to severe diseases or repeated infections (such as, for example, health care workers, day care workers, family members of young children, the elderly, and people with impaired cardiopulmonary function) may need multiple immunizations to establish and/or maintain a protective immune response. The level of induced immunity can be monitored, for example, by measuring the amount of neutralizing secretory antibodies and serum antibodies, and the dosage can be adjusted as needed or repeated vaccinations can be used to induce and maintain the desired protection level.

预防性疫苗制剂可以全身施用,例如通过使用针头和注射器或无针注射设备进行皮下或肌内注射。或者,疫苗制剂通过滴剂、大粒子气雾剂(大于约10微米)或喷雾进入上呼吸道而鼻内施用。虽然上述递送途径中的任何一种递送途径都可能导致免疫反应,但鼻内施用可能会带来在冠状病毒的进入部位之一处引发粘膜免疫的额外益处。Prophylactic vaccine formulations can be administered systemically, for example, by subcutaneous or intramuscular injection using a needle and syringe or a needle-free injection device. Alternatively, the vaccine formulation is administered intranasally by drops, large particle aerosols (greater than about 10 microns), or sprays into the upper respiratory tract. While any of the above delivery routes may result in an immune response, intranasal administration may have the added benefit of eliciting mucosal immunity at one of the coronavirus's sites of entry.

施用如本文所述的疫苗制剂的非限制性方法包括但不限于肠胃外施用(例如,皮内、肌内、静脉内和皮下)、硬膜外和粘膜(例如,鼻内和口服或肺部途径或通过栓剂)。在具体实施方案中,如本文所述的疫苗组合物肌内地、静脉内地、皮下地、经皮地或皮内地施用。组合物可以通过任何方便的途径施用,例如通过输注或团注、通过经由上皮或粘膜皮肤衬里(例如,口腔粘膜、结肠、结膜、鼻咽、口咽、阴道、尿道、膀胱和肠粘膜等)吸收,并可与其他生物活性剂一起施用。在一些实施方案中,如本文所述的疫苗组合物的鼻内或其他粘膜施用途径可诱导比其他施用途径显著更高的抗体或其他免疫反应。在另一实施方案中,如本文所述的疫苗组合物的鼻内或其他粘膜施用途径可诱导将诱导针对其他冠状病毒毒株的交叉保护的抗体或其他免疫反应。施用可以是全身的或局部的。在一些实施方案中,疫苗制剂以靶向粘膜组织的方式施用,以便在免疫部位引发免疫反应。例如,通过使用含有具有特定粘膜靶向性质的佐剂的组合物的口服施用,可以靶向粘膜组织(诸如肠相关淋巴组织(GALT))进行免疫。还可以靶向其他粘膜组织,诸如鼻咽淋巴组织(NALT)和支气管相关淋巴组织(BALT)。Non-limiting methods of administering vaccine formulations as described herein include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intravenous, and subcutaneous), epidural, and mucosal (e.g., intranasal and oral or pulmonary routes or by suppositories). In specific embodiments, vaccine compositions as described herein are administered intramuscularly, intravenously, subcutaneously, transdermally, or intradermally. The composition can be administered by any convenient route, such as by infusion or bolus injection, by absorption via epithelial or mucocutaneous linings (e.g., oral mucosa, colon, conjunctiva, nasopharynx, oropharynx, vagina, urethra, bladder, and intestinal mucosa, etc.), and can be administered together with other bioactive agents. In some embodiments, the intranasal or other mucosal administration routes of vaccine compositions as described herein can induce antibodies or other immune responses that are significantly higher than other administration routes. In another embodiment, the intranasal or other mucosal administration routes of vaccine compositions as described herein can induce antibodies or other immune responses that will induce cross-protection against other coronavirus strains. Administration can be systemic or local. In some embodiments, vaccine formulations are administered in a manner that targets mucosal tissues so as to induce an immune response at the immunization site. For example, by oral administration of a composition containing an adjuvant with specific mucosal targeting properties, mucosal tissues such as gut-associated lymphoid tissue (GALT) can be targeted for immunization. Other mucosal tissues such as nasopharyngeal lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) can also be targeted.

如本文所述的疫苗制剂也可以按剂量方案施用,例如疫苗组合物的初始施用和随后的加强施用。在特定实施方案中,第二剂量的组合物在初始施用后两周至一年的任何时间,优选地约1个月、约2个月、约3个月、约4个月、约5个月至约6个月施用。此外,第三剂量可以在第二剂量之后,并且在初始施用后约三个月至约两年,或甚至更长时间,优选地约4个月、约5个月、或约6个月、或约7个月至约一年施用。当在第二剂量后在受试者的血清和/或尿液或粘膜分泌物中检测不到或检测到低水平的特异性免疫球蛋白时,可以任选地施用第三剂量。在优选的实施方案中,第二剂量在第一次施用后约一个月施用,并且第三剂量在第一次施用后约六个月施用。在另一实施方案中,第二剂量在第一次施用后约六个月施用。Vaccine formulations as described herein can also be administered in a dosage regimen, such as the initial administration of vaccine compositions and subsequent booster administration. In a specific embodiment, the composition of the second dose is administered at any time from two weeks to one year after the initial administration, preferably from about 1 month, about 2 months, about 3 months, about 4 months, about 5 months to about 6 months. In addition, the 3rd dose can be administered after the second dose, and from about three months to about two years after the initial administration, or even longer, preferably from about 4 months, about 5 months, or about 6 months, or about 7 months to about one year. When low-level specific immunoglobulin is not detected or detected in the serum and/or urine or mucosal secretions of the subject after the second dose, the 3rd dose can be optionally administered. In a preferred embodiment, the second dose is administered for about one month after the first administration, and the 3rd dose is administered for about six months after the first administration. In another embodiment, the second dose is administered for about six months after the first administration.

药物制剂的剂量可以由技术人员容易地确定,例如通过首先确定有效引发预防性或治疗性免疫反应的剂量,例如通过测量病毒特异性免疫球蛋白的血清效价或通过测量血清样品、尿液样品或粘膜分泌物中抗体的抑制率。所述剂量可以从动物研究中确定。用于研究冠状病毒的动物的非限制性列表包括豚鼠、叙利亚仓鼠、毛丝鼠、刺猬、鸡、大鼠、小鼠、猪、牛、蝙蝠和雪貂。蝙蝠尤其被认为是冠状病毒的天然宿主,并且在研究或测试疫苗方面特别有用。然而,上述动物中的任何一种动物都可以用如本文所述的疫苗制剂投配,以部分地表征所诱导的免疫反应,和/或以确定是否已产生任何中和抗体。The dosage of the pharmaceutical preparation can be easily determined by a technician, for example, by first determining the dosage that effectively triggers a preventive or therapeutic immune response, for example, by measuring the serum titer of virus-specific immunoglobulins or by measuring the inhibition rate of antibodies in serum samples, urine samples or mucosal secretions. The dosage can be determined from animal studies. A non-limiting list of animals used to study coronaviruses includes guinea pigs, Syrian hamsters, chinchillas, hedgehogs, chickens, rats, mice, pigs, cattle, bats and ferrets. Bats are particularly considered to be natural hosts of coronaviruses and are particularly useful in studying or testing vaccines. However, any of the above animals can be dosed with a vaccine formulation as described herein to partially characterize the induced immune response, and/or to determine whether any neutralizing antibodies have been produced.

此外,可以由技术人员执行人体临床研究以确定对人体的优选有效剂量。此类临床研究是常规的并且是本领域中众所周知的。所采用的精确剂量也将取决于施用途径。有效剂量可以从源自体外或动物测试系统的剂量-反应曲线外推。In addition, human clinical studies can be performed by technicians to determine the preferred effective dose for humans. Such clinical studies are routine and well known in the art. The exact dose used will also depend on the route of administration. The effective dose can be extrapolated from a dose-response curve derived from an in vitro or animal test system.

另一种诱导或增强免疫反应的方法可以通过以下方式来实现:制备如本文所述的疫苗组合物以包含一种或多种免疫刺激剂,诸如一种或多种细胞因子、具有免疫刺激、免疫增强和/或促炎活性的淋巴因子或趋化因子(例如,白介素(例如,IL-1、IL-2、IL-3、IL-4、IL-12、IL-13);生长因子(例如,粒细胞-巨噬细胞(GM)-集落刺激因子(CSF));以及其他免疫刺激分子,诸如巨噬细胞炎症因子、Flt3配体、B7.1;B7.2等)。此类免疫刺激分子可以在与冠状病毒疫苗制剂相同的制剂中施用,或者可以单独施用。Another method of inducing or enhancing an immune response can be achieved by preparing a vaccine composition as described herein to include one or more immunostimulants, such as one or more cytokines, lymphokines or chemokines with immunostimulatory, immunoenhancing and/or proinflammatory activity (e.g., interleukins (e.g., IL-1, IL-2, IL-3, IL-4, IL-12, IL-13); growth factors (e.g., granulocyte-macrophage (GM)-colony stimulating factor (CSF)); and other immunostimulatory molecules, such as macrophage inflammatory factors, Flt3 ligand, B7.1; B7.2, etc.). Such immunostimulatory molecules can be administered in the same formulation as the coronavirus vaccine formulation, or can be administered separately.

本文所述的RBD多肽或稳定化的冠状病毒刺突蛋白可用于疫苗制剂中,当施用于脊椎动物时,所述疫苗制剂可在脊椎动物(例如人)中诱导实质性免疫。所述实质性免疫由针对RBD多肽或稳定化的冠状病毒刺突蛋白的免疫反应产生,并防止或改善冠状病毒感染或至少减轻所述脊椎动物中冠状病毒病毒感染的症状。在一些情况下,随后被感染的经接种疫苗的受试者将是无症状的。然而,该反应可能不是完全保护性反应,并且本文也考虑了部分免疫反应。例如,与未免疫的脊椎动物相比,随后感染冠状病毒的部分受保护的受试者将经历降低的症状严重程度或较短的症状持续时间。例如,接种包含SARS-CoV-2稳定化刺突蛋白的制剂的受试者可能不需要长时间住院或使用呼吸机来治疗COVID-19。The RBD polypeptide or stabilized coronavirus spike protein described herein can be used in a vaccine formulation that, when administered to a vertebrate, can induce substantial immunity in a vertebrate (e.g., a human). The substantial immunity is produced by an immune response to the RBD polypeptide or stabilized coronavirus spike protein, and prevents or improves coronavirus infection or at least alleviates the symptoms of coronavirus virus infection in the vertebrate. In some cases, the subsequently infected vaccinated subject will be asymptomatic. However, the response may not be a completely protective response, and partial immune responses are also contemplated herein. For example, compared to unimmunized vertebrates, partially protected subjects who are subsequently infected with coronavirus will experience reduced symptom severity or a shorter duration of symptoms. For example, subjects vaccinated with a preparation containing a SARS-CoV-2 stabilized spike protein may not need to be hospitalized for a long time or use a ventilator to treat COVID-19.

在一个实施方案中,本文提供了在受试者中诱导针对一种或多种冠状病毒感染或其至少一种症状的实质性免疫的方法,所述方法包括施用至少一种有效剂量的包含如本文所述的RBD多肽或稳定化冠状病毒S蛋白的疫苗制剂。在另一实施方案中,所述实质性免疫的诱导缩短了冠状病毒相关疾病症状(例如,SARS、COVID-19)的持续时间。In one embodiment, provided herein is a method for inducing substantial immunity to one or more coronavirus infections or at least one symptom thereof in a subject, the method comprising administering at least one effective dose of a vaccine formulation comprising an RBD polypeptide as described herein or a stabilized coronavirus S protein. In another embodiment, the induction of the substantial immunity shortens the duration of coronavirus-related disease symptoms (e.g., SARS, COVID-19).

在一个实施方案中,如本文所述的疫苗制剂可以引发免疫反应,所述免疫反应将提供针对多于一种冠状病毒株的保护。使用稳定化冠状病毒S蛋白或由特定亚群的特定毒株构建的RBD多肽对脊椎动物进行的这种交叉保护可以诱导针对不同毒株和/或亚群的冠状病毒的交叉保护。In one embodiment, the vaccine formulations as described herein can elicit an immune response that will provide protection against more than one coronavirus strain. This cross-protection of vertebrates using stabilized coronavirus S proteins or RBD polypeptides constructed from specific strains of specific subgroups can induce cross-protection against coronaviruses of different strains and/or subgroups.

试剂盒Reagent test kit

本文还提供了用于个体或动物疫苗接种的试剂盒,所述试剂盒包括一个或多个容器,所述容器填充有如本文所述的疫苗制剂的成分中的一种或多种成分。在一个实施方案中,所述试剂盒包括两个容器,一个容器装有稳定化的冠状病毒多肽或其融合蛋白,另一个容器装有佐剂。与此类容器相关联的可以是管理药物或生物产品的制造、使用或销售的政府机构规定形式的通知,该通知反映了该机构对用于人类施用的制造、使用或销售的批准。Also provided herein is a kit for individual or animal vaccination, the kit comprising one or more containers filled with one or more components of the components of the vaccine formulation as described herein. In one embodiment, the kit comprises two containers, one container containing stabilized coronavirus polypeptides or their fusion proteins, and the other container containing adjuvants. Associated with such containers may be a notification in the form of a government agency regulating the manufacture, use or sale of a drug or biological product, which reflects the agency's approval of manufacture, use or sale for human administration.

将疫苗制剂包装在气密密封容器,诸如注明组合物的量的安瓿或小袋中。在一个实施方案中,疫苗组合物作为液体供应,在另一实施方案中,作为气密密封容器中的干灭菌冻干粉末或无水浓缩物形式供应,并且可以例如用水或盐水重构至适当浓度以用于施用于受试者。在一些实施方案中,疫苗组合物作为气密密封容器中的干燥无菌冻干粉末以优选地约1μg、约5μg、约10μg、约20μg、约25μg、约30μg、约50μg、约100μg、约125μg、约150μg、或约200μg的单位剂量供应。或者,疫苗组合物的单位剂量小于约1μg(例如约0.08μg、约0.04μg;约0.2μg、约0.4μg、约0.8μg、约0.5μg或更少、约0.25μg或更少,或约0.1μg或更少),或大于约125μg(例如约150μg或更多、约250μg或更多、或约500μg或更多)。这些剂量可以作为总冠状病毒多肽或作为μg HA来测量。疫苗组合物应在从冻干粉末重构后约12小时内,优选地约6小时内、约5小时内、约3小时内或约1小时内施用。The vaccine preparation is packaged in an airtight sealed container, such as an ampoule or a pouch indicating the amount of the composition. In one embodiment, the vaccine composition is supplied as a liquid, in another embodiment, as a dry sterilized lyophilized powder or anhydrous concentrate in an airtight sealed container, and can be reconstituted to an appropriate concentration for administration to a subject, for example, with water or saline. In some embodiments, the vaccine composition is supplied as a dry sterile lyophilized powder in an airtight sealed container with a unit dose of preferably about 1 μg, about 5 μg, about 10 μg, about 20 μg, about 25 μg, about 30 μg, about 50 μg, about 100 μg, about 125 μg, about 150 μg, or about 200 μg. Alternatively, the unit dose of the vaccine composition is less than about 1 μg (e.g., about 0.08 μg, about 0.04 μg; about 0.2 μg, about 0.4 μg, about 0.8 μg, about 0.5 μg or less, about 0.25 μg or less, or about 0.1 μg or less), or greater than about 125 μg (e.g., about 150 μg or more, about 250 μg or more, or about 500 μg or more). These doses can be measured as total coronavirus polypeptides or as μg HA. The vaccine composition should be administered within about 12 hours, preferably within about 6 hours, within about 5 hours, within about 3 hours, or within about 1 hour after reconstitution from the lyophilized powder.

在替代实施方案中,如本文所述的疫苗组合物以液体形式在指示所述组合物的量和浓度的气密密封容器中供应。优选地,疫苗组合物的液体形式以至少约50μg/ml,更优选地至少约100μg/ml、至少约200μg/ml、至少500μg/ml,或至少1mg/ml在气密密封容器中供应。In alternative embodiments, the vaccine composition as described herein is supplied in a liquid form in an airtight sealed container indicating the amount and concentration of the composition. Preferably, the liquid form of the vaccine composition is supplied in an airtight sealed container at least about 50 μg/ml, more preferably at least about 100 μg/ml, at least about 200 μg/ml, at least 500 μg/ml, or at least 1 mg/ml.

本发明可以如在以下编号段落中的任何一个段落中所述。The invention may be as described in any of the following numbered paragraphs.

1.一种非天然存在的多肽,所述非天然存在的多肽包含第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少两个突变,其中所述至少两个突变选自由以下组成的组:F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒受体结合结构域的对应残基处。1. A non-naturally occurring polypeptide, the non-naturally occurring polypeptide comprising a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising at least 90% identity to residues 328-531 of SEQ ID NO:1, and further comprising at least two mutations relative to the RBD of SEQ ID NO:1, wherein the at least two mutations are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F /Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or at the corresponding residues of a second coronavirus receptor binding domain as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2.

2.一种非天然存在的多肽,所述非天然存在的多肽包含:第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531或与通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒的受体结合结构域的对应残基的至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD或第二冠状病毒中的对应残基的至少两个突变,其中相对于缺乏所述至少两个突变的野生型多肽的稳定性,所述至少两个突变增强所述多肽的稳定性。2. A non-naturally occurring polypeptide, the non-naturally occurring polypeptide comprising: a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising at least 90% identity with residues 328-531 of SEQ ID NO:1 or with the corresponding residues of the receptor binding domain of a second coronavirus determined by sequence alignment of SEQ ID NO:1 with the sequence of a second coronavirus receptor binding domain using the Blast-p parameters of protocol 1 or protocol 2, and further comprising at least two mutations relative to the RBD of SEQ ID NO:1 or the corresponding residues in the second coronavirus, wherein relative to the stability of a wild-type polypeptide lacking the at least two mutations, the at least two mutations enhance the stability of the polypeptide.

3.根据段落2所述的多肽,其中所述至少两个突变在SEQ ID NO:1的以下氨基酸处:338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与所述第二冠状病毒受体结合结构域的所述序列进行序列比对所确定的所述第二冠状病毒受体结合结构域的对应残基处。3. The polypeptide according to paragraph 2, wherein the at least two mutations are at the following amino acids of SEQ ID NO: 1: 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358 , 365 and 392; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or 338, 358, 363 and 365, or at the corresponding residues of the second coronavirus receptor binding domain as determined by sequence alignment of SEQ ID NO: 1 with the sequence of the second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2.

4.根据段落2或3所述的多肽,其中所述至少两个突变选自由以下组成的组:SEQID NO:1的SEQ ID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或在通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的第二冠状病毒的对应残基处。4. The polypeptide according to paragraph 2 or 3, wherein the at least two mutations are selected from the group consisting of: F338L/Y365W of SEQ ID NO: 1; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513M; I377V/A363L/Y365F 58F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or at the corresponding residues of a second coronavirus determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2.

5.根据段落2-4中任一项所述的多肽,所述多肽进一步包含SEQ ID NO:1的所述RBD之外的附加氨基酸残基。5. The polypeptide according to any one of paragraphs 2-4, further comprising additional amino acid residues outside the RBD of SEQ ID NO: 1.

6.根据段落2-5中任一项所述的多肽,其中所述冠状病毒受体结合结构域(RBD)包含与SEQ ID NO:1的残基328-531至少95%的同一性。6. A polypeptide according to any one of paragraphs 2-5, wherein the coronavirus receptor binding domain (RBD) comprises at least 95% identity with residues 328-531 of SEQ ID NO:1.

7.根据段落2-6中任一项所述的多肽,其中在SEQ ID NO:1的氨基酸338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处或在第二冠状病毒受体结合结构域的对应残基处的至少两个突变是在受体结合结构域中相对于野生型的唯一突变。7. A polypeptide according to any of paragraphs 2-6, wherein at amino acids 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or at least two mutations at 338, 358, 363 and 365 or at corresponding residues in a second coronavirus receptor binding domain are unique mutations in the receptor binding domain relative to wild type.

8.根据段落2-7中任一项所述的多肽,其中当在细胞中表达时,所述多肽的表达与缺乏所述至少两个突变的所述野生型RBD多肽的表达相比增多。8. A polypeptide according to any one of paragraphs 2-7, wherein when expressed in a cell, expression of the polypeptide is increased compared to expression of the wild-type RBD polypeptide lacking the at least two mutations.

9.根据段落2-8中任一项所述的多肽,其中所述多肽结合冠状病毒抗体或结合冠状病毒同源受体。9. A polypeptide according to any one of paragraphs 2-8, wherein the polypeptide binds to a coronavirus antibody or binds to a coronavirus cognate receptor.

10.根据段落9所述的多肽,其中所述冠状病毒抗体包括SARS-CoV-2抗体。10. The polypeptide of paragraph 9, wherein the coronavirus antibody comprises a SARS-CoV-2 antibody.

11.根据段落9或10所述的多肽,其中针对与所述多肽对应的所述冠状病毒的所述受体包括血管紧张素转换酶(ACE)受体。11. The polypeptide of paragraph 9 or 10, wherein the receptor for the coronavirus corresponding to the polypeptide comprises angiotensin converting enzyme (ACE) receptor.

12.根据段落11所述的多肽,其中所述ACE受体是ACE2受体。12. The polypeptide according to paragraph 11, wherein the ACE receptor is an ACE2 receptor.

13.根据段落2-12中任一项所述的多肽,其中所述第二冠状病毒包含选自以下的冠状病毒的序列:严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2)、严重急性呼吸综合征相关冠状病毒(SARS-CoV);中东呼吸综合征(MERS);229E;NL63;OC43;或HKU1。13. A polypeptide according to any one of paragraphs 2-12, wherein the second coronavirus comprises a sequence of a coronavirus selected from the group consisting of severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-associated coronavirus (SARS-CoV); Middle East respiratory syndrome (MERS); 229E; NL63; OC43; or HKU1.

14.根据段落2-13中任一项所述的多肽,其中所述多肽包含与SEQ ID NO:1至少90%的序列同一性。14. The polypeptide of any of paragraphs 2-13, wherein the polypeptide comprises at least 90% sequence identity to SEQ ID NO: 1.

15.根据段落2-14中任一项所述的多肽,其中所述RBD融合至第二异源多肽。15. The polypeptide of any one of paragraphs 2-14, wherein the RBD is fused to a second heterologous polypeptide.

16.根据段落15所述的多肽,其中所述RBD融合至纳米粒子、纳米结构或异源蛋白质支架。16. The polypeptide of paragraph 15, wherein the RBD is fused to a nanoparticle, nanostructure or heterologous protein scaffold.

17.根据段落2-16中任一项所述的多肽,其中所述RBD多肽和/或所述第二多肽是抗原性多肽。17. The polypeptide of any one of paragraphs 2-16, wherein the RBD polypeptide and/or the second polypeptide is an antigenic polypeptide.

18.一种组合物,所述组合物包含根据段落1-17中任一项所述的多肽和药学上可接受的载体。18. A composition comprising the polypeptide according to any one of paragraphs 1-17 and a pharmaceutically acceptable carrier.

19.根据段落18所述的组合物,所述组合物进一步包含佐剂。19. The composition according to paragraph 18, further comprising an adjuvant.

20.根据段落18或19所述的组合物,其中所述组合物的保质期比包含缺乏所述至少两个突变的野生型RBD多肽的组合物更长。20. The composition of paragraph 18 or 19, wherein the composition has a longer shelf life than a composition comprising a wild-type RBD polypeptide lacking the at least two mutations.

21.根据段落18-20中任一项所述的组合物,其中所述组合物被配制为疫苗。21. The composition of any of paragraphs 18-20, wherein the composition is formulated as a vaccine.

22.一种包含至少两个突变的非天然存在的冠状病毒刺突蛋白亚基1多肽,其中所述至少两个突变包括至少一个空腔填充突变和至少一个第二突变。22. A non-naturally occurring coronavirus spike protein subunit 1 polypeptide comprising at least two mutations, wherein the at least two mutations include at least one cavity filling mutation and at least one second mutation.

23.根据段落22所述的冠状病毒多肽,其中相对于缺乏所述至少一个空腔填充突变和所述至少第二突变的野生型多肽的稳定性,所述至少两个突变增强了所述冠状病毒多肽的稳定性。23. A coronavirus polypeptide according to paragraph 22, wherein the at least two mutations enhance the stability of the coronavirus polypeptide relative to the stability of a wild-type polypeptide lacking the at least one cavity-filling mutation and the at least second mutation.

24.根据段落22或23所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括所述冠状病毒刺突蛋白亚基1的亚油酸结合袋中的残基的突变。24. A coronavirus polypeptide according to paragraph 22 or 23, wherein the at least one cavity-filling mutation comprises a mutation of a residue in the linoleic acid binding pocket of subunit 1 of the coronavirus spike protein.

25.根据段落22-24中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括在SEQ ID NO:1的残基328-531内的残基的突变,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的对应残基处的突变。25. A coronavirus polypeptide according to any of paragraphs 22-24, wherein the at least one cavity-filling mutation comprises a mutation of a residue within residues 328-531 of SEQ ID NO: 1, or a mutation at the corresponding residue of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2.

26.根据段落22-25任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括SEQ ID NO:1的在残基335-345、355-375、或378-395之间的残基的突变,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的对应残基处的突变。26. A coronavirus polypeptide according to any of paragraphs 22-25, wherein the at least one cavity-filling mutation comprises a mutation of a residue between residues 335-345, 355-375, or 378-395 of SEQ ID NO: 1, or a mutation at the corresponding residue of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2.

27.根据段落22-26中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括SEQ ID NO:1的在氨基酸336、338、341、342、358、361、363、365、368、374、377、387或392处的残基的突变,或如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与所述第二冠状病毒的所述序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基的突变。27. A coronavirus polypeptide according to any of paragraphs 22-26, wherein the at least one cavity-filling mutation comprises a mutation of a residue at amino acid 336, 338, 341, 342, 358, 361, 363, 365, 368, 374, 377, 387 or 392 of SEQ ID NO: 1, or a mutation of the corresponding residue of the second coronavirus spike protein subunit 1 as determined by sequence alignment of SEQ ID NO: 1 with the sequence of the second coronavirus using the Blast-p parameters of Protocol 1 or Protocol 2.

28.根据段落22-27中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变和所述至少一个第二突变在SEQ ID NO:1的残基338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基处。28. A coronavirus polypeptide according to any one of paragraphs 22-27, wherein the at least one cavity filling mutation and the at least one second mutation are in SEQ ID 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or 338, 358, 363 and 365 of NO:1, or by using the Blast-p parameters of Protocol 1 or Protocol 2 to convert SEQ ID NO: NO: 1 is compared with the sequence of the second coronavirus spike protein subunit 1 and determined by comparing the sequence of the second coronavirus spike protein subunit 1 with the corresponding residues of the second coronavirus spike protein subunit 1.

29.根据段落22-28中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变和所述至少一个第二突变选自由以下组成的组:SEQ ID NO:1的F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M,或选自如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基。29. A coronavirus polypeptide according to any one of paragraphs 22-28, wherein the at least one cavity filling mutation and the at least one second mutation are selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I358F/Y365W; I358F/Y365W/L513M; I358 8F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M, or selected from the corresponding residues of the second coronavirus spike protein subunit 1 as determined by sequence alignment of SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2.

30.根据段落22-29中任一项所述的冠状病毒多肽,其中所述冠状病毒刺突蛋白亚基1多肽包含与SEQ ID NO:1的残基328-531或如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的受体结合结构域序列的至少95%的同一性。30. A coronavirus polypeptide according to any of paragraphs 22-29, wherein the coronavirus spike protein subunit 1 polypeptide comprises at least 95% identity to residues 328-531 of SEQ ID NO: 1 or the receptor binding domain sequence of the second coronavirus spike protein subunit 1 as determined by aligning SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2.

31.根据段落22-30中任一项所述的冠状病毒刺突蛋白亚基1多肽,其中在SEQ IDNO:1的氨基酸338和365;365和513;365和392;338、363、365和377;365和392;365和395;365、392和395;365、513和515;338、363和365;338、358和365;358、365和513;358、365和392;338、358、363、365和377;358、365和392;358、365和395;358、365、392和395;358、365、513和515;和/或338、358、363和365处或在第二冠状病毒受体结合结构域的对应残基处的至少两个突变是在刺突蛋白亚基1中相对于SEQ ID NO:1的唯一突变。31. The coronavirus spike protein subunit 1 polypeptide of any of paragraphs 22-30, wherein at amino acids 338 and 365; 365 and 513; 365 and 392; 338, 363, 365 and 377; 365 and 392; 365 and 395; 365, 392 and 395; 365, 513 and 515; 338, 363 and 365; 338, 358 and 365; 358, 365 and 513; 358, 365 and 392 of SEQ ID NO: 1; 338, 358, 363, 365 and 377; 358, 365 and 392; 358, 365 and 395; 358, 365, 392 and 395; 358, 365, 513 and 515; and/or at least two mutations at 338, 358, 363 and 365 or at corresponding residues in the second coronavirus receptor binding domain are unique mutations in spike protein subunit 1 relative to SEQ ID NO: 1.

32.根据段落22-31中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽包含与SEQ ID NO:1或与第二冠状病毒的野生型刺突蛋白亚基1氨基酸序列至少95%的同一性。32. The coronavirus polypeptide of any one of paragraphs 22-31, wherein the coronavirus polypeptide comprises at least 95% identity to SEQ ID NO: 1 or to the wild-type spike protein subunit 1 amino acid sequence of a second coronavirus.

33.根据段落22-32中任一项所述的冠状病毒多肽,其中当在细胞中表达时,所述冠状病毒多肽的表达与缺乏所述至少一个空腔填充突变和所述至少一个第二突变的野生型多肽在相同表达条件下的表达相比增多。33. The coronavirus polypeptide of any one of paragraphs 22-32, wherein when expressed in a cell, expression of the coronavirus polypeptide is increased compared to expression of a wild-type polypeptide lacking the at least one cavity-filling mutation and the at least one second mutation under the same expression conditions.

34.根据段落22-33中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽结合冠状病毒抗体或结合同源冠状病毒受体。34. A coronavirus polypeptide according to any one of paragraphs 22-33, wherein the coronavirus polypeptide binds to a coronavirus antibody or binds to a cognate coronavirus receptor.

35.根据段落34所述的冠状病毒多肽,其中所述冠状病毒抗体包括SARS-CoV-2抗体。35. A coronavirus polypeptide according to paragraph 34, wherein the coronavirus antibody comprises a SARS-CoV-2 antibody.

36.根据段落35所述的冠状病毒多肽,所述同源冠状病毒受体包括血管紧张素转换酶(ACE)受体。36. The coronavirus polypeptide of paragraph 35, wherein the cognate coronavirus receptor comprises angiotensin converting enzyme (ACE) receptor.

37.根据段落36所述的冠状病毒多肽,其中所述ACE受体是ACE2受体。37. The coronavirus polypeptide of paragraph 36, wherein the ACE receptor is an ACE2 receptor.

38.根据段落22-37中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽是选自以下的冠状病毒的经工程化的突变多肽:严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2),严重急性呼吸综合征相关冠状病毒(SARS-CoV);中东呼吸综合征(MERS);229E;NL63;OC43;或HKU1。38. A coronavirus polypeptide according to any one of paragraphs 22-37, wherein the coronavirus polypeptide is an engineered mutant polypeptide of the following coronaviruses: severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome-associated coronavirus (SARS-CoV); Middle East respiratory syndrome (MERS); 229E; NL63; OC43; or HKU1.

39.根据段落22-38中任一项所述的冠状病毒多肽,其中所述冠状病毒刺突蛋白亚基1多肽包含与SEQ ID NO:1至少90%的序列同一性。39. The coronavirus polypeptide of any one of paragraphs 22-38, wherein the coronavirus spike protein subunit 1 polypeptide comprises at least 90% sequence identity to SEQ ID NO: 1.

40.根据段落22-39中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽融合至第二异源多肽。40. The coronavirus polypeptide of any one of paragraphs 22-39, wherein the coronavirus polypeptide is fused to a second heterologous polypeptide.

41.根据段落22-40中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽融合至纳米粒子、纳米结构或蛋白质支架。41. The coronavirus polypeptide of any one of paragraphs 22-40, wherein the coronavirus polypeptide is fused to a nanoparticle, nanostructure or protein scaffold.

42.根据段落40所述的冠状病毒多肽,其中所述冠状病毒多肽或所述第二异源多肽是抗原性多肽。42. The coronavirus polypeptide of paragraph 40, wherein the coronavirus polypeptide or the second heterologous polypeptide is an antigenic polypeptide.

43.一种组合物,所述组合物包含根据段落22-42中任一项所述的冠状病毒多肽和药学上可接受的载体。43. A composition comprising a coronavirus polypeptide according to any one of paragraphs 22-42 and a pharmaceutically acceptable carrier.

44.根据段落43所述的组合物,所述组合物进一步包含佐剂。44. The composition of paragraph 43, further comprising an adjuvant.

45.根据段落43或44所述的组合物,其中当在相同的货架条件下储存时,所述组合物的保质期比包含缺乏所述至少一个空腔填充突变和所述至少第二突变的野生型冠状病毒多肽的组合物更长。45. A composition according to paragraph 43 or 44, wherein the shelf life of the composition is longer than a composition comprising a wild-type coronavirus polypeptide lacking the at least one cavity filling mutation and the at least second mutation when stored under the same shelf conditions.

46.根据段落43-45中任一项所述的组合物,其中所述组合物被配制为疫苗。46. The composition of any of paragraphs 43-45, wherein the composition is formulated as a vaccine.

47.一种细胞,所述细胞表达根据段落1-15中任一项所述的受体结合结构域或根据段落22-42中任一项所述的冠状病毒多肽。47. A cell expressing the receptor binding domain of any one of paragraphs 1-15 or the coronavirus polypeptide of any one of paragraphs 22-42.

48.一种核酸序列,所述核酸序列编码根据段落1-15中任一项所述的受体结合结构域或根据段落22-42中任一项所述的冠状病毒多肽。48. A nucleic acid sequence encoding a receptor binding domain according to any one of paragraphs 1-15 or a coronavirus polypeptide according to any one of paragraphs 22-42.

49.一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向所述受试者施用根据段落21或段落46所述的组合物。49. A method of vaccinating a subject against a coronavirus, the method comprising administering to the subject a composition according to paragraph 21 or paragraph 46.

50.一种制备疫苗的方法,所述方法包括将根据段落1-15或22-42中任一项所述的组合物与佐剂和药学上可接受的载体组合。50. A method of preparing a vaccine, the method comprising combining the composition of any of paragraphs 1-15 or 22-42 with an adjuvant and a pharmaceutically acceptable carrier.

51.一种冠状病毒刺突蛋白,所述冠状病毒刺突蛋白包含根据段落1-25中任一项所述的多肽。51. A coronavirus spike protein comprising a polypeptide according to any one of paragraphs 1-25.

52.根据前述段落中任一项所述的方法或组合物,其中协议1的Blast-p参数包括:52. The method or composition of any of the preceding paragraphs, wherein the Blast-p parameters of Protocol 1 include:

算法:blastp(蛋白质-蛋白质BLAST)Algorithm: blastp (protein-protein BLAST)

预期阈值:0.1Expected threshold: 0.1

字长:6Word length: 6

查询范围内的最大匹配:0Maximum matches within query range: 0

矩阵:BLOSUM62Matrix: BLOSUM62

空位成本:Vacancy cost:

存在:11Presence: 11

延伸:1Extension: 1

过滤低复杂度区域?:否Filter low complexity areas?: No

掩码:Mask:

仅用于查找表?:否For lookup table only? : No

小写字母?:否。Lowercase letters?: No.

53.根据前述段落中任一项所述的方法或组合物,其中协议2的Blast-p参数包括:53. A method or composition according to any of the preceding paragraphs, wherein the Blast-p parameters of Protocol 2 include:

blastp-查询查询.fasta-主题sbjct.fasta-矩阵BLOSUM62-evalue 0.1-字长6-空位打开11-空位延伸1-输出results.txtblastp -query query.fasta -subject sbjct.fasta -matrix BLOSUM62 -evalue 0.1 -wordlength 6 -gap opening 11 -gap extension 1 -output results.txt

(blastp-query query.fasta-subject sbjct.fasta-matrix BLOSUM62-evalue0.1-(blastp-query query.fasta-subject sbjct.fasta-matrix BLOSUM62-evalue0.1-

word size 6-gapopen 11-gapextend 1-out results.txt)。word size 6-gapopen 11-gapextend 1-out results.txt).

54.一种包含冠状病毒受体结合结构域(RBD)的多肽,所述冠状病毒RBD包含相对于SEQ ID NO:1的冠状病毒多肽或其变体的选自由以下组成的组的突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。54. A polypeptide comprising a coronavirus receptor binding domain (RBD), wherein the coronavirus RBD comprises a mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L relative to a coronavirus polypeptide or a variant thereof of SEQ ID NO:1.

55.根据段落54所述的多肽,其中所述突变选自由以下组成的组:I358F、Y365F、Y365W、V367F和F392W。55. The polypeptide of paragraph 54, wherein the mutation is selected from the group consisting of I358F, Y365F, Y365W, V367F and F392W.

56.根据段落54或段落55所述的多肽,其中所述多肽包含选自由以下组成的组的第二突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M、和F515L。56. The polypeptide of paragraph 54 or paragraph 55, wherein the polypeptide comprises a second mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M, and F515L.

57.根据段落58所述的多肽,其中所述多肽包含选自由以下组成的组的第三突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M、和F515L。57. The polypeptide of paragraph 58, wherein the polypeptide comprises a third mutation selected from the group consisting of I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M, and F515L.

58.根据段落57所述的多肽,其中所述多肽包含SEQ ID NO:4或SEQ ID NO:5的多肽序列。58. The polypeptide according to paragraph 57, wherein the polypeptide comprises the polypeptide sequence of SEQ ID NO:4 or SEQ ID NO:5.

59.根据段落54-58中任一项所述的多肽,其中所述多肽包含异源蛋白质支架。59. The polypeptide of any of paragraphs 54-58, wherein the polypeptide comprises a heterologous protein scaffold.

60.根据段落58所述的多肽,其中所述异源蛋白质支架与SEQ ID NO:3的多肽序列具有至少90%、至少95%、或至少98%的同一性。60. The polypeptide of paragraph 58, wherein the heterologous protein scaffold is at least 90%, at least 95%, or at least 98% identical to the polypeptide sequence of SEQ ID NO:3.

61.根据段落59所述的多肽,其中所述异源蛋白质支架包含SEQ ID NO:3的多肽。61. The polypeptide of paragraph 59, wherein the heterologous protein scaffold comprises the polypeptide of SEQ ID NO:3.

62.根据段落61所述的多肽,其中所述多肽包含SEQ ID NO:6或SEQ ID NO:7的多肽序列。62. The polypeptide according to paragraph 61, wherein the polypeptide comprises the polypeptide sequence of SEQ ID NO: 6 or SEQ ID NO: 7.

63.一种多肽复合物,所述多肽复合物包含或由以下组成:由根据段落59-62中任一项所述的多肽组成的第一组分和与SEQ ID NO:13-18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性的第二组分。63. A polypeptide complex comprising or consisting of: a first component consisting of a polypeptide according to any one of paragraphs 59-62 and a second component having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity with any one of SEQ ID NOs: 13-18.

64.一种疫苗组合物,所述疫苗组合物包含根据段落54-62中任一项所述的组合物或根据段落63所述的多肽复合物。64. A vaccine composition comprising the composition according to any one of paragraphs 54-62 or the polypeptide complex according to paragraph 63.

65.根据段落64所述的疫苗组合物,所述疫苗组合物进一步包含药学上可接受的载体。65. The vaccine composition according to paragraph 64, further comprising a pharmaceutically acceptable carrier.

66.根据段落64或段落65所述的疫苗组合物,所述疫苗组合物进一步包含佐剂。66. The vaccine composition of paragraph 64 or paragraph 65, further comprising an adjuvant.

67.一种细胞,所述细胞表达根据段落54-62中任一项所述的多肽。67. A cell expressing the polypeptide of any of paragraphs 54-62.

68.一种核酸,所述核酸编码根据段落54-62中任一项所述的多肽。68. A nucleic acid encoding the polypeptide of any of paragraphs 54-62.

69.一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向所述受试者施用根据段落54-62中任一项所述的多肽、根据段落63的所述蛋白质复合物或根据段落64-68中任一项所述的疫苗组合物。69. A method of vaccinating a subject against a coronavirus, the method comprising administering to the subject a polypeptide according to any of paragraphs 54-62, a protein complex according to paragraph 63, or a vaccine composition according to any of paragraphs 64-68.

70.一种制备疫苗的方法,所述方法包括将根据段落54-62中任一项所述的多肽与佐剂和药学上可接受的载体组合。70. A method of preparing a vaccine, the method comprising combining the polypeptide of any of paragraphs 54-62 with an adjuvant and a pharmaceutically acceptable carrier.

71.一种制备疫苗的方法,所述方法包括将以下进行组合:由根据段落59-62中任一项所述的多肽组成的第一组分;与SEQ ID NO:13-18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性的第二组分;药学上可接受的载体;以及任选的佐剂。71. A method of preparing a vaccine, the method comprising combining: a first component consisting of a polypeptide according to any one of paragraphs 59-62; a second component having at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identity to any one of SEQ ID NOs: 13-18; a pharmaceutically acceptable carrier; and optionally an adjuvant.

72.一种非天然存在的多肽,所述非天然存在的多肽包含第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少一个突变,其中所述至少一个突变选自由以下组成的组:SEQ ID NO:1的I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L,或第二冠状病毒参考序列,其中第二冠状病毒参考序列中的对应位点是通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的刺突蛋白序列进行序列比对所确定的。72. A non-naturally occurring polypeptide comprising a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising at least 90% identity to residues 328-531 of SEQ ID NO:1, and further comprising at least one mutation relative to the RBD of SEQ ID NO:1, wherein the at least one mutation is selected from the group consisting of: I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L of SEQ ID NO:1, or a second coronavirus reference sequence, wherein the corresponding sites in the second coronavirus reference sequence are obtained by converting SEQ ID NO:1 to a residue 328-531 of SEQ ID NO:1 using the Blast-p parameters of protocol 1 or protocol 2. NO:1 was determined by sequence alignment with the spike protein sequence of the second coronavirus receptor binding domain.

73.根据段落72所述的多肽,其中所述多肽包含选自以下的两个或更多个突变:F338L/Y365W;Y365W/L513M;Y365W/F392W;F338M/A363L/Y365F/F377V;Y365F/F392W;Y365F/V395I;Y365F/F392W/V395I;Y365W/L513I/F515L;F338L/A363L/Y365M;F338L/I358F/Y365W;I358F/Y365W/L513M;I358F/Y365W/F392W;F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;I358F/Y365F/V395I;I358F/Y365F/F392W/V395I;I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M。73. A polypeptide according to paragraph 72, wherein the polypeptide comprises two or more mutations selected from the group consisting of: F338L/Y365W; Y365W/L513M; Y365W/F392W; F338M/A363L/Y365F/F377V; Y365F/F392W; Y365F/V395I; Y365F/F392W/V395I; Y365W/L513I/F515L; F338L/A363L/Y365M; F338L/I35 8F/Y365W; I358F/Y365W/L513M; I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I; I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M.

实施例Example

实施例1Example 1

理想的基于蛋白质的冠状病毒疫苗必须既高效又可扩展制造,其中后一性质在很大程度上受疫苗产率和稳定性的影响。使用RNA或DNA免疫的遗传疫苗也被更频繁地针对SARS-CoV-2探索,其功效受靶抗原表达水平的影响。许多冠状病毒、尤其是SARS-CoV-2和相关的sarbecoviruses(冠状病毒亚属)的受体结合结构域(RBD)由于许多强中和的RBD定向抗体的分离而被认为是非常有价值的基于结构域的疫苗靶标。虽然RBD适合以多种形式生产,但其产率和稳定性的限制可能会阻碍基于RBD的蛋白质疫苗的可扩展制造和分销。An ideal protein-based coronavirus vaccine must be both highly efficient and scalable to manufacture, with the latter property being largely influenced by vaccine yield and stability. Genetic vaccines using RNA or DNA immunization have also been more frequently explored against SARS-CoV-2, with their efficacy being influenced by the level of target antigen expression. The receptor binding domain (RBD) of many coronaviruses, especially SARS-CoV-2 and related sarbecoviruses (coronavirus subgenus), is considered to be a very valuable domain-based vaccine target due to the isolation of many strongly neutralizing RBD-directed antibodies. Although the RBD is amenable to production in a variety of formats, its yield and stability limitations may hinder the scalable manufacturing and distribution of RBD-based protein vaccines.

本文提供了冠状病毒受体结合结构域(RBD)多肽中的示例性突变,所述突变被设计为提高含有此类冠状病毒RBD的免疫原的产率和稳定性。含有受体结合结构域的免疫原是用稳定化突变集合产生的,除了与具有天然(即,野生型)RBD序列的等效免疫原相比在溶液中的稳定性有所提高外,还表现出高度改善的表达和/或产率。正如本领域技术人员可理解的,给定蛋白质的表达增加可能部分是由于该蛋白质的稳定性提高。如通过SARS-CoV-2定向抗体和ACE2受体所验证的,所设计的免疫原在抗原性上是完整的。总的来说,这些突变集合允许提高可扩展地制造针对多种冠状病毒的疫苗的能力,这也可有助于针对RBD的遗传疫苗的性能。Provided herein are exemplary mutations in coronavirus receptor binding domain (RBD) polypeptides, which are designed to improve the yield and stability of immunogens containing such coronavirus RBDs. Immunogens containing receptor binding domains are produced with stabilizing mutation sets, and in addition to having improved stability in solution compared to equivalent immunogens with natural (i.e., wild-type) RBD sequences, also show highly improved expression and/or yield. As will be appreciated by those skilled in the art, the increased expression of a given protein may be due in part to the improved stability of the protein. As verified by SARS-CoV-2 directed antibodies and ACE2 receptors, the designed immunogens are complete in antigenicity. In general, these mutation sets allow for improved ability to scalably manufacture vaccines for a variety of coronaviruses, which can also contribute to the performance of genetic vaccines for RBD.

基础序列和突变数:SARS-CoV-2序列(SEQ ID NO:1)贯穿本说明书中用作其他冠状病毒中的突变编号的基础。SARS-CoV-2序列的受体结合结构域如下以粗体加下划线文本所示(SEQ ID NO:2):以下序列(或其受体结合结构域;SEQ ID NO:2)可与至少第二冠状病毒序列进行比对。Base sequence and mutation numbers: The SARS-CoV-2 sequence (SEQ ID NO: 1) is used throughout this specification as the basis for mutation numbering in other coronaviruses. The receptor binding domain of the SARS-CoV-2 sequence is shown below in bold underlined text (SEQ ID NO: 2): The following sequence (or its receptor binding domain; SEQ ID NO: 2) can be aligned with at least a second coronavirus sequence.

可增强冠状病毒蛋白的产率和稳定性两者的突变的示例性列表在以下列表中提供(所有氨基酸残基编号均基于上述“基础序列”(SEQ ID NO:1)):An exemplary list of mutations that can enhance both the yield and stability of coronavirus proteins is provided in the following list (all amino acid residue numbers are based on the above-mentioned "base sequence" (SEQ ID NO: 1)):

1.F338L/Y365W,1.F338L/Y365W,

2.Y365W/L513M,2.Y365W/L513M,

3.Y365W/F392W,3.Y365W/F392W,

4.F338M/A363L/Y365F/F377V,4.F338M/A363L/Y365F/F377V,

5.Y365F/F392W,5.Y365F/F392W,

6.Y365F/V395I,6.Y365F/V395I,

7.Y365F/F392W/V395I,7.Y365F/F392W/V395I,

8.Y365W/L513I/F515L,8.Y365W/L513I/F515L,

9.F338L/A363L/Y365M,9.F338L/A363L/Y365M,

10.F338L/I358F/Y365W,10.F338L/I358F/Y365W,

11.I358F/Y365W/L513M,11.I358F/Y365W/L513M,

12.I358F/Y365W/F392W,12.I358F/Y365W/F392W,

13.F338M/I358F/A363L/Y365F/F377V,13.F338M/I358F/A363L/Y365F/F377V,

14.I358F/Y365F/F392W,14.I358F/Y365F/F392W,

15.I358F/Y365F/V395I,15.I358F/Y365F/V395I,

16.I358F/Y365F/F392W/V395I,16.I358F/Y365F/F392W/V395I,

17.I358F/Y365W/L513I/F515L,17.I358F/Y365W/L513I/F515L,

18.F338L/I358F/A363L/Y365M,18.F338L/I358F/A363L/Y365M,

19.I358F/Y365W,和19.I358F/Y365W, and

20.I358F/F392W。20.I358F/F392W.

材料和方法Materials and methods

表达和蛋白质纯化:使用XbaI和AvrII限制性位点在pCMV/R载体中克隆用16残基接头遗传融合到I53-50三聚体“A”组分的编码突变受体结合结构域的基因(SEQ ID NO:1的天然受体结合结构域残基328-531,或来自变体(例如B.1.351变体)的等效序列)。Expression and protein purification: The gene encoding the mutant receptor binding domain (native receptor binding domain residues 328-531 of SEQ ID NO: 1, or the equivalent sequence from a variant (e.g., the B.1.351 variant)) genetically fused to the "A" component of the I53-50 trimer with a 16-residue linker was cloned in the pCMV/R vector using the XbaI and AvrII restriction sites.

I53-50三聚体“A”组分的序列是:The sequence of the "A" component of the I53-50 trimer is:

MKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPMKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVP

DADTVIKALSVLKEKGAIIGAGTVTSVEQCRKAVESGAEFIVSPHLDDADTVIKALSVLKEKGAIIGAGTVTSVEQCRKAVESGAEFIVSPHLD

EEISQFCKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQEEISQFCKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQ

FVKAMKGPFPNVKFVPTGGVNLDNVCEWFKAGVLAVGVGSALVKFVKAMKGPFPNVKFVPTGGVNLDNVCEWFKAGVLAVGVGSALVK

GTPDEVREKAKAFVEKIRGCTE(SEQ ID NO:3)GTPDEVREKAKAFVEKIRGCTE(SEQ ID NO:3)

所有序列前面都有“MGILPSPGMPALLSLVSLLSVLLMGCVAETGT”分泌信号,并在C末端用“GGSHHHHHHHH”序列标记以允许纯化。在一些实施方案中,I53-50三聚体组分的N末端甲硫氨酸被螺旋序列“EKAAKAEEAAR”替换以提高抗原的可及性。I53-50三聚体组分中的所有半胱氨酸都突变为丙氨酸。人类ACE2胞外域遗传融合到编码凝血酶切割位点和C末端处的人类Fc片段的序列。由GenScript用BM40信号肽合成和克隆hACE2-Fc。编码CR3022重链和轻链的基因从GenScript订购并克隆到pCMV/R中。All sequences are preceded by a "MGILPSPGMPALLSLVSLLSVLLMGCVAETGT" secretion signal and tagged at the C-terminus with a "GGSHHHHHHHH" sequence to allow purification. In some embodiments, the N-terminal methionine of the I53-50 trimer component is replaced with the helical sequence "EKAAKAEEAAR" to improve antigen accessibility. All cysteines in the I53-50 trimer component are mutated to alanine. The human ACE2 extracellular domain is genetically fused to sequences encoding the thrombin cleavage site and the human Fc fragment at the C-terminus. hACE2-Fc was synthesized and cloned by GenScript with the BM40 signal peptide. Genes encoding the CR3022 heavy and light chains were ordered from GenScript and cloned into pCMV/R.

所有蛋白均在使用Expi293F表达培养基(Life Technologies),在33℃、70%湿度、8% CO2下在150rpm下旋转,在悬浮液中生长的Expi293F细胞中产生。使用PEI-MAX(Polyscience)转染细胞培养物,细胞生长至300万个细胞/mL的密度并培养3天。通过在4000rcf下离心、添加PDADMAC至终浓度为0.0375%(Sigma Aldrich),并在4000rcf下第二次自旋来使上清液澄清。All proteins were produced in Expi293F cells grown in suspension using Expi293F expression medium (Life Technologies) at 33°C, 70% humidity, 8% CO2 at 150 rpm. Cell cultures were transfected with PEI-MAX (Polyscience) and grown to a density of 3 million cells/mL and cultured for 3 days. The supernatant was clarified by centrifugation at 4000 rcf, addition of PDADMAC to a final concentration of 0.0375% (Sigma Aldrich), and a second spin at 4000 rcf.

将含有His标签的蛋白质经由分批结合法从澄清的上清液中纯化,其中每个澄清的上清液补充有1M Tris-HCl pH 8.0至终浓度为45mM和5M NaCl至最终浓度为约310mM。将Talon钴亲和树脂(Takara)添加到经处理的上清液中,并在轻轻振荡下孵育15分钟。使用用0.2μm过滤器进行的真空过滤来收集树脂,并将其转移到重力柱中。用20mM Tris pH 8.0、300mM NaCl洗涤树脂,并用3个柱体积的20mM Tris pH 8.0、300mM NaCl、300mM咪唑洗脱蛋白质。在AKTA Avant150 FPLC(Cytiva)上使用MabSelect PrismA 2.6×5cm柱(Cytiva)纯化表达单克隆抗体和人ACE2-Fc的细胞的澄清上清液。将结合的抗体用五个柱体积的20mMNaPO4、150mM NaCl pH 7.2洗涤,然后用五个柱体积的20mM NaPO4、1M NaCl pH 7.4洗涤,并且用三个柱体积的pH 3.0的100mM甘氨酸洗脱。将洗脱液用2M Trizma碱中和至50mM终浓度。The protein containing the His tag was purified from the clarified supernatant via a batch binding method, wherein each clarified supernatant was supplemented with 1M Tris-HCl pH 8.0 to a final concentration of 45mM and 5M NaCl to a final concentration of about 310mM. Talon cobalt affinity resin (Takara) was added to the treated supernatant and incubated for 15 minutes under gentle shaking. The resin was collected using vacuum filtration with a 0.2 μm filter and transferred to a gravity column. The resin was washed with 20mM Tris pH 8.0, 300mM NaCl, and the protein was eluted with 3 column volumes of 20mM Tris pH 8.0, 300mM NaCl, 300mM imidazole. The clarified supernatant of cells expressing monoclonal antibodies and human ACE2-Fc was purified using MabSelect PrismA 2.6×5cm columns (Cytiva) on AKTA Avant150 FPLC (Cytiva). The bound antibody was washed with five column volumes of 20 mM NaPO4, 150 mM NaCl pH 7.2, then five column volumes of 20 mM NaPO4, 1 M NaCl pH 7.4, and eluted with three column volumes of 100 mM glycine, pH 3.0. The eluate was neutralized with 2 M Trizma base to a final concentration of 50 mM.

生物层干涉测量:为了测量上清液中蛋白质的分泌水平,将来自蛋白质表达的所有上清液按1:10稀释到KB1(25mM Tris pH 8.0、150mM NaCl、0.5%牛血清白蛋白和0.01%TWEEN-20)中。将纯化的ACE2-Fc或CR3022抗体以0.02mg/mL稀释到KB1中,并使用8通道Octet系统(Pall FortéBio/Sartorius)在AHC尖端(Pall FortéBio/Sartorius)上固定300秒。在KB1中收集60秒的基线后,将传感器暴露于稀释的ACE2-Fc或CR3022溶液中的每一者达300秒,然后在KB1中进行300秒的解离步骤。对于亲和力测量,所有蛋白质和抗体均以200μL/孔稀释到黑色96孔Greiner Bio-one微孔板中含有0.5%牛血清白蛋白和0.01%TWEEN-20(KB2)的磷酸盐缓冲盐水中,其中基线和解离步骤使用单独的缓冲液。将10μg/mL的CV30或CR3022 IgG加载到预水合的蛋白A生物传感器(Pall FortéBio/Sartorius)上,持续150s,然后是60s的基线。然后将生物传感器转移到与野生型或稳定化的单体RBD的五个连续两倍稀释之一缔合的步骤中达120s,其中RBD浓度对于CV30为125μM、62.5μM、31.3μM、15.6μM和7.8μM并且对于CR3022为31.3μM、15.6μM、7.8μM、3.9μM和2.0μM。在缔合后,将生物传感器转移到缓冲液中进行300s的解离。将来自缔合和解离步骤的数据减去基线,并使用1:1结合模型(FortéBio分析软件,版本12.0)跨RBD的所有五种连续稀释液全局地计算动力学测量值。对于纳米粒子免疫原的分级抗原性测量,在环境温度下以1000rpm振荡分析hACE2-Fc(二聚化受体)和CR3022IgG与单体RBD和RBD-I53-50纳米粒子的结合。在动力学缓冲液(Pall FortéBio/Sartorius)中将蛋白质样品稀释至100nM。然后将缓冲液、抗体、受体和免疫原以200μL/孔施加至黑色96孔Greiner Bio-one微孔板。将蛋白A生物传感器首先在动力学缓冲液中水合10min,然后在固定步骤中浸入在动力学缓冲液中稀释至10μg/mL的hACE2-Fc或CR3022中。在500s后,将尖端转移到Kinetics缓冲液中达90s以达到基线。缔合步骤是通过将加载的生物传感器浸入免疫原中300s来执行的,并且随后的解离步骤是通过将生物传感器浸回动力学缓冲液中达附加300s执行的。在使用FortéBio分析软件(第12.0版)绘图之前,将数据减去基线。Biolayer interferometry: To measure secretion levels of proteins in the supernatant, all supernatants from protein expression were diluted 1:10 into KB1 (25mM Tris pH 8.0, 150mM NaCl, 0.5% bovine serum albumin, and 0.01% TWEEN-20). Purified ACE2-Fc or CR3022 antibodies were diluted into KB1 at 0.02mg/mL and immobilized on an AHC tip (Pall FortéBio/Sartorius) for 300 seconds using an 8-channel Octet system (Pall FortéBio/Sartorius). After collecting a 60-second baseline in KB1, the sensor was exposed to each of the diluted ACE2-Fc or CR3022 solutions for 300 seconds, followed by a 300-second dissociation step in KB1. For affinity measurements, all proteins and antibodies were diluted at 200 μL/well into black 96-well Greiner Bio-one microplates in phosphate-buffered saline containing 0.5% bovine serum albumin and 0.01% TWEEN-20 (KB2), with separate buffers used for baseline and dissociation steps. 10 μg/mL of CV30 or CR3022 IgG was loaded onto prehydrated protein A biosensors (Pall FortéBio/Sartorius) for 150 s, followed by a 60 s baseline. The biosensor was then transferred to a step of association with one of five serial two-fold dilutions of wild-type or stabilized monomeric RBD for 120 s, wherein the RBD concentrations were 125 μM, 62.5 μM, 31.3 μM, 15.6 μM and 7.8 μM for CV30 and 31.3 μM, 15.6 μM, 7.8 μM, 3.9 μM and 2.0 μM for CR3022. After association, the biosensor was transferred to the buffer for 300 s of dissociation. The data from the association and dissociation steps were subtracted from the baseline, and the kinetic measurements were calculated globally across all five serial dilutions of RBD using a 1:1 binding model (FortéBio analysis software, version 12.0). For the hierarchical antigenicity measurement of nanoparticle immunogens, the binding of hACE2-Fc (dimeric receptor) and CR3022 IgG to monomeric RBD and RBD-I53-50 nanoparticles was analyzed at ambient temperature with 1000 rpm oscillation. Protein samples were diluted to 100 nM in kinetic buffer (Pall FortéBio/Sartorius). Buffer, antibody, receptor and immunogen were then applied to black 96-well Greiner Bio-one microplates at 200 μL/well. Protein A biosensor was first hydrated in kinetic buffer for 10 min, then immersed in hACE2-Fc or CR3022 diluted to 10 μg/mL in kinetic buffer in the fixed step. After 500 s, the tip was transferred to Kinetics buffer for 90 s to reach baseline. The association step was performed by immersing the loaded biosensor in the immunogen for 300 s, and the subsequent dissociation step was performed by immersing the biosensor back in the kinetic buffer for an additional 300 s. Before drawing using FortéBio analysis software (version 12.0), the data was subtracted from the baseline.

热解链:基于RBD的样品在含有50mM Tris pH 8、150mM NaCl、100mM L-精氨酸、5%甘油的缓冲液中制备,而基于HexaPro-折叠子(foldon)的样品在含有50mM Tris pH8.0、150mM NaCl、0.25%w/v L-组氨酸、5%甘油的缓冲液中制备。非平衡解链温度是使用UNcleTM(UNchained Labs)基于使用1℃/分钟的热斜坡从20-95℃收集的固有色氨酸荧光发射光谱的重心均值确定的。解链温度被定义为解链曲线的一阶导数的最大值点,其中在使用二阶多项式设置对四个相邻点进行平滑化后,使用GraphPad Prism软件计算一阶导数。Thermal melting: RBD-based samples were prepared in a buffer containing 50 mM Tris pH 8, 150 mM NaCl, 100 mM L-arginine, 5% glycerol, while HexaPro-foldon-based samples were prepared in a buffer containing 50 mM Tris pH 8.0, 150 mM NaCl, 0.25% w/v L-histidine, 5% glycerol. The non-equilibrium melting temperature was determined using UNcle (UNchained Labs) based on the centroid mean of the intrinsic tryptophan fluorescence emission spectra collected from 20-95°C using a 1°C/min thermal ramp. The melting temperature was defined as the maximum point of the first derivative of the melting curve, where the first derivative was calculated using GraphPad Prism software after smoothing four adjacent points using a second-order polynomial setting.

SYPRO橙色荧光:将5000×SYPRO橙色蛋白凝胶染色剂(Thermo Fisher)稀释到25mM Tris pH 8.0、150mM NaCl、5%甘油中,并进一步添加到在相同缓冲液中制备的单体RBD中,其中RBD的终浓度为1.0mg/mL并且SYPRO橙的终浓度为20×。将样品加载到UNcle纳米DSF(UNChained Laboratories)中,并在向样品中添加SYPRO橙达5min后收集所有样品的荧光发射光谱。SYPRO Orange fluorescence: 5000× SYPRO Orange protein gel stain (Thermo Fisher) was diluted into 25 mM Tris pH 8.0, 150 mM NaCl, 5% glycerol and further added to monomeric RBD prepared in the same buffer, where the final concentration of RBD was 1.0 mg/mL and the final concentration of SYPRO Orange was 20×. The samples were loaded into UNcle nano DSF (UNChained Laboratories) and the fluorescence emission spectra of all samples were collected after adding SYPRO Orange to the samples for 5 min.

体外纳米粒子装配:通过使用UV/vis分光光度计(Agilent Cary 8454)测量280nm处的吸光度并计算消光系数来确定纯化的单个纳米粒子组分的总蛋白质浓度。装配步骤在室温下执行,其中按以下次序添加:野生型或稳定化的RBD-I53-50A三聚体融合蛋白,之后根据需要加入适量缓冲液以达到所需的终浓度,最后是I53-50B.4PT1五聚体组分(在50mMTris pH 8、500mM NaCl、0.75%w/v CHAPS中,其中RBD-I53-50A:I53-50B.4PT1的摩尔比为1.1:1。适量缓冲液含有50mM Tris pH 7.4、185mM NaCl、100mM L-精氨酸、0.75% CHAPS、4.5%甘油,或50mM Tris pH 8、150mM NaCl、100mM L-精氨酸、5%甘油)。将所有RBD-I53-50体外装配体在2-8℃下孵育至少30min,然后通过SEC进行后续纯化以去除残留的未装配组分。使用Superose 6Increase 10/300GL柱进行纳米粒子生产。将装配的粒子在Superose6柱上以约11mL洗脱。将装配的纳米粒子紧接在柱应用之前和SEC级分合并之后进行无菌过滤(0.22μm)。In vitro nanoparticle assembly: The total protein concentration of purified individual nanoparticle components was determined by measuring the absorbance at 280 nm using a UV/vis spectrophotometer (Agilent Cary 8454) and calculating the extinction coefficient. The assembly steps were performed at room temperature, where the following order was added: wild-type or stabilized RBD-I53-50A trimeric fusion protein, followed by appropriate buffer as needed to achieve the desired final concentration, and finally the I53-50B.4PT1 pentamer component (in 50mM Tris pH 8, 500mM NaCl, 0.75% w/v CHAPS, with a molar ratio of RBD-I53-50A:I53-50B.4PT1 of 1.1:1. The appropriate buffer contained 50mM Tris pH 7.4, 185mM NaCl, 100mM L-arginine, 0.75% CHAPS, 4.5% glycerol, or 50mM Tris pH 8, 150mM NaCl, 100mM L-arginine, 5% glycerol). All RBD-I53-50 in vitro assemblies were incubated at least 30 min at 2-8 ° C, and then subjected to subsequent purification by SEC to remove residual unassembled components. Nanoparticle production was carried out using Superose 6 Increase 10/300GL posts. The assembled particles were eluted with approximately 11 mL on Superose 6 posts. The assembled nanoparticles were sterile filtered (0.22 μm) immediately before post application and after SEC fractions were merged.

负染色电子显微术:野生型RBD-I53-50纳米粒子和Rpk-I53-50纳米粒子首先在50mM Tris pH 8、150mM NaCl、100mM L-精氨酸、5%v/v甘油中稀释至75μg/mL,然后将3μL的样品施加到新近辉光放电的300目铜网格上。将样品在网格上孵育1分钟,然后将网格浸入50μL水液滴中,并用滤纸(Whatman)吸去多余的液体。然后将网格浸入3μL 0.75%w/v甲酸铀酰染色剂中。用滤纸吸掉染色剂,然后将网格浸入另外6μL的染色剂中并孵育约90秒。最后,将染色剂吸干并干燥网格1分钟,然后储存或成像。将准备好的网格在Talos L120C型号透射电子显微镜中使用Gatan相机以57,000×成像。Negative stain electron microscopy: Wild-type RBD-I53-50 nanoparticles and Rpk-I53-50 nanoparticles were first diluted to 75 μg/mL in 50 mM Tris pH 8, 150 mM NaCl, 100 mM L-arginine, 5% v/v glycerol, and 3 μL of the sample was then applied to a freshly glow-discharged 300 mesh copper grid. The sample was incubated on the grid for 1 minute, and then the grid was immersed in a 50 μL drop of water and the excess liquid was blotted off with filter paper (Whatman). The grid was then immersed in 3 μL of 0.75% w/v uranyl formate stain. The stain was blotted off with filter paper, and the grid was then immersed in another 6 μL of stain and incubated for approximately 90 seconds. Finally, the stain was blotted and the grid was dried for 1 minute before storage or imaging. The prepared grid was imaged at 57,000× using a Gatan camera in a Talos L120C model transmission electron microscope.

动态光散射:动态光散射(DLS)用于在UNcle(UNchained Laboratories)测量RBD-I53-50纳米粒子样品的流体动力学直径(Dh)和多分散性(%Pd)。将样品施加至8.8μL石英毛细管盒(UNi,UNchained Laboratories),并使用激光自动衰减进行10次采集测量,每次5s。在Dh测量中由UNcle Client软件解释由于RBD纳米粒子缓冲液中的5%v/v甘油引起的粘度增加。Dynamic light scattering: Dynamic light scattering (DLS) was used to measure the hydrodynamic diameter (Dh) and polydispersity (%Pd) of RBD-I53-50 nanoparticle samples at UNcle (UNchained Laboratories). The samples were applied to 8.8 μL quartz capillary cartridges (UNi, UNchained Laboratories) and 10 acquisition measurements were performed with 5 s each using laser auto-attenuation. The viscosity increase due to 5% v/v glycerol in the RBD nanoparticle buffer was accounted for by the UNcle Client software in the Dh measurement.

氢/氘交换质谱:将3mg的RBD-I53-50A、Rpk4-I53-50A和Rpk9-I53-50A三聚体在氘化缓冲液(pH*7.5,85% D2O,Cambridge Isotope Laboratories,Inc.)中在22℃下进行H/D交换(HDX)分别达3秒、15秒、60秒、1800秒和72000秒。随后将经交换的样品以1:1与冰冷猝灭缓冲液(200mM三(2-氯乙基)磷酸盐(TCEP)、8M尿素、0.2%甲酸(FA))混合以使最终pH为2.5,并立即在液氮中快速冷冻。在Synapt G2-Si质谱仪上使用将所有色谱柱、环路、阀门和管线维持在0℃的加载系统,通过LC-MS分析样品。将冷冻样品在冰上解冻,并加载到具有200mL/min流量的0.1%三氟乙酸(TFA)和2%乙腈的固定化胃蛋白酶柱(2.1×50mm)上。肽在Waters CSH C18捕集柱(2.1×5mm)上被捕集,然后在Waters CSH C18 1×100mm 1.7μm柱上解析,其中在18min内线性梯度从3%至40% B(A:98%水、2%乙腈、0.1% FA、0.025%TFA;B:100%乙腈、0.1% FA,流率40mL/min)。在样品运行之间执行一系列洗涤,以使遗留最小化。除非特别说明,否则所使用的所有水和有机溶剂均为MS级(OptimaTM,Fisher)。通过从胃蛋白酶消化的未氘化样品中收集LC洗脱液、进行speedvac干燥、在氘化缓冲液中在85℃下孵育1小时以及与所有其他HDX样品相同地进行猝灭,对每个样品系列进行完全氘化控制。在每个样品中添加内部交换标准品(Pro-Pro-Pro-Ile[PPPI]和Pro-Pro-Pro-Phe[PPPF])以确保所有样品的标记条件一致。肽使用DriftScopeTM(Waters)进行手动验证,并使用正交保留时间和漂移时间坐标进行鉴定。使用HX-Express v2执行氘吸收分析。基于肽m/z值从肽谱中鉴别峰,并应用二项式拟合。将氘摄取水平相对于完全氘化对照归一化。Hydrogen/deuterium exchange mass spectrometry: 3 mg of RBD-I53-50A, Rpk4-I53-50A and Rpk9-I53-50A trimers were subjected to H/D exchange (HDX) at 22°C in deuterated buffer (pH*7.5, 85% D 2 O, Cambridge Isotope Laboratories, Inc.) for 3 seconds, 15 seconds, 60 seconds, 1800 seconds and 72000 seconds, respectively. The exchanged samples were then mixed 1:1 with ice-cold quenching buffer (200 mM tris(2-chloroethyl)phosphate (TCEP), 8 M urea, 0.2% formic acid (FA)) to a final pH of 2.5 and immediately flash frozen in liquid nitrogen. The samples were analyzed by LC-MS on a Synapt G2-Si mass spectrometer using a loading system that maintained all chromatographic columns, loops, valves and lines at 0°C. Frozen samples were thawed on ice and loaded onto an immobilized pepsin column (2.1×50 mm) with 0.1% trifluoroacetic acid (TFA) and 2% acetonitrile at a flow rate of 200 mL/min. Peptides were trapped on a Waters CSH C18 trap column (2.1×5 mm) and then resolved on a Waters CSH C18 1×100 mm 1.7 μm column with a linear gradient from 3% to 40% B in 18 min (A: 98% water, 2% acetonitrile, 0.1% FA, 0.025% TFA; B: 100% acetonitrile, 0.1% FA, flow rate 40 mL/min). A series of washes were performed between sample runs to minimize carryover. All water and organic solvents used were MS grade (Optima , Fisher) unless otherwise specified. A full deuteration control was performed for each sample series by collecting LC eluate from a pepsin-digested undeuterated sample, speedvac drying, incubation in deuterated buffer at 85°C for 1 hour, and quenching identically to all other HDX samples. Internal exchange standards (Pro-Pro-Pro-Ile [PPPI] and Pro-Pro-Pro-Phe [PPPF]) were added to each sample to ensure consistent labeling conditions for all samples. Peptides were manually verified using DriftScope TM (Waters) and identified using orthogonal retention time and drift time coordinates. Deuterium uptake analysis was performed using HX-Express v2. Peaks were identified from peptide spectra based on peptide m/z values and a binomial fit was applied. Deuterium uptake levels were normalized relative to the full deuteration control.

小鼠免疫:雌性BALB/c(库存号:000651)小鼠是在4周龄时从The JacksonLaboratory,Bar Harbor,Maine购买的,并在华盛顿州西雅图市华盛顿大学的由美国实验动物护理国际认证协会(AAALAC)认可的Comparative Medicine Facility中进行维护。在6周龄时,每个投配组6只小鼠接种初免疫苗,三周后小鼠接受第二次疫苗接种加强免疫。在接种前,将免疫原悬浮液与AddaVax佐剂(Invivogen,San Diego,CA)以1:1体积/体积轻轻混合,以达到0.009mg/mL或0.05mg/mL抗原的终浓度。在异氟醚麻醉下,使用27号针头(BD,San Diego,CA)向小鼠的每条后腿的腓肠肌中肌内注射,其中每个注射部位注射50μL(总共100μL)免疫原。为了获得血清,在初免疫和加强免疫两周后对所有小鼠进行采血。经由颏下静脉穿刺收集血液,并在室温下在1.5mL塑料埃彭道夫管中静置30min以进行凝血。经由以2,000g离心10min,将血清与血细胞比容分离。将分离的血清中的补体因子和病原体经由在56℃孵育60min进行热灭活。血清在使用前储存在4℃或-80℃。所有实验均根据批准的机构动物护理和使用委员会(Institutional Animal Care and Use Committee)协议在华盛顿州西雅图市华盛顿大学进行。Mouse immunization: Female BALB/c (stock number: 000651) mice were purchased from The Jackson Laboratory, Bar Harbor, Maine at 4 weeks of age and maintained in the Comparative Medicine Facility accredited by the American Association for Laboratory Animal Care International Accreditation (AAALAC) at the University of Washington in Seattle, Washington. At 6 weeks of age, 6 mice in each dosing group were vaccinated with a primary vaccination, and mice received a second vaccination booster three weeks later. Before vaccination, the immunogen suspension was gently mixed with AddaVax adjuvant (Invivogen, San Diego, CA) at 1:1 volume/volume to achieve a final concentration of 0.009 mg/mL or 0.05 mg/mL antigen. Under isoflurane anesthesia, a 27-gauge needle (BD, San Diego, CA) was used to inject intramuscularly into the gastrocnemius muscle of each hind leg of the mouse, with 50 μL (100 μL in total) of the immunogen injected at each injection site. In order to obtain serum, all mice were bled two weeks after the primary and booster immunizations. Blood was collected via submental venous puncture and allowed to stand for 30 min at room temperature in a 1.5 mL plastic Eppendorf tube for coagulation. Serum was separated from hematocrit by centrifugation at 2,000 g for 10 min. Complement factors and pathogens in the separated serum were heat inactivated by incubation at 56° C. for 60 min. Serum was stored at 4° C. or −80° C. before use. All experiments were performed at the University of Washington, Seattle, WA, according to approved Institutional Animal Care and Use Committee protocols.

ELISA:使用酶联免疫吸附测定(ELISA)来确定小鼠血清与所递送的抗原的结合。简言之,将Maxisorp(Nunc)ELISA板在4℃下用每孔0.08μg/mL感兴趣的蛋白质在0.1M碳酸氢钠缓冲液(pH 9.4)中包被过夜。然后将板在室温下用干奶粉(BioRad)在含0.05%(v/v)Tween 20(TBST)的TBS中的4%(w/v)溶液中封闭1小时。将血清的连续稀释液添加到板中,并在洗涤后,使用过氧化氢酶偶联的马抗小鼠IgG抗体揭示抗体结合。然后在TBST中彻底清洗板,添加比色底物(TMB,Thermo Fisher)并读取450nm处的吸光度。曲线下面积(AUC)计算是通过添加在相邻的吸光度测量对与基线之间生成的梯形面积来生成的。ELISA: Enzyme-linked immunosorbent assay (ELISA) was used to determine the binding of mouse sera to the delivered antigen. Briefly, Maxisorp (Nunc) ELISA plates were coated overnight at 4°C with 0.08 μg/mL of the protein of interest per well in 0.1 M sodium bicarbonate buffer (pH 9.4). The plates were then blocked for 1 hour at room temperature with a 4% (w/v) solution of dry milk powder (BioRad) in TBS containing 0.05% (v/v) Tween 20 (TBST). Serial dilutions of sera were added to the plates, and after washing, antibody binding was revealed using a catalase-conjugated horse anti-mouse IgG antibody. The plates were then washed thoroughly in TBST, a colorimetric substrate (TMB, Thermo Fisher) was added, and the absorbance at 450 nm was read. The area under the curve (AUC) calculation was generated by adding the trapezoidal area generated between adjacent pairs of absorbance measurements and the baseline.

假病毒中和测定:刺突假型化慢病毒中和测定使用可从Addgene(#158762)或BEI(NR-53765)获得的刺突HDM_刺突δ21_D614G,其中完整序列可在万维网上在www.addgene.org/158762获得错误!超链接参考不是有效的。)。简言之,将293T-ACE2细胞(BEI NR-52511)以1.25×104个细胞/孔接种在聚L-赖氨酸包被的黑壁透明底96孔板(Greiner 655930)中的50uL D10生长培养基(含10%热灭活FBS、2mM L-谷氨酰胺、100U/mL青霉素和100μg/mL链霉素)中。第二天,将小鼠血清样品在56℃下热灭活30min,然后在D10生长培养基中连续稀释。将刺突假型化慢病毒按1:50稀释以产生每孔约200,000RLU,并在37℃下与血清稀释液一起孵育1小时。然后将100μL病毒-血清混合物添加到细胞中,并在约52小时后使用Bright-Glo荧光素酶测定系统(Promega,E2610)测量荧光素酶活性。每批次的中和测定包括在2017-2018年中收集的人血清阴性对照样品和已知的中和抗体,以确保批次之间的一致性。与平板的同一行中的两个“无血清”对照孔相比,计算每个孔的感染率分数。“neutcurve”包(可在万维网上在jbloomlab.github.io/neutcurve处获得,版本0.5.2)用于计算50%抑制浓度(IC50)和50%中和效价(NT50),对于每个血清样品,通过拟合底部固定为0且顶部固定为1的Hill曲线,其简单地为1/IC50Pseudovirus neutralization assay: Spike pseudotyped lentivirus neutralization assays used spike HDM_Spikeδ21_D614G available from Addgene (#158762) or BEI (NR-53765), where the complete sequence is available on the World Wide Web at www.addgene.org/158762 Error! Hyperlink reference is not valid. ). Briefly, 293T-ACE2 cells (BEI NR-52511) were seeded at 1.25×10 4 cells/well in 50uL D10 growth medium (containing 10% heat-inactivated FBS, 2mM L-glutamine, 100U/mL penicillin, and 100μg/mL streptomycin) in a black-walled, clear-bottomed 96-well plate (Greiner 655930) coated with poly-L-lysine. The next day, mouse serum samples were heat-inactivated at 56°C for 30min and then serially diluted in D10 growth medium. The spike pseudotyped lentivirus was diluted 1:50 to produce approximately 200,000 RLU per well and incubated with serum diluents at 37°C for 1 hour. 100 μL of the virus-serum mixture was then added to the cells, and luciferase activity was measured approximately 52 hours later using the Bright-Glo Luciferase Assay System (Promega, E2610). Each batch of neutralization assays included human serum negative control samples collected in 2017-2018 and known neutralizing antibodies to ensure consistency between batches. The infection rate score for each well was calculated compared to the two "serum-free" control wells in the same row of the plate. The "neutcurve" package (available on the World Wide Web at jbloomlab.github.io/neutcurve, version 0.5.2) was used to calculate the 50% inhibitory concentration ( IC50 ) and 50% neutralizing titer ( NT50 ) for each serum sample by fitting a Hill curve with the bottom fixed to 0 and the top fixed to 1, which is simply 1/ IC50 .

量化和统计分析:使用GraphPad Prism 8中的非参数Kruskal-Wallis检验和Dunn事后分析执行多组比较。当P值小于0.05时,差异被认为是显著的。Quantification and statistical analysis: Multiple group comparisons were performed using the nonparametric Kruskal-Wallis test with Dunn's post hoc analysis in GraphPad Prism 8. Differences were considered significant when the P value was less than 0.05.

实施例2Example 2

材料和方法Materials and methods

细胞系Cell lines

Expi293F细胞源自HEK293F细胞系,这是一种转化并适应悬浮生长的雌性人类胚胎肾细胞系(Life Technologies)。使Expi293F细胞在Expi293表达培养基(LifeTechnologies)中生长,在36.5℃以及8% CO2和150rpm振荡下培养。VeroE6是来自非洲绿猴的雌性肾上皮细胞。HEK-ACE2贴壁细胞系是通过BEI Resources、NIAID、NIH获得的:表达人血管紧张素转换酶2的人胚胎肾细胞(HEK293T)、HEK293T-hACE2细胞系、NR-52511。所有贴壁细胞均在37℃下以8% CO2在具有DMEM+10% FBS(Hyclone)+1%青霉素-链霉素的烧瓶中培养。不对除Expi293F以外的细胞系进行支原体污染测试,也不进行验证。Expi293F cells are derived from the HEK293F cell line, a female human embryonic kidney cell line (Life Technologies) that has been transformed and adapted to growth in suspension. Expi293F cells were grown in Expi293 expression medium (Life Technologies) and cultured at 36.5°C and 8% CO 2 and 150rpm shaking. VeroE6 is a female renal epithelial cell from an African green monkey. The HEK-ACE2 adherent cell line was obtained through BEI Resources, NIAID, and NIH: human embryonic kidney cells (HEK293T) expressing human angiotensin-converting enzyme 2, HEK293T-hACE2 cell line, NR-52511. All adherent cells were cultured in flasks with DMEM+10% FBS (Hyclone)+1% penicillin-streptomycin at 37°C with 8% CO 2. Cell lines other than Expi293F were not tested for mycoplasma contamination and were not verified.

小鼠Mouse

雌性BALB/c小鼠(四周龄)获自Jackson Laboratory,Bar Harbor,Maine。动物手术是在华盛顿州西雅图市华盛顿大学的机构动物护理和使用委员会的批准下执行的。Female BALB/c mice (four weeks old) were obtained from the Jackson Laboratory, Bar Harbor, Maine. Animal procedures were performed with the approval of the Institutional Animal Care and Use Committee at the University of Washington, Seattle, WA.

稳定化突变的设计Design of stabilizing mutations

Rosetta中的所有计算均使用版本v2020.22-dev61287进行。所有设计轨迹都评定了在刺突的低温EM结构(PDB 6VXX)中和在RBD的晶体结构(PDB 6YZ5)的背景下观察到的闭合对称三聚体构象中的RBD。将PDB条目6VXX的三重对称轴与[0,0,1]对齐,并且将单个原体以.pdb格式保存。来自PDB 6YZ5的RBD单体在结构上与PDB 6VXX的原体叠加并类似地保存。使用RosettaScripts(58,59)编写设计协议,该设计协议将对齐的原体和自定义resfile作为输入,其中resfile规定了在设计期间取样的侧链特性和构象。该协议基于输入resfile将两轮设计应用于对称模型,其中在每个设计步骤后应用侧链最小化。该协议允许将骨架最小化与侧链最小化同时执行,并且在允许或不允许骨架最小化的情况下执行轨迹。允许设计步骤和最小化步骤两者重新包装或最小化resfile中列出的所有可突变或可包装残基的内的残基。基于刺突和RBD结构手动挑出残基位置以包括位置358、365、392和周围的残基,并使用‘PIKAA’选项为resfiles中的每个位置指定可能的残基特性。将resfile输入多样化以包括I358F、Y365F、Y365W和/或F392W的各种组合,同时还限制或允许对周围残基的突变。类似地设置了进一步的resfile输入,但没有将位置358、365和392限制为特定特性。手动检查设计模型和得分,以鉴定在结构上看起来有利的相互作用。如果突变掩埋了天然暴露于溶剂或参与氢键的极性基团,则将所述突变丢弃。为了防止对抗原性的意外改变,不频繁考虑对表面暴露残基的突变。从优化的resfiles中迭代地重新测试有利的突变集,并手动细化以完成不同的设计集合。All calculations in Rosetta were performed using version v2020.22-dev61287. All design trajectories evaluated the RBD in the closed symmetric trimer conformation observed in the cryo-EM structure of the spike (PDB 6VXX) and in the context of the crystal structure of the RBD (PDB 6YZ5). The three-fold symmetry axis of the PDB entry 6VXX was aligned to [0,0,1] and the individual protomers were saved in .pdb format. The RBD monomer from PDB 6YZ5 was structurally superimposed with the protomer from PDB 6VXX and saved similarly. Design protocols were written using RosettaScripts (58,59) that take as input the aligned protomers and a custom resfile, where the resfile specifies the side chain properties and conformations sampled during design. The protocol applies two rounds of design to the symmetric model based on the input resfile, with side chain minimization applied after each design step. The protocol allows backbone minimization to be performed simultaneously with side chain minimization, and trajectories are executed with or without backbone minimization allowed. Allows both the design step and the minimization step to repack or minimize all mutable or packable residues listed in the resfile Residues within. Residue positions were manually picked based on the spike and RBD structures to include positions 358, 365, 392 and surrounding residues, and possible residue properties were specified for each position in the resfiles using the 'PIKAA' option. The resfile input was diversified to include various combinations of I358F, Y365F, Y365W and/or F392W, while also restricting or allowing mutations to surrounding residues. Further resfile inputs were set similarly, but positions 358, 365 and 392 were not restricted to specific properties. The design models and scores were manually checked to identify interactions that appeared structurally favorable. If the mutation buried a polar group that was naturally exposed to the solvent or involved in hydrogen bonding, the mutation was discarded. In order to prevent unexpected changes in antigenicity, mutations to surface exposed residues were not frequently considered. Favorable sets of mutations were iteratively retested from the optimized resfiles and manually refined to complete different design sets.

质粒构建Plasmid construction

使用具有16个甘氨酸和丝氨酸残基的接头将SARS-CoV-2RBD的野生型和稳定化序列遗传融合到三聚I53-50A纳米粒子组分的N末端。每个I53-50A融合蛋白还带有C末端八组氨酸标签,并且单体序列包含Avi和八组氨酸标签两者。使用Xba1和AvrII限制性位点和Gibson装配将所有序列克隆到pCMV/R中。所有承载RBD的组分都含有N末端μ-磷酸酶信号肽。由GenScript用BM40信号肽合成和克隆hACE2-Fc。将用于免疫研究的HexaPro-折叠子构建体如所述(Hsieh等人Science 369:1501-05(2020))进行生产,并放入带有八组氨酸标签的pCMV/R中。用于进行具有和不具有Rpk9突变的表达和稳定性比较的HexaPro-折叠子构建体含有BM40信号肽,并被放入pCMV/R中。将质粒转化到大肠杆菌(New England Biolabs)的NEB 5ɑ菌株中,以随后从细菌培养物进行DNA提取(NucleoBond Xtra Midi试剂盒)以获得用于瞬时转染到Expi293F细胞中的质粒。本研究中使用的所有新颖蛋白质的氨基酸序列作为SEQ ID NO:21至SEQ ID NO:47提供。The wild-type and stabilized sequences of SARS-CoV-2 RBD were genetically fused to the N-terminus of the trimeric I53-50A nanoparticle component using a linker with 16 glycine and serine residues. Each I53-50A fusion protein also carries a C-terminal eight-histidine tag, and the monomer sequence contains both Avi and eight-histidine tags. All sequences were cloned into pCMV/R using Xba1 and AvrII restriction sites and Gibson assembly. All RBD-bearing components contain an N-terminal μ-phosphatase signal peptide. hACE2-Fc was synthesized and cloned by GenScript with a BM40 signal peptide. The HexaPro-foldon construct for immune studies was produced as described (Hsieh et al. Science 369: 1501-05 (2020)) and placed in pCMV/R with an eight-histidine tag. The HexaPro-foldon construct for expression and stability comparison with and without Rpk9 mutations contained the BM40 signal peptide and was placed in pCMV/R. The plasmid was transformed into the NEB 5ɑ strain of Escherichia coli (New England Biolabs) and then DNA was extracted from the bacterial culture (NucleoBond Xtra Midi Kit) to obtain the plasmid for transient transfection into Expi293F cells. The amino acid sequences of all novel proteins used in this study are provided as SEQ ID NO: 21 to SEQ ID NO: 47.

>RBD-I53-50A三聚体(16-GS接头,使用来自Wuhan-Hu-1的野生型RBD)>RBD-I53-50A trimer (16-GS linker, using wild-type RBD from Wuhan-Hu-1)

SEQ ID NO:21SEQ ID NO:21

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRF

ASVYAWNRKRISNCVADYASVYAWNRKRISNCVADY

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTG

KIADYNYKLPDDFTGCVIAKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk1-I53-50A三聚体;SEQ ID NO:22>Rpk1-I53-50A trimer; SEQ ID NO: 22

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk2-I53-50A三聚体;SEQ ID NO:23>Rpk2-I53-50A trimer; SEQ ID NO: 23

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPLGEVFNATRFASVYAWNRKRISNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPLGEVFNATRFASVYAWNRKRISNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk3-I53-50A三聚体;SEQ ID NO:24>Rpk3-I53-50A trimer; SEQ ID NO: 24

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVMSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVMSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk4-I53-50A;SEQ ID NO:25三聚体>Rpk4-I53-50A; SEQ ID NO:25 trimer

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISN

CVADYSVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVADYSVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTG

CVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk5-I53-50A三聚体;SEQ ID NO:26>Rpk5-I53-50A trimer; SEQ ID NO: 26

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk6-I53-50A三聚体;SEQ ID NO:27>Rpk6-I53-50A trimer; SEQ ID NO: 27

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPMGEVFNATRFASVYAWNRKRISNCVLDFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPMGEVFNATRFASVYAWNRKRISNCVLDF

SVLYNSASFSTVKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTVKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk7-I53-50A三聚体;SEQ ID NO:28>Rpk7-I53-50A trimer; SEQ ID NO: 28

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADF

SVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk8-I53-50A三聚体;SEQ ID NO:29>Rpk8-I53-50A trimer; SEQ ID NO: 29

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADF

SVLYNSASFSTFKCYGVSPTKLNDLCFTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYSVLYNSASFSTFKCYGVSPTKLNDLCFTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk9-I53-50A三聚体;SEQ ID NO:30>Rpk9-I53-50A trimer; SEQ ID NO: 30

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADF

SVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk10-I53-50A三聚体;SEQ ID NO:31>Rpk10-I53-50A trimer; SEQ ID NO: 31

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVISLELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVISLELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk11-I53-50A三聚体;SEQ ID NO:32>Rpk11-I53-50A trimer; SEQ ID NO: 32

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPLGEVFNATRFASVYAWNRKRISNCVLDMMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPLGEVFNATRFASVYAWNRKRISNCVLDM

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk12-I53-50A三聚体;SEQ ID NO:33>Rpk12-I53-50A trimer; SEQ ID NO: 33

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk13-I53-50A三聚体;SEQ ID NO:34>Rpk13-I53-50A trimer; SEQ ID NO: 34

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPLGEVFNATRFASVYAWNRKRFSNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPLGEVFNATRFASVYAWNRKRFSNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk14-I53-50A三聚体;SEQ ID NO:35>Rpk14-I53-50A trimer; SEQ ID NO: 35

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVMSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVMSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk15-I53-50A三聚体;SEQ ID NO:36>Rpk15-I53-50A trimer; SEQ ID NO: 36

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADF

SVLYNSASFSTFKCYGVSPTKLNDLCFTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCFTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk16-I53-50A三聚体;SEQ ID NO:37>Rpk16-I53-50A trimer; SEQ ID NO: 37

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADWMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADW

SVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHHVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH

>Rpk17-I53-50A三聚体;SEQ ID NO:38>Rpk17-I53-50A trimer; SEQ ID NO: 38

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRFSNCVADF

SVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIASVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKEEAARKMEELFKKHKIVAVLRA

NSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVNSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTV

TSVEQARKAVESGAEFIVTSVEQARKAVESGAEFIV

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGP

QFVKAMKGPFPNVKFVPTGGQFVKAMKGPFPNVKFVPTGG

VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATEGG

SHHHHHHHHSHHHHHHHH

>RBD单体(具有Avi和六组氨酸标签);SEQ ID NO:39>RBD monomer (with Avi and hexahistidine tags); SEQ ID NO: 39

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRF

ASVYAWNRKRISNCVADYASVYAWNRKRISNCVADY

SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTG

KIADYNYKLPDDFTGCVIAKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG

FNCYFPLQSYGFQPTNGVGYFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGLNDIFEAQKIEWHEHHHHHHHH>Rpk4单体(具有Avi和六组氨酸标签);SEQ ID NO:40QPYRVVVLSFELLHAPATVCGPKKSTGLNDIFEAQKIEWHEHHHHHHHH>Rpk4 monomer (with Avi and hexa-histidine tags); SEQ ID NO: 40

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRF

ASVYAWNRKRISNCVADYASVYAWNRKRISNCVADY

SVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQTSVLYNSASFSTFKCYGVSPTKLNDLCWTNVYADSFVIRGDEVRQIAPGQT

GKIADYNYKLPDDFTGCVIAGKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG

FNCYFPLQSYGFQPTNGVGYFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGLNDIFEAQKIEWHEHHHHHHHH>Rpk9单体(具有Avi和六组氨酸标签);SEQ ID NO:41QPYRVVVLSFELLHAPATVCGPKKSTGLNDIFEAQKIEWHEHHHHHHHH>Rpk9 monomer (with Avi and hexahistidine tags); SEQ ID NO: 41

MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRFMGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVFNATRF

ASVYAWNRKRISNCVADFASVYAWNRKRISNCVADF

SVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTGSVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTG

KIADYNYKLPDDFTGCVIAKIADYNYKLPDDFTGCVIA

WNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG

FNCYFPLQSYGFQPTNGVGYFNCYFPLQSYGFQPTNGVGY

QPYRVVVLSFELLHAPATVCGPKKSTGLNDIFEAQKIEWHEHHHHHHHHQPYRVVVLSFELLHAPATVCGPKKSTGLNDIFEAQKIEWHEHHHHHHHH

>I53-50B.4PT1五聚体;SEQ ID NO:42>I53-50B.4PT1 pentamer; SEQ ID NO:42

MNQHSHKDHETVRIAVVRARWHAEIVDACVSAFEAAMRDIGGDRFAVDVFDVPGAYEIPLHARTLAETGRMNQHSHKDHETVRIAVVRARWHAEIVDACVSAFEAAMRDIGGDRFAVDVFDVPGAYEIPLHARTLAETGR

YGAVLGTAFVVNGGIYRHEFVASAVINGMMNVQLNTGVPVLSAVLTPHNYDKSKAHTLLFLALFAVKGME AARACVEILAAREKIAAGSLEHHHHHHYGAVLGTAFVVNGGIYRHEFVASAVINGMMNVQLNTGVPVLSAVLTPHNYDKSKAHTLLFLALFAVKGME AARACVEILAAREKIAAGSLEHHHHHH

>2OBX五聚体;SEQ ID NO:43>2OBX pentamer; SEQ ID NO:43

MNQHSHKDYETVRIAVVRARWHADIVDQCVSAFEAEMADIGGDRFAVDVFDVPGAYEIPLHARTLAETGRMNQHSHKDYETVRIAVVRARWHADIVDQCVSAFEAEMADIGGDRFAVDVFDVPGAYEIPLHARTLAETGR

YGAVLGTAFVVNGGIYRHEFVASAVIDGMMNVQLSTGVPVLSAVLTPHNYHDSAEHHRFFFEHFTVKGKE AARACVEILAAREKIAAGSLEHHHHHHYGAVLGTAFVVNGGIYRHEFVASAVIDGMMNVQLSTGVPVLSAVLTPHNYHDSAEHHRFFFEHFTVKGKE AARACVEILAAREKIAAGSLEHHHHHH

>Hexapro-折叠子,用于免疫(Wuhan-Hu-1);SEQ ID NO:44>Hexapro-fold, for immunization (Wuhan-Hu-1); SEQ ID NO: 44

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVMFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHV

SGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPF

LGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPILGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPI

NLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNNLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYN

ENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASV

YAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIAD

YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYF

PLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFL

PFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLT

PTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSP

GSASSVASQSIIAYTMSLGGSASSVASQSIIAYTMSLG

AENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLL

LQYGSFCTQLNRALTGILQYGSFCTQLNRALTGI

AVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLL

FNKVTLADAGFIKQYGDCFNKVTLADAGFIKQYGDC

LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAG

PALQIPFPMQMAYRFNGIGPALQIPFPMQMAYRFNGIG

VTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALN

TLVKQLSSNFGAISSVLNDITLVKQLSSNFGAISSVLNDI

LSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSELSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSE

CVLGQSKRVDFCGKGYHLMCVLGQSKRVDFCGKGYHLM

SFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT

HWFVTQRNFYEPQIITTDNTHWFVTQRNFYEPQIITTDNT

FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISG

INASVVNIQKEIDRLNEVAINASVVNIQKEIDRLNEVA

KNLNESLIDLQELGKYEQGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGRSLEVLFQGPGHHHHHHHHSAW SHPQFEKGGGSGGGGSGGSAWSHPQFEK>Hexapro-折叠子,用于与Rpk9-Hexapro-折叠子(Wuhan-Hu-1)进行表达和稳定性比较;SEQ ID NO:45KNLNESLIDLQELGKYEQGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGRSLEVLFQGPGHHHHHHHHSAW SHPQFEKGGGSGGGGSGGSAWSHPQFEK>Hexapro-foldon, used for expression and stability comparison with Rpk9-Hexapro-foldon (Wuhan-Hu-1); SEQ ID NO: 45

MARAWIFFLLCLAGRALAQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSMARAWIFFLLCLAGRALAQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRS

SVLHSTQDLFLPFFSNVTWFSVLHSTQDLFLPFFSNVTWF

HAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQS

LLIVNNATNVVIKVCEFQFLLIVNNATNVVIKVCEFQF

CNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQG

NFKNLREFVFKNIDGYFKIYSNFKNLREFVFKNIDGYFKIYS

KHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGW

TAGAAAYYVGYLQPRTFTAGAAAYYVGYLQPRTF

LLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIV

RFPNITNLCPFGEVFNATRFPNITNLCPFGEVFNAT

RFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNV

YADSFVIRGDEVRQIAPGQTYADSFVIRGDEVRQIAPGQT

GKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPF

ERDISTEIYQAGSTPCNGVEGERDISTEIYQAGSTPCNGVEG

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVK

NKCVNFNFNGLTGTGVLTESNKCVNFNFNGLTGTGVLTES

NKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQ

VAVLYQDVNCTEVPVAIHVAVLYQDVNCTEVPVAIH

ADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQT

QTNSPGSASSVASQSIIAYQTNSPGSASSVASQSIIAY

TMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDST

ECSNLLLQYGSFCTQLNRECSNLLLQYGSFCTQLNR

ALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPI

EDLLFNKVTLADAGFIKEDLLFNKVTLADAGFIK

QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGW

TFGAGPALQIPFPMQMAYRTFGAGPALQIPFPMQMAYR

FNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNA

QALNTLVKQLSSNFGAISSQALNTLVKQLSSNFGAISS

VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT

KMSECVLGQSKRVDFCGKKMSECVLGQSKRVDFCGK

GYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVF

VSNGTHWFVTQRNFYEPQIIVSNGTHWFVTQRNFYEPQII

TTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDTTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVD

LGDISGINASVVNIQKEIDRLGDISGINASVVNIQKEIDR

LNEVAKNLNESLIDLQELGKYEQGSGYIPEAPRDGQAYVRKDGEWVLLSTLNEVAKNLNESLIDLQELGKYEQGSGYIPEAPRDGQAYVRKDGEWVLLST

FLGRSLEVLFQGPGHHHHHHFLGRSLEVLFQGPGHHHHHH

HHHH

>Rpk9-Hexapro-折叠子(Wuhan-Hu-1);SEQ ID NO:46>Rpk9-Hexapro-foldon (Wuhan-Hu-1); SEQ ID NO: 46

MARAWIFFLLCLAGRALAQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSMARAWIFFLLCLAGRALAQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRS

SVLHSTQDLFLPFFSNVTWFSVLHSTQDLFLPFFSNVTWF

HAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQS

LLIVNNATNVVIKVCEFQFLLIVNNATNVVIKVCEFQF

CNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQG

NFKNLREFVFKNIDGYFKIYSNFKNLREFVFKNIDGYFKIYS

KHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGW

TAGAAAYYVGYLQPRTFTAGAAAYYVGYLQPRTF

LLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNAT

RFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQTRFASVYAWNRKRISNCVADFSVLYNSASFSTFKCYGVSPTKLNDLCWTNIYADSFVIRGDEVRQIAPGQT

GKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTES

NKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIH

ADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAY

TMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNR

ALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLFNKVTLADAGFIKALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLFNKVTLADAGFIK

QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYR

FNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISS

VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGK

GYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIIGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQII

TTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRTTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDR

LNEVAKNLNESLIDLQELGKYEQGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGRSLEVLFQGPGHHHHHHLNEVAKNLNESLIDLQELGKYEQGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGRSLEVLFQGPGHHHHHHH

HHHH

>hACE2-FC;SEQ ID NO:47>hACE2-FC; SEQ ID NO:47

MARAWIFFLLCLAGRALASTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWSMARAWIFFLLCLAGRALASTIEEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWS

AFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQEAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQE

CLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNE

MARANHYEDYGDYWRGDYEVNMARANHYEDYGDYWRGDYEVN

GVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAYPSYISPIGCGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAYPSYISPIGC

LPAHLLGDMWGRFWTNLYSLPAHLLGDMWGRFWTNLYS

LTVPFGQKPNIDVTDAMVDQAWDAQRIFKEAEKFFVSVGLPNMTQGFWELTVPFGQKPNIDVTDAMVDQAWDAQRIFKEAEKFFVSVGLPNMTQGFWE

NSMLTDPGNVQKAVCHPTAWDNSMLTDPGNVQKAVCHPTAWD

LGKGDFRILMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGLGKGDFRILMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEG

FHEAVGEIMSLSAATPKHLKSFHEAVGEIMSLSAATPKHLKS

IGLLSPDFQEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDIGLLSPDFQEDNETEINFLLKQALTIVGTLPPFTYMLEKWRWMVFKGEIPKD

QWMKKWWEMKREIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTLQWMKKWWEMKREIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTL

YQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLFNMLRLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLFNMLRL

GKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWST

DWSPYADPLVPRGSGGGGDPEPDWSPYADPLVPRGSGGGGDPEP

KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH

EDPEVKFNWYVDGVEVHNAEDPEVKFNWYVDGVEVHNA

KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS

KAKGQPREPQVYTLPPSRDEKAKGQPREPQVYTLPPSRDE

LTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSLTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS

KLTVDKSRWQQGKLTVDKSRWQQG

瞬时转染Transient transfection

在使用Expi293F表达培养基(Life Technologies),在33℃、70%湿度、8% CO2下在150rpm下旋转,在悬浮液中生长的Expi293F细胞中产生SARS-CoV-2S和ACE2-Fc蛋白。使用PEI-MAX(Polyscience)转染培养物,细胞生长至300万个细胞/mL的密度并培养3天。将上清液通过以下方式澄清:离心(在4000rcf下5min),添加PDADMAC溶液至0.0375%的终浓度(Sigma Aldrich,编号409014),并且进行第二分离步骤(在4000rcf下5min)。SARS-CoV-2S and ACE2-Fc proteins were produced in Expi293F cells grown in suspension using Expi293F expression medium (Life Technologies) at 33 ° C, 70% humidity, 8% CO 2 at 150 rpm. Using PEI-MAX (Polyscience) transfection culture, cells grew to a density of 3 million cells/mL and cultured for 3 days. The supernatant was clarified by centrifugation (5 min at 4000 rcf), PDADMAC solution was added to a final concentration of 0.0375% (Sigma Aldrich, No. 409014), and a second separation step (5 min at 4000 rcf) was performed.

编码CV30和CR3022重链和轻链的基因从GenScript订购并克隆到pCMV/R中。通过使用PEI MAX(Polyscience)转染试剂在Expi293F细胞中瞬时共转染重链和轻链质粒两者来表达抗体。在3天或6天后如上所述收获并澄清细胞上清液。The genes encoding CV30 and CR3022 heavy and light chains were ordered from GenScript and cloned into pCMV/R. Antibodies were expressed by transient co-transfection of both heavy and light chain plasmids in Expi293F cells using PEI MAX (Polyscience) transfection reagent. Cell supernatants were harvested and clarified as described above after 3 or 6 days.

糖蛋白的纯化Glycoprotein purification

将含有His标签的蛋白质经由分批结合法从澄清的上清液中纯化,其中每个澄清的上清液补充有1M Tris-HCl pH 8.0至终浓度为45mM和5M NaCl至最终浓度为约313mM。将Talon钴亲和树脂(Takara)添加到经处理的上清液中,并在轻轻振荡下孵育15min。使用用0.45μm过滤器进行的真空过滤来收集树脂,并将其转移到重力柱中。用10个柱体积的20mMTris pH 8.0、300mM NaCl洗涤树脂,并用3个柱体积的20mM Tris pH 8.0、300mM NaCl、300mM咪唑洗脱结合蛋白质。然后对同一上清液样品重复分批结合过程,并将第一次洗脱液和第二次洗脱液合并。使用SDS-PAGE来评定纯度。为了量化基于RBD的构建体的产率,向从可比的细胞培养条件和体积中提取的IMAC洗脱液补充100mM L-精氨酸和5%甘油,并浓缩至1.5mL。随后将浓缩样品加载到1mL环路中并施加到Superdex 75Increase 10/300GL柱(用于单体RBD)或Superdex 200Increase10/300GL柱(用于RBD与I53-50A三聚体的融合体),所述柱用50mM Tris pH8、150mM NaCl、100mM L-精氨酸、5%甘油预平衡。为了量化具有和不具有Rpk9突变的HexaPro-折叠子构建体的产率,向从可比的细胞培养条件和体积中提取的IMAC洗脱液补充5%甘油并浓缩至1.5mL,随后将其加载到1mL环路中并施加到用50mM Tris pH 8.0、150mM NaCl、0.25%w/v L-组氨酸、5%甘油预平衡的Superose6Increase 10/300GL柱。用于免疫研究的HexaPro-foldon通过IMAC纯化,并在室温下针对50mM Tris pH 8.0、150mM NaCl、0.25%w/v L-组氨酸、5%甘油渗析三次达四小时。The protein containing the His tag was purified from the clarified supernatant via a batch binding method, wherein each clarified supernatant was supplemented with 1M Tris-HCl pH 8.0 to a final concentration of 45mM and 5M NaCl to a final concentration of about 313mM. Talon cobalt affinity resin (Takara) was added to the treated supernatant and incubated for 15min under gentle shaking. The resin was collected using vacuum filtration with a 0.45 μm filter and transferred to a gravity column. The resin was washed with 20mMTris pH 8.0, 300mM NaCl for 10 column volumes, and the bound protein was eluted with 20mM Tris pH 8.0, 300mM NaCl, 300mM imidazole for 3 column volumes. The batch binding process was then repeated for the same supernatant sample, and the first and second eluents were merged. Purity was assessed using SDS-PAGE. To quantify the yield of RBD-based constructs, IMAC eluates extracted from comparable cell culture conditions and volumes were supplemented with 100 mM L-arginine and 5% glycerol and concentrated to 1.5 mL. The concentrated sample was then loaded into a 1 mL loop and applied to a Superdex 75 Increase 10/300 GL column (for monomeric RBD) or a Superdex 200 Increase 10/300 GL column (for fusions of RBD and I53-50A trimers), which was pre-equilibrated with 50 mM Tris pH 8, 150 mM NaCl, 100 mM L-arginine, and 5% glycerol. To quantify the yield of HexaPro-foldon constructs with and without Rpk9 mutations, IMAC eluates extracted from comparable cell culture conditions and volumes were supplemented with 5% glycerol and concentrated to 1.5 mL, which were then loaded into a 1 mL loop and applied to a Superose6Increase 10/300GL column pre-equilibrated with 50 mM Tris pH 8.0, 150 mM NaCl, 0.25% w/v L-histidine, 5% glycerol. HexaPro-foldon for immunological studies was purified by IMAC and dialyzed three times for four hours at room temperature against 50 mM Tris pH 8.0, 150 mM NaCl, 0.25% w/v L-histidine, 5% glycerol.

热变性(纳米DSF)Thermal denaturation (Nano DSF)

基于RBD的样品在含有50mM Tris pH 8、150mM NaCl、100mM L-精氨酸、5%甘油的缓冲液中制备,而基于HexaPro-foldon的样品在含有50mM Tris pH8.0、150mM NaCl,0.25%w/v L-组氨酸,5%甘油的缓冲液中制备。非平衡解链温度是使用UNcleTM(UNchainedLabs)基于使用1℃/分钟的热斜坡从20-95℃收集的固有色氨酸荧光发射光谱的重心均值确定的。解链温度被定义为解链曲线的一阶导数的最大值点,其中在使用二阶多项式设置对四个相邻点进行平滑化后,使用GraphPad Prism软件计算一阶导数。RBD-based samples were prepared in a buffer containing 50 mM Tris pH 8, 150 mM NaCl, 100 mM L-arginine, 5% glycerol, while HexaPro-foldon-based samples were prepared in a buffer containing 50 mM Tris pH 8.0, 150 mM NaCl, 0.25% w/v L-histidine, 5% glycerol. The non-equilibrium melting temperature was determined using UNcle (UNchainedLabs) based on the centroid mean of the intrinsic tryptophan fluorescence emission spectra collected from 20-95°C using a 1°C/min thermal ramp. The melting temperature was defined as the maximum point of the first derivative of the melting curve, where the first derivative was calculated using GraphPad Prism software after smoothing four adjacent points using a second-order polynomial setting.

SYPRO橙色荧光SYPRO Orange Fluorescent

将5000×SYPROTM橙色蛋白凝胶染色剂(Thermo Fisher)混合稀释到25mM Tris pH8.0、150mM NaCl、5%甘油中,并进一步添加到在相同缓冲液中制备的单体RBD中,其中RBD的终浓度为1.0mg/mL并且SYPROTM橙的终浓度为20×。将样品加载到UNcleTM纳米DSF(UNChained Laboratories)中,并在向样品中添加SYPROTM橙达5min后收集所有样品的荧光发射光谱。5000× SYPRO TM Orange protein gel stain (Thermo Fisher) was mixed and diluted into 25 mM Tris pH 8.0, 150 mM NaCl, 5% glycerol and further added to monomeric RBD prepared in the same buffer, where the final concentration of RBD was 1.0 mg/mL and the final concentration of SYPRO TM Orange was 20×. The samples were loaded into UNcle TM NanoDSF (UNChained Laboratories) and the fluorescence emission spectra of all samples were collected 5 min after adding SYPRO TM Orange to the samples.

微生物蛋白质表达和I53-50B.4PT1的纯化Microprotein expression and purification of I53-50B.4PT1

与RBD-I53-50A、I53-50B.4PT1(SEQ ID NO:17)互补的五聚纳米粒子组分如美国专利公开号2016/0122392(该美国专利公开的内容以引用方式全文并入本文)中所述生产,并且对2OBX非装配对照五聚体的纯化使用相同的方案。Pentameric nanoparticle components complementary to RBD-I53-50A, I53-50B.4PT1 (SEQ ID NO: 17) were produced as described in U.S. Patent Publication No. 2016/0122392, the contents of which are incorporated herein by reference in their entirety, and the same protocol was used for the purification of the 2OBX non-assembled control pentamer.

体外纳米粒子装配In vitro nanoparticle assembly

通过使用UV/vis分光光度计(Agilent Cary 8454)测量280nm处的吸光度并计算消光系数来确定纯化的单个纳米粒子组分的总蛋白质浓度。装配步骤在室温下执行,其中按以下次序添加:野生型或稳定化的RBD-I53-50A三聚体融合蛋白,之后根据需要加入适量缓冲液以达到所需的终浓度,最后是I53-50B.4PT1五聚体组分(SEQ ID NO:17)(在50mMTris pH 8、500mM NaCl、0.75%w/vCHAPS中,其中RBD-I53-50A:I53-50B.4PT1的摩尔比为1.1:1。适量缓冲液含有50mM Tris pH 7.4、185mM NaCl、100mM L-精氨酸、0.75% CHAPS、4.5%甘油(用于溶液稳定性研究),或50mM Tris pH 8、150mM NaCl、100mM L-精氨酸、5%甘油)。将所有RBD-I53-50体外装配体在2-8℃下孵育至少30min,然后通过SEC进行后续纯化以去除残留的未装配组分。使用SuperoseTM6Increase 10/300GL柱进行纳米粒子生产。将装配的粒子在SuperoseTM6柱上以约11mL洗脱。将装配的纳米粒子紧接在柱应用之前和SEC级分合并之后进行无菌过滤(0.22μm)。The total protein concentration of purified individual nanoparticle fractions was determined by measuring the absorbance at 280 nm using a UV/vis spectrophotometer (Agilent Cary 8454) and calculating the extinction coefficient. The assembly steps were performed at room temperature, where the following order was added: wild-type or stabilized RBD-I53-50A trimeric fusion protein, followed by appropriate buffer as needed to achieve the desired final concentration, and finally the I53-50B.4PT1 pentamer component (SEQ ID NO:17) (in 50mMTris pH 8, 500mM NaCl, 0.75% w/vCHAPS, with a molar ratio of RBD-I53-50A:I53-50B.4PT1 of 1.1:1. The appropriate buffer contained 50mM Tris pH 7.4, 185mM NaCl, 100mM L-arginine, 0.75% CHAPS, 4.5% glycerol (for solution stability studies), or 50mM Tris pH 8, 150mM NaCl, 100mM L-arginine, 5% glycerol). All RBD-I53-50 in vitro assemblies were incubated at least 30 min at 2-8 ° C and then subjected to subsequent purification by SEC to remove residual unassembled components. Nanoparticle production was performed using Superose 6 Increase 10/300GL columns. The assembled particles were eluted with approximately 11 mL on Superose 6 columns. The assembled nanoparticles were sterile filtered (0.22 μm) immediately before column application and after SEC fractions were combined.

用于单体RBD的动力学分析的生物层干涉测量Biolayer interferometry for kinetic analysis of monomeric RBD

动力学测量使用OctetTMRed 96系统(Pall FortéBio/)在25℃下以1000rpm振荡来执行。所有蛋白质和抗体均以200μL/孔稀释到黑色96孔Greiner Bio-one微孔板中含有0.5%牛血清白蛋白和0.01% TWEEN-20的磷酸盐缓冲盐水(PBS)中,其中基线和解离步骤使用单独的缓冲液。将10μg/mL的CV30或CR3022 IgG加载到预水合的蛋白A生物传感器(Pall FortéBio/)上,持续150s,然后是60s的基线。然后将生物传感器转移到与野生型或稳定化的单体RBD的五个连续两倍稀释之一缔合的步骤中,持续120s,其中RBD浓度对于CV30为125μM、62.5μM、31.3μM、15.6μM和7.8μM并且对于CR3022为31.3μM、15.6μM、7.8μM、3.9μM和2.0μM。在缔合后,将生物传感器转移到缓冲液中进行300s的解离。将来自缔合和解离步骤的数据减去基线,并使用1:1结合模型(分析软件,版本12.0)跨RBD的所有五种连续稀释液全局地计算动力学测量值。Kinetic measurements were performed using the Octet Red 96 system (Pall ForteBio/ ) was performed at 25°C with shaking at 1000 rpm. All proteins and antibodies were diluted into black 96-well Greiner Bio-one microplates at 200 μL/well in phosphate-buffered saline (PBS) containing 0.5% bovine serum albumin and 0.01% TWEEN-20, with separate buffers used for baseline and dissociation steps. 10 μg/mL of CV30 or CR3022 IgG was loaded onto prehydrated protein A biosensors (Pall FortéBio/ ) for 150 s, followed by a 60 s baseline. The biosensor was then transferred to an association step with one of five serial two-fold dilutions of wild-type or stabilized monomeric RBD for 120 s, where the RBD concentrations were 125 μM, 62.5 μM, 31.3 μM, 15.6 μM, and 7.8 μM for CV30 and 31.3 μM, 15.6 μM, 7.8 μM, 3.9 μM, and 2.0 μM for CR3022. After association, the biosensor was transferred to buffer for 300 s of dissociation. The data from the association and dissociation steps were baseline subtracted and analyzed using a 1:1 binding model ( Analysis software, version 12.0) calculated kinetic measurements globally across all five serial dilutions of RBD.

用于RBD纳米粒子的分级抗原性的生物层干涉测量Biolayer interferometry for hierarchical antigenicity of RBD nanoparticles

使用OctetTMRed 96系统在环境温度下以1000rpm振荡分析hACE2-Fc(二聚化受体)和CR3022 IgG与单体RBD和RBD-I53-50纳米粒子的结合,以进行实时稳定性研究。在动力学缓冲液(Pall FortéBio/)中将蛋白质样品稀释至100nM。然后将缓冲液、抗体、受体和免疫原以200μL/孔施加至黑色96孔Greiner Bio-one微孔板。将蛋白A生物传感器首先在动力学缓冲液中水合10min,然后在固定步骤中浸入在动力学缓冲液中稀释至10μg/mL的hACE2-Fc或CR3022中。在500s后,将尖端转移到Kinetics缓冲液中,持续90s,以达到基线。缔合步骤通过将加载的生物传感器浸入免疫原中并持续300s来执行,并且随后的解离步骤通过将生物传感器浸回动力学缓冲液中并持续附加300s来执行。在使用分析软件(第12.0版)绘图之前,将数据减去基线。Binding of hACE2-Fc (dimeric receptor) and CR3022 IgG to monomeric RBD and RBD-I53-50 nanoparticles was analyzed using the Octet Red 96 system at ambient temperature with shaking at 1000 rpm for real-time stability studies. ) was diluted to 100 nM in . The buffer, antibody, receptor, and immunogen were then applied to a black 96-well Greiner Bio-one microplate at 200 μL/well. The Protein A biosensor was first hydrated in kinetic buffer for 10 min and then immersed in hACE2-Fc or CR3022 diluted to 10 μg/mL in kinetic buffer during the fixation step. After 500 s, the tip was transferred to Kinetics buffer for 90 s to reach baseline. The association step was performed by immersing the loaded biosensor in the immunogen for 300 s, and the subsequent dissociation step was performed by immersing the biosensor back in the kinetic buffer for 300 s. In use The data were baseline subtracted before plotting using the ANALYSIS software (version 12.0).

负染色电子显微术Negative stain electron microscopy

野生型RBD-I53-50纳米粒子和Rpk-I53-50纳米粒子首先在50mM Tris pH8、150mMNaCl、100mM L-精氨酸、5%v/v甘油中稀释至75μg/mL,然后将3μL的样品施加到新近辉光放电的300目铜网格上。将样品在网格上孵育1分钟,然后将网格浸入50μL水液滴中,并用滤纸吸去多余的液体。然后将网格浸入3μL 0.75%w/v甲酸铀酰染色剂中。用滤纸吸掉染色剂,然后将网格浸入另外6μL的染色剂中并孵育约90秒。最后,将染色剂吸干并将网格干燥1分钟,然后储存或成像。将准备好的网格在TalosTML120C型号透射电子显微镜中使用GatanTM相机以57,000×成像。Wild-type RBD-I53-50 nanoparticles and Rpk-I53-50 nanoparticles were first diluted to 75 μg/mL in 50 mM Tris pH 8, 150 mM NaCl, 100 mM L-arginine, 5% v/v glycerol, and 3 μL of the sample was then applied to a freshly glow-discharged 300-mesh copper grid. The sample was incubated on the grid for 1 minute, and then the grid was immersed in a 50 μL drop of water and the excess liquid was blotted off with filter paper. The grid was then immersed in 3 μL of 0.75% w/v uranyl formate stain. The stain was blotted off with filter paper, and the grid was then immersed in another 6 μL of stain and incubated for approximately 90 seconds. Finally, the stain was blotted off and the grid was dried for 1 minute before storage or imaging. The prepared grid was imaged at 57,000× in a Talos TM L120C model transmission electron microscope using a Gatan TM camera.

动态光散射Dynamic Light Scattering

动态光散射(DLS)用于在UNcleTM(UNchained Laboratories)上测量RBD-I53-50纳米粒子样品的流体动力学直径(Dh)和多分散性(%Pd)。将样品施加至8.8μL石英毛细管盒(UNiTM,UNchained Laboratories),并使用激光自动衰减进行10次采集测量,每次5s。在Dh测量中由UNcleTMClient软件解释由于RBD纳米粒子缓冲液中的5%v/v甘油引起的粘度增加。Dynamic light scattering (DLS) was used to measure the hydrodynamic diameter (Dh) and polydispersity (%Pd) of RBD-I53-50 nanoparticle samples on UNcle (UNchained Laboratories). The samples were applied to 8.8 μL quartz capillary cartridges (UNi , UNchained Laboratories) and 10 acquisition measurements were performed using laser auto-attenuation, each for 5 s. The viscosity increase due to 5% v/v glycerol in the RBD nanoparticle buffer was accounted for by the UNcle Client software in the Dh measurement.

内毒素测量Endotoxin measurement

使用EndoSafeTMNexgen-MCS系统(Charles River)测量蛋白质样品中的内毒素水平。将样品在不含内毒素的LAL试剂水中按1:50或1:100稀释,并施加至EndoSafeTMLAL试剂筒的孔中。使用Charles River EndoScanTM-V软件分析内毒素含量,该软件会自动反算稀释因子。内毒素值报告为EU/mL,然后基于UV-Vis测量将其转换为EU/mg。我们的适合于免疫的样品阈值是<100EU/mg。Endotoxin levels in protein samples were measured using the EndoSafe Nexgen-MCS system (Charles River). Samples were diluted 1:50 or 1:100 in endotoxin-free LAL reagent water and applied to the wells of the EndoSafe LAL reagent cartridge. Endotoxin content was analyzed using Charles River EndoScan -V software, which automatically back-calculates the dilution factor. Endotoxin values are reported as EU/mL and then converted to EU/mg based on UV-Vis measurements. Our threshold for samples suitable for immunostaining is <100EU/mg.

UV-VisUV-Vis

使用Agilent Technologies Cary 8454进行紫外-可见分光光度法(UV-Vis)测量。将样品施加至10mm、50μL石英池(Starna Cells,Inc.),并在180nm至1000nm测量吸光度。将从测量和单一参考波长基线减法获得的280nm处的净吸光度与所计算的消光系数和分子量一起使用以获得蛋白质浓度。使用320/280nm处的吸光度比率来确定实时稳定性研究样品中的相对聚集水平。将样品用相应的空白缓冲液稀释以获得在0.1与1.0之间的吸光度。从UV/vis仪器产生的所有数据都在845x UV/可见光系统软件中处理。Agilent Technologies Cary 8454 was used to carry out ultraviolet-visible spectrophotometry (UV-Vis) measurement. Samples were applied to 10 mm, 50 μL quartz cells (Starna Cells, Inc.), and absorbance was measured at 180 nm to 1000 nm. The net absorbance at 280 nm obtained from measurement and single reference wavelength baseline subtraction was used together with calculated extinction coefficient and molecular weight to obtain protein concentration. The absorbance ratio at 320/280 nm was used to determine the relative aggregation level in the real-time stability study sample. Samples were diluted with corresponding blank buffer to obtain an absorbance between 0.1 and 1.0. All data generated from UV/vis instruments were processed in 845x UV/visible light system software.

氢/氘交换质谱Hydrogen/deuterium exchange mass spectrometry

将3mg的RBD-I53-50A、Rpk4-I53-50A和Rpk9-I53-50A三聚体在氘化缓冲液(pH*7.5,85% D2O,Cambridge Isotope Laboratories,Inc.)中在22℃下进行H/D交换(HDX)分别达3秒、15秒、60秒、1800秒和72000秒。随后将经交换的样品以1:1与冰冷猝灭缓冲液(200mM三(2-氯乙基)磷酸盐(TCEP)、8M尿素、0.2%甲酸(FA))混合以使最终pH为2.5,并立即在液氮中快速冷冻。在SynaptTMG2-Si质谱仪上使用将所有色谱柱、环路、阀门和管线维持在0℃的定制建立的加载系统,通过LC-MS分析样品。将冷冻样品在冰上解冻,并加载到具有200mL/min流量的0.1%三氟乙酸(TFA)和2%乙腈的定制填充的固定化胃蛋白酶柱(2.1×50mm)上。肽在Waters CSH C18捕集柱(2.1×5mm)上被捕集,然后在Waters CSH C18 1×100mm 1.7μm柱上解析,其中在18min内线性梯度从3%至40% B(A:98%水、2%乙腈、0.1%FA、0.025% TFA;B:100%乙腈、0.1%FA,流率40mL/min)。在样品运行之间执行一系列洗涤,以使遗留最小化。除非特别说明,否则所使用的所有水和有机溶剂均为MS级(OptimaTM,Fisher)。通过从胃蛋白酶消化的未氘化样品中收集LC洗脱液、进行speedvac干燥、在氘化缓冲液中在85℃下孵育1小时以及与所有其他HDX样品相同地进行猝灭,对每个样品系列进行完全氘化控制。在每个样品中添加内部交换标准品(Pro-Pro-Pro-Ile[PPPI]和Pro-Pro-Pro-Phe[PPPF])以确保所有样品的标记条件一致。3 mg of RBD-I53-50A, Rpk4-I53-50A and Rpk9-I53-50A trimers were subjected to H/D exchange (HDX) at 22°C for 3 seconds, 15 seconds, 60 seconds, 1800 seconds and 72000 seconds, respectively, in deuterated buffer (pH*7.5, 85% D 2 O, Cambridge Isotope Laboratories, Inc.). The exchanged samples were then mixed 1:1 with ice-cold quenching buffer (200 mM tris(2-chloroethyl)phosphate (TCEP), 8 M urea, 0.2% formic acid (FA)) to a final pH of 2.5 and immediately flash frozen in liquid nitrogen. Samples were analyzed by LC-MS on a Synapt TM G2-Si mass spectrometer using a custom-built loading system that maintained all chromatographic columns, loops, valves and lines at 0°C. Frozen samples were thawed on ice and loaded onto a custom packed immobilized pepsin column (2.1×50 mm) with 0.1% trifluoroacetic acid (TFA) and 2% acetonitrile at a flow rate of 200 mL/min. Peptides were trapped on a Waters CSH C18 trap column (2.1×5 mm) and then resolved on a Waters CSH C18 1×100 mm 1.7 μm column with a linear gradient from 3% to 40% B in 18 min (A: 98% water, 2% acetonitrile, 0.1% FA, 0.025% TFA; B: 100% acetonitrile, 0.1% FA, flow rate 40 mL/min). A series of washes were performed between sample runs to minimize carryover. Unless otherwise specified, all water and organic solvents used were MS grade (Optima , Fisher). Full deuteration controls were performed for each sample series by collecting LC eluate from a pepsin-digested, nondeuterated sample, speedvac drying, incubating in deuterated buffer at 85°C for 1 hour, and quenching identically to all other HDX samples. Internal exchange standards (Pro-Pro-Pro-Ile [PPPI] and Pro-Pro-Pro-Phe [PPPF]) were added to each sample to ensure consistent labeling conditions for all samples.

肽参考列表从野生型RBD肽列表更新而来,添加了涵盖突变的新肽。这些肽使用DriftScopeTM进行手动验证,并使用正交保留时间和漂移时间坐标进行鉴定。使用HX-Express v2执行氘吸收分析。基于肽m/z值从肽谱中鉴别峰,并应用二项式拟合。将氘摄取水平相对于完全氘化对照归一化。The peptide reference list was updated from the wild-type RBD peptide list, with new peptides added covering mutations. The peptides were manually verified using DriftScope TM and identified using orthogonal retention time and drift time coordinates. Deuterium uptake analysis was performed using HX-Express v2. Peaks were identified from peptide spectra based on peptide m/z values, and a binomial fit was applied. Deuterium uptake levels were normalized relative to a fully deuterated control.

小鼠免疫Mouse immunization

雌性BALB/c(库存号:000651)小鼠在四周龄时购买。在6周龄时,每个投配组6只小鼠接种初免疫苗,三周后小鼠接受第二次疫苗接种加强免疫。在接种前,将免疫原悬浮液与AddaVaxTM佐剂以1:1体积/体积轻轻混合,以达到0.009mg/mL或0.05mg/mL抗原的终浓度。在异氟醚麻醉下,使用27号针头向小鼠的每条后腿的腓肠肌中肌内注射,其中每个注射部位注射50μL(总共100μL)免疫原。为了获得血清,在初免疫和加强免疫两周后对所有小鼠进行采血。经由颏下静脉穿刺收集血液,并在室温下在1.5mL塑料埃彭道夫管中静置30min以进行凝血。经由以2,000g离心10min,将血清与血细胞比容分离。将分离的血清中的补体因子和病原体经由在56℃孵育60min进行热灭活。血清在使用前储存在4℃或-80℃。Female BALB/c (stock number: 000651) mice were purchased at four weeks of age. At 6 weeks of age, 6 mice in each dosing group were vaccinated with the primary vaccine, and mice received a second vaccination booster three weeks later. Before vaccination, the immunogen suspension was gently mixed with AddaVax TM adjuvant at 1:1 volume/volume to reach a final concentration of 0.009mg/mL or 0.05mg/mL antigen. Under isoflurane anesthesia, a 27-gauge needle was used to inject intramuscularly into the gastrocnemius muscle of each hind leg of the mouse, with 50μL (a total of 100μL) of immunogen injected at each injection site. In order to obtain serum, all mice were bled two weeks after the primary and booster immunizations. Blood was collected via submental venous puncture and allowed to stand for 30min at room temperature in a 1.5mL plastic Eppendorf tube for coagulation. Serum was separated from hematocrit by centrifugation at 2,000g for 10min. Complement factors and pathogens in the separated serum were heat-inactivated by incubation for 60 min at 56° C. Serum was stored at 4° C. or −80° C. before use.

ELISAELISA

使用酶联免疫吸附测定(ELISA)来确定小鼠血清与所递送的抗原的结合。简言之,将MaxisorpTM ELISA板在4℃下用每孔0.08μg/mL感兴趣的蛋白质在0.1M碳酸氢钠缓冲液(pH 9.4)中包被过夜。然后将板在室温下用干奶粉的在含0.05%(v/v)Tween 20(TBST)的TBS的4%(w/v)溶液中封闭1小时。将血清的连续稀释液添加到板中,并在洗涤后,使用过氧化氢酶偶联的马抗小鼠IgG抗体揭示抗体结合。然后在TBST中彻底清洗板,添加比色底物(TMB,Thermo Fisher)并读取450nm处的吸光度。曲线下面积(AUC)计算是通过添加在相邻的吸光度测量对与基线之间生成的梯形面积来生成的。使用Python中的SciPy库,基于拟合四点逻辑方程生成中点效价计算(EC50),其中EC50是曲线达到其最大值的50%时的血清稀释度。Binding of mouse sera to the delivered antigen was determined using an enzyme-linked immunosorbent assay (ELISA ) . ELISA plates were coated overnight at 4°C with 0.08 μg/mL of the protein of interest per well in 0.1 M sodium bicarbonate buffer (pH 9.4). The plates were then blocked for 1 hour at room temperature with a 4% (w/v) solution of dry milk powder in TBS containing 0.05% (v/v) Tween 20 (TBST). Serial dilutions of serum were added to the plates, and after washing, antibody binding was revealed using a catalase-coupled horse anti-mouse IgG antibody. The plates were then washed thoroughly in TBST, a colorimetric substrate (TMB, Thermo Fisher) was added, and the absorbance at 450 nm was read. The area under the curve (AUC) calculation was generated by adding the trapezoidal area generated between adjacent absorbance measurement pairs and the baseline. The midpoint potency calculation (EC 50 ) was generated based on fitting a four-point logistic equation using the SciPy library in Python, where EC 50 is the serum dilution at which the curve reaches 50% of its maximum value.

基于慢病毒的假病毒中和测定Lentivirus-based pseudovirus neutralization assay

刺突假型化慢病毒中和测定基本上如(67)中所述进行。对本研究的方案进行修改以使用具有21个氨基酸的细胞质尾部截断的SARS-CoV-2刺突(其增加了刺突假型化慢病毒效价)和D614G突变(其现在在人类SARS-CoV-2中占主导地位)。编码此刺突的质粒HDM_Spikedelta21_D614G可从Addgene(编号158762)或BEI(NR-53765)获得,并且完整序列可在万维网上在addgene.org/158762处获得)。Spike-pseudotyped lentivirus neutralization assays were performed essentially as described in (67). The protocol for this study was modified to use a SARS-CoV-2 spike with a 21-amino acid cytoplasmic tail truncation (which increases spike-pseudotyped lentivirus titers) and the D614G mutation (which is now predominant in human SARS-CoV-2). The plasmid HDM_Spikedelta21_D614G encoding this spike is available from Addgene (no. 158762) or BEI (NR-53765), and the full sequence is available on the World Wide Web at addgene.org/158762).

简言之,将293T-ACE2细胞(BEI NR-52511)以1.25×104个细胞/孔接种在聚L-赖氨酸包被的黑壁透明底96孔板(Greiner 655930)中的50uL D10生长培养基(含10%热灭活FBS、2mM L-谷氨酰胺、100U/mL青霉素和100μg/mL链霉素)中。第二天,将小鼠血清样品在56℃下热灭活30min,然后在D10生长培养基中连续稀释。将刺突假型化慢病毒按1:50稀释以产生每孔约200,000RLU,并在37℃下与血清稀释液一起孵育1小时。然后将100μL病毒-血清混合物添加到细胞中,并在约52小时后使用Bright-GloTM荧光素酶测定系统(E2610)测量荧光素酶活性。每批次的中和测定包括在2017-2018年中收集的人血清阴性对照样品和已知的中和抗体,以确保批次之间的一致性。与平板的同一行中的两个“无血清”对照孔相比,计算每个孔的感染率分数。“neutcurve”包(可在万维网上jbloomlab.github.io/neutcurve处获得,版本0.5.2)用于计算50%抑制浓度(IC50)和50%中和效价(NT50),对于每个血清样品,通过拟合底部固定为0且顶部固定为1的Hill曲线,其简单地为1/IC50。所有中和测定数据均可在万维网上在github.com/jbloomlab/RBD_nanoparticle_vaccine处获得。Briefly, 293T-ACE2 cells (BEI NR-52511) were seeded at 1.25×10 4 cells/well in 50uL D10 growth medium (containing 10% heat-inactivated FBS, 2mM L-glutamine, 100U/mL penicillin, and 100μg/mL streptomycin) in a poly-L-lysine-coated black-walled clear-bottom 96-well plate (Greiner 655930). The next day, mouse serum samples were heat-inactivated at 56°C for 30min and then serially diluted in D10 growth medium. The spike pseudotyped lentivirus was diluted 1:50 to produce approximately 200,000 RLU per well and incubated with serum dilutions at 37°C for 1 hour. 100μL of the virus-serum mixture was then added to the cells and the Bright-Glo luciferase assay system ( E2610) to measure luciferase activity. Each batch of neutralization assays includes human serum negative control samples and known neutralizing antibodies collected in 2017-2018 to ensure consistency between batches. Compared with the two "serum-free" control wells in the same row of the plate, the infection rate score of each well is calculated. The "neutcurve" package (available on the World Wide Web at jbloomlab.github.io/neutcurve, version 0.5.2) is used to calculate 50% inhibition concentration (IC 50 ) and 50% neutralization titer (NT50), for each serum sample, by fitting the Hill curve with the bottom fixed to 0 and the top fixed to 1, which is simply 1/IC 50. All neutralization assay data are available on the World Wide Web at github.com/jbloomlab/RBD_nanoparticle_vaccine.

基于MLV的假病毒中和测定MLV-based pseudovirus neutralization assay

如所述制备基于MLV的SARS-CoV-2S假型(AC Walls等人,Cell 181,281-292.e6(2020);AC Walls等人,Cell 183,1367-1382.e17(2020);AC Walls等人,Elicitation ofbroadly protective sarbecovirus immunity by receptor-binding domainnanoparticle vaccines,dx.doi.org/10.1101/2021.03.15.435528;JK Millet&GRWhittaker.Bio Protoc 6(2016))。简言之,根据制造商的使用说明,使用LipofectamineTM2000(Life Technologies)将HEK293T细胞与编码SARS-CoV-2S的质粒、MLVGag-Pol包装构建体和编码荧光素酶报告基因的MLV转移载体共转染。用Opti-MEM洗涤细胞3次,并在37℃下用转染培养基孵育5h。添加含10% FBS的DMEM以培养60h。通过在2,500g下自旋收获上清液,滤过0.45μm过滤器,用100kDa膜在2,500g下浓缩10min,然后等分并储存在-80℃下。The MLV-based SARS-CoV-2S pseudotype was prepared as described (AC Walls et al., Cell 181, 281-292.e6 (2020); AC Walls et al., Cell 183, 1367-1382.e17 (2020); AC Walls et al., Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines, dx.doi.org/10.1101/2021.03.15.435528; JK Millet & GR Whittaker. Bio Protoc 6 (2016)). Briefly, HEK293T cells were co-transfected with a plasmid encoding SARS-CoV-2S, an MLVGag-Pol packaging construct, and an MLV transfer vector encoding a luciferase reporter gene using Lipofectamine 2000 (Life Technologies) according to the manufacturer's instructions. The cells were washed three times with Opti-MEM and incubated with transfection medium at 37°C for 5 h. DMEM containing 10% FBS was added for 60 h. The supernatant was harvested by spinning at 2,500 g, filtered through a 0.45 μm filter, concentrated with a 100 kDa membrane at 2,500 g for 10 min, and then aliquoted and stored at -80°C.

对于中和测定,将HEK-hACE2细胞在37℃培养箱(ThermoFisher)中用8%CO2在含有10% FBS(Hyclone)和1% PenStrep的DMEM中培养。在感染前一天或更长时间,将40μL聚赖氨酸(Sigma)放入96孔板中并旋转孵育5min。去除聚赖氨酸,将板干燥5min,然后在将细胞HEK-hACE2细胞铺板之前用水洗涤1次。第二天,检查细胞达到80%汇合。在半面积96孔板中,在DMEM中以22μL最终体积制备血清的1:3连续稀释。然后将22μL假病毒添加到连续稀释液中,并在室温下孵育30-60min。将混合物添加到细胞中,并在2小时后添加44μL的补充有20% FBS和2% PenStrep的DMEM,并将细胞孵育48小时。在48h后,将40μL/孔的One-Glo-EXTM底物(Promega)添加到细胞中并在黑暗中孵育5-10min,然后在BioTekTM酶标仪上读数。使用log(抑制剂)对比归一化反应的非线性回归来确定曲线拟合的IC50值。For neutralization assays, HEK-hACE2 cells were cultured in DMEM containing 10% FBS (Hyclone) and 1% PenStrep in a 37°C incubator (ThermoFisher) with 8% CO 2. One day or more before infection, 40 μL of polylysine (Sigma) was placed in a 96-well plate and incubated with rotation for 5 min. Polylysine was removed, the plate was dried for 5 min, and then washed with water once before plating the cells HEK-hACE2 cells. The next day, the cells were checked to reach 80% confluence. In a half-area 96-well plate, a 1:3 serial dilution of serum was prepared in DMEM with a final volume of 22 μL. Then 22 μL of pseudovirus was added to the serial dilutions and incubated at room temperature for 30-60 min. The mixture was added to the cells, and 44 μL of DMEM supplemented with 20% FBS and 2% PenStrep was added 2 hours later, and the cells were incubated for 48 hours. After 48 h, 40 μL/well of One-Glo-EX substrate (Promega) was added to the cells and incubated in the dark for 5-10 min before reading on a BioTek microplate reader. IC50 values were determined from curve fits using nonlinear regression of log(inhibitor) versus normalized response.

量化和统计分析Quantification and statistical analysis

使用GraphPad Prism 8中的非参数Kruskal-Wallis检验和Dunn事后分析执行多组比较。当P值小于0.05时,差异被认为是显著的。统计方法和P值范围可以在图和图例中找到。Multiple group comparisons were performed using the nonparametric Kruskal-Wallis test and Dunn post hoc analysis in GraphPad Prism 8. Differences were considered significant when P values were less than 0.05. Statistical methods and P value ranges can be found in the figures and legends.

结果result

SARS-CoV-2S RBD的以下五个突变被认为是设计稳定化的RBD抗原的起点:I358F、Y365F、Y365W、V367F和F392W。使用融合前S胞外域三聚体(PDB ID 6VXX)的冷冻EM结构来在PyMolTM和RosettaTM中分析五个突变。只有V367F突变被发现暴露于溶剂,并且因此不考虑将其包含在稳定化的RBD设计中以避免不利地改变抗原性的风险。观察到其他四个突变靠近或位于最近鉴定出的亚油酸(LA)结合袋内,其中Y365被鉴定为此相互作用的关键门控残基(图2A至图2B)。针对LA结合袋中的几个突变通过DMS观察到提高的表达和稳定性,表明RBD的这个区域在结构上是次优的。The following five mutations of SARS-CoV-2S RBD are considered to be the starting points for designing stabilized RBD antigens: I358F, Y365F, Y365W, V367F and F392W. Five mutations were analyzed in PyMol TM and Rosetta TM using the cryoEM structure of the S extracellular domain trimer (PDB ID 6VXX) before fusion. Only the V367F mutation was found to be exposed to the solvent, and therefore it was not considered to be included in the stabilized RBD design to avoid the risk of adversely changing antigenicity. It was observed that the other four mutations were close to or located in the recently identified linoleic acid (LA) binding pocket, where Y365 was identified as the key gating residue (Fig. 2 A to Fig. 2 B) for this interaction. The expression and stability of improvement were observed by DMS for several mutations in the LA binding pocket, indicating that this region of RBD is structurally suboptimal.

接下来探讨这些突变的组合是否可以进一步提高RBD的这些和其他性质。计算协议是在RosettaTM中开发的,其对I358F、Y365F、Y365W和/或F392W中的一者或多者进行建模,与此同时还允许附近的残基发生突变(图2C)。还执行了不强制将这四种经验证的突变中的任何一种突变包含在LA结合袋中的设计轨迹,而不是允许RosettaTM在同一区域中设计新颖的稳定化突变集。所有设计轨迹均在完整S胞外域(PDB ID 6VXX)和在LA结合袋周围的区域中显示出微妙不同的骨架构象的RBD单体的晶体结构(PDB ID 6YZ5)的背景下执行。选择了十七种具有填充空腔和/或去除掩埋的极性基团的突变的重新包装设计(缩写为“Rpk”)进行实验分析,其中还包括DMS鉴定的个体突变中的一些来进行比较(表1)。Next, we explored whether the combination of these mutations can further improve these and other properties of RBD. The computational protocol was developed in Rosetta TM , which models one or more of I358F, Y365F, Y365W and/or F392W, while also allowing nearby residues to mutate (Fig. 2C). Design trajectories that do not force any of these four validated mutations to be included in the LA binding pocket were also performed, rather than allowing Rosetta TM to design novel stabilizing mutation sets in the same region. All design trajectories were performed in the context of the crystal structure (PDB ID 6YZ5) of the RBD monomer that shows a subtle difference in backbone conformation in the region around the LA binding pocket. Seventeen repackaging designs (abbreviated as "Rpk") with mutations that fill the cavity and/or remove buried polar groups were selected for experimental analysis, including some of the individual mutations identified by DMS for comparison (Table 1).

表1:每个稳定化的RBD设计中所包括的突变。突变被分成所报道的经DMS鉴定的突变或由Rosetta鉴定的突变。Table 1: Mutations included in each stabilized RBD design. Mutations are classified as either reported DMS-identified mutations or mutations identified by Rosetta.

*n/a表示不适用*n/a means not applicable

这些设计是在Wuhan-Hu-1 RBD与I53-50A纳米粒子三聚体的基因融合背景下筛选的,可以并入二十面体I53-50纳米粒子中以使其能够作为展示RBD的60个拷贝的候选疫苗进行评估。因此,将稳定化的RBD氨基酸序列克隆到用于哺乳动物表达的载体中,其中将I53-50A序列C末端融合到抗原并且将两个结构域通过16残基柔性Gly-Ser接头接合。These designs were screened in the context of genetic fusion of the Wuhan-Hu-1 RBD to the I53-50A nanoparticle trimer, which could be incorporated into icosahedral I53-50 nanoparticles to enable their evaluation as candidate vaccines displaying 60 copies of the RBD. Thus, the stabilized RBD amino acid sequence was cloned into a vector for mammalian expression, in which the I53-50A sequence was fused C-terminally to the antigen and the two domains were joined by a 16-residue flexible Gly-Ser linker.

从HEK293F细胞分泌了稳定化的设计,以及融合到I53-50A三聚体和阴性对照质粒的野生型RBD(“RBD”)。与野生型相比,细胞培养上清液的还原SDS-PAGE显示所有设计的表达增加(图1A)。此外,非还原SDS-PAGE显示每种设计形成的二硫键连接的二聚体的数量存在显著差异(图1A)。包括F392W突变的设计产生了明显较低水平的二硫键连接的二聚体。除了F392W部分填充LA结合袋空腔外,这种突变与在C391与C525之间的二硫化物的接近度表明它不利于涉及这些半胱氨酸的脱靶分子间二硫化物形成。Stabilized designs, as well as wild-type RBD ("RBD") fused to the I53-50A trimer and negative control plasmids, were secreted from HEK293F cells. Reducing SDS-PAGE of cell culture supernatants showed increased expression of all designs compared to wild-type (Figure 1A). In addition, non-reducing SDS-PAGE showed significant differences in the number of disulfide-linked dimers formed by each design (Figure 1A). The design that included the F392W mutation produced significantly lower levels of disulfide-linked dimers. In addition to the partial filling of the LA binding pocket cavity by F392W, the proximity of this mutation to the disulfide between C391 and C525 suggests that it is not conducive to off-target intermolecular disulfide formation involving these cysteines.

选择了以下两种设计作为单体和三聚体两者进行更详细的分析:Rpk4,其以仅F392W为特征;以及Rpk9,其将F392W与经DMS鉴定的Y365F组合以去除掩埋的侧链羟基和与经Rosetta鉴定的V395I组合以用疏水填料重新填充所得空腔(数据未显示)。来自HEK293F细胞的成比例放大表达和通过固定化金属亲和色谱(IMAC)和体积排阻色谱(SEC)的纯化证实了Rpk4和Rpk9作为单体和作为与I53-50A三聚体的融合体两者的产率增加,其中Rpk9显示出用于I53-50A三聚体的明显优势(图4A和图10A)。所有构建体都以低水平的脱靶二硫键连接的二聚体形成为特征,突出了将F392W包含在稳定化的RBD设计中的重要性。通过纳米差示扫描荧光法(纳米DSF)测量单体和三聚体两者的解链温度(Tm),监测固有色氨酸荧光,所述固有色氨酸荧光显示与野生型对应物相比,Rpk4蛋白增加了1.9-2.4℃并且Rpk9蛋白增加了3.8-5.3℃(图4B)。所有单体RBD都无法通过圆二色性进行区分,并且在95℃变性后似乎会重新折叠(图10B)。此外,与I53-50A三聚体融合的稳定化的RBD的氢/氘交换质谱(HDX-MS)显示,与野生型RBD相比,LA结合袋中两个不同肽区段中的氘摄取减少(图4C、图11),表明在稳定化设计中改进了局部排序。与野生型相比,远离LA结合袋的肽区段(包括ACE2结合基序中的那些肽区段)显示出保留的结构次序。为了进一步评估结构次序,将所有三种单体RBD单独与SYPRO橙染料混合以测量疏水基团的暴露(图4D)。与野生型RBD相比,Rpk4和Rpk9均显示信号降低,其中Rpk9产生的荧光最少,表明稳定化的RBD中LA结合袋的局部次序改善导致疏水暴露减少。与HDX-MS数据一致,如通过识别抗原位点Ia的抗体CV30的结合评定的,两个稳定化突变集均未影响ACE2结合基序的抗原性(Hurlbut等人NatureCommunications 11:5413(2020))(图4E)。针对位点IIc且更靠近LA结合袋的对非中和抗体CR3022的亲和力(Yuan等人Science 386:630-644(2020))略有降低(<3.5倍)。总之,两个稳定化突变集都增强了抗原的表达、热稳定性和结构次序,与此同时对抗原性的影响最小,其中针对单体RBD及其与I53-50A三聚体的遗传融合两者,Rpk9在所有类别中都显示出卓越的改进。The following two designs were selected for more detailed analysis as both monomers and trimers: Rpk4, which is characterized by only F392W; and Rpk9, which combines F392W with Y365F identified by DMS to remove buried side chain hydroxyls and with V395I identified by Rosetta to refill the resulting cavity with hydrophobic fillers (data not shown). Proportional expression from HEK293F cells and purification by immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) confirmed that Rpk4 and Rpk9 increased the yield of both monomers and fusions with I53-50A trimers, wherein Rpk9 showed a clear advantage for I53-50A trimers (Fig. 4A and Fig. 10A). All constructs are characterized by low levels of off-target disulfide bonded dimer formation, highlighting the importance of including F392W in the stabilized RBD design. The melting temperatures (T m ) of both monomers and trimers were measured by nano differential scanning fluorimetry (nano DSF), monitoring intrinsic tryptophan fluorescence, which showed that the Rpk4 protein increased by 1.9-2.4 ° C and the Rpk9 protein increased by 3.8-5.3 ° C ( FIG. 4B ) compared to the wild-type counterpart. All monomeric RBDs could not be distinguished by circular dichroism and appeared to refold after denaturation at 95 ° C ( FIG. 10B ). In addition, hydrogen/deuterium exchange mass spectrometry (HDX-MS) of the stabilized RBD fused to the I53-50A trimer showed that deuterium uptake in two different peptide segments in the LA binding pocket was reduced compared to the wild-type RBD ( FIG. 4C , FIG. 11 ), indicating that local ordering was improved in the stabilization design. Compared to the wild type, peptide segments away from the LA binding pocket (including those in the ACE2 binding motif) showed a retained structural order. To further evaluate the structural order, all three monomeric RBDs were mixed with SYPRO orange dye individually to measure the exposure of hydrophobic groups (Figure 4D). Compared with wild-type RBD, both Rpk4 and Rpk9 showed reduced signals, with Rpk9 producing the least fluorescence, indicating that the improved local order of the LA binding pocket in the stabilized RBD resulted in reduced hydrophobic exposure. Consistent with the HDX-MS data, as assessed by the binding of antibody CV30 that recognizes antigenic site Ia, neither of the two stabilizing mutation sets affected the antigenicity of the ACE2 binding motif (Hurlbut et al. Nature Communications 11: 5413 (2020)) (Figure 4E). The affinity for non-neutralizing antibody CR3022 (Yuan et al. Science 386: 630-644 (2020)) for site IIc and closer to the LA binding pocket was slightly reduced (<3.5 times). In summary, both stabilizing mutation sets enhanced antigen expression, thermal stability, and structural order with minimal impact on antigenicity, with Rpk9 showing superior improvements in all categories for both the monomeric RBD and its genetic fusion to the I53-50A trimer.

尽管稳定化突变在设计时考虑到了分离的RBD,但此类突变也在完整的S胞外域的背景下进行了评估。使用Rpk9突变(Rpk9-HexaPro-折叠子)测量与T4纤维蛋白折叠子融合的预融合稳定化的HexaPro抗原的总产率,并与野生型版本(HexaPro-折叠子)进行比较。术语“HexaPro”是指具有四个有益脯氨酸取代(F817P、A892P、A899P、A942P)以及S-2P中的两个脯氨酸取代(脯氨酸位于986和987处)的刺突蛋白。参见Hsieh等人,Science 369:1501-05(2020);使用Rpk9突变时看到产率略有提高,然而观察到稍早的SEC洗脱体积,这可能表明在S胞外域背景下稳定性降低。Rpk9-HexaPro-折叠子显示出与HexaPro-折叠子相似的纳米DSF特征,但是使用Rpk9-HexaPro-折叠子时在高于60℃时发生的固有荧光变化略有加速(图8C)。负染色电子显微术(nsEM)显示典型的预融合刺突形态主要与突变保持一致(图8D)。这些数据表明,尽管可以将LA结合袋的突变掺入到预融合刺突三聚体中,但是Rpk9突变的稳定化效应似乎是分离的RBD所特有的。Although stabilizing mutations were designed with isolated RBDs in mind, such mutations were also evaluated in the context of the complete S extracellular domain. The total yield of pre-fused stabilized HexaPro antigen fused to the T4 fibrin foldon was measured using Rpk9 mutations (Rpk9-HexaPro-foldon) and compared with the wild-type version (HexaPro-foldon). The term "HexaPro" refers to a spike protein with four beneficial proline substitutions (F817P, A892P, A899P, A942P) and two proline substitutions in S-2P (proline is located at 986 and 987). See Hsieh et al., Science 369: 1501-05 (2020); a slight increase in yield was seen when using Rpk9 mutations, but a slightly earlier SEC elution volume was observed, which may indicate reduced stability in the context of the S extracellular domain. Rpk9-HexaPro-foldon showed similar nanoDSF features as HexaPro-foldon, but the intrinsic fluorescence change occurring above 60°C was slightly accelerated when using Rpk9-HexaPro-foldon (Figure 8C). Negative staining electron microscopy (nsEM) showed that the typical prefusion spike morphology was mainly consistent with the mutation (Figure 8D). These data suggest that although mutations in the LA binding pocket can be incorporated into the prefusion spike trimer, the stabilizing effect of the Rpk9 mutation appears to be unique to the isolated RBD.

接下来研究RBD稳定化突变是否会提高纳米粒子在缺乏辅料(诸如甘油、L-精氨酸和洗涤剂3-[(3-胆酰胺丙基)二甲基氨基]-1-丙磺酸酯(CHAPS))的更简单缓冲液中的稳定性,所述缓冲液在另外情况下可用于稳定化纳米粒子免疫原的制备物。通过添加互补的I53-50B.4PT1五聚体组分(SEQ ID NO:17),将野生型和稳定化的RBD-I53-50A三聚体装配成纳米粒子(RBD-I53-50、Rpk4-I53-50和Rpk9-I53-50)(图5A)。使用包含含有甘油、L-精氨酸和CHAPS的Tris缓冲盐水(TBS)的流动相,通过SEC去除多余的残留组分,并通过负染色电子显微术(nsEM)证实高度单分散纳米粒子的形成(图5B)。然后将纯化的纳米粒子渗析到具有较少辅料的缓冲溶液中,以评估单次冷冻/解冻循环之前和之后的溶液稳定性(图5C至图5E)。在补充了甘油和L-精氨酸的TBS中,通过UV-Vis光谱法(图5C)和动态光散射(DLS)(图5D),野生型RBD-I53-50显示出轻微的聚集迹象,而对于Rpk4-I53-50和Rpk9-I53-50未观察到聚集迹象。在渗析到仅含甘油的TBS中后进一步对比溶液稳定性的差异:Rpk4-I53-50和Rpk9-I53-50均比RBD-I53-50更抗聚集,并更好地维持与固定化的人ACE2(hACE2-Fc)和CR3022的结合(图5E)。渗析到单独的TBS中显示出所有样品聚集和抗原性丧失的明显证据,其中Rpk9-I53-50保留的抗原性略好于RBD-I53-50和Rpk4-I53-50。对于稳定化的RBD观察到的改进的溶液稳定性似乎与其增强的热稳定性和结构次序一致,并且在与疫苗制造高度相关的制剂稳定性方面提供了微妙但重要的改进。Next, it was investigated whether the RBD stabilizing mutations would improve the stability of the nanoparticles in simpler buffers lacking excipients such as glycerol, L-arginine, and the detergent 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS), which otherwise could be used to stabilize preparations of nanoparticle immunogens. Wild-type and stabilized RBD-I53-50A trimers were assembled into nanoparticles (RBD-I53-50, Rpk4-I53-50, and Rpk9-I53-50) ( FIG. 5A ) by adding the complementary I53-50B.4PT1 pentamer component (SEQ ID NO: 17). Using a mobile phase comprising Tris-buffered saline (TBS) containing glycerol, L-arginine, and CHAPS, excess residual components were removed by SEC, and the formation of highly monodisperse nanoparticles was confirmed by negative staining electron microscopy (nsEM) ( FIG. 5B ). The purified nanoparticles were then dialyzed into a buffer solution with less excipients to assess solution stability before and after a single freeze/thaw cycle (Figure 5C to Figure 5E). In TBS supplemented with glycerol and L-arginine, wild-type RBD-I53-50 showed slight signs of aggregation by UV-Vis spectroscopy (Figure 5C) and dynamic light scattering (DLS) (Figure 5D), while no signs of aggregation were observed for Rpk4-I53-50 and Rpk9-I53-50. The differences in solution stability were further compared after dialysis into TBS containing only glycerol: both Rpk4-I53-50 and Rpk9-I53-50 were more resistant to aggregation than RBD-I53-50 and better maintained binding to immobilized human ACE2 (hACE2-Fc) and CR3022 (Figure 5E). Dialysis into TBS alone showed clear evidence of aggregation and loss of antigenicity for all samples, with Rpk9-I53-50 retaining antigenicity slightly better than RBD-I53-50 and Rpk4-I53-50. The improved solution stability observed for the stabilized RBD appears consistent with its enhanced thermal stability and structural order, and provides a subtle but important improvement in formulation stability, which is highly relevant to vaccine manufacturing.

随后在小鼠免疫研究中评估稳定化的RBD的免疫原性。将包含野生型和稳定化RBD的免疫原以两种形式制备:展示每种抗原的I53-50纳米粒子,以及几乎等同的蛋白质的非装配对照,其中将与I53-50A的三聚融合体与缺乏驱动纳米粒子装配的疏水界面的经略微修饰的五聚支架混合(“2OBX”;SEQ ID NO:43;图6A)。除了允许评估三聚体和纳米粒子形式的不同RBD的免疫原性外,这种比较还直接控制纳米粒子装配的影响。所有纳米粒子免疫原均在补充有甘油和L-精氨酸的Tris缓冲盐水(TBS)中制备,而野生型RBD-I53-50纳米粒子也在进一步包含CHAPS的缓冲液中制备以便能够与其他免疫原性研究进行直接比较。HexaPro-折叠子(以野生型RBD为特征)被包括作为比较物。雌性BALB/c小鼠每隔三周用每种免疫原免疫两次,每次免疫后两周收集血清(图6A)。所有剂量均与等摩尔量的RBD一起施用,并包含AddaVax佐剂。The immunogenicity of stabilized RBD was subsequently evaluated in mouse immunization studies. Immunogens containing wild-type and stabilized RBD were prepared in two forms: I53-50 nanoparticles displaying each antigen, and non-assembly controls of nearly equivalent proteins, in which the trimeric fusion with I53-50A was mixed with a slightly modified pentamer scaffold lacking a hydrophobic interface that drives nanoparticle assembly ("2OBX"; SEQ ID NO:43; Figure 6A). In addition to allowing the evaluation of the immunogenicity of different RBDs in trimer and nanoparticle form, this comparison also directly controls the impact of nanoparticle assembly. All nanoparticle immunogens were prepared in Tris-buffered saline (TBS) supplemented with glycerol and L-arginine, while wild-type RBD-I53-50 nanoparticles were also prepared in a buffer further comprising CHAPS to enable direct comparison with other immunogenicity studies. HexaPro-fold (characterized by wild-type RBD) was included as a comparator. Female BALB/c mice were immunized twice with each immunogen at intervals of three weeks, and sera were collected two weeks after each immunization (Figure 6A). All doses were administered with an equimolar amount of RBD and contained AddaVax adjuvant.

使用酶联免疫吸附测定(ELISA)测量针对HexaPro-折叠子的结合效价,并通过测量曲线下面积(AUC)(图6B)和中点效价(图12A)进行分析。来自所有纳米粒子组的血清在初免后显示抗原特异性抗体水平略高于HexaPro-折叠子并显著高于非装配对照。第二次免疫后所有组的结合信号均增加,它们之间的差距较少。使用慢病毒骨架的假病毒中和在初免疫后显示出相似的趋势,其中所有纳米粒子组都表现出比非装配对照显著更高的中和活性,并且比HexaPro-折叠子高出近两个数量级的更有效中和(图6C)。在第二次免疫后,所有组的中和作用都大大增加,其中纳米粒子和HexaPro-折叠子显示出最高水平的中和活性。在每个时间点,各种纳米粒子组之间或各种非装配对照组之间的中和活性没有显著差异。使用鼠白血病病毒(MLV)骨架,用不同假病毒测定获得可比的结果(图12B)。这些数据表明,当以三聚体或微粒形式呈递时,稳定化的RBD与野生型RBD具有相似的免疫原性,其中纳米粒子呈递显著增强RBD免疫原性,并且在单次免疫后是最显著的。Binding titers to HexaPro-foldon were measured using an enzyme-linked immunosorbent assay (ELISA) and analyzed by measuring the area under the curve (AUC) (Figure 6B) and midpoint titers (Figure 12A). Sera from all nanoparticle groups showed slightly higher levels of antigen-specific antibodies than HexaPro-foldon and significantly higher than non-assembly controls after the initial immunization. The binding signals of all groups increased after the second immunization, with fewer differences between them. Neutralization of pseudoviruses using a lentiviral backbone showed similar trends after the initial immunization, with all nanoparticle groups showing significantly higher neutralizing activity than non-assembly controls and more effective neutralization than HexaPro-foldon by nearly two orders of magnitude (Figure 6C). After the second immunization, the neutralization of all groups was greatly increased, with nanoparticles and HexaPro-foldon showing the highest levels of neutralizing activity. At each time point, there was no significant difference in neutralizing activity between various nanoparticle groups or between various non-assembly control groups. Comparable results were obtained using different pseudovirus assays using a murine leukemia virus (MLV) backbone (Figure 12B). These data suggest that stabilized RBD has similar immunogenicity to wild-type RBD when presented as trimers or microparticles, with nanoparticle presentation significantly enhancing RBD immunogenicity, most significantly after a single immunization.

SARS-CoV-2疫苗的保质期稳定性的提高有可能通过简化制造和分销来直接加强全球疫苗接种成果。通过DLS(图7A)、BLI(图7B)、SDS-PAGE和nsEM(图7C)比较两种稳定化的RBD纳米粒子免疫原与野生型RBD-I53-50在-80℃、2-8℃、22-27℃和35-40℃下的28天储存期间的稳定性。在研究过程中,在-80℃、2-8℃或22-27℃下,任何免疫原均未观察到与基线的显著偏差。然而,野生型RBD-I53-50在35-40℃下储存28天导致可通过DLS和nsEM检测到的聚集和抗原性的显著降低。相比之下,在35-40℃下储存28天后,Rpk4-I53-50和Rpk9-I53-50的粒子稳定性和抗原性均维持不变。这些结果表明,在RBD中鉴定出的稳定化突变可以提高基于RBD的纳米粒子免疫原的可制造性和稳定性,而不会损害其有效的免疫原性。Improved shelf-life stability of SARS-CoV-2 vaccines has the potential to directly enhance global vaccination efforts by streamlining manufacturing and distribution. The stability of two stabilized RBD nanoparticle immunogens was compared with wild-type RBD-I53-50 during 28 days of storage at -80°C, 2-8°C, 22-27°C, and 35-40°C by DLS (Figure 7A), BLI (Figure 7B), SDS-PAGE, and nsEM (Figure 7C). No significant deviations from baseline were observed for any immunogen at -80°C, 2-8°C, or 22-27°C during the study. However, storage of wild-type RBD-I53-50 at 35-40°C for 28 days resulted in a significant reduction in aggregation and antigenicity that was detectable by DLS and nsEM. In contrast, particle stability and antigenicity of both Rpk4-I53-50 and Rpk9-I53-50 were maintained after 28 days of storage at 35-40°C. These results suggest that the stabilizing mutations identified in the RBD can improve the manufacturability and stability of RBD-based nanoparticle immunogens without compromising their potent immunogenicity.

将潜在的设计空间缩小到特别有价值的区域和突变的实验信息可以极大地促进基于结构的蛋白质设计。在此,通过将SARS-CoV-2S RBD的LA结合袋表征为结构上次优的区域并提供潜在稳定化突变的特性,证明了DMS数据在指导病毒糖蛋白稳定化方面的效用。在这些数据的指导下,RosettaTM中的结构建模确定了附加的稳定化突变以及有希望的突变组合。所有通过实验筛选的设计都成功地改进了野生型RBD的表达,与许多纯基于结构的设计实验相比,这是异常高的效率。Narrowing the potential design space to particularly promising regions and experimental information on mutations can greatly facilitate structure-based protein design. Here, the utility of DMS data in guiding viral glycoprotein stabilization is demonstrated by characterizing the LA-binding pocket of the SARS-CoV-2S RBD as a structurally suboptimal region and providing properties of potential stabilizing mutations. Guided by these data, structural modeling in Rosetta TM identified additional stabilizing mutations as well as promising mutation combinations. All designs that passed the experimental screen successfully improved expression of the wild-type RBD, an unusually high efficiency compared to many purely structure-based design experiments.

RBD变体的这种深入的生物化学和生物物理表征使本发明人能够选择增强表达;最小化脱靶二硫化物;改善局部结构次序;和提高热稳定性、溶液稳定性和保质期稳定性;与此同时均维持在I53-50纳米粒子上展示的野生型RBD的强免疫原性的设计。在详细研究的两个突变体中,Rpk4(F392W)更保守,以仅单个氨基酸变化为特征,但与包含特别改进表达和热稳定性的附加突变的Rpk9(Y365F、F392W、V395I)相比更不稳定化。不希望受理论的束缚,本发明人推测Rpk4-I53-50和Rpk9-I53-50的改进的溶液性质最可能源于局部结构次序的改进和疏水表面积暴露的减小,如HDX-MS和SYPRO橙荧光所指示。更一般地说,这些结果提出了以下可能性:其他RBD抗原可能采用在S胞外域或分离的RBD的现有结构中未观察到的动态构象,诸如LA结合袋的打开状态与关闭状态之间的转换。This in-depth biochemical and biophysical characterization of RBD variants enables the inventors to select enhanced expression; minimize off-target disulfides; improve local structural order; and improve thermal stability, solution stability and shelf life stability; while maintaining the design of strong immunogenicity of wild-type RBD displayed on I53-50 nanoparticles. Of the two mutants studied in detail, Rpk4 (F392W) is more conservative, characterized by only a single amino acid change, but is more unstable than Rpk9 (Y365F, F392W, V395I) containing additional mutations that specifically improve expression and thermal stability. Without wishing to be bound by theory, the inventors speculate that the improved solution properties of Rpk4-I53-50 and Rpk9-I53-50 are most likely derived from improvements in local structural order and reductions in hydrophobic surface area exposure, as indicated by HDX-MS and SYPRO orange fluorescence. More generally, these results raise the possibility that other RBD antigens may adopt dynamic conformations not observed in existing structures of the S ectodomain or isolated RBD, such as transitions between open and closed states of the LA-binding pocket.

Rpk4-I53-50和Rpk9-I53-50与野生型RBD-I53-50纳米粒子相比的类似强免疫原性与ACE2结合基序的类天然免疫原性、针对RBD的中和反应的主要焦点、以及稳定化突变未暴露在抗原表面上的事实一致。这些免疫原性数据还清楚地表明,高价RBD纳米粒子免疫原远比三聚体形式的RBD更具免疫原性,尤其是在单次免疫后。三聚体刺突(HexaPro-折叠子)引发了比三聚体RBD更高水平的中和活性。这一结果表明,在维持刺突寡聚状态的同时从刺突环境中去除RBD对于提高针对RBD的抗体反应并不是固有的优势,并强调了纳米粒子呈递在基于RBD的疫苗中的重要性。The similarly strong immunogenicity of Rpk4-I53-50 and Rpk9-I53-50 compared to wild-type RBD-I53-50 nanoparticles is consistent with the natural-like immunogenicity of the ACE2 binding motif, the primary focus of the neutralization response against RBD, and the fact that the stabilizing mutations are not exposed on the antigenic surface. These immunogenicity data also clearly demonstrate that the high-valent RBD nanoparticle immunogens are far more immunogenic than the trimeric form of RBD, especially after a single immunization. The trimeric spike (HexaPro-foldon) elicited higher levels of neutralizing activity than the trimeric RBD. This result suggests that removing the RBD from the spike environment while maintaining the oligomeric state of the spike is not an inherent advantage for enhancing antibody responses against RBD and highlights the importance of nanoparticle presentation in RBD-based vaccines.

观察到的可制造性、稳定性和溶液性质的改进可能对针对SARS-CoV-2的基于蛋白质的疫苗的制造和分销具有重大影响。由于SARS-CoV-2疫苗已经响应于抗原漂移进行了更新,因此此类改进对于最大化疫苗生产的规模和速度以及缓冲来自新颖SARS-CoV-2毒株的抗原的稳定性或溶液性质的意外变化可能很重要。此外,提高各种温度下的变性抗性和保质期稳定性可能对在世界上缺乏冷链基础设施的欠发达地区的可靠分销特别有影响。最后,由于在SARS-CoV-2出现之前对预融合稳定化“2P”突变的了解被证明对大流行应对工作至关重要,因此对RBD使用稳定化突变来可靠地提高疫苗可制造性的能力可能是用于优化针对在动物传染病宿主中传播的有威胁传染给人类的其他冠状病毒的疫苗设计的重要工具。The observed improvements in manufacturability, stability, and solution properties may have significant implications for the manufacture and distribution of protein-based vaccines against SARS-CoV-2. As SARS-CoV-2 vaccines are already being updated in response to antigenic drift, such improvements may be important for maximizing the scale and speed of vaccine production and for buffering against unexpected changes in stability or solution properties of antigens from novel SARS-CoV-2 strains. Furthermore, improved denaturation resistance and shelf-life stability across temperatures may be particularly impactful for reliable distribution in less developed regions of the world that lack cold chain infrastructure. Finally, as knowledge of the prefusion stabilizing “2P” mutation prior to the emergence of SARS-CoV-2 proved critical to pandemic response efforts, the ability to reliably improve vaccine manufacturability using stabilizing mutations to the RBD may be an important tool for optimizing vaccine design against other coronaviruses that circulate in zoonotic reservoirs and threaten to jump to humans.

Claims (73)

1.一种非天然存在的多肽,所述非天然存在的多肽包含第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少两个突变,其中所述至少两个突变选自由以下组成的组:1. A non-naturally occurring polypeptide comprising a first coronavirus receptor binding domain (RBD), the first coronavirus RBD comprising residues 328-1 of SEQ ID NO:1 531 is at least 90% identical, and further comprises at least two mutations relative to the RBD of SEQ ID NO: 1, wherein the at least two mutations are selected from the group consisting of: F338L/Y365W;F338L/Y365W; Y365W/L513M;Y365W/L513M; Y365W/F392W;Y365W/F392W; F338M/A363L/Y365F/F377V;F338M/A363L/Y365F/F377V; Y365F/F392W;Y365F/F392W; Y365F/V395I;Y365F/V395I; Y365F/F392W/V395I;Y365F/F392W/V395I; Y365W/L513I/F515L;Y365W/L513I/F515L; F338L/A363L/Y365M;F338L/A363L/Y365M; F338L/I358F/Y365W;F338L/I358F/Y365W; I358F/Y365W/L513M;I358F/Y365W/L513M; I358F/Y365W/F392W;I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V;F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W;I358F/Y365F/F392W; I358F/Y365F/V395I;I358F/Y365F/V395I; I358F/Y365F/F392W/V395I;I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L;和I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365MF338L/I358F/A363L/Y365M 或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的所述第二冠状病毒受体结合结构域的对应残基处。or in said second coronavirus receptor binding structure as determined by sequence alignment of SEQ ID NO: 1 with the sequence of a second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2 at the corresponding residues of the domain. 2.一种非天然存在的多肽,所述非天然存在的多肽包含:2. A non-naturally occurring polypeptide comprising: 第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531或与如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒受体结合结构域的序列进行序列比对所确定的所述第二冠状病毒的所述受体结合结构域的对应残基的至少90%的同一性,并且A first coronavirus receptor binding domain (RBD) comprising residues 328-531 corresponding to SEQ ID NO: 1 or corresponding to SEQ. ID NO:1 is at least 90% identical to the corresponding residues of the receptor binding domain of the second coronavirus as determined by a sequence alignment with the sequence of the receptor binding domain of the second coronavirus, and 进一步包含相对于SEQ ID NO:1的所述RBD或所述第二冠状病毒中的所述对应残基的至少两个突变,further comprising at least two mutations relative to said RBD of SEQ ID NO: 1 or said corresponding residues in said second coronavirus, 其中相对于缺乏所述至少两个突变的野生型多肽的稳定性,所述至少两个突变增强了所述多肽的稳定性。wherein said at least two mutations enhance the stability of said polypeptide relative to the stability of a wild-type polypeptide lacking said at least two mutations. 3.根据权利要求2所述的多肽,其中所述至少两个突变在SEQ ID NO:1的以下氨基酸处:3. The polypeptide of claim 2, wherein the at least two mutations are at the following amino acids of SEQ ID NO: 1: 338和365;338 and 365; 365和513;365 and 513; 365和392;365 and 392; 338、363、365和377;338, 363, 365 and 377; 365和392;365 and 392; 365和395;365 and 395; 365、392和395;365, 392 and 395; 365、513和515;365, 513 and 515; 338、363和365;338, 363 and 365; 338、358和365;338, 358 and 365; 358、365和513;358, 365 and 513; 358、365和392;358, 365 and 392; 338、358、363、365和377;338, 358, 363, 365 and 377; 358、365和392;358, 365 and 392; 358、365和395;358, 365 and 395; 358、365、392和395;358, 365, 392 and 395; 358、365、513和515;和/或358, 365, 513 and 515; and/or 338、358、363和365,338, 358, 363 and 365, 或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与所述第二冠状病毒受体结合结构域的所述序列进行序列比对所确定的所述第二冠状病毒受体结合结构域的对应残基处。or in said second coronavirus as determined by sequence alignment of SEQ ID NO: 1 with said sequence of said second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2 corresponding residues in the receptor binding domain. 4.根据权利要求2或3所述的多肽,其中所述至少两个突变选自由以下组成的组:SEQID NO:1的F338L/Y365W;4. The polypeptide of claim 2 or 3, wherein the at least two mutations are selected from the group consisting of: F338L/Y365W of SEQ ID NO: 1; Y365W/L513M;Y365W/L513M; Y365W/F392W;Y365W/F392W; F338M/A363L/Y365F/F377V;F338M/A363L/Y365F/F377V; Y365F/F392W;Y365F/F392W; Y365F/V395I;Y365F/V395I; Y365F/F392W/V395I;Y365F/F392W/V395I; Y365W/L513I/F515L;Y365W/L513I/F515L; F338L/A363L/Y365M;F338L/A363L/Y365M; F338L/I358F/Y365W;F338L/I358F/Y365W; I358F/Y365W/L513M;I358F/Y365W/L513M; I358F/Y365W/F392W;I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V;F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W;I358F/Y365F/F392W; I358F/Y365F/V395I;I358F/Y365F/V395I; I358F/Y365F/F392W/V395I;I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L;和I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M,F338L/I358F/A363L/Y365M, 或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与所述第二冠状病毒受体结合结构域的所述序列进行序列比对所确定的第二冠状病毒的对应残基处。or correspond to a second coronavirus as determined by sequence alignment of SEQ ID NO: 1 with said sequence of said second coronavirus receptor binding domain using the Blast-p parameters of Protocol 1 or Protocol 2 at the residue. 5.根据权利要求2-4中任一项所述的多肽,所述多肽进一步包含SEQ ID NO:1的所述RBD之外的附加氨基酸残基。5. The polypeptide of any one of claims 2-4, further comprising additional amino acid residues other than the RBD of SEQ ID NO:1. 6.根据权利要求2-5中任一项所述的多肽,其中所述冠状病毒受体结合结构域(RBD)包含与SEQ ID NO:1的残基328-531至少95%的同一性。6. The polypeptide of any one of claims 2-5, wherein the coronavirus receptor binding domain (RBD) comprises at least 95% identity to residues 328-531 of SEQ ID NO:1. 7.根据权利要求2-6中任一项所述的多肽,其中在SEQ ID NO:1的以下氨基酸处7. The polypeptide of any one of claims 2-6, wherein at the following amino acids of SEQ ID NO:1 338和365;338 and 365; 365和513;365 and 513; 365和392;365 and 392; 338、363、365和377;338, 363, 365 and 377; 365和392;365 and 392; 365和395;365 and 395; 365、392和395;365, 392 and 395; 365、513和515;365, 513 and 515; 338、363和365;338, 363 and 365; 338、358和365;338, 358 and 365; 358、365和513;358, 365 and 513; 358、365和392;358, 365 and 392; 338、358、363、365和377;338, 358, 363, 365 and 377; 358、365和392;358, 365 and 392; 358、365和395;358, 365 and 395; 358、365、392和395;358, 365, 392 and 395; 358、365、513和515;和/或358, 365, 513 and 515; and/or 338、358、363和365,338, 358, 363 and 365, 或在所述第二冠状病毒受体结合结构域的对应残基处的所述至少两个突变是在所述受体结合结构域中相对于野生型的唯一突变。Or the at least two mutations at corresponding residues of the second coronavirus receptor binding domain are the only mutations in the receptor binding domain relative to wild type. 8.根据权利要求2-7中任一项所述的多肽,其中当在细胞中表达时,所述RBD多肽的表达与缺乏所述至少两个突变的所述野生型RBD多肽的表达相比增多。8. The polypeptide of any one of claims 2-7, wherein when expressed in a cell, the expression of the RBD polypeptide is compared to the expression of the wild-type RBD polypeptide lacking the at least two mutations. increase. 9.根据权利要求2-8中任一项所述的多肽,其中所述RBD多肽结合冠状病毒抗体或结合冠状病毒同源受体。9. The polypeptide according to any one of claims 2-8, wherein the RBD polypeptide binds a coronavirus antibody or binds a coronavirus cognate receptor. 10.根据权利要求9所述的多肽,其中所述冠状病毒抗体包括SARS-CoV-2抗体。10. The polypeptide of claim 9, wherein the coronavirus antibody comprises a SARS-CoV-2 antibody. 11.根据权利要求9所述的多肽,其中针对与所述多肽对应的所述冠状病毒的所述受体包括血管紧张素转换酶(ACE)受体。11. The polypeptide of claim 9, wherein the receptor for the coronavirus corresponding to the polypeptide includes an angiotensin-converting enzyme (ACE) receptor. 12.根据权利要求11所述的多肽,其中所述ACE受体是ACE2受体。12. The polypeptide of claim 11, wherein the ACE receptor is an ACE2 receptor. 13.根据权利要求2-12中任一项所述的多肽,其中所述第二冠状病毒包含选自以下的冠状病毒的序列:严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2)、严重急性呼吸综合征相关冠状病毒(SARS-CoV);中东呼吸综合征(MERS);229E;NL63;OC43;或HKU1。13. The polypeptide of any one of claims 2-12, wherein the second coronavirus comprises a sequence selected from a coronavirus: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) , severe acute respiratory syndrome-related coronavirus (SARS-CoV); Middle East respiratory syndrome (MERS); 229E; NL63; OC43; or HKU1. 14.根据权利要求2-13中任一项所述的多肽,其中所述多肽包含与SEQ ID NO:1至少90%的序列同一性。14. The polypeptide of any one of claims 2-13, wherein the polypeptide comprises at least 90% sequence identity to SEQ ID NO:1. 15.根据权利要求2-14中任一项所述的多肽,其中所述RBD融合至第二异源多肽。15. The polypeptide of any one of claims 2-14, wherein the RBD is fused to a second heterologous polypeptide. 16.根据权利要求15所述的多肽,其中所述RBD融合至纳米粒子、纳米结构或异源蛋白质支架。16. The polypeptide of claim 15, wherein the RBD is fused to a nanoparticle, nanostructure or heterologous protein scaffold. 17.根据权利要求2-16中任一项所述的多肽,其中所述RBD多肽和/或所述第二多肽是抗原性多肽。17. The polypeptide of any one of claims 2-16, wherein the RBD polypeptide and/or the second polypeptide is an antigenic polypeptide. 18.一种组合物,所述组合物包含根据权利要求1-17中任一项所述的多肽和药学上可接受的载体。18. A composition comprising the polypeptide of any one of claims 1-17 and a pharmaceutically acceptable carrier. 19.根据权利要求18所述的组合物,所述组合物进一步包含佐剂。19. The composition of claim 18, further comprising an adjuvant. 20.根据权利要求18或19所述的组合物,其中所述组合物的保质期比包含缺乏所述至少两个突变的野生型RBD多肽的组合物更长。20. The composition of claim 18 or 19, wherein the composition has a longer shelf life than a composition comprising a wild-type RBD polypeptide lacking the at least two mutations. 21.根据权利要求18-20中任一项所述的组合物,其中所述组合物被配制为疫苗。21. The composition of any one of claims 18-20, wherein the composition is formulated as a vaccine. 22.一种包含至少两个突变的非天然存在的冠状病毒刺突蛋白亚基1多肽,其中所述至少两个突变包括至少一个空腔填充突变和至少一个第二突变。22. A non-naturally occurring coronavirus spike protein subunit 1 polypeptide comprising at least two mutations, wherein the at least two mutations comprise at least one cavity-filling mutation and at least one second mutation. 23.根据权利要求22所述的冠状病毒多肽,其中相对于缺乏所述至少一个空腔填充突变和所述至少第二突变的野生型多肽的稳定性,所述至少两个突变增强了所述冠状病毒多肽的稳定性。23. The coronavirus polypeptide of claim 22, wherein said at least two mutations enhance said stability relative to a wild-type polypeptide lacking said at least one cavity-filling mutation and said at least a second mutation. Stability of coronavirus peptides. 24.根据权利要求22或23所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括所述冠状病毒刺突蛋白亚基1的亚油酸结合袋中的残基的突变。24. The coronavirus polypeptide of claim 22 or 23, wherein the at least one cavity-filling mutation comprises a mutation of a residue in the linoleic acid binding pocket of the coronavirus spike protein subunit 1. 25.根据权利要求22-24中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括在SEQ ID NO:1的残基328-531内的残基的突变,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的对应残基处的突变。25. The coronavirus polypeptide of any one of claims 22-24, wherein the at least one cavity-filling mutation comprises a mutation of a residue within residues 328-531 of SEQ ID NO:1, or within The second coronavirus spike protein subunit as determined by sequence alignment of SEQ ID NO: 1 with the sequence of the second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2 Mutation at the corresponding residue of 1. 26.根据权利要求22-25中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括SEQ ID NO:1的在残基335-345、355-375、或378-395之间的残基的突变,或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的对应残基处的突变。26. The coronavirus polypeptide of any one of claims 22-25, wherein the at least one cavity-filling mutation comprises SEQ ID NO: 1 at residues 335-345, 355-375, or 378-395 Mutation of residues between, or as determined by sequence alignment of SEQ ID NO:1 with the sequence of the second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2 Mutations at the corresponding residues of the second coronavirus spike protein subunit 1. 27.根据权利要求22-26中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变包括SEQ ID NO:1的在氨基酸336、338、341、342、358、361、363、365、368、374、377、387或392处的残基的突变,或如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与所述第二冠状病毒的所述序列进行序列比对所确定的第二冠状病毒刺突蛋白亚基1的对应残基的突变。27. The coronavirus polypeptide of any one of claims 22-26, wherein the at least one cavity-filling mutation comprises SEQ ID NO: 1 at amino acids 336, 338, 341, 342, 358, 361, 363 , 365, 368, 374, 377, 387 or 392, or as by using the Blast-p parameters of Protocol 1 or Protocol 2 to compare SEQ ID NO: 1 with the sequence of the second coronavirus Mutation of the corresponding residues of the second coronavirus spike protein subunit 1 determined by sequence alignment was performed. 28.根据权利要求22-27中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变和所述至少一个第二突变在SEQ ID NO:1的以下残基处28. The coronavirus polypeptide of any one of claims 22-27, wherein the at least one cavity-filling mutation and the at least one second mutation are at the following residues of SEQ ID NO: 1 338和365;338 and 365; 365和513;365 and 513; 365和392;365 and 392; 338、363、365和377;338, 363, 365 and 377; 365和392;365 and 392; 365和395;365 and 395; 365、392和395;365, 392 and 395; 365、513和515;365, 513 and 515; 338、363和365;338, 363 and 365; 338、358和365;338, 358 and 365; 358、365和513;358, 365 and 513; 358、365和392;358, 365 and 392; 338、358、363、365和377;338, 358, 363, 365 and 377; 358、365和392;358, 365 and 392; 358、365和395;358, 365 and 395; 358、365、392和395;358, 365, 392 and 395; 358、365、513和515;和/或358, 365, 513 and 515; and/or 338、358、363和365,338, 358, 363 and 365, 或在如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的对应残基处。or in said second coronavirus spike protein as determined by sequence alignment of SEQ ID NO: 1 with the sequence of second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2 at the corresponding residue of subunit 1. 29.根据权利要求22-28中任一项所述的冠状病毒多肽,其中所述至少一个空腔填充突变和所述至少一个第二突变选自由以下组成的组:SEQ ID NO:1的F338L/Y365W;29. The coronavirus polypeptide of any one of claims 22-28, wherein the at least one cavity-filling mutation and the at least one second mutation are selected from the group consisting of: F338L of SEQ ID NO: 1 /Y365W; Y365W/L513M;Y365W/L513M; Y365W/F392W;Y365W/F392W; F338M/A363L/Y365F/F377V;F338M/A363L/Y365F/F377V; Y365F/F392W;Y365F/F392W; Y365F/V395I;Y365F/V395I; Y365F/F392W/V395I;Y365F/F392W/V395I; Y365W/L513I/F515L;Y365W/L513I/F515L; F338L/A363L/Y365M;F338L/A363L/Y365M; F338L/I358F/Y365W;F338L/I358F/Y365W; I358F/Y365W/L513M;I358F/Y365W/L513M; I358F/Y365W/F392W;I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V;F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W;I358F/Y365F/F392W; I358F/Y365F/V395I;I358F/Y365F/V395I; I358F/Y365F/F392W/V395I;I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L;和I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M,F338L/I358F/A363L/Y365M, 或选自如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的对应残基。or selected from said second coronavirus spike protein as determined by sequence alignment of SEQ ID NO: 1 with the sequence of second coronavirus spike protein subunit 1 using the Blast-p parameters of Protocol 1 or Protocol 2 Corresponding residues of subunit 1. 30.根据权利要求22-29中任一项所述的冠状病毒多肽,其中所述冠状病毒刺突蛋白亚基1多肽包含与SEQ ID NO:1的残基328-531或如通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与第二冠状病毒刺突蛋白亚基1的序列进行序列比对所确定的所述第二冠状病毒刺突蛋白亚基1的受体结合结构域序列的至少95%的同一性。30. The coronavirus polypeptide of any one of claims 22-29, wherein the coronavirus spike protein subunit 1 polypeptide comprises residues 328-531 of SEQ ID NO: 1 or as described by using Protocol 1 Or the Blast-p parameter of Protocol 2 is used to determine the receptor binding of the second coronavirus spike protein subunit 1 by sequence alignment of SEQ ID NO:1 with the sequence of the second coronavirus spike protein subunit 1. At least 95% identity of domain sequences. 31.根据权利要求22-30中任一项所述的冠状病毒刺突蛋白亚基1多肽,其中在SEQ IDNO:1的以下氨基酸处31. The coronavirus spike protein subunit 1 polypeptide according to any one of claims 22-30, wherein at the following amino acids of SEQ ID NO: 1 338和365;338 and 365; 365和513;365 and 513; 365和392;365 and 392; 338、363、365和377;338, 363, 365 and 377; 365和392;365 and 392; 365和395;365 and 395; 365、392和395;365, 392 and 395; 365、513和515;365, 513 and 515; 338、363和365;338, 363 and 365; 338、358和365;338, 358 and 365; 358、365和513;358, 365 and 513; 358、365和392;358, 365 and 392; 338、358、363、365和377;338, 358, 363, 365 and 377; 358、365和392;358, 365 and 392; 358、365和395;358, 365 and 395; 358、365、392和395;358, 365, 392 and 395; 358、365、513和515;和/或358, 365, 513 and 515; and/or 338、358、363和365338, 358, 363 and 365 或在所述第二冠状病毒受体结合结构域的对应残基处的所述至少两个突变是在所述刺突蛋白亚基1中相对于SEQ ID NO:1的唯一突变。Or the at least two mutations at corresponding residues of the second coronavirus receptor binding domain are the only mutations in the spike protein subunit 1 relative to SEQ ID NO: 1. 32.根据权利要求22-31中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽包含与SEQ ID NO:1或与第二冠状病毒的野生型刺突蛋白亚基1氨基酸序列至少95%的同一性。32. The coronavirus polypeptide according to any one of claims 22-31, wherein the coronavirus polypeptide comprises at least the same amino acid sequence as SEQ ID NO: 1 or the wild-type spike protein subunit 1 of a second coronavirus. 95% identical. 33.根据权利要求22-31中任一项所述的冠状病毒多肽,其中当在细胞中表达时,所述冠状病毒多肽的表达与缺乏所述至少一个空腔填充突变和所述至少一个第二突变的野生型多肽在相同表达条件下的表达相比增多。33. The coronavirus polypeptide of any one of claims 22-31, wherein when expressed in a cell, expression of the coronavirus polypeptide is consistent with the absence of the at least one cavity-filling mutation and the at least one first The expression of the double-mutated wild-type polypeptide increased under the same expression conditions. 34.根据权利要求22-33中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽结合冠状病毒抗体或结合同源冠状病毒受体。34. The coronavirus polypeptide of any one of claims 22-33, wherein the coronavirus polypeptide binds a coronavirus antibody or binds a cognate coronavirus receptor. 35.根据权利要求34所述的冠状病毒多肽,其中所述冠状病毒抗体包括SARS-CoV-2抗体。35. The coronavirus polypeptide of claim 34, wherein the coronavirus antibody comprises a SARS-CoV-2 antibody. 36.根据权利要求35所述的冠状病毒多肽,所述同源冠状病毒受体包括血管紧张素转换酶(ACE)受体。36. The coronavirus polypeptide of claim 35, said cognate coronavirus receptor comprising an angiotensin-converting enzyme (ACE) receptor. 37.根据权利要求36所述的冠状病毒多肽,其中所述ACE受体是ACE2受体。37. The coronavirus polypeptide of claim 36, wherein the ACE receptor is an ACE2 receptor. 38.根据权利要求22-37中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽是选自以下的冠状病毒的经工程化的突变多肽:严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2)、严重急性呼吸综合征相关冠状病毒(SARS-CoV);中东呼吸综合征(MERS);229E;NL63;OC43;或HKU1。38. The coronavirus polypeptide of any one of claims 22-37, wherein the coronavirus polypeptide is an engineered mutant polypeptide of a coronavirus selected from the group consisting of severe acute respiratory syndrome-related coronavirus 2 ( SARS-CoV-2), severe acute respiratory syndrome-related coronavirus (SARS-CoV); Middle East respiratory syndrome (MERS); 229E; NL63; OC43; or HKU1. 39.根据权利要求22-38中任一项所述的冠状病毒多肽,其中所述冠状病毒刺突蛋白亚基1多肽包含与SEQ ID NO:1至少90%的序列同一性。39. The coronavirus polypeptide of any one of claims 22-38, wherein the coronavirus spike protein subunit 1 polypeptide comprises at least 90% sequence identity to SEQ ID NO: 1. 40.根据权利要求22-39中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽融合至第二异源多肽。40. The coronavirus polypeptide of any one of claims 22-39, wherein the coronavirus polypeptide is fused to a second heterologous polypeptide. 41.根据权利要求22-40中任一项所述的冠状病毒多肽,其中所述冠状病毒多肽融合至纳米粒子、纳米结构或蛋白质支架。41. The coronavirus polypeptide of any one of claims 22-40, wherein the coronavirus polypeptide is fused to a nanoparticle, nanostructure or protein scaffold. 42.根据权利要求40所述的冠状病毒多肽,其中所述冠状病毒多肽或所述第二异源多肽是抗原性多肽。42. The coronavirus polypeptide of claim 40, wherein the coronavirus polypeptide or the second heterologous polypeptide is an antigenic polypeptide. 43.一种组合物,所述组合物包含根据权利要求22-42中任一项所述的冠状病毒多肽和药学上可接受的载体。43. A composition comprising the coronavirus polypeptide according to any one of claims 22-42 and a pharmaceutically acceptable carrier. 44.根据权利要求43所述的组合物,所述组合物进一步包含佐剂。44. The composition of claim 43, further comprising an adjuvant. 45.根据权利要求43或44所述的组合物,其中当在相同的货架条件下储存时,所述组合物的保质期比包含缺乏所述至少一个空腔填充突变和所述至少第二突变的野生型冠状病毒多肽的组合物更长。45. The composition of claim 43 or 44, wherein when stored under identical shelf conditions, the composition has a shelf life greater than that of a composition lacking said at least one cavity-filling mutation and said at least a second mutation. The composition of wild-type coronavirus peptides is longer. 46.根据权利要求43-45中任一项所述的组合物,其中所述组合物被配制为疫苗。46. The composition of any one of claims 43-45, wherein the composition is formulated as a vaccine. 47.一种细胞,所述细胞表达根据权利要求1-15中任一项所述的受体结合结构域或根据权利要求22-42中任一项所述的冠状病毒多肽。47. A cell expressing the receptor binding domain according to any one of claims 1-15 or the coronavirus polypeptide according to any one of claims 22-42. 48.一种核酸序列,所述核酸序列编码根据权利要求1-15中任一项所述的受体结合结构域或根据权利要求22-42中任一项所述的冠状病毒多肽。48. A nucleic acid sequence encoding the receptor binding domain according to any one of claims 1-15 or the coronavirus polypeptide according to any one of claims 22-42. 49.一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向所述受试者施用根据权利要求21或权利要求46所述的组合物。49. A method of vaccinating a subject against coronavirus, comprising administering to the subject a composition according to claim 21 or claim 46. 50.一种制备疫苗的方法,所述方法包括将根据权利要求1-15或22-42中任一项所述的组合物与佐剂及药学上可接受的载体组合。50. A method of preparing a vaccine, the method comprising combining the composition according to any one of claims 1-15 or 22-42 with an adjuvant and a pharmaceutically acceptable carrier. 51.一种冠状病毒刺突蛋白,所述冠状病毒刺突蛋白包含根据权利要求1-25中任一项所述的多肽。51. A coronavirus spike protein comprising the polypeptide according to any one of claims 1-25. 52.根据前述权利要求中任一项所述的方法或组合物,其中协议1的Blast-p参数包括:52. The method or composition of any one of the preceding claims, wherein the Blast-p parameters of Protocol 1 include: 算法:blastp(蛋白质-蛋白质BLAST)Algorithm: blastp (protein-protein BLAST) 预期阈值:0.1Expected threshold: 0.1 字长:6Word length: 6 查询范围内的最大匹配:0Maximum match in query range: 0 矩阵:BLOSUM62Matrix: BLOSUM62 空位成本:Space cost: 存在:11Presence: 11 延伸:1Extension: 1 过滤低复杂度区域?:否Filter low complexity regions? :no 掩码:Mask: 仅用于查找表?:否Only for lookup tables? :no 小写字母?:否。Lower case letters? :no. 53.根据前述权利要求中任一项所述的方法或组合物,其中协议2的Blast-p参数包括:53. The method or composition of any one of the preceding claims, wherein the Blast-p parameters of Protocol 2 include: blastp-查询query.fasta-主题sbjct.fasta-矩阵BLOSUM62-evalue 0.1-字长6-空位打开11-空位延伸1-输出results.txt。blastp-query query.fasta-topic sbjct.fasta-matrix BLOSUM62-evalue 0.1-word length 6-gaps open 11-gaps extended 1-output results.txt. 54.一种包含冠状病毒受体结合结构域(RBD)的多肽,所述冠状病毒RBD包含相对于SEQID NO:1的冠状病毒多肽或其变体的选自由以下组成的组的突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L。54. A polypeptide comprising a coronavirus receptor binding domain (RBD), the coronavirus RBD comprising a mutation selected from the group consisting of I358F, or a variant thereof relative to the coronavirus polypeptide of SEQ ID NO: 1 or a variant thereof. Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M and F515L. 55.根据权利要求54所述的多肽,其中所述突变选自由以下组成的组:I358F、Y365F、Y365W、V367F和F392W。55. The polypeptide of claim 54, wherein the mutation is selected from the group consisting of: I358F, Y365F, Y365W, V367F and F392W. 56.根据权利要求54或权利要求55所述的多肽,其中所述多肽包含选自由以下组成的组的第二突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M、和F515L。56. The polypeptide of claim 54 or claim 55, wherein the polypeptide comprises a second mutation selected from the group consisting of: I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L , F338M, A363L, Y365M, F377V, V395I, L513I, L513M, and F515L. 57.根据权利要求54-56中任一项所述的多肽,其中所述多肽包含选自由以下组成的组的第三突变:I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M、和F515L。57. The polypeptide of any one of claims 54-56, wherein the polypeptide comprises a third mutation selected from the group consisting of: I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y , F338L, F338M, A363L, Y365M, F377V, V395I, L513I, L513M, and F515L. 58.根据权利要求57所述的多肽,其中所述多肽包含SEQ ID NO:4或SEQ ID NO:5的多肽序列。58. The polypeptide of claim 57, wherein the polypeptide comprises the polypeptide sequence of SEQ ID NO:4 or SEQ ID NO:5. 59.根据权利要求54-58中任一项所述的多肽,其中所述多肽包含异源蛋白质支架。59. The polypeptide of any one of claims 54-58, wherein the polypeptide comprises a heterologous protein scaffold. 60.根据权利要求59所述的多肽,其中所述异源蛋白质支架与SEQ ID NO:3的多肽序列具有至少90%、至少95%、或至少98%的同一性。60. The polypeptide of claim 59, wherein the heterologous protein scaffold is at least 90%, at least 95%, or at least 98% identical to the polypeptide sequence of SEQ ID NO:3. 61.根据权利要求59所述的多肽,其中所述异源蛋白质支架包含SEQ ID NO:3的多肽。61. The polypeptide of claim 59, wherein the heterologous protein scaffold comprises the polypeptide of SEQ ID NO:3. 62.根据权利要求61所述的多肽,其中所述多肽包含SEQ ID NO:6或SEQ ID NO:7的多肽序列。62. The polypeptide of claim 61, wherein the polypeptide comprises the polypeptide sequence of SEQ ID NO:6 or SEQ ID NO:7. 63.一种多肽复合物,所述多肽复合物包含或由以下组成:由根据权利要求59-62中任一项所述的多肽组成的第一组分和与SEQ ID NO:13-SEQ ID NO:18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性的第二组分。63. A polypeptide complex comprising or consisting of: a first component consisting of the polypeptide according to any one of claims 59-62 and SEQ ID NO: 13-SEQ ID Any of NO: 18 has a second component that is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical. 64.一种疫苗组合物,所述疫苗组合物包含根据权利要求54-62中任一项所述的组合物或根据权利要求63所述的多肽复合物。64. A vaccine composition comprising the composition according to any one of claims 54-62 or the polypeptide complex according to claim 63. 65.根据权利要求64所述的疫苗组合物,所述疫苗组合物进一步包含药学上可接受的载体。65. The vaccine composition of claim 64, further comprising a pharmaceutically acceptable carrier. 66.根据权利要求64或权利要求65所述的疫苗组合物,所述疫苗组合物进一步包含佐剂。66. The vaccine composition of claim 64 or claim 65, further comprising an adjuvant. 67.一种细胞,所述细胞表达根据权利要求54-62中任一项所述的多肽。67. A cell expressing the polypeptide of any one of claims 54-62. 68.一种核酸,所述核酸编码根据权利要求54-62中任一项所述的多肽。68. A nucleic acid encoding the polypeptide of any one of claims 54-62. 69.一种针对冠状病毒对受试者进行疫苗接种的方法,所述方法包括向所述受试者施用根据权利要求54-62中任一项所述的多肽、根据权利要求63的所述蛋白质复合物或根据权利要求64-68中任一项所述的疫苗组合物。69. A method of vaccinating a subject against coronavirus, the method comprising administering to the subject a polypeptide according to any one of claims 54-62, a polypeptide according to claim 63 Protein complex or vaccine composition according to any one of claims 64-68. 70.一种制备疫苗的方法,所述方法包括将根据权利要求54-62中任一项所述的多肽与佐剂及药学上可接受的载体组合。70. A method of preparing a vaccine, the method comprising combining the polypeptide according to any one of claims 54-62 with an adjuvant and a pharmaceutically acceptable carrier. 71.一种制备疫苗的方法,所述方法包括将以下进行组合:由根据权利要求59-62中任一项所述的多肽组成的第一组分;与SEQ ID NO:13-18中的任一者具有至少95%、至少96%、至少97%、至少98%、至少99%或100%的同一性的第二组分;药学上可接受的载体;以及任选的佐剂。71. A method of preparing a vaccine, the method comprising combining: a first component consisting of the polypeptide according to any one of claims 59-62; and SEQ ID NO: 13-18 A second component that either has at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity; a pharmaceutically acceptable carrier; and an optional adjuvant. 72.一种非天然存在的多肽,所述非天然存在的多肽包含:72. A non-naturally occurring polypeptide comprising: 第一冠状病毒受体结合结构域(RBD),所述第一冠状病毒RBD包含与SEQ ID NO:1的残基328-531至少90%的同一性,并且进一步包含相对于SEQ ID NO:1的RBD的至少一个突变,其中所述至少一个突变选自由以下组成的组:SEQ ID NO:1的I358F、Y365F、Y365W、V367F、F392W、G502D、N501F、N501T、Q498Y、F338L、F338M、A363L、Y365M、F377V、V395I、L513I、L513M和F515L,或第二冠状病毒参考序列,其中所述第二冠状病毒参考序列中的对应位点通过使用协议1或协议2的Blast-p参数将SEQ ID NO:1与所述第二冠状病毒受体结合结构域的刺突蛋白序列进行序列比对确定。A first coronavirus receptor binding domain (RBD) comprising at least 90% identity to residues 328-531 of SEQ ID NO: 1 and further comprising a protein relative to SEQ ID NO: 1 At least one mutation of the RBD, wherein the at least one mutation is selected from the group consisting of: I358F, Y365F, Y365W, V367F, F392W, G502D, N501F, N501T, Q498Y, F338L, F338M, A363L, of SEQ ID NO: 1 Y365M, F377V, V395I, L513I, L513M and F515L, or a second coronavirus reference sequence, wherein the corresponding site in the second coronavirus reference sequence is changed to SEQ ID NO. : 1 is determined by sequence comparison with the spike protein sequence of the second coronavirus receptor binding domain. 73.根据权利要求72所述的多肽,其中所述多肽包含选自以下的两个或更多个突变:73. The polypeptide of claim 72, wherein the polypeptide comprises two or more mutations selected from: F338L/Y365W;F338L/Y365W; Y365W/L513M;Y365W/L513M; Y365W/F392W;Y365W/F392W; F338M/A363L/Y365F/F377V;F338M/A363L/Y365F/F377V; Y365F/F392W;Y365F/F392W; Y365F/V395I;Y365F/V395I; Y365F/F392W/V395I;Y365F/F392W/V395I; Y365W/L513I/F515L;Y365W/L513I/F515L; F338L/A363L/Y365M;F338L/A363L/Y365M; F338L/I358F/Y365W;F338L/I358F/Y365W; I358F/Y365W/L513M;I358F/Y365W/L513M; I358F/Y365W/F392W;I358F/Y365W/F392W; F338M/I358F/A363L/Y365F/F377V;I358F/Y365F/F392W;F338M/I358F/A363L/Y365F/F377V; I358F/Y365F/F392W; I358F/Y365F/V395I;I358F/Y365F/V395I; I358F/Y365F/F392W/V395I;I358F/Y365F/F392W/V395I; I358F/Y365W/L513I/F515L;和F338L/I358F/A363L/Y365M。I358F/Y365W/L513I/F515L; and F338L/I358F/A363L/Y365M.
CN202180088941.3A 2020-12-31 2021-06-15 Stable coronavirus proteins and vaccine compositions thereof Pending CN116761624A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63/132,863 2020-12-31
US202163188651P 2021-05-14 2021-05-14
US63/188,651 2021-05-14
PCT/US2021/037341 WO2022146484A1 (en) 2020-12-31 2021-06-15 Stable coronavirus proteins and vaccine compositions thereof

Publications (1)

Publication Number Publication Date
CN116761624A true CN116761624A (en) 2023-09-15

Family

ID=87959521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180088941.3A Pending CN116761624A (en) 2020-12-31 2021-06-15 Stable coronavirus proteins and vaccine compositions thereof

Country Status (1)

Country Link
CN (1) CN116761624A (en)

Similar Documents

Publication Publication Date Title
US11993633B2 (en) Conformationally stabilized RSV pre-fusion F proteins
US20210283240A1 (en) Recombinant metapneumovirus f proteins and their use
JP2020532953A (en) Conformation-stabilized RSV pre-fusion F protein
CN111217918A (en) A novel coronavirus S protein two-domain subunit nanovaccine based on 2,4-dioxotetrahydropteridine synthase
AU2016379097A1 (en) RSV F protein mutants
US11857622B2 (en) Human cytomegalovirus GB polypeptide
US20240189416A1 (en) Stabilized coronavirus spike protein fusion proteins
US20250002907A1 (en) Stable coronavirus proteins and vaccine compositions thereof
US20230399364A1 (en) Immunogenic Coronavirus Fusion Proteins and Related Methods
JP2024502823A (en) Stable coronavirus proteins and vaccine compositions thereof
US11872279B2 (en) SARS-CoV-2 antigens and uses thereof
US20220289796A1 (en) Methods and compositions for stabilized recombinant flavivirus e protein dimers
CN114835819A (en) SARS-CoV-2S1 coupled nano-particle and its application
CN116761624A (en) Stable coronavirus proteins and vaccine compositions thereof
CN117177774A (en) Covalent conjugates of SARS-COV-2 receptor binding domain and carrier protein and vaccine compositions containing them
CN116964104A (en) Immunogenic coronavirus fusion proteins and related methods
CN116239658A (en) Modified fusion precursor novel coronavirus S protein mutant and nucleic acid molecule, vector, cell and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination