Nothing Special   »   [go: up one dir, main page]

CN116621949B - A method and application for increasing the secretion and expression of rabies virus G protein - Google Patents

A method and application for increasing the secretion and expression of rabies virus G protein Download PDF

Info

Publication number
CN116621949B
CN116621949B CN202310459317.0A CN202310459317A CN116621949B CN 116621949 B CN116621949 B CN 116621949B CN 202310459317 A CN202310459317 A CN 202310459317A CN 116621949 B CN116621949 B CN 116621949B
Authority
CN
China
Prior art keywords
protein
rabies virus
expression
sequence
secretion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310459317.0A
Other languages
Chinese (zh)
Other versions
CN116621949A (en
Inventor
苏海龙
莫海锋
毛莹莹
颜仁和
李红卫
何跃忠
何敏杰
付玉玲
陈学继
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Institute Of Biomedicine
Southern Medical University
Original Assignee
South China Institute Of Biomedicine
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Institute Of Biomedicine, Southern Medical University filed Critical South China Institute Of Biomedicine
Priority to CN202310459317.0A priority Critical patent/CN116621949B/en
Publication of CN116621949A publication Critical patent/CN116621949A/en
Application granted granted Critical
Publication of CN116621949B publication Critical patent/CN116621949B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0684Cells of the urinary tract or kidneys
    • C12N5/0686Kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20111Lyssavirus, e.g. rabies virus
    • C12N2760/20151Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/145Rhabdoviridae, e.g. rabies virus, Duvenhage virus, Mokola virus or vesicular stomatitis virus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for increasing the secretion expression of rabies virus G protein and application thereof. The method comprises the following steps: 1) Taking the glycoprotein amino acid sequence of a standard strain of rabies virus as a template, adding 8 histidine sequences at the C end, and optimally marking the full-length codon of the expressed glycoprotein as G0 protein; 2) The amino acids of the transmembrane region of the G0 protein 460-480 are mutated into a flexible peptide sequence: GSGSGSGSGSGSGSGSGSGS, obtaining mutant G1 protein after optimizing the password; 3) Adding restriction enzyme sites and initial codon sequences into the gene sequence to synthesize a sequence; 4) And constructing an expression vector, transfecting host cells, and screening monoclonal strains to obtain the monoclonal strains with increased secretion and expression of rabies virus G protein. On the basis of rabies virus G protein conformation, the invention designs and expresses a G protein which keeps the original antigenicity and has stable conformation, and is easy to express in a eukaryotic expression system; through a mouse immunoprotection experiment, the vaccine has good antigenicity.

Description

一种增加狂犬病毒G蛋白分泌表达的方法及应用A method and application for increasing the secretion and expression of rabies virus G protein

技术领域Technical field

本发明属于生物技术领域,特别是涉及一种增加狂犬病毒G蛋白分泌表达的方法及应用。The invention belongs to the field of biotechnology, and in particular relates to a method and application for increasing the secretion and expression of rabies virus G protein.

背景技术Background technique

狂犬病(Rabies)主要是由狂犬病毒(Rabies virus,RABV)引起的一种人畜共患的急性传染病。狂犬病病毒分布于全球,几乎所有哺乳动物都容易感染该病毒。该病毒具有高度的嗜神经性,一旦进入人体,就会沿着神经到达脑部,导致致命性脑炎。RABV是负链RNA病毒含有大约12kb的基因组,编码五种结构蛋白:糖蛋白(G)、RNA依赖性RNA聚合酶(L)、基质蛋白(M)、核蛋白(N)和磷蛋白(P)。Rabies is a zoonotic acute infectious disease mainly caused by rabies virus (RABV). Rabies virus is distributed globally and nearly all mammals are susceptible to infection. The virus is highly neurotropic and once it enters the body, it travels along the nerves to the brain, causing fatal encephalitis. RABV is a negative-strand RNA virus containing a genome of approximately 12 kb, encoding five structural proteins: glycoprotein (G), RNA-dependent RNA polymerase (L), matrix protein (M), nucleoprotein (N), and phosphoprotein (P ).

目前针对狂犬病毒感染没有特效药,接种疫苗是防控狂犬病的有效手段。我国每年注射狂犬疫苗的总人数高达1500万针剂。目前狂犬病毒疫苗以灭活苗为主:纯化的Vero细胞狂犬病毒灭活疫苗、纯化的鸡胚培养的灭活病毒疫苗和纯化的鸭胚疫苗培养的灭活病毒疫苗,及二倍体细胞培养的灭活病毒疫苗。There is currently no specific medicine for rabies virus infection, and vaccination is an effective means to prevent and control rabies. The total number of people vaccinated against rabies in my country every year is as high as 15 million. At present, rabies virus vaccines are mainly inactivated vaccines: purified Vero cell rabies virus inactivated vaccine, purified chicken embryo cultured inactivated virus vaccine, purified duck embryo cultured inactivated virus vaccine, and diploid cell cultured inactivated virus vaccine. of inactivated virus vaccines.

糖蛋白(G)是存在于狂犬病毒颗粒表面的蛋白质,在狂犬病毒感染细胞及刺激机体产生免疫应答的过程中发挥关键性作用,是所有结构蛋白中唯一能够诱导产生针对RABV的中和抗体(VNA)的结构蛋白。G蛋白由524个氨基酸组成,分为三个功能区,1-459为胞外区,460-480为跨膜区主要有螺旋结构组成,481-524为胞内区。Glycoprotein (G) is a protein present on the surface of rabies virus particles. It plays a key role in the process of rabies virus infecting cells and stimulating the body's immune response. It is the only structural protein among all structural proteins that can induce the production of neutralizing antibodies against RABV ( VNA) structural protein. G protein consists of 524 amino acids and is divided into three functional regions, 1-459 is the extracellular region, 460-480 is the transmembrane region mainly composed of helical structure, and 481-524 is the intracellular region.

前期研究表明真核细胞表达的狂犬G蛋白,仅需较低剂量可以诱导小鼠产生高水平的具有保护性的中和抗体。Previous studies have shown that rabies G protein expressed in eukaryotic cells can induce mice to produce high levels of protective neutralizing antibodies at only a low dose.

因此,大量制备高纯度的G蛋白对于防控狂犬病的发生尤为重要。然而,目前工业化生产G蛋白产量低,大规模工业化生产成本太高,无法生产应用。Therefore, the large-scale preparation of high-purity G protein is particularly important for preventing and controlling the occurrence of rabies. However, the current industrial production of G protein has a low yield, and the cost of large-scale industrial production is too high to allow production and application.

发明内容Contents of the invention

本发明的目的是提供一种增加狂犬病毒G蛋白分泌表达的方法,是在充分分析狂犬病毒G蛋白构象的基础上,设计表达一种保留其原有抗原性且具有稳定构象的G蛋白。改造后的G蛋白具有稳定的构象且在真核表达系统中容易表达。The purpose of the present invention is to provide a method for increasing the secretion and expression of rabies virus G protein, which is to design and express a G protein that retains its original antigenicity and has a stable conformation on the basis of fully analyzing the conformation of rabies virus G protein. The modified G protein has a stable conformation and is easily expressed in eukaryotic expression systems.

本发明的另一目的是提供一种上述具有稳定构象的G蛋白及其应用,通过小鼠免疫保护实验,验证其具有良好的抗原性。Another object of the present invention is to provide the above-mentioned G protein with a stable conformation and its application, and verify that it has good antigenicity through mouse immune protection experiments.

本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种增加狂犬病毒G蛋白分泌表达的方法,包括以下步骤:The purpose of the present invention and solving its technical problems are achieved by adopting the following technical solutions. A method for increasing the secretion and expression of rabies virus G protein proposed according to the present invention includes the following steps:

1)以狂犬病毒的标准毒株的糖蛋白氨基酸序列为模板,在C端加入8个组氨酸序列,将表达糖蛋白全长密码子优化标记为G0蛋白;1) Use the glycoprotein amino acid sequence of the standard strain of rabies virus as a template, add 8 histidine sequences to the C-terminus, and optimize the codons of the full-length expressed glycoprotein to label it as G0 protein;

2)将G0蛋白460-480跨膜区氨基酸进行突变,突变为柔性肽序列:GSGSGSGSGSGSGSGSGSGS,得到密码优化后的突变体G1蛋白;2) Mute the amino acids 460-480 of the transmembrane region of the G0 protein into a flexible peptide sequence: GSGSGSGSGSGSGSGSGSGS to obtain the code-optimized mutant G1 protein;

3)基因序列加入限制性内切酶位点和起始密码子序列后,合成序列;3) After adding restriction enzyme sites and start codon sequences to the gene sequence, the sequence is synthesized;

4)构建表达载体,转染宿主细胞后,进行单克隆株的筛选,得到狂犬病毒G蛋白分泌表达增高的单克隆株。4) Construct an expression vector, and after transfecting host cells, screen monoclonal strains to obtain monoclonal strains with increased secretion and expression of rabies virus G protein.

进一步地,步骤1)中,所述G0蛋白氨基酸序列如SEQ ID NO.1所示;步骤2)中,所述G1蛋白氨基酸序列如SEQ ID NO.2所示。Further, in step 1), the amino acid sequence of the G0 protein is as shown in SEQ ID NO.1; in step 2), the amino acid sequence of the G1 protein is as shown in SEQ ID NO.2.

进一步地,步骤1)中,所述G0蛋白核苷酸序列如SEQ ID NO.3所示;步骤2)中,所述G1蛋白核苷酸序列如SEQ ID NO.4所示。Further, in step 1), the nucleotide sequence of the G0 protein is shown in SEQ ID NO.3; in step 2), the nucleotide sequence of the G1 protein is shown in SEQ ID NO.4.

进一步地,步骤3)中,所述基因序列5’端加入Nhe I限制性内切酶位点和起始密码子序列,在3’端加入MLu I限制性内切酶位点序列。Further, in step 3), the Nhe I restriction endonuclease site and start codon sequence are added to the 5' end of the gene sequence, and the MLu I restriction endonuclease site sequence is added to the 3' end.

进一步地,步骤4)中,所述表达载体选用pLV-eGFP载体,感受态细胞选用DH5α,所述宿主细胞选用HEK293T细胞。Further, in step 4), the expression vector is pLV-eGFP vector, the competent cell is DH5α, and the host cell is HEK293T cells.

本发明提供如上所述的增加狂犬病毒G蛋白分泌表达的方法制备所得的G蛋白,所述G蛋白的核苷酸序列如SEQ ID NO.4所示。The present invention provides G protein prepared by the method for increasing the secretion and expression of rabies virus G protein as described above, and the nucleotide sequence of the G protein is shown in SEQ ID NO. 4.

本发明提供编码如上所述的G蛋白的核苷酸序列。The present invention provides nucleotide sequences encoding G proteins as described above.

本发明提供如上所述G蛋白的以下任一应用:The present invention provides any of the following applications of G protein as described above:

1)在制备狂犬病毒疫苗的应用;1) Application in preparing rabies virus vaccine;

2)在制备抗狂犬病毒药物中的应用;2) Application in the preparation of anti-rabies virus drugs;

3)在制备狂犬病毒检测试剂或试剂盒中的应用。3) Application in preparing rabies virus detection reagents or kits.

本发明提供如上所述的增加狂犬病毒G蛋白分泌表达的方法制备所得的单克隆株,所述G蛋白的核苷酸序列如SEQ ID NO.4所示。The present invention provides monoclonal strains prepared by the above-mentioned method of increasing the secretion and expression of rabies virus G protein. The nucleotide sequence of the G protein is shown in SEQ ID NO. 4.

借由上述技术方案,本发明具有如下优点和有益技术效果:Through the above technical solutions, the present invention has the following advantages and beneficial technical effects:

1)本发明提供的增加狂犬病毒G蛋白分泌表达的方法提高了狂犬病毒G蛋白的分泌表达量,突变后的G蛋白表达量每升产量是突变前的26.4倍,得到的纯化后的蛋白稳定性高,且能进行规模化应用。1) The method for increasing the secretion and expression of rabies virus G protein provided by the present invention increases the secretion and expression of rabies virus G protein. The expression amount of G protein after mutation and the output per liter are 26.4 times that before mutation, and the obtained purified protein is stable. It has high performance and can be applied on a large scale.

2)本发明提供的狂犬病毒G1蛋白疫苗能够提供100%保护率,且安全,对体重、健康无影响。2) The rabies virus G1 protein vaccine provided by the present invention can provide 100% protection rate, is safe, and has no impact on body weight and health.

附图说明Description of the drawings

图1显示的是G0/G1蛋白构建示意图;Figure 1 shows a schematic diagram of G0/G1 protein construction;

图2显示的是pLV-G1-eGFP载体酶切鉴定图;Figure 2 shows the enzyme digestion identification diagram of pLV-G1-eGFP vector;

图3显示的是westernblot验证表达抗his单克隆抗体1:7000稀释;Figure 3 shows westernblot verification of expression of anti-his monoclonal antibody at a 1:7000 dilution;

图4显示的是稳定行研究;Figure 4 shows the stable row study;

图5显示的是免疫后攻毒生存曲线图;Figure 5 shows the challenge survival curve after immunization;

图6显示的是小鼠免疫疫苗后攻毒体重变化情况图。Figure 6 shows the changes in body weight of mice after immunization with the vaccine.

具体实施方式Detailed ways

本发明公开了一种增加狂犬病毒G蛋白分泌表达的方法及应用。该增加狂犬病毒G蛋白分泌表达的方法包括以下步骤:The invention discloses a method and application for increasing the secretion and expression of rabies virus G protein. The method for increasing the secretion and expression of rabies virus G protein includes the following steps:

1)以狂犬病毒的标准毒株的糖蛋白氨基酸序列为模板,在C端加入8个组氨酸序列,将表达糖蛋白全长密码子优化标记为G0蛋白;1) Use the glycoprotein amino acid sequence of the standard strain of rabies virus as a template, add 8 histidine sequences to the C-terminus, and optimize the codons of the full-length expressed glycoprotein to label it as G0 protein;

2)将G0蛋白460-480跨膜区氨基酸进行突变,突变为柔性肽序列:GSGSGSGSGSGSGSGSGSGS,得到密码优化后的突变体G1蛋白;2) Mute the amino acids 460-480 of the transmembrane region of the G0 protein into a flexible peptide sequence: GSGSGSGSGSGSGSGSGSGS to obtain the code-optimized mutant G1 protein;

3)基因序列加入限制性内切酶位点和起始密码子序列后,合成序列;3) After adding restriction enzyme sites and start codon sequences to the gene sequence, the sequence is synthesized;

4)构建表达载体,转染宿主细胞后,进行单克隆株的筛选,得到狂犬病毒G蛋白分泌表达增高的单克隆株。4) Construct an expression vector, and after transfecting host cells, screen monoclonal strains to obtain monoclonal strains with increased secretion and expression of rabies virus G protein.

本发明在充分分析狂犬病毒G蛋白构象的基础上,设计表达一种保留其原有抗原性且具有稳定构象的G蛋白。改造后的G蛋白具有稳定的构象且在真核表达系统中容易表达。通过小鼠免疫保护实验,验证其具有良好的抗原性。On the basis of fully analyzing the conformation of rabies virus G protein, the present invention designs and expresses a G protein that retains its original antigenicity and has a stable conformation. The modified G protein has a stable conformation and is easily expressed in eukaryotic expression systems. Through mouse immune protection experiments, it has been verified that it has good antigenicity.

实施例Example

1主要实验材料1 Main experimental materials

HEK293细胞购自ATCC CRL-3216;HEK293 cells were purchased from ATCC CRL-3216;

细胞培养基和血清均购自美国Gibco公司;Cell culture medium and serum were purchased from Gibco, USA;

BCA蛋白质定量试剂盒购自上海碧云天生物技术有限公司。BCA protein quantification kit was purchased from Shanghai Beyotime Biotechnology Co., Ltd.

2载体构建2 vector construction

2.1序列选取及密码子优化2.1 Sequence selection and codon optimization

本发明以狂犬病毒的标准毒株CVS-11株糖蛋白(GenbankAAC34683)为模板,在C端加入8个组氨酸序列,将表达G蛋白全长密码子优化标记为G0蛋白。突变后的蛋白将460-480跨膜区氨基酸进行突变,突变为柔性肽序列:GSGSGSGSGSGSGSGSGSGS,命名为G1蛋白。G0/G1蛋白构建示意图如图1所示。G0蛋白氨基酸序列如SEQ ID NO.1所示,核苷酸序列如SEQ IDNO.3所示;G1蛋白氨基酸序列如SEQ ID NO.2所示,核苷酸序列如SEQ ID NO.4所示。The present invention uses the standard strain CVS-11 glycoprotein of rabies virus (GenbankAAC34683) as a template, adds 8 histidine sequences to the C-terminus, and optimizes the expression of the full-length G protein codons and labels it as G0 protein. The mutated protein mutates 460-480 amino acids in the transmembrane region into a flexible peptide sequence: GSGSGSGSGSGSGSGSGS, named G1 protein. The schematic diagram of G0/G1 protein construction is shown in Figure 1. The amino acid sequence of the G0 protein is shown in SEQ ID NO.1, and the nucleotide sequence is shown in SEQ ID NO.3; the amino acid sequence of the G1 protein is shown in SEQ ID NO.2, and the nucleotide sequence is shown in SEQ ID NO.4 .

密码优化后的序列的基因序列5’端加入Nhe I限制性内切酶位点和起始密码子序列,在3’MLu I限制性内切酶位点序列,该序列合成工作委托上海生工生物有限公司完成。The Nhe I restriction endonuclease site and start codon sequence were added to the 5' end of the gene sequence of the code-optimized sequence, and the 3' MLu I restriction endonuclease site sequence was added. The synthesis of this sequence was entrusted to Shanghai Sangon. BIOLOGICAL LIMITED COMPLETE.

2.2pLV-G-eGFP载体的构建2.2 Construction of pLV-G-eGFP vector

2.2.1质粒线性化2.2.1 Plasmid linearization

将pLV-eGFP载体用Nhe I,MLu I进行双酶切,酶切片段电泳图如图2所示。The pLV-eGFP vector was double digested with Nhe I and MLu I, and the electrophoresis pattern of the digested fragments is shown in Figure 2.

2.2.2连接2.2.2 Connection

采用T4 DNA连接酶,将上一步回收的目的片段分别与线性化的pLV-eGFP载体连接,体系如下。Use T4 DNA ligase to ligate the target fragments recovered in the previous step with the linearized pLV-eGFP vector. The system is as follows.

2.2.3转化2.2.3 Conversion

在冰箱中取出感受态细胞DH5α置于冰水上缓慢融化,分别将三组连接产物加入各管中,冰浴30min,42℃热激45s,迅速取出置于冰中3min,加入不含任何抗生素的液体LB培养基500μL,37℃恒温摇床上150r/min震荡培养1h,之后离心,留100μL上清重悬菌体,并涂布在含有Amp(100μg/mL)的LB平板中,确保涂布均匀,37℃恒温孵箱培养12h。Take out the competent cells DH5α from the refrigerator and place them in ice water to slowly melt. Add the three sets of ligation products to each tube respectively, bathe in ice for 30 minutes, heat shock at 42°C for 45 seconds, quickly take them out and place them in ice for 3 minutes, and add the solution without any antibiotics. 500 μL of liquid LB culture medium was cultured on a constant temperature shaker at 37°C with shaking at 150 r/min for 1 hour, then centrifuged, leaving 100 μL of supernatant to resuspend the bacterial cells, and spread it on an LB plate containing Amp (100 μg/mL) to ensure even coating. Incubate in a constant temperature incubator at 37°C for 12 hours.

2.2.4质粒提取2.2.4 Plasmid extraction

随机挑取平板上的克隆,加入2mL氨苄抗性培养基,反复吹打之后培养过夜。用天根无内毒素质粒提取试剂盒小量提取质粒。Randomly pick the clones on the plate, add 2 mL of ampicillin-resistant medium, pipet repeatedly and then culture overnight. The plasmid was extracted in a small amount using Tiangen endotoxin-free plasmid extraction kit.

2.2.5测序2.2.5 Sequencing

将抽提的质粒酶切鉴定并送上海生工生物有限公司测序,序列比对正确后,命名标记pLV-G0-eGFP或pLV-G1-eGFP。The extracted plasmid was digested and identified and sent to Shanghai Sangon Biotechnology Co., Ltd. for sequencing. After the sequence alignment was correct, the plasmid was named pLV-G0-eGFP or pLV-G1-eGFP.

3转染3 Transfection

1)转染前一天,用胰酶消化生长状态良好的对数期HEK293T细胞,并按5×105个接种于10cm细胞培养皿。细胞于37℃,5% CO2,饱和湿度条件下培养24h,待细胞达到70%-80%密度时进行转染操作;1) One day before transfection, trypsinize HEK293T cells in logarithmic phase that are growing well and seed them in a 10cm cell culture dish at 5 × 10 5 cells. The cells were cultured for 24 hours at 37°C, 5% CO 2 and saturated humidity. Transfection was performed when the cells reached a density of 70%-80%;

2)转染采用PEI转染操作步骤进行。按10μg/孔的比例将慢病毒表达质粒pLV-G0-eGFP或pLV-G1-eGFP,慢病毒包装质粒psPAX2和慢病毒穿梭质粒pMD2.G以4:3:1稀释于500μL 1×HBS中并混匀,具体如下;2) Transfection is performed using PEI transfection procedures. Dilute lentiviral expression plasmid pLV-G0-eGFP or pLV-G1-eGFP, lentiviral packaging plasmid psPAX2 and lentiviral shuttle plasmid pMD2.G at a ratio of 10 μg/well 4:3:1 in 500 μL 1×HBS and mix Mix well, as follows;

转染体系如下:The transfection system is as follows:

A液A liquid

PEI 48μL(N/P=27.5)PEI 48μL(N/P=27.5)

1×HBS 补至500μL1×HBS Make up to 500μL

室温静置10minLeave at room temperature for 10 minutes

B液B liquid

pLV-G1-eGFP 5μgpLV-G1-eGFP 5μg

psPAX2 3.75μgpsPAX2 3.75μg

pMD2.G 1.25μgpMD2.G 1.25μg

1×HBS 补至500μL1×HBS Make up to 500μL

将A液加入到B液,充分混匀,室温静置20min后,轻轻滴加到10cm皿的细胞培养上清中,轻晃培养皿混匀,放37℃,5% CO2孵箱中继续培养48h后收集培养上清。Add solution A to solution B, mix thoroughly, let stand at room temperature for 20 minutes, then gently add dropwise to the cell culture supernatant in a 10cm dish, shake the dish gently to mix, and place in a 37°C, 5% CO 2 incubator. After continuing to culture for 48 hours, the culture supernatant was collected.

4慢病毒感染HEK293T细胞4 Lentivirus infection of HEK293T cells

将上述得到的病毒液LV-G0-eGFP或LV-G1-eGFP转染HEK293T细胞,具体步骤如下所示:Transfect HEK293T cells with the viral liquid LV-G0-eGFP or LV-G1-eGFP obtained above. The specific steps are as follows:

1)将生长状态良好的HEK293T细胞消化计数后用DMEM完全培养基稀释至1×105个/mL,加入24孔板,500μL/孔,准备2个复孔,放入37℃,5% CO2培养箱中培养24h;1) Digest and count HEK293T cells that are growing well and dilute them to 1×10 5 cells/mL with DMEM complete medium. Add 500 μL/well to a 24-well plate. Prepare 2 duplicate wells and place them in 37°C, 5% CO 2 Cultivate in the incubator for 24 hours;

2)取1.5mL EP管操作:在DMEM完全培养基中加入polybrene,制备含Polybrene的培养基(培养基中Polybrene的终浓度为8μg/mL);2) Take a 1.5mL EP tube and operate: add polybrene to DMEM complete medium to prepare a medium containing Polybrene (the final concentration of Polybrene in the medium is 8 μg/mL);

将制备的病毒液LV-G0-eGFP或LV-G1-eGFP 100μL加入到上述含polybrene的培养基中,使终体积为300μL并轻吹混匀,制备得到含慢病毒的培养基;Add 100 μL of the prepared virus liquid LV-G0-eGFP or LV-G1-eGFP to the above polybrene-containing culture medium to make the final volume 300 μL and mix gently by blowing to prepare a lentivirus-containing culture medium;

3)将24孔板培养24h后的HEK293T细胞的旧培养基倒掉,每个孔内加入300μL含慢病毒的培养基,放入37℃,5% CO2培养箱中培养;3) Pour out the old medium of the HEK293T cells cultured in the 24-well plate for 24 hours, add 300 μL of lentivirus-containing medium to each well, and place it in a 37°C, 5% CO 2 incubator;

4)培养24h后,将24孔板里含慢病毒的培养基倒掉,换上500μL DMEM完全培养基,放入37℃,5% CO2培养箱中培养;4) After 24 hours of culture, pour out the lentivirus-containing culture medium in the 24-well plate, replace it with 500 μL DMEM complete culture medium, and place it in a 37°C, 5% CO 2 incubator;

5单克隆株筛选5 Monoclonal strain screening

1)24孔板里含慢病毒的培养基倒掉,换上500μL DMEM完全培养基培养到3-5d后,将长满培养孔的细胞用胰酶消化。1) Pour out the lentivirus-containing culture medium in the 24-well plate and replace it with 500 μL DMEM complete culture medium. After culturing for 3-5 days, trypsinize the cells that cover the culture wells.

2)DMEM完全培养基重悬转染后的HEK293T细胞,用有限稀释法传代于96孔板中继续培养,每天检查96孔板细胞增殖情况,10-15d后在倒置显微镜下观察每孔细胞的克隆数目;2) Resuspend the transfected HEK293T cells in DMEM complete medium, passage them in a 96-well plate using the limiting dilution method, and continue to culture them. Check the cell proliferation in the 96-well plate every day, and observe the cells in each well under an inverted microscope after 10-15 days. number of clones;

3)挑选96孔板中含有1个细胞集落(即1个细胞团块)的孔,将单克隆细胞在24孔板中培养。3) Select the well containing 1 cell colony (i.e. 1 cell clump) in the 96-well plate and culture the monoclonal cells in the 24-well plate.

功效试验例Efficacy test example

6分泌表达和稳定性检测6. Secretion expression and stability testing

6.1Western blot样品处理6.1 Western blot sample processing

挑选在24孔板中培养的单克隆细胞孔,当单克隆细胞在24孔板中培养3d后,收集上清液。上清液10倍浓缩后加入还原型5×SDS上样缓冲液。Select the monoclonal cell wells cultured in the 24-well plate. When the monoclonal cells are cultured in the 24-well plate for 3 days, collect the supernatant. The supernatant was concentrated 10 times and reduced 5×SDS loading buffer was added.

6.2Western blot鉴定6.2 Western blot identification

1)浓缩上清液80μL加入还原型5×SDS上样缓冲液20μL。沸水浴10min,10,000rpm离心5min后吸取上清各20μL进行10% SDS-PAGE电泳。1) Add 80 μL of concentrated supernatant to 20 μL of reduced 5×SDS loading buffer. Place in a boiling water bath for 10 minutes, centrifuge at 10,000 rpm for 5 minutes, and then draw 20 μL of each supernatant for 10% SDS-PAGE electrophoresis.

2)电泳后取分离胶转膜,转PVDF膜后采用10%脱脂奶粉封闭2h。2) After electrophoresis, take the separation gel and transfer it to the membrane. After transferring to the PVDF membrane, use 10% skim milk powder to block for 2 hours.

3)采用抗His多克隆抗体孵育过夜(1:7000稀释),TBST洗涤3次,每次10min。3) Incubate overnight with anti-His polyclonal antibody (1:7000 dilution), wash 3 times with TBST, 10 min each time.

4)孵育HRP标记的兔抗鼠二抗(1:10000稀释),37℃孵育1h,TBST洗涤3次,每次10min。电泳结果如图3所示。4) Incubate HRP-labeled rabbit anti-mouse secondary antibody (1:10000 dilution), incubate at 37°C for 1 hour, and wash 3 times with TBST, 10 minutes each time. The electrophoresis results are shown in Figure 3.

7蛋白纯化及定量7Protein purification and quantification

7.1蛋白纯化7.1 Protein purification

1)将Western blot鉴定的能稳定分泌表达G蛋白的293T细胞重组细胞株HEK293T-G连续传代,扩大细胞工作库。将收集的细胞培养上清进行离心,去除细胞及碎片后,采用0.45μm滤膜过滤。1) Continuous passage of the recombinant cell line HEK293T-G, a 293T cell line identified by Western blot that can stably secrete and express G protein, to expand the cell library. The collected cell culture supernatant was centrifuged to remove cells and debris, and then filtered with a 0.45 μm filter membrane.

2)将Protein A纯化柱与BioLogic LP蛋白纯化仪正确连接后,连续灌注5倍柱床体积的上样缓冲液(0.01M tris base),1mL/min平衡柱子,以洗掉柱中的保护液。至电导出峰平稳后,再洗3倍柱床体积。2) After correctly connecting the Protein A purification column to the BioLogic LP protein purifier, continuously perfuse 5 times the column bed volume of loading buffer (0.01M tris base) and equilibrate the column at 1mL/min to wash away the protective solution in the column. . After the electroconductive peak is stable, wash 3 times the column bed volume.

3)将第一步中处理好的培养基上清样品以1mL/min的速度上样,电脑软件实时窗口先出现蓝峰(紫外分光峰),后出现红峰(电导峰),红峰出现后再流30s后即可收流穿的上清。3) Load the culture medium supernatant sample processed in the first step at a speed of 1mL/min. A blue peak (UV spectroscopy peak) will appear first in the real-time window of the computer software, and then a red peak (conductance peak) will appear. The red peak will appear. After flowing for another 30 seconds, the supernatant can be collected.

4)培养基上清样品完全流穿结束后,用上样缓冲液进行流洗,1mL/min,5倍柱床体积,洗掉非目的蛋白。电脑软件实时窗口中的蓝峰(紫外分光峰)、红峰(电导峰)都趋于平衡后,再加3-5倍柱床体积的上样缓冲液。4) After the culture supernatant sample has completely flowed through, use loading buffer to flow wash at 1 mL/min, 5 times the column bed volume, to wash away non-target proteins. After the blue peak (UV spectroscopy peak) and red peak (conductivity peak) in the real-time window of the computer software have become balanced, add 3-5 times the column bed volume of the loading buffer.

5)随后用蛋白洗脱液(150mM咪唑,pH 8.5)洗脱重组蛋白,同时用BioLogic LP进行监测,当观察到基线上升,即出现洗脱峰(蓝线先出峰、红线后出峰)时开始收集。5) Then use protein eluent (150mM imidazole, pH 8.5) to elute the recombinant protein, and monitor it with BioLogic LP. When an increase in the baseline is observed, an elution peak appears (the blue line peaks first, and the red line peaks later). Start collecting.

6)收集洗脱液至洗脱峰回到基线后,继续用上样缓冲液平衡3~5倍柱床体积,流速调至1mL/min。再用20%乙醇平衡5倍柱床体积,清洗蛋白纯化仪。6) Collect the eluate until the elution peak returns to the baseline, continue to balance 3 to 5 times the column bed volume with the loading buffer, and adjust the flow rate to 1 mL/min. Then use 20% ethanol to balance 5 times the column bed volume and clean the protein purifier.

7)洗脱的蛋白在PBS中透析,去除洗脱液中的离子成分,每隔3h更换一次透析液。7) The eluted protein is dialyzed in PBS to remove ionic components in the eluate, and the dialysate is replaced every 3 hours.

7.2纯化蛋白浓度测定(BCA蛋白浓度测定法)7.2 Determination of purified protein concentration (BCA protein concentration determination method)

1)配制工作液:根据标准品和样品数量,按50体积BCA试剂A加1体积BCA试剂B(50:1)配制适量BCA工作液,充分混匀。1) Prepare working solution: According to the number of standards and samples, prepare an appropriate amount of BCA working solution by adding 50 volumes of BCA reagent A and 1 volume of BCA reagent B (50:1), and mix thoroughly.

2)稀释标准品:取10μL标准品用PBS稀释至100μL(标准品一般可用PBS稀释),使终浓度为0.5mg/mL。将标准品按0,1,2,4,8,12,16,20μL加到96孔板的蛋白标准品孔中,加PBS补足到20μL。2) Dilute the standard: Take 10 μL of the standard and dilute it to 100 μL with PBS (the standard can generally be diluted with PBS) to make the final concentration 0.5 mg/mL. Add 0, 1, 2, 4, 8, 12, 16, and 20 μL of the standard into the protein standard wells of the 96-well plate, and add PBS to make up to 20 μL.

3)加适当体积样品到96孔板的样品孔中,补加PBS到20μL。3) Add appropriate volume of sample to the sample well of the 96-well plate, and add PBS to 20 μL.

4)各孔加入200μL BCA工作液,37℃放置30min。4) Add 200 μL BCA working solution to each well and place at 37°C for 30 minutes.

5)冷却到室温,用酶标仪测定波长为540-595nm之间,562nm最佳,根据标准曲线计算出蛋白浓度。5) Cool to room temperature, use a microplate reader to measure the wavelength between 540-595nm, 562nm is the best, and calculate the protein concentration based on the standard curve.

经测定G0蛋白表达量为12.6μg/L,G1蛋白表达量为332.5μg/L,突变后每升产量是突变前的26.4倍。The G0 protein expression level was determined to be 12.6 μg/L, and the G1 protein expression level was 332.5 μg/L. The output per liter after the mutation was 26.4 times that before the mutation.

8稳定性研究8Stability studies

纯化后的蛋白(1mg/mL),分成16份,每份0.5mL;8份置于4℃冰箱中,于存放1周,4周,8周,12周,16周,20周,24周分别取样一份,连续取样7次;8份置于-80℃冰箱中,于存放1周,4周,8周,12周,16周,20周,24周分别取样一份,连续取样7次;每次取样后用BCA检测蛋白浓度,结果如表1、图4所示,表明本发明方法纯化后得到的蛋白稳定性能好。Purified protein (1 mg/mL) was divided into 16 parts, each part was 0.5 mL; 8 parts were placed in a 4°C refrigerator for 1 week, 4 weeks, 8 weeks, 12 weeks, 16 weeks, 20 weeks, and 24 weeks. Take one sample each for 7 consecutive times; place 8 samples in a -80°C refrigerator and take one sample each for 1 week, 4 weeks, 8 weeks, 12 weeks, 16 weeks, 20 weeks, and 24 weeks for 7 consecutive samples. times; BCA was used to detect the protein concentration after each sampling, and the results are shown in Table 1 and Figure 4, indicating that the protein obtained after purification by the method of the present invention has good stability.

表1:稳定性检测Table 1: Stability testing

9小鼠免疫实验9 Mouse Immunity Experiment

将收获的表达抗原上清使用生理盐水稀释,使得RV-G蛋白的浓度达到100μg/mL然后将纯化的重组狂犬病毒G蛋白与206佐剂按照体积比为1:1混合,乳化后置于4℃保存。Dilute the harvested expressed antigen supernatant with physiological saline so that the concentration of RV-G protein reaches 100 μg/mL. Then mix the purified recombinant rabies virus G protein and 206 adjuvant at a volume ratio of 1:1, emulsify and place at 4 Store at ℃.

将6周龄的雌性Bal b/c小鼠随机分为3组(10只/组),分别用100μL的生理盐水、100μL乳化好的疫苗及商品化狂犬灭活疫苗通过肌肉途径(i.m.)免疫。于免疫后六周以50LD50剂量CVS-24脑内途径(i.c.)攻毒所有小鼠,攻毒后持续观察21天,称取小鼠体重、死亡情况,统计分析小鼠的存活率。Six-week-old female Bal b/c mice were randomly divided into 3 groups (10 mice/group), and were immunized with 100 μL of normal saline, 100 μL of emulsified vaccine and commercial inactivated rabies vaccine through intramuscular route (i.m.). . Six weeks after immunization, all mice were challenged with 50LD50 dose of CVS-24 via intracerebral route (i.c.). After the challenge, observation was continued for 21 days. The body weight and death status of the mice were weighed, and the survival rate of the mice was statistically analyzed.

结果如图5所示,狂犬病毒G1蛋白疫苗能够提供受免疫小鼠100%保护率,商品化疫苗可以提供90%的保护率,对小鼠体重影响较与商品化有疫苗未有明显差异(图6所示)。The results are shown in Figure 5. The rabies virus G1 protein vaccine can provide 100% protection rate for immunized mice, and the commercial vaccine can provide 90% protection rate. The impact on mouse body weight is not significantly different from that of commercial vaccines ( As shown in Figure 6).

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,故凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above are only preferred embodiments of the present invention and do not limit the present invention in any form. Therefore, any simple modifications to the above embodiments may be made based on the technical essence of the present invention without departing from the technical content of the present invention. , equivalent changes and modifications, all still fall within the scope of the technical solution of the present invention.

附录:appendix:

1.突变前G0蛋白氨基酸序列:SEQ ID NO.11. Amino acid sequence of G0 protein before mutation: SEQ ID NO.1

MVPQVLLFVPLLGFSLCFGKFPIYTIPDKLGPWSPIDIHHLSCPNNLVVEDEGCTNLSEFSYMELKVGYISAIKVNGFTCTGVVTEAETYTNFVGYVTTTFKRKHFRPTPDACRAAYNWKMAGDPRYEESLHNPYPDYHWLRTVRTTKESLIIISPSVTDLDPYDKSLHSRVFPGGKCSGITVSSTYCSTNHDYTIWMPENPRPRTPCDIFTNSRGKRASKGNKTCGFVDERGLYKSLKGACRLKLCGVLGLRLMDGTWVAMQTSDETKWCPPDQLVNLHDFRSDEIEHLVVEELVKKREECLDALESIMTTKSVSFRRLSHLRKLVPGFGKAYTIFNKTLMEADAHYKSVRTWNEIIPSKGCLKVGGRCHPHVNGVFFNGIILGPDGHVLIPEMQSSLLQQHMELLKSSVIPLMHPLADPSTVFKEGDEAEDFVEVHLPDVYKQISGVDLGLPNWGKYVLMTAGAMIGLVLIFSLMTWCRRANRPESKQRSFGGTGRNVSVTSQSGKVIPSWESYKSGGEIRLHHHHHHHHMVPQVLLFVPLLGFSLCFGKFPIYTIPDKLGPWSPIDIHHLSCPNNLVVEDEGCTNLSEFSYMELKVGYISAIKVNGFTCTGVVTEAETYTNFVGYVTTTFKRKHFRPTPDACRAAYNWKMAGDPRYEESLHNPYPDYHWLRTVRTTKESLIIISPSVTDLDPYDKSLHSRVFPGGKCSGITVSSTYCSTNHDYTIWMPENPRPRPRTPCDIFTNS RGKRASKGNKTCGFVDERGLYKSLKGACRLKLCGVLGLRLMDGTWVAMQTSDETKWCPPDQLVNLHDFRSDEIEHLVVEELVKKREECLDALESIMTTKSVSFRRLSHLRKLVPGFGKAYTIFNKTLMEADAHYKSVRTWNEIIPSKGCLKVGGRCHPHVNGVFFNGIILGPDGHVLIPEMQSSLLQQHMELLKSSVIPLMHPLADPSTVFHLKEGDEAEDFVEV PDVYKQISGVDLGLPNWGKYVLMTAGAMIGLVLIFSLMTWCRRANRPESKQRSFGGTGRNVSVTSQSGKVIPSWESYKSGGEIRLHHHHHHHH

2.突变后G1蛋白氨基酸序列SEQ ID NO.22. Amino acid sequence of G1 protein after mutation SEQ ID NO.2

MVPQVLLFVPLLGFSLCFGKFPIYTIPDKLGPWSPIDIHHLSCPNNLVVEDEGCTNLSEFSYMELKVGYISAIKVNGFTCTGVVTEAETYTNFVGYVTTTFKRKHFRPTPDACRAAYNWKMAGDPRYEESLHNPYPDYHWLRTVRTTKESLIIISPSVTDLDPYDKSLHSRVFPGGKCSGITVSSTYCSTNHDYTIWMPENPRPRTPCDIFTNSRGKRASKGNKTCGFVDERGLYKSLKGACRLKLCGVLGLRLMDGTWVAMQTSDETKWCPPDQLVNLHDFRSDEIEHLVVEELVKKREECLDALESIMTTKSVSFRRLSHLRKLVPGFGKAYTIFNKTLMEADAHYKSVRTWNEIIPSKGCLKVGGRCHPHVNGVFFNGIILGPDGHVLIPEMQSSLLQQHMELLKSSVIPLMHPLADPSTVFKEGDEAEDFVEVHLPDVYKQISGVDLGLPNWGKYGSGSGSGSGSGSGSGSGSGSRRANRPESKQRSFGGTGRNVSVTSQSGKVIPSWESYKSGGEIRLHHHHHHHHMVPQVLLFVPLLGFSLCFGKFPIYTIPDKLGPWSPIDIHHLSCPNNLVVEDEGCTNLSEFSYMELKVGYISAIKVNGFTCTGVVTEAETYTNFVGYVTTTFKRKHFRPTPDACRAAYNWKMAGDPRYEESLHNPYPDYHWLRTVRTTKESLIIISPSVTDLDPYDKSLHSRVFPGGKCSGITVSSTYCSTNHDYTIWMPENPRPRPRTPCDIFTNS RGKRASKGNKTCGFVDERGLYKSLKGACRLKLCGVLGLRLMDGTWVAMQTSDETKWCPPDQLVNLHDFRSDEIEHLVVEELVKKREECLDALESIMTTKSVSFRRLSHLRKLVPGFGKAYTIFNKTLMEADAHYKSVRTWNEIIPSKGCLKVGGRCHPHVNGVFFNGIILGPDGHVLIPEMQSSLLQQHMELLKSSVIPLMHPLADPSTVFHLKEGDEAEDFVEV PDVYKQISGVDLGLPNWGKYGSGSGSGSGSGSGSGSSRRANRPESKQRSFGGGTGRNVSVTSQSGKVIPSWESYKSGGEIRLHHHHHHHH

3.突变前G0蛋白密码子优化后核苷酸序列:SEQ ID NO.33. Nucleotide sequence after codon optimization of G0 protein before mutation: SEQ ID NO.3

ATGGTGCCTCAAGTCCTCCTCTTCGTTCCCCTTTTGGGCTTTAGCCTGTGCTTCGGGAAGTTTCCTATTTACACCATCCCGGATAAGCTCGGCCCTTGGTCCCCAATTGACATCCACCATCTGTCTTGCCCCAATAATCTCGTCGTAGAAGATGAGGGATGTACCAACCTGAGCGAATTCTCATATATGGAACTGAAAGTTGGATACATCTCTGCCATAAAAGTGAATGGCTTCACGTGTACTGGCGTGGTCACCGAAGCGGAAACTTATACCAATTTCGTTGGATACGTCACAACCACCTTTAAAAGGAAGCACTTTAGACCGACCCCGGACGCCTGTAGAGCAGCATACAATTGGAAAATGGCCGGTGATCCCCGGTATGAAGAGAGCCTTCACAACCCATACCCAGATTACCACTGGCTGCGGACCGTGCGCACTACCAAGGAAAGTCTCATTATCATCTCCCCCAGCGTGACGGATCTGGATCCTTATGATAAGTCCCTGCACTCCCGCGTCTTTCCTGGAGGTAAATGTAGCGGCATTACCGTGAGCAGCACCTACTGCAGTACCAACCACGATTACACCATCTGGATGCCTGAAAACCCAAGGCCAAGGACTCCCTGCGACATCTTTACCAACTCTAGGGGAAAGCGGGCCTCAAAAGGGAACAAAACCTGTGGCTTTGTAGACGAGCGGGGGCTGTACAAGTCACTGAAGGGGGCTTGTAGGCTTAAGTTGTGCGGAGTTCTGGGACTGAGACTGATGGACGGTACATGGGTTGCGATGCAAACGTCCGACGAGACTAAATGGTGCCCCCCTGATCAGCTGGTGAATCTCCATGATTTTAGGTCCGACGAGATCGAGCATCTCGTGGTCGAGGAGTTGGTCAAGAAGCGGGAGGAGTGTCTCGATGCCCTGGAGAGTATCATGACCACCAAATCCGTCTCCTTTCGAAGGCTGAGCCACCTGAGGAAATTGGTTCCCGGGTTCGGAAAGGCTTATACTATTTTCAACAAAACTTTGATGGAGGCCGATGCCCATTACAAGTCCGTACGGACCTGGAACGAGATCATCCCATCTAAGGGTTGTTTGAAGGTCGGGGGGAGGTGTCACCCCCATGTGAATGGGGTATTTTTTAACGGGATCATCTTGGGCCCGGATGGACACGTGCTGATTCCAGAAATGCAGTCCAGCCTGCTGCAGCAACACATGGAGCTCCTCAAATCTAGTGTCATTCCCCTGATGCATCCCCTGGCAGATCCAAGTACGGTGTTCAAAGAGGGGGACGAAGCCGAGGATTTTGTGGAGGTTCACCTGCCAGACGTCTATAAACAGATATCCGGCGTGGACTTGGGCCTTCCTAATTGGGGCAAGTATGTGCTGATGACTGCCGGGGCTATGATCGGTCTGGTGCTGATCTTTTCACTGATGACATGGTGCAGACGGGCTAATAGACCCGAGAGTAAACAGCGGTCCTTCGGCGGAACCGGTCGGAATGTATCCGTCACTTCTCAGTCTGGCAAAGTCATCCCCAGCTGGGAATCCTATAAGTCAGGCGGCGAAATCCGACTGCACCACCACCACCACCACCA TCATATGGGTGCCTCAAGTCCTCCTTCGTTCCCCTTTTGGGCTTTAGCCTGTGCTTCGGGAAGTTTCCTATTTACACCATCCCGGATAAGCTCCGGCCCTTGGTCCCCAATTGACATCCACCATCTGTCTTGCCCCAATAATCTCGTCGTAGAAGATGAGGGATGTACCAACCTGAGCGAATTCTCATATATGGAACTGAAAGTTGGATACATCTCTGCCATAAAAGTGAATGGCTTCACGTGTACTGGGCTGGTCACCGAAGCGGA AACTTATACCAATTTCGTTGGATACGTCACAACCACCTTTAAAAGGAAGCACTTTAGACCGACCCCGGACGCCTGTAGAGCAGCATACAATTGGAAAATGGCCGGTGATCCCCGGTATGAAGAGAGCCTTCACAACCCATACCCAGATTACCACTGGCTGCGGACCGTGCGCACTACCAAGGAAAGTCTCATTATCATCTCCCCCAGCGTGACGGATCTGGATCCTTATGATAAGTCCCTGCACTCCCGCGTCTTTCCTGGAGGTAAATGTAGCG GCATTACCGTGAGCAGCACCTACTGCAGTACCAACCACGATTACACCATCTGGATGCCTGAAAACCCAAGGCCAAGGACTCCCTGCGACATCTTTACCAACTCTAGGGGGAAAGCGGGCCTCAAAAGGGAACAAAACCTGTGGCTTTGTAGACGAGCGGGGGCTGTACAAGTCACTGAAGGGGGCTTGTAGGCTTAAGTTGTGCGGAGTTCTGGGACTGAGACTGATGGACGGTACATGGGTTGCGATGCAAACGTCCGACGAGACT AAATGGTGCCCCCCTGATCAGCTGGTGAATCTCCATGATTTTAGGTCCGACGAGATCGAGCATCTCGTGGTCGAGGAGTTGGTCAAGAAGCGGGAGGAGTGTCTCGATGCCCTGGAGAGTATCATGACCACCAAATCCGTCTCCTTTCGAAGGCTGAGCCACCTGAGGAAATTGGTTCCCGGGTTCGGAAAGGCTTATACTATTTTCAACAAAACTTTGATGGAGGCCGATGCCCATTACAAGTCCGTACGGACCTGGAACGAGA TCATCCCATCTAAGGGTTGTTTGAAGGTCGGGGGGAGGTGTCACCCCATGTGAATGGGGGTATTTTTTAACGGGATCATCTTGGGCCCGGATGGACACGTGCTGATTCCAGAAATGCAGTCCAGCCTGCTGCAGCAACACATGGAGCTCCTCAAATCTAGTGTCATTCCCTGATGCATCCCCTGGCAGATCCAAGTACGGTGTTCAAAGAGGGGGACGAAGCCGAGGATTTTGTGGAGGTTCACCTGCCAGACGTCTATAAACAG ATATCCGGCGTGGACTTGGGCCTTCCTAATTGGGGCAAGTATGTGCTGATGACTGCCGGGGCTATGATCGGTCTGGTGCTGATCTTTTCACTGATGACATGGTGCAGACGGGCTAATAGACCCGAGAGTAAACAGCGGTCCTTCGGCGGAACCGGTCGGAATGTATCCGTCACTTCTCAGTCTGGCAAAGTCATCCCCAGCTGGGAATCCTATAAGTCAGGCGGCGAAATCCGACTGCACCACCACCACCACCACCACCA TCAT

4.突变后G1蛋白密码子优化后核苷酸序列:SEQ ID NO.44. Codon-optimized nucleotide sequence of G1 protein after mutation: SEQ ID NO.4

ATGGTGCCACAGGTCCTGCTTTTCGTCCCCCTGCTTGGATTTTCACTGTGTTTTGGCAAATTTCCAATCTACACAATTCCAGATAAGCTGGGTCCCTGGTCCCCCATCGATATCCACCACTTGTCTTGCCCCAATAATCTGGTGGTTGAGGACGAGGGCTGCACTAACCTGAGCGAATTCAGTTACATGGAGCTCAAGGTGGGATACATCTCTGCCATCAAAGTGAACGGTTTTACCTGTACCGGAGTTGTGACCGAGGCCGAAACCTACACTAACTTCGTCGGCTACGTCACCACAACGTTCAAGAGAAAACACTTCCGCCCTACACCTGACGCATGTAGGGCCGCATACAACTGGAAGATGGCCGGCGACCCACGCTATGAAGAAAGTCTCCACAACCCATACCCTGATTACCACTGGCTTCGGACCGTTAGGACGACCAAGGAGAGCCTCATCATCATCTCACCATCCGTGACCGACCTTGATCCTTACGACAAGAGCCTGCACTCAAGGGTTTTTCCCGGTGGGAAATGCTCTGGCATCACTGTTTCAAGTACGTATTGTTCCACAAACCATGATTACACGATCTGGATGCCCGAGAACCCGCGCCCACGCACGCCCTGTGATATCTTCACTAACTCACGCGGCAAGCGCGCCAGTAAGGGGAACAAAACATGCGGCTTTGTGGATGAGAGGGGTCTGTATAAGAGTCTGAAAGGCGCCTGTAGACTGAAGCTTTGCGGGGTGCTCGGTCTCCGGCTTATGGACGGAACCTGGGTAGCAATGCAGACCTCTGACGAGACCAAATGGTGTCCTCCAGATCAGTTGGTTAACTTGCACGACTTCAGATCTGACGAGATAGAACACCTCGTAGTGGAAGAGCTGGTGAAAAAAAGGGAGGAGTGTTTGGATGCCTTGGAAAGTATTATGACAACCAAGTCTGTGTCCTTCCGGCGACTCAGTCACCTGAGGAAGCTGGTGCCAGGCTTTGGAAAGGCCTACACGATTTTCAATAAGACGTTGATGGAAGCCGACGCACATTATAAGTCTGTGCGCACCTGGAATGAAATCATCCCTTCTAAAGGGTGCCTCAAAGTGGGTGGACGGTGCCATCCTCACGTGAACGGAGTGTTTTTCAATGGGATCATTCTCGGCCCCGATGGACATGTCCTTATCCCCGAAATGCAGAGTTCACTGCTTCAGCAGCACATGGAACTGCTCAAGTCCAGTGTCATCCCTTTGATGCACCCCTTGGCCGATCCGAGCACCGTCTTTAAGGAGGGGGATGAGGCAGAGGATTTCGTCGAAGTGCACCTGCCTGATGTGTATAAGCAGATAAGTGGAGTTGATCTCGGGCTGCCGAACTGGGGTAAATACGGCTCAGGCTCCGGCTCTGGGTCAGGAAGTGGCTCTGGATCCGGATCCGGCAGCGGATCTCGGCGCGCAAATAGACCCGAGAGCAAGCAGAGGTCATTTGGCGGGACTGGCCGGAATGTGTCCGTGACAAGCCAGAGCGGCAAGGTGATTCCGTCCTGGGAGAGCTACAAAAGCGGCGGGGAGATTCGGCTTCACCACCACCACCACCACCATCATAtggccacagGGCTGCTGCTTTTTCCCCCCCCCTGCTGGGGGGGATTTTGTGCAAATCAATCCATCCAGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA is AtaatctgggttttttttttttttttttttttttttttttttttttttggggggCTGCTGCTACTGAGAATTCAGGGGGGGGGGGGGGGGGGGGGGGGGCCCAAACGGGGGGGGCGCGCGAAAAAAAAAAAAC CCTACTACTACTACTTTTCGGGGGCTACCACACACACACAACAAGAGAGAACACACACCCCCCCTGCACTGCACCCCCAACAACAAGGCCCCCCCCCCCCCTAAGAAGTCCCCCCCC AcACCCACCCCCCCTTACCCCTGGGGGGGGACCGCGACCCAGAGCCACACACCCCCCCCCCCCCCGACCGACGACGCCCTCAGGCAGGGGGGGGGGGGGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCACCCCACAGCAC GGAAAATGCTGCTGCTCTGTGTTCAAGTACGTACCAAACCACACACACGACCCCCCCCCCCCCCCCCCCCCCCCCCCCTCCCGCGCGCGCGCGCCCCAGT AAGGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGTGTAGTGCGCGCGCGCGCGCTGTGAGCTGAGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGCAATGCAGCAGA CctctCTGACGAGACAAAAATGTGTGTCCTCAGAGAGGTGTTGCACACGACAGACGACACACACCTCTCTCTGGGGGGGGGGGGGGGCTGCTGCTTGA is AAGTATTTTACAACAACAAGTCTGTGTCCCGCGCGCGACAGTCTCTGAGGGCCCCCCCCCCCCCCCCCCCCTACACACAATTTCACCCCACCACGACCACACGACCACACACACACGACACACCACACCACACCACCCACCACCCACCCCACCCCCCACCCCCCACGCGCACGCGCACGCACTCACGCACTCACGCACTCATCAC GCGCACTGGAATGAAATCATCCCCCTCTCTCTGCTCTCTCAAGGGGGGGGGGGGCCCCCTCTCTCTCTCTCTCTCGGGGGGGGGGGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTCAAGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTCCC AGTTCTCTGCACAGCACACACACTGAACTGCTCCAGTCCAGTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGGGGGGGGGGGAgGAgGAGAGAGCACCACCCCCCC TGATGTGTGTGTAGCAGATAGGGGGAGAGAGAGGGGGGGCTGCGGGGGGGGGGGGCTCCTCCTCTCTCTCTGGGGGGGGGGGGGGGGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCCCCTCAT CCGAGAGCAGCAGGGTCATTTTGGGGGGGGGGGGGGGGAATGTGTGCCCCAGCGGGGGGTGTCCTCTCTCTAGGGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCC can Accaccatcat

Claims (6)

1.一种增加狂犬病毒G蛋白分泌表达的方法,其特征在于,包括以下步骤:1. A method for increasing the secretion and expression of rabies virus G protein, characterized by comprising the following steps: 1)以狂犬病毒的标准毒株的糖蛋白氨基酸序列为模板,在C端加入8个组氨酸序列,将表达糖蛋白全长密码子优化标记为G0蛋白;所述G0蛋白氨基酸序列如SEQ ID NO.1所示;所述G0蛋白核苷酸序列如SEQ ID NO.3所示;1) Use the glycoprotein amino acid sequence of the standard strain of rabies virus as a template, add 8 histidine sequences at the C-terminus, and optimize the full-length codons of the expressed glycoprotein to label it as G0 protein; the G0 protein amino acid sequence is such as SEQ ID NO.1 is shown; the G0 protein nucleotide sequence is shown as SEQ ID NO.3; 2)将G0蛋白460-480跨膜区氨基酸进行突变,突变为柔性肽序列:GSGSGSGSGSGSGSGSGSGS,得到密码优化后的突变体G1蛋白;所述G1蛋白氨基酸序列如SEQID NO.2所示;所述G1蛋白核苷酸序列如SEQ ID NO.4所示;2) Mute the amino acids in the transmembrane region 460-480 of the G0 protein into a flexible peptide sequence: GSGSGSGSGSGSGSGSGSGS to obtain a code-optimized mutant G1 protein; the amino acid sequence of the G1 protein is as shown in SEQ ID NO. 2; the G1 The protein nucleotide sequence is shown in SEQ ID NO.4; 3)基因序列加入限制性内切酶位点和起始密码子序列后,合成序列;4)构建表达载体,转染宿主细胞后,进行单克隆株的筛选,得到狂犬病毒G蛋白分泌表达增高的单克隆株;所述G蛋白的核苷酸序列如SEQ ID NO.4所示。3) After adding restriction endonuclease sites and start codon sequences to the gene sequence, the sequence is synthesized; 4) Constructing an expression vector, transfecting host cells, and screening single clones to obtain increased secretion and expression of rabies virus G protein The monoclonal strain; the nucleotide sequence of the G protein is shown in SEQ ID NO. 4. 2.如权利要求1所述的增加狂犬病毒G蛋白分泌表达的方法,其特征在于:步骤3)中,所述基因序列5’端加入Nhe I限制性内切酶位点和起始密码子序列,在3’端加入MLu I限制性内切酶位点序列。2. The method for increasing the secretion and expression of rabies virus G protein as claimed in claim 1, characterized in that: in step 3), an Nhe I restriction endonuclease site and a start codon are added to the 5' end of the gene sequence. sequence, add the MLu I restriction endonuclease site sequence at the 3' end. 3.如权利要求1所述的增加狂犬病毒G蛋白分泌表达的方法,其特征在于:步骤4)中,所述表达载体选用pLV-eGFP载体,感受态细胞选用DH5α,所述宿主细胞选用HEK293T细胞。3. The method for increasing the secretion and expression of rabies virus G protein as claimed in claim 1, characterized in that: in step 4), the expression vector selects pLV-eGFP vector, the competent cell selects DH5α, and the host cell selects HEK293T. cell. 4.编码权利要求1所述的G蛋白的核苷酸序列。4. A nucleotide sequence encoding the G protein of claim 1. 5.权利要求1所述的G蛋白的以下任一应用:5. Any of the following applications of the G protein according to claim 1: 1)在制备狂犬病毒疫苗的应用;1) Application in preparing rabies virus vaccine; 2)在制备抗狂犬病毒药物中的应用;2) Application in the preparation of anti-rabies virus drugs; 3)在制备狂犬病毒检测试剂或试剂盒中的应用。3) Application in preparing rabies virus detection reagents or kits. 6.权利要求1-3任一项所述的增加狂犬病毒G蛋白分泌表达的方法制备所得的单克隆株,其特征在于:所述G蛋白的核苷酸序列如SEQ ID NO.4所示。6. The monoclonal strain prepared by the method of increasing the secretion and expression of rabies virus G protein according to any one of claims 1 to 3, characterized in that: the nucleotide sequence of the G protein is as shown in SEQ ID NO.4 .
CN202310459317.0A 2023-04-25 2023-04-25 A method and application for increasing the secretion and expression of rabies virus G protein Active CN116621949B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310459317.0A CN116621949B (en) 2023-04-25 2023-04-25 A method and application for increasing the secretion and expression of rabies virus G protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310459317.0A CN116621949B (en) 2023-04-25 2023-04-25 A method and application for increasing the secretion and expression of rabies virus G protein

Publications (2)

Publication Number Publication Date
CN116621949A CN116621949A (en) 2023-08-22
CN116621949B true CN116621949B (en) 2024-01-30

Family

ID=87590409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310459317.0A Active CN116621949B (en) 2023-04-25 2023-04-25 A method and application for increasing the secretion and expression of rabies virus G protein

Country Status (1)

Country Link
CN (1) CN116621949B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119040351A (en) * 2024-09-14 2024-11-29 华南生物医药研究院 Recombinant gene of rabies virus G protein virus-like particle, construction method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171489A (en) * 1987-12-26 1989-07-06 Chemo Sero Therapeut Res Inst Gene fragment coding glycoprotein of rabies virus and production of rabies virus glycoprotein using said fragment
JP2010528605A (en) * 2007-05-30 2010-08-26 ワイス・エルエルシー Raccoon poxvirus expressing rabies glycoprotein
CN109627294A (en) * 2018-12-29 2019-04-16 四川大学 A kind of recombinant rabies poison G-protein extracellular fragment correctly folded and its potential application
CN112142851A (en) * 2019-06-28 2020-12-29 浙江海隆生物科技有限公司 Subunit fusion protein tG on rabies virus surface as well as preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171489A (en) * 1987-12-26 1989-07-06 Chemo Sero Therapeut Res Inst Gene fragment coding glycoprotein of rabies virus and production of rabies virus glycoprotein using said fragment
JP2010528605A (en) * 2007-05-30 2010-08-26 ワイス・エルエルシー Raccoon poxvirus expressing rabies glycoprotein
CN109627294A (en) * 2018-12-29 2019-04-16 四川大学 A kind of recombinant rabies poison G-protein extracellular fragment correctly folded and its potential application
CN112142851A (en) * 2019-06-28 2020-12-29 浙江海隆生物科技有限公司 Subunit fusion protein tG on rabies virus surface as well as preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
狂犬病毒糖蛋白在汉逊酵母中分泌表达研究;钱卫东等;智能信息技术应用学会;摘要 *
狂犬病病毒糖蛋白基因重组慢病毒载体的构建及鉴定;房丽君;黄世威;王颖;刘晔;张守峰;扈荣良;;中国生物制品学杂志(第02期);摘要 *

Also Published As

Publication number Publication date
CN116621949A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
CN111560074B (en) A novel coronavirus S protein single-domain subunit nanovaccine based on Helicobacter pylori ferritin
CN113185613B (en) Novel coronavirus S protein and its subunit vaccine
CN111560354B (en) Recombinant novel coronavirus, preparation method and application thereof
CN111607002B (en) A novel coronavirus S protein two-domain subunit nanovaccine based on Helicobacter pylori ferritin
CN111234036B (en) African swine fever virus p72 fusion protein and preparation method and application thereof
CN112386684B (en) COVID-19 vaccine and preparation method and application thereof
CN111217919A (en) A novel coronavirus S protein two-domain subunit nanovaccine based on Pyrococcus ferritin
CN113230395A (en) Beta coronavirus antigen, beta coronavirus bivalent vaccine, and preparation method and application thereof
CN112472801A (en) DNA vaccine and subunit vaccine of African swine fever p30, p54, p72 and B602L, and preparation method and application thereof
CN112375768A (en) Pseudo-virus of COVID-19 coronavirus, preparation method and application thereof
CN110272473B (en) Influenza A universal virus-like particle and preparation method and application thereof
CN109943592B (en) Recombinant baculovirus transfer vector containing porcine pseudorabies virus gD protein gene, recombinant baculovirus, preparation method and application
CN112390863B (en) Modified new coronavirus Spike protein extracellular domain and application thereof
CN113943373A (en) Beta coronavirus polymer antigen, preparation method and application thereof
CN115246874A (en) A kind of recombinant novel coronavirus S-RBD trimer protein, its preparation method and application
CN109311946A (en) RSV F protein before stabilized fusion
CN110981968A (en) Fusion protein containing rabies virus G protein, preparation method, application and vaccine thereof
CN116350769B (en) Combined vaccine of novel coronavirus and influenza virus, preparation method and application thereof
CN112142851B (en) Subunit fusion protein tG on rabies virus surface and preparation method and application thereof
CN116621949B (en) A method and application for increasing the secretion and expression of rabies virus G protein
CN110551187A (en) Chemically synthesized H7N9 avian influenza virus NA protein extracellular region antigen segment, preparation method and application
CN111154778B (en) Novel genetic engineering subunit vaccine of avian newcastle disease virus
CN112175913A (en) Attenuated SARS-CoV-2 strain and its application in the prevention of new coronary pneumonia
CN108728462B (en) H3N2 type canine influenza virus shuttle intracellular antibody TAT-2C
CN115073565B (en) Recombinant novel coronavirus S protein trimer and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant