CN116700156A - Visual servo control method, control system, control device and storage medium - Google Patents
Visual servo control method, control system, control device and storage medium Download PDFInfo
- Publication number
- CN116700156A CN116700156A CN202210372619.XA CN202210372619A CN116700156A CN 116700156 A CN116700156 A CN 116700156A CN 202210372619 A CN202210372619 A CN 202210372619A CN 116700156 A CN116700156 A CN 116700156A
- Authority
- CN
- China
- Prior art keywords
- motion
- information
- visual
- perception
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 131
- 230000000007 visual effect Effects 0.000 title claims abstract description 116
- 238000010276 construction Methods 0.000 claims abstract description 117
- 230000008447 perception Effects 0.000 claims abstract description 109
- 238000012937 correction Methods 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims description 88
- 238000012795 verification Methods 0.000 claims description 26
- 238000004364 calculation method Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 10
- 238000013524 data verification Methods 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 8
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 4
- 230000004438 eyesight Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 9
- 239000011449 brick Substances 0.000 description 8
- 238000009435 building construction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004886 process control Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32252—Scheduling production, machining, job shop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
Description
技术领域technical field
本发明涉及机器人领域,特别涉及一种视觉伺服控制方法、控制系统、控制设备及存储介质。The invention relates to the field of robots, in particular to a visual servo control method, a control system, control equipment and a storage medium.
背景技术Background technique
视觉伺服控制用于实现对机器人的控制,主要结合视觉感知控制机器人运动。Visual servo control is used to realize the control of the robot, mainly combined with visual perception to control the movement of the robot.
目前通过视觉伺服控制方法控制机器人运动时,在机器人面对复杂动态环境和实时扰动情况下,对机器人控制的精度较低。At present, when the motion of the robot is controlled by the visual servo control method, the precision of the robot control is low when the robot is faced with complex dynamic environments and real-time disturbances.
发明内容Contents of the invention
本发明提供一种视觉伺服控制方法、控制系统、控制设备及存储介质,能够提高对建筑机器人的视觉伺服控制精度。The invention provides a visual servo control method, a control system, a control device and a storage medium, which can improve the visual servo control precision of a construction robot.
第一方面,本发明实施例提供一种视觉伺服控制方法,用于建筑机器人,视觉伺服控制方法包括:通过位姿感知模块产生与目标施工对象对应的感知信息;通过状态观测器观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息;通过运动控制模块根据感知信息以及运动状态预测信息产生运动控制指令;通过执行驱动模块根据运动控制指令执行运动;通过运动控制模块接收执行驱动模块反馈的实时运动状态信息;通过运动控制模块根据运动控制指令以及实时运动状态信息生成动态补偿控制指令;以及通过执行驱动模块根据动态补偿控制指令执行修正运动。In the first aspect, an embodiment of the present invention provides a visual servo control method for a construction robot. The visual servo control method includes: generating perception information corresponding to a target construction object through a pose perception module; observing the target construction object through a state observer And call the observation model to generate motion state prediction information corresponding to the target construction object; generate motion control instructions through the motion control module according to the perception information and motion state prediction information; execute motion according to the motion control instructions through the execution drive module; receive execution through the motion control module The real-time motion state information fed back by the driving module; the dynamic compensation control command is generated by the motion control module according to the motion control command and the real-time motion state information; and the correction motion is executed by the execution drive module according to the dynamic compensation control command.
根据本发明第一方面的前述实施方式,在通过位姿感知模块产生与目标施工对象对应的感知信息之前,视觉伺服控制方法还包括:进行基础参数配置,进行基础参数配置包括:确定视觉伺服工作模式;以及调用产品和工艺数据库中的工艺标准数据获得视觉伺服工作的精度收敛标准。According to the above-mentioned implementation of the first aspect of the present invention, before the perception information corresponding to the target construction object is generated by the pose perception module, the visual servo control method further includes: performing basic parameter configuration, and performing basic parameter configuration includes: determining the visual servo work mode; and call the process standard data in the product and process database to obtain the precision convergence standard of the visual servo work.
根据本发明第一方面的前述任一实施方式,视觉伺服工作模式包括定点跟踪模式和循迹跟踪模式,若确定视觉伺服工作模式为定点跟踪模式,则感知信息为目标特征点信息;若确定视觉伺服工作模式为循迹跟踪模式,则感知信息为期望轨迹信息。According to any of the foregoing implementations of the first aspect of the present invention, the visual servoing mode includes a fixed-point tracking mode and a tracking mode. If the visual servoing mode is determined to be a fixed-point tracking mode, the perceptual information is target feature point information; If the servo working mode is track tracking mode, the perception information is the expected track information.
根据本发明第一方面的前述任一实施方式,通过位姿感知模块产生与目标施工对象对应的感知信息包括:进行参数标定;进行目标识别及位姿解算得到感知信息。According to any one of the foregoing implementation manners of the first aspect of the present invention, generating the sensing information corresponding to the target construction object through the pose sensing module includes: performing parameter calibration; performing target recognition and pose calculation to obtain the sensing information.
根据本发明第一方面的前述任一实施方式,进行参数标定包括:调用标准视觉标定板,通过相应的标准标定流程完成内参数与外参数的标定,其中,内参数为视觉传感器的像素坐标参数,外参数为视觉传感器与建筑机器人的本体之间的相对安装位置参数,内参数用于实现目标施工对象在相机坐标系下的位姿解算,外参数用于运动控制模块实现工件坐标系到基坐标系之间的坐标位置及运动状态的转换。According to any of the aforementioned implementations of the first aspect of the present invention, performing parameter calibration includes: calling a standard visual calibration board, and completing the calibration of internal parameters and external parameters through a corresponding standard calibration process, wherein the internal parameters are pixel coordinate parameters of the visual sensor , the external parameter is the relative installation position parameter between the vision sensor and the construction robot body, the internal parameter is used to realize the pose calculation of the target construction object in the camera coordinate system, and the external parameter is used for the motion control module to realize the workpiece coordinate system to The conversion of the coordinate position and motion state between the base coordinate systems.
根据本发明第一方面的前述任一实施方式,进行目标识别及位姿解算得到感知信息包括:获取目标施工对象的实际图像;将实际图像与产品和工艺数据库中的样本进行比对;若实际图像能够与产品和工艺数据库中已有的样本匹配,则调用所匹配样本对应的目标识别及位姿解算方案得到感知信息;若实际图像未能与产品和工艺数据库中已有的样本匹配,则对实际图像进行图形处理和处理方案提取,形成新的样本以及对应的目标识别及位姿解算方案,添加至产品和工艺数据库中。According to any of the above-mentioned implementations of the first aspect of the present invention, performing target recognition and pose calculation to obtain perceptual information includes: acquiring the actual image of the target construction object; comparing the actual image with samples in the product and process database; if If the actual image can match the existing samples in the product and process database, then call the target recognition and pose calculation scheme corresponding to the matched sample to obtain the perception information; if the actual image cannot match the existing samples in the product and process database , the actual image is subjected to graphic processing and processing solution extraction to form a new sample and the corresponding target recognition and pose solution solution, which are added to the product and process database.
根据本发明第一方面的前述任一实施方式,感知信息包括目标施工对象是否在有效视野范围内标志位以及目标施工对象在三维空间的位置和/或姿态在相机坐标系下的描述。According to any of the aforementioned implementations of the first aspect of the present invention, the perception information includes whether the target construction object is within the effective field of view, and the description of the position and/or posture of the target construction object in the three-dimensional space in the camera coordinate system.
根据本发明第一方面的前述任一实施方式,通过运动控制模块根据感知信息以及运动状态预测信息产生运动控制指令包括:进行数据预处理,进行数据预处理包括:对感知信息进行数据校验;以及对感知信息进行坐标转换;根据预处理后的感知信息以及运动状态预测信息产生运动控制指令。According to any of the above-mentioned implementations of the first aspect of the present invention, generating the motion control instruction by the motion control module according to the perception information and motion state prediction information includes: performing data preprocessing, and performing data preprocessing includes: performing data verification on the perception information; and performing coordinate transformation on the perception information; generating a motion control instruction according to the preprocessed perception information and motion state prediction information.
根据本发明第一方面的前述任一实施方式,对感知信息进行数据校验包括:逻辑校验,校验感知信息中目标施工对象是否在有效视野范围内标志位是否有效,以判断感知信息是否可用;工艺校验,调用产品和工艺数据库中的工艺标准数据校验感知信息是否在对应的允许误差范围内,若在允许误差范围内则工艺校验合格,若不在允许误差范围内则发出提示;安全校验,校验感知信息是否超出建筑机器人的运动能力阈值,若未超出,则安全校验合格,若超出,则将该感知信息判定为异常信息并舍弃。According to any of the above-mentioned implementations of the first aspect of the present invention, the data verification of the sensing information includes: logical verification, checking whether the target construction object in the sensing information is within the effective field of vision and whether the flag bit is valid, so as to determine whether the sensing information is Available; process verification, call the process standard data in the product and process database to verify whether the perceived information is within the corresponding allowable error range, if it is within the allowable error range, the process verification is qualified, and if it is not within the allowable error range, a prompt will be issued ;Safety check, check whether the perception information exceeds the motion capability threshold of the construction robot, if not, the safety check is passed, if it exceeds, the perception information is judged as abnormal information and discarded.
根据本发明第一方面的前述任一实施方式,对感知信息进行坐标转换包括:将基于相机坐标系下或工具坐标系下描述的感知信息转换为基于基坐标系下描述。According to any one of the foregoing implementation manners of the first aspect of the present invention, performing coordinate transformation on the perception information includes: transforming the perception information described based on the camera coordinate system or the tool coordinate system into a description based on the base coordinate system.
根据本发明第一方面的前述任一实施方式,根据预处理后的感知信息以及运动状态预测信息产生运动控制指令包括:根据预处理后的感知信息以及运动状态预测信息计算建筑机器人的当前状态与目标状态之间的误差方程;根据误差方程与相应的控制律生成运动控制指令。According to any of the aforementioned implementations of the first aspect of the present invention, generating motion control instructions according to the preprocessed perception information and motion state prediction information includes: calculating the current state of the construction robot according to the preprocessed perception information and motion state prediction information. Error equations between target states; motion control instructions are generated from the error equations and corresponding control laws.
根据本发明第一方面的前述任一实施方式,视觉伺服控制方法还包括:在运动控制模块的每个控制周期中,判断建筑机器人在任务空间中的位姿是否满足精度收敛标准,若满足,则结束视觉伺服工作,若未满足,则重复产生运动控制指令、根据运动控制指令执行运动、接收反馈的实时运动状态信息、生成动态补偿控制指令以及根据动态补偿控制指令执行修正运动的步骤。According to any of the aforementioned implementations of the first aspect of the present invention, the visual servo control method further includes: in each control cycle of the motion control module, judging whether the pose of the construction robot in the task space meets the accuracy convergence standard, and if so, Then end the visual servoing work, if not satisfied, repeat the steps of generating motion control commands, executing motion according to the motion control commands, receiving feedback real-time motion state information, generating dynamic compensation control commands, and performing corrective motion according to the dynamic compensation control commands.
第二方面,本发明实施例提供一种视觉伺服控制系统,用于建筑机器人,视觉伺服控制系统包括:位姿感知模块,被配置为产生与目标施工对象对应的感知信息;运动控制模块,包括状态观测器,状态观测器被配置为观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息,运动控制模块被配置为能够根据感知信息以及运动状态预测信息产生运动控制指令;以及执行驱动模块,能够根据运动控制指令执行运动,并能够反馈实时运动状态信息,其中,运动控制模块能够根据运动控制指令以及实时运动状态信息生成动态补偿控制指令,执行驱动模块能够根据动态补偿控制指令执行修正运动。In a second aspect, an embodiment of the present invention provides a visual servo control system for a construction robot. The visual servo control system includes: a pose perception module configured to generate perception information corresponding to a target construction object; a motion control module including A state observer, the state observer is configured to observe the target construction object and call the observation model to generate motion state prediction information corresponding to the target construction object, and the motion control module is configured to generate motion control instructions according to the perception information and motion state prediction information; And the execution drive module can perform motion according to the motion control instruction, and can feed back real-time motion state information, wherein the motion control module can generate dynamic compensation control instructions according to the motion control instruction and real-time motion state information, and the execution drive module can control according to the dynamic compensation command to perform a corrective movement.
根据本发明第二方面的前述实施方式,视觉伺服控制系统还包括:产品和工艺数据库,存储有工艺标准数据、材料产品的样本信息;以及主控制模块,用于进行基础参数配置,其中进行基础参数配置包括:确定视觉伺服工作模式;以及调用产品和工艺数据库中的工艺标准数据获得视觉伺服工作的精度收敛标准。According to the foregoing implementation of the second aspect of the present invention, the visual servo control system further includes: a product and process database, which stores process standard data and sample information of material products; and a main control module, which is used to configure basic parameters. The parameter configuration includes: determining the working mode of the visual servo; and calling the process standard data in the product and process database to obtain the precision convergence standard of the visual servo.
第三方面,本发明实施例提供一种视觉伺服控制设备,包括:存储器和至少一个处理器,存储器中存储有指令,至少一个处理器调用存储器中的指令,以使得视觉伺服控制设备执行根据本发明第一方面的前述任一实施方式的视觉伺服控制方法。In a third aspect, an embodiment of the present invention provides a visual servoing control device, including: a memory and at least one processor, where instructions are stored in the memory, and at least one processor invokes the instructions in the memory, so that the visual servoing control device executes according to the present invention. The visual servoing control method of any one of the aforementioned embodiments of the first aspect of the invention.
第四方面,本发明实施例提供一种计算机可读存储介质,计算机可读存储介质上存储有指令,指令被处理器执行时实现根据本发明第一方面的前述任一实施方式的视觉伺服控制方法。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, on which instructions are stored, and when the instructions are executed by a processor, the visual servoing control according to any one of the foregoing implementation manners of the first aspect of the present invention is implemented. method.
根据本发明实施例的视觉伺服控制方法,用于建筑机器人,执行驱动模块根据运动控制指令执行运动的同时,可以反馈实时运动状态信息,运动控制模块根据运动控制指令以及实时运动状态信息生成动态补偿控制指令,使得执行驱动模块根据动态补偿控制指令执行修正运动。因此,建筑机器人的运动状态不断被修正,能够降低复杂动态环境和实时扰动对建筑机器人的影响,提高对建筑机器人运动控制的精度。此外,通过状态观测器观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息,运动控制指令根据感知信息和该运动状态预测信息产生,在感知信息的产生频率低于运动控制指令所需的产生频率时,运动状态预测信息能够用于插补产生运动控制指令,解决高频运动控制指令需求与低频感知信息之间的矛盾。即使感知信息的产生频率较低时,也能产生较为平滑的运动控制指令集合,也降低了对位姿感知模块的处理速度的要求,即降低对高处理速度的位姿感知模块的依赖,便于降低成本。According to the visual servo control method according to the embodiment of the present invention, it is used for construction robots. The execution drive module can feed back real-time motion state information while performing motion according to the motion control instruction. The motion control module generates dynamic compensation according to the motion control instruction and real-time motion state information. The control instruction is used to make the execution drive module execute the correction motion according to the dynamic compensation control instruction. Therefore, the motion state of the construction robot is constantly corrected, which can reduce the influence of complex dynamic environments and real-time disturbances on the construction robot, and improve the accuracy of the motion control of the construction robot. In addition, the target construction object is observed through the state observer and the observation model is called to generate the motion state prediction information corresponding to the target construction object. The motion control instruction is generated according to the perception information and the motion state prediction information. The generation frequency of the perception information is lower than that of the motion control When the command generation frequency is required, the motion state prediction information can be used to interpolate and generate motion control commands to solve the contradiction between high-frequency motion control command requirements and low-frequency perception information. Even when the generation frequency of perception information is low, a relatively smooth motion control command set can be generated, which also reduces the requirements for the processing speed of the pose perception module, that is, reduces the dependence on the pose perception module with high processing speed, which is convenient cut costs.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to the structures shown in these drawings without creative effort.
图1为本发明视觉伺服控制方法一实施例的流程框图;Fig. 1 is a flowchart of an embodiment of the visual servo control method of the present invention;
图2为本发明视觉伺服控制系统一实施例的结构框图;Fig. 2 is a structural block diagram of an embodiment of the visual servo control system of the present invention;
图3是本发明视觉伺服控制设备一实施例的结构示意图。FIG. 3 is a schematic structural diagram of an embodiment of the visual servoing control device of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参阅附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back...) in the embodiments of the present invention are only used to explain the relationship between the components in a certain posture (as shown in the accompanying drawings). Relative positional relationship, movement conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the descriptions involving "first", "second" and so on in the present invention are only for descriptive purposes, and should not be understood as indicating or implying their relative importance or implicitly indicating the quantity of the indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In addition, the technical solutions of the various embodiments can be combined with each other, but it must be based on the realization of those skilled in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of technical solutions does not exist , nor within the scope of protection required by the present invention.
本发明实施例提供一种视觉伺服控制方法,该视觉伺服控制方法用于建筑机器人。An embodiment of the present invention provides a visual servo control method, which is used for a construction robot.
图1为本发明视觉伺服控制方法一实施例的流程框图。视觉伺服控制方法包括步骤S110至步骤S190。FIG. 1 is a flowchart of an embodiment of a visual servoing control method of the present invention. The visual servoing control method includes steps S110 to S190.
可选地,在步骤S120之前,可以进行步骤S110。在步骤S110中,进行基础参数配置。在一些实施例中,进行基础参数配置包括:确定视觉伺服工作模式;以及调用产品和工艺数据库中的工艺标准数据获得视觉伺服工作的精度收敛标准。Optionally, before step S120, step S110 may be performed. In step S110, basic parameter configuration is performed. In some embodiments, configuring the basic parameters includes: determining the visual servoing working mode; and calling the process standard data in the product and process database to obtain the precision convergence standard of the visual servoing work.
在一些实施例中,通过视觉伺服控制系统的主控制模块进行基础参数配置。进行的基础参数配置除上述示例外,还可以对建筑机器人作业任务、系统参数、施工工艺参数等进行配置。在进行基础参数配置时,可以运行建筑机器人施工工艺主控制程序。主控制模块可以对建筑机器人的完整施工作业任务进行总体调度控制。In some embodiments, basic parameter configuration is performed through the main control module of the visual servoing control system. In addition to the above examples, the configuration of basic parameters can also configure the tasks of construction robots, system parameters, construction process parameters, etc. When configuring the basic parameters, the main control program of the construction process of the construction robot can be run. The main control module can perform overall scheduling control on the complete construction tasks of the construction robot.
可选地,主控制模块可以调用产品和工艺数据库。产品和工艺数据库存储有工艺标准数据、材料产品的样本信息等。工艺标准数据例如包括标准工艺控制流程和程序范本、视觉伺服工作模式模型以及工艺验收合格标准等。根据该工艺验收合格条件能够确定视觉伺服工作的精度收敛标准、任务结束条件等。主控制模块可以根据该标准工艺控制流程和程序范本结合当前实际施工任务情况对其它模块的进行设置、协调、调度、调整和控制。Optionally, the main control module can call the product and process database. The product and process database stores process standard data, sample information of material products, etc. Process standard data include, for example, standard process control processes and program templates, visual servoing work mode models, and process acceptance criteria. According to the qualified conditions of the process acceptance, the precision convergence standard and task end conditions of the visual servoing work can be determined. The main control module can set, coordinate, schedule, adjust and control other modules according to the standard process control process and program template combined with the current actual construction task situation.
在步骤S120中,通过位姿感知模块产生与目标施工对象对应的感知信息。In step S120, the perception information corresponding to the target construction object is generated by the pose perception module.
在一些实施例中,通过位姿感知模块产生与目标施工对象对应的感知信息的步骤S120包括:进行参数标定;进行目标识别及位姿解算得到感知信息。In some embodiments, the step S120 of generating the sensing information corresponding to the target construction object through the pose sensing module includes: performing parameter calibration; performing target recognition and pose calculation to obtain the sensing information.
在一些实施例中,位姿感知模块根据主控制模块配置和发送的施工系统参数配置、施工对象材料产品图像、施工任务等,进行参数标定,进行目标识别及位姿解算得到感知信息。In some embodiments, the pose perception module performs parameter calibration, target recognition and pose calculation to obtain perception information according to the construction system parameter configuration, construction object material product images, construction tasks, etc. configured and sent by the main control module.
在一些实施例中,进行参数标定包括:调用标准视觉标定板,通过相应的标准标定流程完成内参数与外参数的标定,其中,内参数为视觉传感器的像素坐标参数,外参数为视觉传感器与建筑机器人的本体之间的相对安装位置参数,内参数用于实现目标施工对象在相机坐标系下的位姿解算,外参数用于运动控制模块实现工件坐标系到基坐标系之间的坐标位置及运动状态的转换。工件坐标系也称为用户坐标系。基坐标系也称为运动控制坐标系,即适用于运动控制模块的坐标系。In some embodiments, performing parameter calibration includes: calling a standard visual calibration board, and completing the calibration of internal parameters and external parameters through corresponding standard calibration processes, wherein the internal parameters are the pixel coordinate parameters of the visual sensor, and the external parameters are the visual sensor and external parameters. The relative installation position parameters between the bodies of construction robots, the internal parameters are used to realize the pose calculation of the target construction object in the camera coordinate system, and the external parameters are used for the motion control module to realize the coordinates between the workpiece coordinate system and the base coordinate system Transformation of position and motion state. The workpiece coordinate system is also called the user coordinate system. The base coordinate system is also called the motion control coordinate system, which is the coordinate system applicable to the motion control module.
在一些实施例中,进行目标识别及位姿解算得到感知信息包括:获取目标施工对象的实际图像;将实际图像与产品和工艺数据库中的样本进行比对;若实际图像能够与产品和工艺数据库中已有的样本匹配,则调用所匹配样本对应的目标识别及位姿解算方案得到感知信息;若实际图像未能与产品和工艺数据库中已有的样本匹配,则对实际图像进行图形处理和处理方案提取,形成新的样本以及对应的目标识别及位姿解算方案,添加至产品和工艺数据库中。具体地,若实际图像未能与产品和工艺数据库中已有的样本匹配,对实际图像可以进行图形处理、轮廓及步骤点提取、深度学习、模型训练等程序,提取上述处理方案添加至产品和工艺数据库中。In some embodiments, performing target recognition and pose calculation to obtain perception information includes: acquiring the actual image of the target construction object; comparing the actual image with samples in the product and process database; if the actual image can be compared with the product and process If the existing samples in the database are matched, the target recognition and pose calculation scheme corresponding to the matched samples will be called to obtain the perception information; if the actual image fails to match the existing samples in the product and process database, the actual image will be graphically Extract processing and processing schemes to form new samples and corresponding target recognition and pose calculation schemes, and add them to the product and process database. Specifically, if the actual image fails to match the existing samples in the product and process database, graphics processing, contour and step point extraction, deep learning, model training and other programs can be performed on the actual image, and the above processing schemes can be extracted and added to the product and process. in the process database.
在一些实施例中,视觉伺服工作模式包括定点跟踪模式和循迹跟踪模式。若在步骤S110中确定视觉伺服工作模式为定点跟踪模式,则在步骤S120中,感知信息为目标特征点信息。若在步骤S110中确定视觉伺服工作模式为循迹跟踪模式,则在步骤S120感知信息为期望轨迹信息。In some embodiments, the visual servoing operation modes include fixed-point tracking mode and track tracking mode. If it is determined in step S110 that the visual servoing mode is the fixed-point tracking mode, then in step S120, the perception information is target feature point information. If it is determined in step S110 that the visual servoing mode is the tracking mode, then in step S120 the perception information is expected trajectory information.
视觉伺服工作模式为定点跟踪模式时,匹配定点跟踪的建筑施工任务场景,匹配的建筑施工任务场景包括但不限于墙或地砖调平任务、墙或地砖铺贴任务、砌砖任务、螺杆洞封堵任务、钢筋绑扎任务等。匹配墙或地砖调平任务时,任务参照对象为待作业建筑面,特征信息为惯性测量单元(Inertial Measurement Unit,IMU)或倾角仪感知的相对姿态信息;匹配墙或地砖铺贴任务时,任务参照对象为已铺砖砖角点,特征信息为待铺砖与参考砖之间的相对位姿;匹配砌砖任务时,任务参照对象为已砌砖砖角点,特征信息为待砌砖与参考砖之间的相对位姿;匹配螺杆洞封堵任务时,任务参照对象为螺杆洞洞孔,特征信息为执行机构末端与洞孔之间的相对位姿;匹配钢筋绑扎任务时,任务参照对象为钢筋交汇交叉点,特征信息为执行机构末端与交叉点之间的相对位姿。When the visual servo working mode is fixed-point tracking mode, match the building construction task scene of fixed-point tracking. The matching building construction task scene includes but not limited to wall or floor tile leveling task, wall or floor tile laying task, bricklaying task, screw hole sealing Blocking tasks, steel bar binding tasks, etc. When matching wall or floor tile leveling tasks, the task reference object is the building surface to be operated, and the feature information is the relative attitude information sensed by the inertial measurement unit (IMU) or inclinometer; when matching wall or floor tile laying tasks, the task The reference object is the corner point of the brick that has been laid, and the feature information is the relative pose between the brick to be laid and the reference brick; when matching the bricklaying task, the task reference object is the corner of the brick that has been laid, and the feature information is the brick to be laid and the reference brick. The relative pose between the reference bricks; when matching the screw hole plugging task, the task reference object is the screw hole hole, and the feature information is the relative pose between the end of the actuator and the hole; when matching the steel bar binding task, the task reference The object is the crossing point of steel bars, and the feature information is the relative pose between the end of the actuator and the crossing point.
视觉伺服工作模式为循迹跟踪模式时,匹配循迹跟踪的建筑施工任务场景,匹配的常见建筑施工任务场景主要分为匀速直线运动循迹类,匀速圆周运动循迹类以及不规则样条曲线循迹类。When the visual servo working mode is tracking and tracking mode, it matches the building construction task scene of tracking and tracking. The matching common building construction task scenes are mainly divided into uniform linear motion tracking, uniform circular motion tracking and irregular spline curve Tracking class.
经过步骤S120,产生感知信息,在一些实施例中,感知信息包括目标施工对象是否在有效视野范围内标志位以及目标施工对象在三维空间的位置和/或姿态在相机坐标系下的描述。目标施工对象在三维空间的位置和/或姿态在相机坐标系下的描述,可以是目标施工对象在三维空间的6D位姿信息在相机坐标系下的描述,可以包括位置描述信息和/或姿态描述信息。位置描述信息即相对于相机坐标系坐标轴的位置x、y、z,姿态描述信息即相对于相机坐标系坐标轴的旋转角度rx、ry、rz。根据位姿感知模块所配置的传感器的类型和功能及安装位置的不同,位姿感知模块所能准确识别的目标施工对象在三维空间位姿信息也有所不同,但至少包括上述6D位姿信息的一维或多维。After step S120, the perception information is generated. In some embodiments, the perception information includes whether the target construction object is within the effective field of view and the description of the position and/or posture of the target construction object in the three-dimensional space in the camera coordinate system. The description of the position and/or posture of the target construction object in the three-dimensional space in the camera coordinate system may be the description of the 6D pose information of the target construction object in the three-dimensional space in the camera coordinate system, which may include position description information and/or posture Description. The position description information is the position x, y, z relative to the coordinate axis of the camera coordinate system, and the attitude description information is the rotation angle rx, ry, rz relative to the coordinate axis of the camera coordinate system. According to the type and function of the sensor configured by the pose sensing module and the installation location, the pose information of the target construction object that the pose sensing module can accurately identify is also different in three-dimensional space, but at least includes the above-mentioned 6D pose information. One or more dimensions.
在一些实施例中,通过位姿感知模块对目标施工对象进行目标识别及位姿解算时,对目标施工对象的特征识别精度不低于产品和工艺数据库中工艺标准所要求的误差精度。In some embodiments, when the target construction object is recognized and the pose calculation is performed by the pose perception module, the feature recognition accuracy of the target construction object is not lower than the error accuracy required by the process standards in the product and process database.
在步骤S130中,通过状态观测器观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息。In step S130, the target construction object is observed by the state observer and the observation model is invoked to generate motion state prediction information corresponding to the target construction object.
在步骤S140中,通过运动控制模块根据感知信息以及运动状态预测信息产生运动控制指令。In step S140, a motion control instruction is generated by the motion control module according to the perception information and the motion state prediction information.
在一些实施例中,通过运动控制模块根据感知信息以及运动状态预测信息产生运动控制指令的步骤S140包括:进行数据预处理;以及根据预处理后的感知信息以及运动状态预测信息产生运动控制指令。In some embodiments, the step S140 of generating motion control instructions by the motion control module according to the perception information and motion state prediction information includes: performing data preprocessing; and generating motion control instructions according to the preprocessed perception information and motion state prediction information.
进行数据预处理包括:对感知信息进行数据校验;以及对感知信息进行坐标转换。Performing data preprocessing includes: performing data verification on perceptual information; and performing coordinate transformation on perceptual information.
在一些实施例中,对感知信息进行数据校验包括:逻辑校验;工艺校验以及安全校验。In some embodiments, performing data verification on the sensing information includes: logic verification; process verification and safety verification.
在逻辑校验中,校验感知信息中目标施工对象是否在有效视野范围内标志位是否有效,以判断感知信息是否可用。In the logic verification, it is checked whether the target construction object in the perception information is within the effective field of vision and whether the flag is valid to judge whether the perception information is available.
若逻辑校验合格,进行工艺校验。在工艺校验中,调用产品和工艺数据库中的工艺标准数据校验感知信息是否在对应的允许误差范围内,若在允许误差范围内则工艺校验合格,若不在允许误差范围内则发出提示。具体地,建筑机器人施工作业过程中后续工艺作业的正常执行常常有赖于前序作业工艺的合格执行,在工艺校验中,调用产品和工艺数据库中的工艺标准数据对于前序工艺环节的工艺标准所要求的误差,对当前的感知信息进行校验判断,若感知信息在前序工艺环节的工艺标准所规定的的允许误差范围内,则判断工艺校验合格,否则建筑机器人不对该感知信息进行响应,并发出提示。If the logic verification is qualified, process verification is carried out. In the process verification, call the process standard data in the product and process database to verify whether the perceived information is within the corresponding allowable error range, if it is within the allowable error range, the process verification is qualified, and if it is not within the allowable error range, a prompt will be issued . Specifically, the normal execution of follow-up process operations during the construction of construction robots often depends on the qualified execution of the pre-sequence process. For the required error, check and judge the current perception information. If the perception information is within the allowable error range stipulated in the process standard of the previous process link, it will be judged that the process verification is qualified, otherwise the construction robot will not carry out this perception information. Respond and prompt.
若工艺校验合格,进行安全校验。安全校验,校验感知信息是否超出建筑机器人的运动能力阈值,若未超出,则安全校验合格,若超出,则将该感知信息判定为异常信息并舍弃。在一些实施方式中,若校验感知信息超出建筑机器人的运动能力阈值,将该感知信息判定为异常信息并舍弃,建筑机器人维持当前运动状态并不进行伺服响应,以防止建筑机器人飞车或产生其它安全问题。若一定时间范围或一定次数范围内连续感知信息均为异常信息,则发出提示,提示当前传感器识别异常。If the process verification is qualified, carry out the safety verification. Safety verification, verifying whether the perception information exceeds the motion capability threshold of the construction robot, if not, the safety verification is passed, and if it exceeds, the perception information is judged as abnormal information and discarded. In some implementations, if the verified sensing information exceeds the motion capability threshold of the construction robot, the sensing information is judged as abnormal information and discarded, and the construction robot maintains the current motion state and does not respond to the servo to prevent the construction robot from flying or causing other problems. Security Question. If the continuous sensing information within a certain time range or within a certain number of times is abnormal information, a prompt is issued to indicate that the current sensor recognition is abnormal.
对感知信息进行坐标转换包括:将基于相机坐标系下或工具坐标系下描述的感知信息转换为基于基坐标系下描述。可选地,在本步骤中,结合前述进行参数标定步骤,经过预设的矩阵运算,可以将感知信息转换为基于基坐标系下描述。Coordinate transformation of the perception information includes: transforming the perception information described based on the camera coordinate system or the tool coordinate system into a description based on the base coordinate system. Optionally, in this step, combined with the aforementioned parameter calibration step, the perception information can be transformed into a description based on the base coordinate system through a preset matrix operation.
在一些实施例中,根据预处理后的感知信息以及运动状态预测信息产生运动控制指令包括:根据预处理后的感知信息以及运动状态预测信息计算建筑机器人的当前状态与目标状态之间的误差方程;根据误差方程与相应的控制律生成运动控制指令。误差方程包括但不限于建筑机器人当前状态与目标状态的位置误差、姿态误差、速度误差、加速度误差等。In some embodiments, generating the motion control instruction according to the preprocessed perception information and motion state prediction information includes: calculating an error equation between the current state and the target state of the construction robot according to the preprocessed perception information and motion state prediction information ; Generate motion control instructions according to the error equation and the corresponding control law. The error equation includes but is not limited to the position error, attitude error, velocity error, acceleration error, etc. between the current state of the construction robot and the target state.
根据误差方程与相应的控制律生成的运动控制指令,可以是位置控制指令或速度控制指令或力矩控制指令,其模式由步骤S110中进行基础参数配置时选定。进一步地生成的运动控制指令需满足用户设定的运动参数约束以及执行驱动模块自身的执行能力约束,并最小化跟踪误差收敛时间。The motion control command generated according to the error equation and the corresponding control law can be a position control command, a speed control command or a torque control command, and its mode is selected during basic parameter configuration in step S110. The further generated motion control instructions need to meet the motion parameter constraints set by the user and the execution capability constraints of the execution drive module itself, and minimize the tracking error convergence time.
在步骤S150中,通过执行驱动模块根据运动控制指令执行运动。执行驱动模块能够同时反馈实时运动状态信息。In step S150, the motion is executed according to the motion control instruction through the execution driving module. The execution drive module can feed back real-time motion status information at the same time.
在步骤S160中,通过运动控制模块接收执行驱动模块反馈的实时运动状态信息。In step S160, the real-time motion state information fed back by the execution drive module is received by the motion control module.
在步骤S170中,通过运动控制模块根据运动控制指令以及实时运动状态信息生成动态补偿控制指令。In step S170, the motion control module generates a dynamic compensation control instruction according to the motion control instruction and real-time motion state information.
在步骤S180中,通过执行驱动模块根据动态补偿控制指令执行修正运动。In step S180, the correction motion is executed by the execution driving module according to the dynamic compensation control instruction.
在一些实施例中,还包括步骤S190,在步骤S190中,在运动控制模块的每个控制周期中,判断建筑机器人在任务空间中的位姿是否满足精度收敛标准。若满足,则结束视觉伺服工作。若未满足,则重复产生运动控制指令、根据运动控制指令执行运动、接收反馈的实时运动状态信息、生成动态补偿控制指令以及根据动态补偿控制指令执行修正运动的步骤。即,若未满足,重复步骤S140、步骤S150、步骤S160、步骤S170、步骤S180。在一些实施例中,若满足,则结束视觉伺服工作。结束视觉伺服工作时建筑机器人的运动状态可根据步骤S110进行基础参数配置时设定的保持模式选择保持当前位置或保持当前速度或保持当前力矩。In some embodiments, step S190 is also included. In step S190, in each control cycle of the motion control module, it is judged whether the pose of the construction robot in the task space satisfies the accuracy convergence standard. If satisfied, end the visual servoing work. If not, repeat the steps of generating a motion control command, executing motion according to the motion control command, receiving feedback real-time motion state information, generating a dynamic compensation control command, and performing corrective motion according to the dynamic compensation control command. That is, if not satisfied, repeat step S140, step S150, step S160, step S170, step S180. In some embodiments, if satisfied, the visual servoing operation is ended. The motion state of the construction robot at the end of the visual servoing work can be selected to maintain the current position, maintain the current speed or maintain the current torque according to the hold mode set during the basic parameter configuration in step S110.
根据本发明实施例的视觉伺服控制方法,用于建筑机器人,执行驱动模块根据运动控制指令执行运动的同时,可以反馈实时运动状态信息,运动控制模块根据运动控制指令以及实时运动状态信息生成动态补偿控制指令,使得执行驱动模块根据动态补偿控制指令执行修正运动。因此,建筑机器人的运动状态不断被修正,能够降低复杂动态环境和实时扰动对建筑机器人的影响,提高对建筑机器人运动控制的精度。此外,通过状态观测器观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息,运动控制指令根据感知信息和该运动状态预测信息产生,在感知信息的产生频率低于运动控制指令所需的产生频率时,运动状态预测信息能够用于插补产生运动控制指令,解决高频运动控制指令需求与低频感知信息之间的矛盾。即使感知信息的产生频率较低时,也能产生较为平滑的运动控制指令集合,也降低了对位姿感知模块的处理速度的要求,即降低对高处理速度的位姿感知模块的依赖,便于降低成本。According to the visual servo control method according to the embodiment of the present invention, it is used for construction robots. The execution drive module can feed back real-time motion state information while performing motion according to the motion control instruction. The motion control module generates dynamic compensation according to the motion control instruction and real-time motion state information. The control instruction is used to make the execution drive module execute the correction motion according to the dynamic compensation control instruction. Therefore, the motion state of the construction robot is constantly corrected, which can reduce the influence of complex dynamic environments and real-time disturbances on the construction robot, and improve the accuracy of the motion control of the construction robot. In addition, the target construction object is observed through the state observer and the observation model is called to generate the motion state prediction information corresponding to the target construction object. The motion control instruction is generated according to the perception information and the motion state prediction information. The generation frequency of the perception information is lower than that of the motion control When the command generation frequency is required, the motion state prediction information can be used to interpolate and generate motion control commands to solve the contradiction between high-frequency motion control command requirements and low-frequency perception information. Even when the generation frequency of perception information is low, a relatively smooth motion control command set can be generated, which also reduces the requirements for the processing speed of the pose perception module, that is, reduces the dependence on the pose perception module with high processing speed, which is convenient cut costs.
可选地,视觉伺服工作模式包括定点跟踪模式和循迹跟踪模式。若在步骤S110中确定视觉伺服工作模式为定点跟踪模式,则在步骤S120中,感知信息为目标特征点信息。若在步骤S110中确定视觉伺服工作模式为循迹跟踪模式,则在步骤S120感知信息为期望轨迹信息。因此,本发明实施例的视觉伺服控制方法能够兼容建筑机器人砖块铺贴类、砌砖类、螺杆洞封堵类、打胶填缝类工作任务中共性的目标感知及动态跟踪控制环节工作任务,实现动态跟踪算法样本库的模块化封装和调用,并能开放性地接收新的算法样本案例,提高对任务和目标的适用性。Optionally, the visual servoing mode includes a fixed-point tracking mode and a track tracking mode. If it is determined in step S110 that the visual servoing mode is the fixed-point tracking mode, then in step S120, the perception information is target feature point information. If it is determined in step S110 that the visual servoing mode is the tracking mode, then in step S120 the perception information is expected trajectory information. Therefore, the visual servo control method of the embodiment of the present invention can be compatible with the common target perception and dynamic tracking control tasks of construction robots such as brick paving, bricklaying, screw hole sealing, and glue filling. , realize the modular encapsulation and calling of the dynamic tracking algorithm sample library, and openly receive new algorithm sample cases to improve the applicability to tasks and goals.
可选地,对感知信息进行数据校验包括:逻辑校验;工艺校验以及安全校验。从而在视觉伺服控制方法中增加对施工过程中由于目标施工对象被遮挡、丢失等传感器数据异常的保护处理,以及对不同维度数据的单独精细化控制和视觉伺服工作的多种停止模式,提高安全性和灵活性。Optionally, performing data verification on the sensing information includes: logic verification; process verification and safety verification. Therefore, in the visual servo control method, the protection processing of abnormal sensor data such as the target construction object being blocked or lost during the construction process, as well as the individual fine control of different dimensions of data and multiple stop modes of visual servo work are added to improve safety. sex and flexibility.
本发明实施例还提供一种视觉伺服控制系统,用于建筑机器人。通过本发明实施例的视觉伺服控制系统,能够实现前述本发明实施例的视觉伺服控制方法。The embodiment of the present invention also provides a visual servo control system for a construction robot. Through the visual servoing control system of the embodiment of the present invention, the aforementioned visual servoing control method of the embodiment of the present invention can be realized.
图2为本发明视觉伺服控制系统一实施例的结构框图。视觉伺服控制系统包括位姿感知模块130、运动控制模块140、执行驱动模块150。在本实施例中,视觉伺服控制系统还包括产品和工艺数据库110以及主控制模块120。上述产品和工艺数据库110、主控制模块120、位姿感知模块130、运动控制模块140、执行驱动模块150彼此通信连接。Fig. 2 is a structural block diagram of an embodiment of the visual servoing control system of the present invention. The visual servo control system includes a pose perception module 130 , a motion control module 140 , and an execution drive module 150 . In this embodiment, the visual servoing control system further includes a product and process database 110 and a main control module 120 . The product and process database 110, the main control module 120, the pose perception module 130, the motion control module 140, and the execution drive module 150 are communicatively connected to each other.
产品和工艺数据库110存储有工艺标准数据、材料产品的样本信息。工艺标准数据例如包括标准工艺控制流程和程序范本、视觉伺服工作模式模型以及工艺验收合格标准等。根据该工艺验收合格条件能够确定视觉伺服工作的精度收敛标准、任务结束条件等。The product and process database 110 stores process standard data and sample information of material products. Process standard data include, for example, standard process control processes and program templates, visual servoing work mode models, and process acceptance criteria. According to the qualified conditions of the process acceptance, the precision convergence standard and task end conditions of the visual servoing work can be determined.
主控制模块120用于进行基础参数配置,其中进行基础参数配置包括:The main control module 120 is used for configuring basic parameters, wherein configuring basic parameters includes:
确定视觉伺服工作模式;以及调用产品和工艺数据库110中的工艺标准数据获得视觉伺服工作的精度收敛标准。主控制模块120可以根据产品和工艺数据库110的标准工艺控制流程和程序范本结合当前实际施工任务情况对其它模块的进行设置、协调、调度、调整和控制。进行的基础参数配置除上述示例外,还可以对建筑机器人作业任务、系统参数、施工工艺参数等进行配置。在进行基础参数配置时,可以运行建筑机器人施工工艺主控制程序。主控制模块可以对建筑机器人的完整施工作业任务进行总体调度控制。Determine the visual servoing work mode; and call the process standard data in the product and process database 110 to obtain the precision convergence standard of the visual servoing work. The main control module 120 can set, coordinate, schedule, adjust and control other modules according to the standard process control flow and program template of the product and process database 110 combined with the current actual construction task situation. In addition to the above examples, the configuration of basic parameters can also configure the tasks of construction robots, system parameters, construction process parameters, etc. When configuring the basic parameters, the main control program of the construction process of the construction robot can be run. The main control module can perform overall scheduling control on the complete construction tasks of the construction robot.
位姿感知模块130被配置为产生与目标施工对象对应的感知信息。在一些实施例中,位姿感知模块130根据主控制模块120配置和发送的施工系统参数配置、施工对象材料产品图像、施工任务等,进行参数标定,进行目标识别及位姿解算得到感知信息。位姿感知模块130将感知信息发送至运动控制模块140。The pose sensing module 130 is configured to generate sensing information corresponding to the target construction object. In some embodiments, the pose perception module 130 performs parameter calibration, target recognition and pose calculation according to the construction system parameter configuration, construction object material product images, construction tasks, etc. configured and sent by the main control module 120 to obtain perception information . The pose perception module 130 sends the perception information to the motion control module 140 .
位姿感知模块130可以包括视觉传感器、用于运行视觉识别、图像处理、位姿解算程序的介质以及其它连接和辅助设备,也可以包括具有一定位姿信息感知处理能力的传感器,例如IMU、倾角仪、激光引导及接收装置等。位姿感知模块130用于进行参数标定,以及进行目标识别及位姿解算得到感知信息。进行目标识别及位姿解算得到感知信息包括:获取目标施工对象的实际图像;将实际图像与产品和工艺数据库中的样本进行比对;若实际图像能够与产品和工艺数据库中已有的样本匹配,则调用所匹配样本对应的目标识别及位姿解算方案得到感知信息;若实际图像未能与产品和工艺数据库中已有的样本匹配,则对实际图像进行图形处理和处理方案提取,形成新的样本以及对应的目标识别及位姿解算方案,添加至产品和工艺数据库中。具体地,若实际图像未能与产品和工艺数据库中已有的样本匹配,对实际图像可以进行图形处理、轮廓及步骤点提取、深度学习、模型训练等程序,提取上述处理方案添加至产品和工艺数据库中。The pose perception module 130 may include visual sensors, media for running visual recognition, image processing, and pose calculation programs, as well as other connections and auxiliary devices, and may also include sensors with a certain pose information perception processing capability, such as IMU, Inclinometer, laser guidance and receiving device, etc. The pose perception module 130 is used for parameter calibration, target recognition and pose calculation to obtain perception information. The perceptual information obtained by target recognition and pose calculation includes: obtaining the actual image of the target construction object; comparing the actual image with the samples in the product and process database; if the actual image can be compared with the existing samples in the product and process database Matching, the target recognition and pose calculation scheme corresponding to the matched sample is called to obtain the perception information; if the actual image fails to match the existing samples in the product and process database, the actual image is processed and the processing scheme is extracted. Form new samples and corresponding target recognition and pose solution solutions, and add them to the product and process database. Specifically, if the actual image fails to match the existing samples in the product and process database, graphics processing, contour and step point extraction, deep learning, model training and other programs can be performed on the actual image, and the above processing schemes can be extracted and added to the product and process. in the process database.
运动控制模块140包括状态观测器141,状态观测器141被配置为观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息,运动控制模块140被配置为能够根据感知信息以及运动状态预测信息产生运动控制指令。通过运动控制模块根据感知信息以及运动状态预测信息产生运动控制指令包括:进行数据预处理;以及根据预处理后的感知信息以及运动状态预测信息产生运动控制指令。The motion control module 140 includes a state observer 141. The state observer 141 is configured to observe the target construction object and call the observation model to generate motion state prediction information corresponding to the target construction object. The motion control module 140 is configured to be able to State prediction information generates motion control instructions. The motion control instruction generated by the motion control module according to the perception information and the motion state prediction information includes: performing data preprocessing; and generating the motion control instruction according to the preprocessed perception information and motion state prediction information.
进行数据预处理包括:对感知信息进行数据校验;以及对感知信息进行坐标转换。在一些实施例中,对感知信息进行数据校验包括:逻辑校验;工艺校验以及安全校验。对感知信息进行坐标转换包括:将基于相机坐标系下或工具坐标系下描述的感知信息转换为基于基坐标系下描述。可选地,在本步骤中,结合前述进行参数标定步骤,经过预设的矩阵运算,可以将感知信息转换为基于基坐标系下描述。Performing data preprocessing includes: performing data verification on perceptual information; and performing coordinate transformation on perceptual information. In some embodiments, performing data verification on the sensing information includes: logic verification; process verification and safety verification. Coordinate transformation of the perception information includes: transforming the perception information described based on the camera coordinate system or the tool coordinate system into a description based on the base coordinate system. Optionally, in this step, combined with the aforementioned parameter calibration step, the perception information can be transformed into a description based on the base coordinate system through a preset matrix operation.
在一些实施例中,根据预处理后的感知信息以及运动状态预测信息产生运动控制指令包括:根据预处理后的感知信息以及运动状态预测信息计算建筑机器人的当前状态与目标状态之间的误差方程;根据误差方程与相应的控制律生成运动控制指令。In some embodiments, generating the motion control instruction according to the preprocessed perception information and motion state prediction information includes: calculating an error equation between the current state and the target state of the construction robot according to the preprocessed perception information and motion state prediction information ; Generate motion control instructions according to the error equation and the corresponding control law.
执行驱动模块150能够根据运动控制指令执行运动,并能够反馈实时运动状态信息。执行驱动模块150可以是包括预设数量的电机和其它辅助驱动设备的具有一定构型的串联/并联/混联机械结构,能够在相应的工作任务空间内执行运动控制指令,促使建筑机器人按照预设运动状态进行运动,并将自身的实时运动状态信息反馈。The execution drive module 150 can perform motion according to motion control instructions, and can feed back real-time motion state information. The execution driving module 150 can be a series/parallel/hybrid mechanical structure with a certain configuration including a preset number of motors and other auxiliary driving equipment, which can execute motion control instructions in the corresponding work task space, and prompt the construction robot to follow the preset Set the exercise state to exercise, and feed back its own real-time exercise state information.
在本实施例中,运动控制模块140能够根据运动控制指令以及实时运动状态信息生成动态补偿控制指令,执行驱动模块150能够根据动态补偿控制指令执行修正运动。In this embodiment, the motion control module 140 can generate a dynamic compensation control command according to the motion control command and real-time motion state information, and the execution drive module 150 can execute corrective motion according to the dynamic compensation control command.
根据本发明实施例的视觉伺服控制系统,用于建筑机器人,执行驱动模块150根据运动控制指令执行运动的同时,可以反馈实时运动状态信息,运动控制模块140根据运动控制指令以及实时运动状态信息生成动态补偿控制指令,使得执行驱动模块150根据动态补偿控制指令执行修正运动。因此,建筑机器人的运动状态不断被修正,能够降低复杂动态环境和实时扰动对建筑机器人的影响,提高对建筑机器人运动控制的精度。此外,通过状态观测器141观测目标施工对象并调用观测模型产生与目标施工对象对应的运动状态预测信息,运动控制指令根据感知信息和该运动状态预测信息产生,在感知信息的产生频率低于运动控制指令所需的产生频率时,运动状态预测信息能够用于插补产生运动控制指令,解决高频运动控制指令需求与低频感知信息之间的矛盾。即使感知信息的产生频率较低时,也能产生较为平滑的运动控制指令集合,也降低了对位姿感知模块的处理速度的要求,即降低对高处理速度的位姿感知模块的依赖,便于降低成本。According to the visual servo control system according to the embodiment of the present invention, it is used for construction robots. The execution drive module 150 can feed back real-time motion state information while performing motion according to the motion control instruction. The motion control module 140 generates The dynamic compensation control instruction enables the execution driving module 150 to perform a correction movement according to the dynamic compensation control instruction. Therefore, the motion state of the construction robot is constantly corrected, which can reduce the influence of complex dynamic environments and real-time disturbances on the construction robot, and improve the accuracy of the motion control of the construction robot. In addition, the state observer 141 observes the target construction object and invokes the observation model to generate motion state prediction information corresponding to the target construction object. The motion control instruction is generated according to the perception information and the motion state prediction information. The generation frequency of the perception information is lower than that of the motion state. When controlling the required generation frequency of instructions, the motion state prediction information can be used to interpolate and generate motion control instructions to solve the contradiction between high-frequency motion control instruction requirements and low-frequency perception information. Even when the generation frequency of perception information is low, a relatively smooth motion control command set can be generated, which also reduces the requirements for the processing speed of the pose perception module, that is, reduces the dependence on the pose perception module with high processing speed, which is convenient cut costs.
本发明还提供一种视觉伺服控制设备,视觉伺服控制设备包括存储器和处理器,存储器中存储有计算机可读指令,计算机可读指令被处理器执行时,使得处理器执行上述各实施例中的视觉伺服控制方法的步骤。The present invention also provides a visual servoing control device. The visual servoing control device includes a memory and a processor. Computer readable instructions are stored in the memory. When the computer readable instructions are executed by the processor, the processor executes the steps in the above-mentioned embodiments. Steps of the visual servoing control method.
图3是本发明视觉伺服控制设备一实施例的结构示意图,该视觉伺服控制设备500可因配置或性能不同而产生比较大的差异,可以包括至少一个处理器(centralprocessing units,CPU)510和存储器520,至少一个存储应用程序533和/或数据532的存储介质530(例如至少一个海量存储设备)。其中,存储器520和存储介质530可以是短暂存储或持久存储。存储在存储介质530的程序可以包括至少一个模块(图示没标出),每个模块可以包括对视觉伺服控制设备500中的一系列指令操作。更进一步地,处理器510可以设置为与存储介质530通信,在视觉伺服控制设备500上执行存储介质530中的一系列指令操作。3 is a schematic structural diagram of an embodiment of the visual servoing control device of the present invention. The visual servoing control device 500 may have relatively large differences due to different configurations or performances, and may include at least one processor (central processing units, CPU) 510 and memory. 520. At least one storage medium 530 (such as at least one mass storage device) that stores application programs 533 and/or data 532. Wherein, the memory 520 and the storage medium 530 may be temporary storage or persistent storage. The program stored in the storage medium 530 may include at least one module (not shown in the figure), and each module may include a series of instruction operations for the visual servoing control device 500 . Furthermore, the processor 510 may be configured to communicate with the storage medium 530 , and execute a series of instruction operations in the storage medium 530 on the visual servoing control device 500 .
视觉伺服控制设备500还可以包括至少一个电源540,至少一个有线或无线网络接口550,至少一个输入输出接口560,和/或,至少一个操作系统531,例如Windows Serve,MacOS X,Unix,Linux,FreeBSD等等。本领域技术人员可以理解,图3示出的视觉伺服控制设备结构并不构成对视觉伺服控制设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。The visual servo control device 500 can also include at least one power supply 540, at least one wired or wireless network interface 550, at least one input and output interface 560, and/or, at least one operating system 531, such as Windows Serve, MacOS X, Unix, Linux, FreeBSD and so on. Those skilled in the art can understand that the structure of the visual servoing control device shown in FIG. 3 does not constitute a limitation to the visual servoing control device, and may include more or less components than those shown in the figure, or combine certain components, or have different Part placement.
本发明还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质也可以为易失性计算机可读存储介质,计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行前述视觉伺服控制方法的步骤。The present invention also provides a computer-readable storage medium, the computer-readable storage medium may be a non-volatile computer-readable storage medium, the computer-readable storage medium may also be a volatile computer-readable storage medium, and the computer-readable storage medium may be Instructions are stored in the read storage medium, and when the instructions are run on the computer, the computer is made to execute the steps of the aforementioned visual servoing control method.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on such an understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other various media that can store program codes. .
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above is only a preferred embodiment of the present invention, and does not limit the patent scope of the present invention. Under the concept of the present invention, the equivalent structural transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly/indirectly used in other All relevant technical fields are included in the patent protection scope of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210372619.XA CN116700156A (en) | 2022-04-11 | 2022-04-11 | Visual servo control method, control system, control device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210372619.XA CN116700156A (en) | 2022-04-11 | 2022-04-11 | Visual servo control method, control system, control device and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116700156A true CN116700156A (en) | 2023-09-05 |
Family
ID=87836231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210372619.XA Pending CN116700156A (en) | 2022-04-11 | 2022-04-11 | Visual servo control method, control system, control device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116700156A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118519336A (en) * | 2024-04-22 | 2024-08-20 | 江苏大学 | Novel calibration-free visual servo control method for fruit sorting parallel robot |
CN118655825A (en) * | 2024-08-21 | 2024-09-17 | 四川汇达未来科技有限公司 | Motion Control Vision Calibration System Based on Image Data Processing |
-
2022
- 2022-04-11 CN CN202210372619.XA patent/CN116700156A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118519336A (en) * | 2024-04-22 | 2024-08-20 | 江苏大学 | Novel calibration-free visual servo control method for fruit sorting parallel robot |
CN118655825A (en) * | 2024-08-21 | 2024-09-17 | 四川汇达未来科技有限公司 | Motion Control Vision Calibration System Based on Image Data Processing |
CN118655825B (en) * | 2024-08-21 | 2024-11-15 | 四川汇达未来科技有限公司 | Motion control vision calibration system based on image data processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11000949B2 (en) | Robot for controlling learning in view of operation in production line, and method of controlling the same | |
CN106737662B (en) | Robot system | |
CN101204813B (en) | Device and method for robot offline programming | |
CN108356823B (en) | Control system and control method with learning control function | |
CN109202894B (en) | Robot performing learning control and control method thereof | |
EP3733355A1 (en) | Robot motion optimization system and method | |
EP0519081B1 (en) | Method of correcting deflection of robot | |
US5341458A (en) | Method of and system for generating teaching data for robots | |
CN113119112B (en) | Motion planning method and system suitable for vision measurement of six-degree-of-freedom robot | |
US20180099410A1 (en) | Robot control device having function for limiting speed and/or acceleration of robot | |
CN116700156A (en) | Visual servo control method, control system, control device and storage medium | |
US11919171B2 (en) | Robot controller | |
CN112528434B (en) | Information identification method and device, electronic equipment and storage medium | |
CN115533916A (en) | A method, system, device and medium for identifying load quality at the end of a mechanical arm | |
WO2020037496A1 (en) | Method, device and system for correcting offline programming program, medium, and terminal | |
JP2002046087A (en) | Three-dimensional position measuring method and apparatus, and robot controller | |
CN114800523B (en) | Mechanical arm track correction method, system, computer and readable storage medium | |
CN115077953A (en) | Safe operation of a multi-axis motion system | |
CN118550312B (en) | A visual impedance control method and system for autonomous operation of aerial robots | |
US20240416524A1 (en) | Work assistance device and work assistance method | |
CN118960753B (en) | Robot positioning navigation control method, device, equipment and medium | |
JP2004017245A (en) | Method for judging interference of robot | |
JP2024076462A (en) | Jig data generation device, robot controller, robot simulation device, and control device | |
CN117798925A (en) | A mobile robot intelligent control method | |
JPS61114312A (en) | Curved surface processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240418 Address after: 528000, Room 204-2, 2nd Floor, Office Building, Zone A, No. 40 Boai Middle Road, Shishan Town, Nanhai District, Foshan City, Guangdong Province (Residence Declaration) Applicant after: Pai Turner (Foshan) Robot Technology Co.,Ltd. Country or region after: China Address before: 528000 a2-05, 2nd floor, building A1, 1 Panpu Road, Biguiyuan community, Beijiao Town, Shunde District, Foshan City, Guangdong Province (for office use only) (residence declaration) Applicant before: GUANGDONG BOZHILIN ROBOT Co.,Ltd. Country or region before: China |
|
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: Room 302, Building 1, No. 11 Daxue Road, Songshan Lake Park, Dongguan City, Guangdong Province 523808 Applicant after: Paitna (Dongguan) Robot Technology Co.,Ltd. Address before: Room 204-2, 2nd Floor, Office Building A, No. 40-1 Bo'ai Middle Road, Shishan Town, Nanhai District, Foshan City, Guangdong Province (Address Declaration) Applicant before: Pai Turner (Foshan) Robot Technology Co.,Ltd. Country or region before: China |