Nothing Special   »   [go: up one dir, main page]

CN116615449A - 用于治疗移植排斥反应的免疫工程生物材料 - Google Patents

用于治疗移植排斥反应的免疫工程生物材料 Download PDF

Info

Publication number
CN116615449A
CN116615449A CN202180083235.XA CN202180083235A CN116615449A CN 116615449 A CN116615449 A CN 116615449A CN 202180083235 A CN202180083235 A CN 202180083235A CN 116615449 A CN116615449 A CN 116615449A
Authority
CN
China
Prior art keywords
cells
microcapsules
microcapsule
algxo
exosomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180083235.XA
Other languages
English (en)
Inventor
乔纳森·R·T·拉吉
穆罕默迪·穆罕默德雷扎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California San Diego UCSD
Original Assignee
University of California San Diego UCSD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California San Diego UCSD filed Critical University of California San Diego UCSD
Publication of CN116615449A publication Critical patent/CN116615449A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/001Preparations to induce tolerance to non-self, e.g. prior to transplantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0012Cell encapsulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Transplantation (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Obesity (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)

Abstract

一种杂合微胶囊,包括:包含一种或多种生物相容性材料的外壳、包含在微胶囊中的外来体以及包封在微胶囊中的一个或多个治疗细胞,其中所述治疗细胞能够释放一种或多种治疗药剂。还公开了制备杂合微胶囊的方法和治疗受试者的方法,包括向受试者施用杂合微胶囊,其中包含在所述杂合微胶囊内的治疗细胞向所述受试者释放所述一种或多种治疗药剂,并且其中所述杂合微胶囊释放所述外来体以有效减弱基于免疫的异物反应(FBR)。

Description

用于治疗移植排斥反应的免疫工程生物材料
技术领域
本发明涉及杂合微胶囊,所述杂合微胶囊包括包含一种或多种生物相容性材料的外壳、包含在所述微胶囊内的外来体、以及包封在所述微胶囊内的一个或多个治疗细胞,其中所述治疗细胞能够释放治疗药剂;本发明还涉及制备杂合微胶囊的方法以及通过施用杂合微胶囊来治疗受试者的方法。
背景技术
治疗性细胞的移植已被验证为多种疾病的潜在治疗方法,包括β细胞替代疗法(Vegas,A.J.等人Long-term glycemic control using polymer-encapsulated humanstem cell–derived beta cells in immune-competent mice.Nat.Med.22,306–311(2016))、骨髓移植(Mao,A.S.等人Programmable microencapsulation for enhancedmesenchymal stem cell persistence and immunomodulation.Proc.NatlAcad.Sci.USA116,15392(2019))和帕金森病(Kojima,R.等人Designer exosomes produced byimplanted cells intracerebrally deliver therapeutic cargo for Parkinson’sdisease treatment.Nat.Commun.9,1305(2018)和Parmar,M.,Grealish,S.&Henchcliffe,C.The future of stem cell therapies for Parkinsondisease.Nat.Rev.Neurosci.21,103–115(2020))。细胞的工程性及其对环境因子的反应性使它们成为根据需要提供适当生理剂量治疗药剂的活的工厂。然而,实现安全有效的长期移植的挑战阻碍了细胞疗法的前景。移植细胞可以引发强烈的免疫反应,尤其是如果它们来源于非同基因来源。有人建议使用免疫抑制方案(即非甾体抗炎药)来抑制这种免疫反应,然而,这种方法可能会导致有害的副作用,包括肝细胞、心脏或肾脏毒性(Wehling,M.Non-steroidal anti-inflammatory drug use in chronic pain conditions withspecial emphasis on the elderly and patients with relevant comorbidities:management andmitigation ofrisks and adverse effects.Eur.J.Clin.Pharmacol.70,1159–1172(2014))、胃肠道溃疡、出血和微生物失调(Srinivasan,A.&De Cruz,P.Reviewarticle:a practical approach to the clinical management of NSAID enteropathy.Scand.J.Gastroenterol.52,941–947(2017)和Tekin,Z.等人Outcomes of pancreaticislet allotransplantation using the Edmonton protocol at the University ofChicago.Transpl.Direct 2,e105–e105(2016))。
治疗细胞移植的一个显著例子是胰岛移植治疗1型糖尿病(T1D),这刺激了约50年的研究和临床试验。根据埃德蒙顿方案启动的胰岛移植人体试验表明,在某些情况下有5年以上的疗效(Shapiro,A.M.J.等人Islet transplantation in seven patients withType 1diabetes mellitus using a glucocorticoid-free immunosuppressiveregimen.N.Engl.J.Med.343,230–238(2000)和Shapiro,A.M.J.等人International trialofthe edmonton protocol for islet transplantation.N.Engl.J.Med.355,1318–1330(2006))。然而,通过每日施用免疫抑制方案以及缺乏同种异体细胞供体而产生的不良事件进一步损害了埃德蒙顿方案(Edmontonprotocol)的临床实践(Tekin,Z.等人Outcomes ofpancreatic islet allotransplantation using the edmonton protocol at theUniversity of Chicago.Transpl.Direct 2,e105–e105(2016))。人们认为将胰岛包封在保护性生物材料内可以消除这种对长期免疫抑制的需求(Desai,T.&Shea,L.D.Advancesin islet encapsulation technologies.Nat.Rev.Drug Discov.16,338(2016))。早在20世纪80年代,人们就发现在藻酸盐微囊内进行胰岛移植可以延长糖尿病啮齿动物的血糖校正(Franklin Lim,F.&Sun,A.M.Microencapsulated islets as bioartificialendocrine pancreas.Science 210,908–910(1980))。然而,在藻酸盐微胶囊内胰岛移植的后续人体试验中,报道了有限的治疗效果和短暂的血糖控制(Desai,T.&Shea,L.D.Advances in islet encapsulation technologies.Nat.Rev.Drug Discov.16,338(2016);Tuch,B.E.等人Safety and viability of microencapsulated human isletstransplanted into diabetic humans.Diabetes Care 32,1887(2009);Basta,G.等人Long-term metabolic and immunological follow-up ofnonimmunosuppressedpatients with Type 1diabetes treated withmicroencapsulated islet allografts.Diabetes Care 34,2406(2011)和Orive,G.等人Engineering a clinically translatable bioartificial pancreas to treat type Idiabetes.Trend.Biotechnol.36,445–456(2018))。这表明,移植的功能通过胰岛死亡和/或微胶囊内外质量转移的损失而受到限制。这种移植失败背后的主要原因可能是胰岛坏死(由于微胶囊内缺乏营养物质和氧气可及性)(Evron,Y.等人Long-term viability andfunction of transplanted islets macroencapsulated at high density areachieved by enhanced oxygen supply.Sci.Rep.8,6508(2018)),以及免疫介导的囊周生长和纤维化(Doloff,J.C.等人Colony stimulating factor-1receptor is a centralcomponent of the foreign body response to biomaterial implants in rodents andnonhuman primates.Nat.Mater.16,671(2017);Bochenek,M.A.等人Alginateencapsulation as long-term immune protection of allogeneic pancreatic isletcells transplanted into the omental bursa of macaques.Nat.Biomed.Eng.2,810–821(2018);Farah,S.等人Long-term implant fibrosis prevention in rodents andnonhuman primates using crystallized drug formulations.Nat.Mater.18,892–904(2019);de Vos,P.,Hamel,A.F.&Tatarkiewicz,K.Considerations for successfultransplantation of encapsulated pancreatic islets.Diabetologia 45,159–173(2002)和Vaithilingam,V.&Tuch,B.E.Islet transplantation and encapsulation:anupdate on recent developments.Rev.Diabet.Stud.8,51(2011))。后者也被称为异物反应(FBR),它会给患者带来相当大的不适和各种健康并发症(Mohammadi,M.R.,Luong,J.C.,Kim,G.G.,Lau,H.&Lakey,J.R.T.in Handbook of Tissue Engineering Scaffolds,Vol.1(eds Mozafari,M.,Sefat,F.&Atala,A.)(Woodhead Publishing,2019);Swanson,E.Analysis of US Food and Drug Administration breast implant postapprovalstudies finding an increased risk of diseases and cancer:why the conclusionsare unreliable.Ann.Plast.Surg.82,253–254(2019)和Headon,H.,Kasem,A.&Mokbel,K.Capsular contracture after breast augmentation:an update for clinicalpractice.Arch.Plast.Surg.42,532–543(2015))。
预防移植引起的炎症反应可以减少囊周过度生长和纤维化。许多研究表明,在免疫调节剂或免疫绝缘体微胶囊内进行胰岛移植可使免疫功能正常的糖尿病啮齿类动物的血糖长期正常(Vegas,A.J.等人Long-term glycemic control using polymer-encapsulated human stemcell–derivedbeta cells in immune-competentmice.Nat.Med.22,306–311(2016);Farah,S.等人Long-term implant fibrosisprevention in rodents and nonhuman primates using crystallized drugformulations.Nat.Mater.18,892–904(2019);Vegas,A.J.等人Combinatorial hydrogellibrary enables identification of materials that mitigate the foreign bodyresponse in primates.Nat.Biotechnol.34,345(2016);Evron,Y.等人Long-termviability and function oftransplanted islets macroencapsulated at highdensity are achieved by enhanced oxygen supply.Sci.Rep.8,6508(2018)和Alagpulinsa,D.A.等人Alginate-microencapsulation ofhuman stem cell-derivedβcells with CXCL12 prolongs their survival and function in immunocompetentmice without systemic immunosuppression.Am.J.Transplant.19,1930–1940(2019))。已经采用了各种策略来调节和/或抑制针对植入物的局部免疫反应,包括表面结合的免疫调节配体25、抗生物污垢表面修饰(Vegas,A.J.等人Combinatorial hydrogel libraryenables identification of materials that mitigate the foreign body responsein primates.Nat.Biotechnol.34,345(2016);Liu,Q.等人Zwitterionically modifiedalginates mitigate cellular overgrowth for cell encapsulation.Nat.Commun.10,5262(2019)和Spasojevic,M.等人Reduction ofthe inflammatory responses againstalginatepoly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLLdeblock copolymers.PLoS ONE 9,e109837(2014))、以及抗炎药的控制释放。控释(或药物洗脱)生物材料可以随时间保持和释放各种抗炎和/或免疫调节分子(例如地塞米松(Vacanti,N.M.等人Localized delivery of dexamethasone from electrospun fibersreduces the foreign body response.Biomacromolecules 13,3031–3038(2012))、IL-4(Hachim,D.,LoPresti,S.T.,Yates,C.C.&Brown,B.N.Shifts in macrophage phenotypeat the biomaterial interface via IL-4eluting coatings are associated withimproved implant integration.Biomaterials 112,95–107(2017))、CSF1R抑制剂(Farah,S.等人Long-term implant fibrosis prevention in rodents and nonhumanprimates using crystallized drug formulations.Nat.Mater.18,892–904(2019))和CXCL12(Alagpulinsa,D.A.等人Alginate-microencapsulation of human stem cell-derivedβcells with CXCL12 prolongs their survival and function inimmunocompetent mice without systemic immunosuppression.Am.J.Transplant.19,1930–1940(2019))。这些分子靶向抑制剂大多存在两个主要可能缺点。第一个问题是与这些药剂相关的潜在副作用。例如,在癌症治疗中,CSF1R抑制剂可引起疲劳/乏力、水肿(Cannarile,M.A.等人Colony-stimulating factor 1receptor(CSF1R)inhibitors incancer therapy.J.Immunother.Cancer 5,53(2017))和不可逆性3级耳聋(Papadopoulos,K.P.等人First-in-human study of AMG 820,a monoclonal anti-colony-stimulatingfactor 1receptor antibody,in patients with advanced solid tumors.Clin.CancerRes.23,5703–5710(2017)),CXCL12导致大脑皮层神经元毒性(Sanchez,A.B.等人CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and l-typeCa2+channels upstream ofp38 MAPK.J.Neuroinflammation 13,252(2016))。其他分子靶点,如TNFα抑制剂和抗TGFβ化合物,也与临床试验中的各种并发症有关(Lin,J.T.等人TNFαblockade in human diseases:an overview of efficacy andsafety.Clin.Immunol.126,121–136(2008)和Walton,K.L.,Johnson,K.E.&Harrison,C.A.Targeting TGF-βmediated SMAD signaling for the preventionoffibrosis.Front Pharm.8,461–461(2017))。分子抑制剂的第二个挑战在于它们无法调节参与针对生物材料移植的免疫反应的多种炎症途径,包括NFκB(Amer,L.D.等人Inflammation via myeloid differentiation primary response gene 88signalingmediates the fibrotic response to implantable synthetic poly(ethylene glycol)hydrogels.Acta Biomater.100,105–117(2019);Yang,D.&Jones,K.S.Effect ofalginate on innate immune activation ofmacrophages.J.Biomed.Mater.Res.PartA90A,411–418(2009)和Lawlor,C.等人Treatment ofMycobacterium tuberculosis-infected macrophages with poly(lactic-co-glycolic acid)microparticles drivesNFκB and autophagy dependent bacillary killing.PLoS ONE 11,e0149167(2016)),CSF1R(Doloff,J.C.等人Colony stimulating factor-1receptor is a centralcomponent of the foreign body response to biomaterial implants in rodents andnonhuman primates.Nat.Mater.16,671(2017)和Farah,S.等人Long-term implantfibrosis prevention in rodents and nonhuman primates using crystallized drugformulations.Nat.Mater.18,892–904(2019))和JAK/STAT(Moore,L.B.&Kyriakides,T.R.in Immune Responses to Biosurfaces(eds Lambris,J.D.,Ekdahl,K.N.,Ricklin,D.&Nilsson,B.)(Springer International Publishing,2015))途径。因此,据推测,与干扰单个靶点的药物相比,调节多种炎症途径的药物的控制释放可能更好地抑制针对植入物的炎症反应。
在这种情况下,间充质基质细胞(MSC,也称为药物信号细胞)被认为可以调节包括NFκB(Su,V.Y.-F.,Lin,C.-S.,Hung,S.-C.&Yang,K.-Y.Mesenchymal stem cell-conditioned medium induces neutrophil apoptosis associated with inhibition ofthe NF-κB pathway in endotoxin-induced acute lung injury.Int.J.Mol.Sci.20,2208(2019))、JAK/STAT(Vigo,T.等人IFN-γorchestrates mesenchymal stem cellplasticity through the signal transducer and activator oftranscription 1and3and mammalian target ofrapamycin pathways.J.Allergy Clin.Immunol.139,1667–1676(2017))、MyD88(Chen,C.-P.,Tsai,P.-S.&Huang,C.-J.Antiinflammation effectofhuman placental multipotent mesenchymal stromal cells is mediated byprostaglandin E2 via amyeloid differentiation primary response gene 88-dependent pathway.Anesthesiology 117,568–579(2012))和PI3K/AKT(Riazifar,M.等人Stem cell-derived exosomes as nanotherapeutics for autoimmune andneurodegenerative disorders.ACS Nano 13,6670–6688(2019))的多种炎症途径。目前MSC治疗的范例是通过旁分泌因子,这可能部分归因于MSC来源的外来体(XO)(Yin,J.Q.,Zhu,J.&Ankrum,J.A.Manufacturing of primed mesenchymal stromal cells fortherapy.Nat.Biomed.Eng.3,90–104(2019);Riazifar,M.,Pone,E.J.,J.&Zhao,W.Stem cell extracellular vesicles:extended messages of regeneration.Annu.Rev.Pharmacol.Toxicol.57,125–154(2017))。虽然XO免疫调节作用背后的详细机制尚不完全清楚,但它们已被公认为具有调节多种免疫细胞类型的功能的能力,所述多种免疫细胞类型包括巨噬细胞(Lankford,K.L.等人Intravenously delivered mesenchymal stemcell-derived exosomes target M2-type macrophages in the injured spinalcord.PLoS ONE 13,e0190358(2018))、NK细胞(Fan,Y.等人Human fetal livermesenchymal stem cell-derived exosomes impair natural killer cellfunction.Stem Cells Dev.28,44–55(2018)和Burrello,J.等人Stem cell-derivedextracellular vesicles and immunemodulation.Front.Cell Develop.Biol.4,83(2016))、B细胞(Khare,D.等人Mesenchymal stromal cell-derived exosomes affectmRNA expression and function of B-lymphocytes.Front.Immunol.9,3053–3053(2018)和Carreras-Planella,L.,Monguió-Tortajada,M.,Borràs,F.E.&Franquesa,M.Immunomodulatory effect ofMSC on B cells is independent of secretedextracellular vesicles.Front.Immunol.10,1288(2019))和T淋巴细胞(Shigemoto-Kuroda,T.等人MSC-derived extracellular vesicles attenuate immune responses intwo autoimmune murine models:Type 1diabetes and uveoretinitis.Stem CellRep.8,1214–1225(2017))。因此,我们假设在藻酸盐微胶囊(AlgXO)内共同移植XO将减轻植入后的FBR。在阻断这种炎症后,我们接下来假设在AlgXO内移植大鼠胰岛将延长免疫活性链脲佐菌素诱导的糖尿病小鼠中移植胰岛的功能。
发明内容
一些实施例涉及杂合微胶囊,包括:
(a)包含一种或多种生物相容性材料的外壳,
(b)包含在微胶囊中的外来体,以及
(c)包封在所述微胶囊内的一种或多种治疗细胞,其中所述治疗细胞能够释放一种或多种治疗药剂。
在一些实施例中,一种或多种生物相容性材料是选自藻酸盐、果胶、琼脂糖、胶原和透明质酸的天然材料,或选自聚乙二醇(PEG)、甲基丙烯酸2-羟乙酯(HEMA)和聚乳酸-羟基乙酸(PLGA)的合成材料。
在一些实施例中,一种或多种生物相容性材料包括藻酸盐或其衍生物。
在一些实施例中,所述藻酸盐或其衍生物是交联的超纯藻酸盐。
在一些实施例中,所述外壳的外表面是亲水性的,并且阻止与蛋白质结合。
在一些实施例中,所述外来体来源于间充质干细胞(MSC)。
在一些实施例中,所述间充质干细胞是脐带间充质干细胞。
在一些实施例中,所述脐带间充质干细胞是人脐带间充质干细胞。
在一些实施例中,所述外来体的粒径为10nm-500nm。
在一些实施例中,所述外来体的粒径为20nm-200nm。
在一些实施例中,所述微胶囊包括微胶囊内的1×105–1×108外来体。
在一些实施例中,所述一种或多种治疗细胞包括胰岛。
在一些实施例中,所述微胶囊包括1-10个胰岛当量(IEQ)细胞。
一些实施例涉及根据权利要求1所述的杂合微胶囊的制备方法,包括:
(a)从间充质干细胞(MSC)中分离外来体,
(b)获得能够释放一种或多种治疗药剂的治疗细胞,以及
(c)将外来体和治疗细胞加入微胶囊中。
在所述方法的一些实施例中,所述微胶囊是藻酸盐微胶囊。
在所述方法的一些实施例中,MSC是脐带来源的MSC(UC-MSC)。
一些实施例涉及治疗受试者的方法,包括向受试者施用本文公开的杂合微胶囊,其中所述杂合微胶囊包含的治疗细胞向所述受试者释放治疗药剂,并且其中所述杂合微囊释放外来体以有效减弱基于免疫的异物反应(FBR)并增强所述包封的治疗细胞的活力。
在治疗受试者的一些实施例中,所述治疗细胞是胰岛细胞,并且其中所述受试者接受1型糖尿病治疗。
一些实施例涉及一种减弱受试者对微胶囊的免疫反应的方法,包括向受试者施用其内包含外来体的微胶囊,其中外来体从微胶囊中释放,并且其中释放后,外来体抑制局部免疫微环境并有效地减弱免疫反应。
在一些实施例中,对微胶囊的免疫反应是对微胶囊中的生物材料的基于免疫的异物反应(FBR)。
一些实施例涉及在胰岛移植之前或期间替代免疫抑制方案的方法。
在一些实施例中,外来体替代了免疫抑制方案。
附图说明
图1:5000个IEQ大鼠胰岛被包封在藻酸盐中(用圆圈表示)和外来体被包封(用正方形表示)的免疫活性糖尿病小鼠模型的长期正常血糖。
图2:AlgXO内的胰岛异种移植可逆转糖尿病免疫活性小鼠的高血糖。(a)C57/BL6-STZ诱导的糖尿病小鼠(n=5只小鼠)的非空腹血糖水平显示,在AlgXO内移植1500个IEQ大鼠胰岛为糖尿病小鼠提供>170天的正常血糖,而对照组(CTRL)微胶囊在<1个月内失效。为了进一步证实STZ诱导的糖尿病小鼠的血糖校正仅仅是由于移植而不是胰腺再生,我们清洗了小鼠的腹腔,并在移植105天后移除了外植体(n=2只小鼠)。移植物移除后18小时内,小鼠血糖升高,并在其余生中保持高血糖状态(虚线)。在CTRL微胶囊和XO内单独腹膜内移植胰岛提供了约70天的正常血糖(黑线,n=4只小鼠)。(b)我们进一步测试了AlgXO移植对口服葡萄糖耐量试验(OGTT)的疗效。移植一个月后,与STZ小鼠(n=6只小鼠)类似,CTRL微胶囊未能调节葡萄糖水平(n=4只小鼠),而AlgXO移植成功逆转了葡萄糖激发诱导的高血糖事件(n=6小鼠),具有与非糖尿病对照相似趋势。(c)在OGTT后,非糖尿病小鼠达到正常血糖的平均时间为65±27分钟,接受AlgXO移植的小鼠的平均时间为103±32分钟(n=6只小鼠)。(d)1个月后,通过冲洗腹腔取出CTRL和AlgXO(来自1500IEQ组)移植物。接下来,用激光扫描共聚焦显微镜分析微胶囊的免疫浸润(也称为囊周细胞生长)。一些细胞是CD11b+,并且一些CD11b+细胞表达MHCII生物标志物。发现所有收集的CTRL微胶囊的表面都附着有囊周细胞,而具有囊周生长的AlgXO移植的百分比为9.4%±3.6%,显著低于CTRL移植(p<0.0001)。暗视野的比例尺为200μm,荧光通道的比例尺为100μm。(e)植入物囊周区域释放的囊周细胞因子和趋化因子。结果为平均值±标准差,通过Welch校正的非配对t检验计算统计学显著性。1:STZ注射;2:糖尿病诱导期;3:移植;4:移植物移除。
图3:(a)比较和量化针对AlgXO和CTRL微胶囊的炎症反应的研究设计。进行了为期两周的研究,因为这一时间范围适用于解析和反映C57/BL6小鼠的先天和适应性免疫系统以及对植入材料的纤维化反应。在第7天和第14天采集血液用于免疫细胞和炎性细胞因子分析(n=4)。(b)移植两周后,接受AlgXO的小鼠血液中MCP-1趋化因子比接受CTRL移植的小鼠少3.7倍。(c)与CTRL(n=3)相比,移植了AlgXO的小鼠的血液中CD45+CD11b+Ly6ChighLy6Gmed炎性单核细胞显著降低(p=0.002)。(d)虽然外植体的捕获图像和BF显微镜相似,但两周外植体的切片和扫描电子显微照片显示了微胶囊周围不同的免疫环境。白色箭头表示移植物的定位,黄色箭头指向微胶囊周围渗透的细胞。(e)和(f)随后对固定的纤维化组织进行切片并对免疫细胞亚群进行染色。AlgXO外植体微环境周围DAPI、CD68和MHCII的归一化面积显著低于CTRL微胶囊(n=4)。(g)分离纤维化组织的总细胞并染色,用于免疫细胞亚群的流式细胞术分析。tSNE图进一步证明了AlgXO和CTRL外植体周围的不同免疫环境。我们进一步对CTRL上存在但在AlgXO免疫环境中不存在的亚群进行了查询。该亚群为CD45+CD11b+CD19+MHCII+CD3-Ly6C-,可能是记忆B细胞sob群。通过Welch校正的非配对t检验计算统计学显著性。
图4:AlgXO降低FBR的部分原因是以可控的方式释放XO。(a)观察到AlgXO和CTRL的捕获气泡接触角之间没有显著差异(即AlgXO的156.3°±3.8°与CTRL的150.2°±4.9°)。(b)IgG蛋白吸附到AlgXO和CTRL微胶囊的表面(n=3)。对(c)AlgXO和CTRL进行了微观力学试验。(d)基于力-位移数据绘制的AlgXO与CTRL微胶囊的应力-应变曲线。AlgXO(104.7±61.4kPa)和CTRL(57.8±14.9kPa)的弹性模量没有显著差异(p=0.268)。(e)为了研究包封的外来体的释放,在风干的微胶囊上进行扫描电子显微术,显示了50-200nm粒径比例尺(比例尺=1μm)的表面孔隙,以及AlgXO内囊泡的包封。(f)我们假设模型的示意图,其中XO随时间从AlgXO微胶囊中释放。(g)AlgXO在体外形成的对照中释放XO。释放曲线在一周内达到阈值。(h)直径为50、100和150nm的纳米颗粒的扩散(根据XO的粒径范围而选择)。粒子数与时间的关系与距微胶囊中心的距离的关系(d)如百分比热力图所示。下图显示了在扩散开始时t=0、50、300和600s时XO的时空扩散速率的彩色图。不出所料,粒径越小,扩散速率就越高。此外,在扩散开始600s后,微胶囊中心的50nm颗粒的浓度下降了20%,而对于100nm和150nm颗粒,在微胶囊中心没有显著降低。通过Welch校正的非配对t检验计算统计学显著性。
图5:XO抑制脾细胞和CD3+T细胞的增殖,并减少LPS刺激的巨噬细胞产生的炎性细胞因子(a)显示实验程序的示意图。在不存在20μg/mL和200μg/mLXO的情况下,将CFSE标记的脾细胞和CD3+T细胞与平板结合的抗CD3和可溶性CD28共同培养。在共培养4天后,使用流式细胞术分析细胞。(b)CD3/CD28活化细胞的脾细胞计数为9603±871,添加20μg/mL和200μg/mL XO后,计数分别降至1253±1038(n=4,p<0.0001)和1570±1010(n=4,p<0.0001)。(c)在CD3+细胞与CD3/CD28抗体的共培养中,CD3/CD28活化的T细胞的CD4+计数为5217±378。添加20μg/mL和200μg/mL XO后,计数分别降至3889±2081(n=4,p=0.0031)和4387±1397(n=4,p=0.0057)。(d)在CD3+细胞与CD3/CD28抗体的共培养中,CD3/CD28活化的T细胞的CD8+计数为2700±252。添加20μg/mL和200μg/mLXO后,计数分别降至1503±784(n=4,p=0.0018)和1766±628(n=4,p=0.0002)。(e)向小鼠巨噬细胞的共培养物中添加XO以剂量依赖的方式减少炎性细胞因子(G-CSF、IFNγ、IL-6、LIF、LIX、MIP-2、趋化因子)的分泌(n=4)。通过Welch校正的非配对t检验计算统计学显著性。
图6:XO抑制人外周血单个核细胞和巨噬细胞。(a)在存在和不存在XO的情况下,用珠结合的CD3/CD28抗体活化人外周血单个核细胞(PBMC)。(b)添加20μg/mL和200μg/mLXO可使活化的PBMC的数量从24002±6762分别降至2342±910(n=3;p=0.029)和2102±1121(n=3,p=0.027)。为了更深入地了解XO的作用机制,在PBMC培养中评估了细胞因子的产生。XO的添加降低了活化PBMC产生的IL-6、TNFα、IL-12p70和IL-22。(c)在抗CD3/CD28活化的PBMC的共培养物中,添加XO可降低IL-2、IL-6、IL-10、IL-12p70、IL-22和TNFα(n=3)。(d)XO抑制LPS介导的人类巨噬细胞活化。LPS活化了THP-1巨噬细胞中的NFκB途径,添加200μg/mLXO降低了10ng/mLLPS(n=4,p=0.044)和100ng/mL LPS(n=4,p=0.004)活化的THP-1巨噬细胞的NFκB活性。20μg/mL的XO不足以干扰NFκB的活化。XO影响未活化的THP-1细胞的NFκB活化。添加20μg/mLXO可将THP-1细胞的NFκB活性从109±17上调至203±20(n=4,p=0.0117)。此外,添加200μg/mL XO可将THP-1细胞的NF-κB活性从109±17上调至215±23(n=4、p=0.0105)。通过Welch校正的非配对t检验计算统计学显著性。
图7:脐带间充质干细胞(MSC)及其分泌XO的特征。(a)对细胞的表面标志物进行表征,显示Stro-1的低表达,CD90/Thy1、CD146/MCAM、CD105/内皮蛋白、CD166、CD44的高表达,而细胞对CD19、CD45和CD106呈阴性。然后按照材料和方法部分所述培养细胞,并分离XO。(b)之后使用蛋白质印迹法使用稳定的生物标志物对分离的XO进行表征。XO对CD63、半乳糖凝集素1、TSG101、HSP70、HSP70呈阳性,对内质网标志物钙联蛋白呈阴性。(c)根据NTA分析,XO为球形,具有最大数量的囊泡的平均粒径为105±48nm。值得注意的是,在100%融合的情况下,从约1.5亿至1.9亿培养的MSC中平均分离出1.7×1012±7.6×1010XO/mL。(d)流式细胞术分析与抗CD63涂层珠结合的XO上TGFβ、PD-L1和MHCII的表达。通过Welch校正的非配对t检验计算统计学显著性。
图8:(a)AlgXO微胶囊的冷冻断裂扫描电子显微镜,显示微胶囊内包封的XO(比例尺=100μm)。(b)使用NTA分析,在约1000个AlgXO微胶囊中包封的外来体总数为5.43×109±4.84×109。(n=4个单独的制剂)
图9:EDTA可溶解藻酸盐微胶囊。将CTRL的微胶囊(n=100)溶于5或10mM EDTA中,并使用EVOS成像系统显微镜以1分钟的间隔拍摄显微镜图像。
图10:胰岛质量控制。每次胰岛分离后,我们进行质量控制测定。(a)DTZ染色以量化胰岛纯度和计数(947±137IEQ)。(b)葡萄糖刺激胰岛素释放(GSIR)测试以验证分离的胰岛的功能。包封的(c)CTRL微胶囊和(d)AlgXO微胶囊。
图11:不含胰岛的AlgXO微胶囊移植不能逆转STZ小鼠的高血糖。空的(没有胰岛的)AlgXO微胶囊不能逆转糖尿病小鼠的高血糖。
图12:葡萄糖挑战反应的多项式回归。(a)将5次多项式分配给非糖尿病组和(b)AlgXO移植组(1500IEQ)的每只小鼠的OGTT曲线。小圆圈表示原始OGTT数据,线条表示指定的多项式。虚线表示血糖正常的标准(即血糖<200mg/mL)。
图13:免疫活性STZ小鼠胰岛异种移植(即500或5000IEQ胰岛)的剂量研究。(a)在较高的胰岛剂量(5000IEQ)下,CTRL移植未能持续逆转C57/BL6 STZ小鼠的高血糖。然而,AlgXO移植可在约80天内逆转高血糖。(b)我们进一步测试了AlgXO移植对口服葡萄糖耐量试验(OGTT)的疗效。移植一个月后,AlgXO移植成功逆转了葡萄糖激发诱导的高血糖事件,其趋势与非糖尿病小鼠相似。(c)将5次多项式分配给每只小鼠的OGTT曲线,并求解方程,以找出OGTT后小鼠血糖达到200mg/dL所需的平均时间。(d)对于移植了包封在AlgXO中的5000IEQ胰岛的小鼠,OGTT后达到正常血糖(即200mg/dL)的平均时间为112±32分钟。非糖尿病小鼠达到血糖正常的平均时间为67±26分钟。这表明,与非糖尿病小鼠相比,接受AlgXO移植的小鼠的葡萄糖反应略有延迟(p=0.08)。(e)接受具有5000IEQ胰岛的CTRL移植的小鼠存活率较低,其中10只小鼠中有6只在移植后一天内死亡,而接受5000IEQ胰岛的AlgXO移植的小鼠中,只有1/7在移植后一天内死亡,另有5只存活到研究结束(p=0.0018,Long-rank(Mantel-Cox)检验)。(f)接受含有5000IEQ胰岛的AlgXO移植的小鼠在75±7天内保持血糖正常,而CTRL移植小鼠在移植后的这一持续时间为9±7天。(g)在CTRL和AlgXO微胶囊中,低剂量胰岛(500IEQ)对正常血糖诱导均无效。在图中,1显示STZ诱导,2显示糖尿病进展的时间,3显示移植时间点。在图中,1显示STZ诱导,2显示糖尿病进展的时间,3显示移植时间点。通过Welch校正的非配对t检验计算统计学显著性。
图14:XO可增强裸露和包封的大鼠胰岛的存活力。(a)向胰岛培养物中添加20μg/mL和200127μg/mL XO可显著提高胰岛培养5天和7天后的存活力。应该注意的是,使用钙黄绿素AM(活细胞)和碘化丙啶(死细胞)染色来测量128的存活力。(b)从胰岛129包封的3天开始,AlgXO在包封的第一周内增强了包封的胰岛的存活力。(c)TUNEL测定130表明,移植1个月后,AlgXO内移植的胰岛的TUNEL阳性面积(1.02%±0.32%)131高于(n=5,p=0.00256)CTRL(6.44%±1.59%)。通过Welch校正的非配对t检验计算统计学显著性。
图15:接受AlgXO或CTRL微胶囊的小鼠的血液细胞因子分析。在移植后第7天和第14天从小鼠身上采集小鼠血清,各组之间没有显著差异。采用单因素方差分析来测定统计学差异。野生型(WT)小鼠也作为阴性对照添加到组中(n=4,通过Welch校正的非配对t检验计算统计学显著性)。
图16:AlgXO周围的纤维化组织中存在血管。(a)来自皮下外植体的图片显示在AlgXO纤维化微环境中存在血管。(b)流式细胞术分析显示,与对照组(83.0%±12.8%)相比,从AlgXO纤维化组织(33.1%±8.0%)中获得的CD45+细胞更多(p<0.0001)。与(d)AlgXO相比,(c)CTRL纤维化组织中不存在αSMA(血管标志物)。通过Welch校正的非配对t检验计算统计学显著性。
图17:AlgXO和CTRL周围的纤维化组织中存在的(a)B和(b)T细胞的百分比。(n=4)。通过Welch校正的非配对t检验计算统计学显著性。
图18:微胶囊周围灌洗液的流式细胞术分析显示了,AlgXO和CTRL微胶囊周围有不同的免疫细胞群。(a和b)流式细胞术分析表明,AlgXO周围存在的CD45+总数少于CTRL微胶囊。在CD11b+、CD11b+MHCII+和CD11b+MHCII-CD206+亚群中观察到类似的趋势。(c)tSNE图显示了从AlgXO和CTRL外植体周围的非/低粘附细胞收集的灌洗液中存在的不同细胞环境。(d)然后分析两个亚群的免疫标记。查询1中的细胞(CTRL中存在但AlgXO中不存在的特定亚群进行门控)是CD45+CD11b+CD3-CD19-MHCII-Ly6C-Ly6G-,其可能是树突细胞。查询2中的细胞(AlgXO中存在但CTRL中不存在的特定亚群进行门控)是CD45-CD11b-CD3-CD19-MHCII-Ly6C-Ly6G-,其可能既不是来源于骨髓也不是来源于淋巴。(n=4,通过Welch校正的非配对t检验计算统计学显著性)
图19:包封在CTRL和AlgXO中的胰岛的皮下移植。对STZed小鼠的(a)葡萄糖和(b)体重进行了一个月的跟踪,任何一组的血糖控制都没有显著改善。
图20:模拟直径为10、50、100、200或500纳米的颗粒的控制释放。在t>0时,直径≤200nm的颗粒显示出扩散分布,其中较小的颗粒扩散得更快。直径为500nm的颗粒至少在600s内没有显示出微胶囊的扩散。
图21:XO对10ng/mLLPS(TLR4激动剂)刺激的巨噬细胞产生细胞因子的影响。通过Welch校正的非配对t检验计算统计学显著性(n=4)。
图22:来自人类活化的PBMC的共培养物的细胞因子分析。在XO存在和不存在的情况下,用珠结合的CD3/CD28抗体活化PBMC。20μg/mL和200μg/mL浓度的XO对IL-1β、IL-23、IFNγ和IDO的产生略有影响(n=4)。通过Welch校正的非配对t检验计算统计学显著性。
具体实施方式
1型糖尿病(T1D)对美国经济医疗支出造成了重大负担。2009年,糖尿病患者的年度机构护理费用为100亿美元,其中44亿美元用于T1D患者的护理(Dall,T.等人2009Population Health Management 12(2):103-110)。据估计,美国有130万成年人和儿童患有T1D,预计到2050年,这一数字将超过500万(Imperatore,G.等人2012Diabetes Care35(12):2515-2520)。目前的治疗方法包括直接给患者注射胰岛素,这导致患者不依从和不适。2000年埃德蒙顿(Edmonton)方案的发表是临床胰岛移植的突破,并通过使用一系列免疫抑制剂提高了保持胰岛素独立的患者的发生率(Shapiro,A.M.等人2000New EnglandJournal of Medicine 343:230-238)。胰岛失巢凋亡(胰岛从细胞外基质中分离)以及即时血液介导的炎症反应(IBMIR)挑战导致研究人员在胰岛周围使用保护性生物材料(CoronelM.M.等人2013Current Opinion in Biotechnology 24(5):900-908)。尽管生物材料包封抑制了白细胞向胰岛附近的渗透,但在大多数情况下,先天免疫通过在生物材料和周围生态位的界面处形成纤维化包膜来对植入物做出反应(Doloff,J.C.等人2017NatureMaterials 16(6):671-680)。这种纤维化胶囊会导致葡萄糖-胰岛素转运、血液供应和植入材料的植入受损。为了解决这一问题,一些研究致力于寻找抗纤维化制剂(Vegas,A.J.等人2016Nature Biotechnology 34(3):345-352)。其他研究集中在使用血浆和重组人凝血酶的生物支架(Berman,D.M.等人2016Diabetes 65(5):1350-1361)。我们寻求一种独特的方法,使用干细胞来源的外来体包封在藻酸盐微胶囊中。
在这里,我们提出了一种工程仿生支架,其中支架是通过内源性细胞和细胞外成分的渗透构建的。这种支架能够随着时间的推移对外来体进行免疫工程化,使周围的免疫细胞重新编程。这一概念在1型糖尿病患者的胰岛移植治疗中具有重要意义。通常,针对移植胶囊的免疫反应会在胶囊周围产生纤维化组织,这限制了被包封的胰岛的胰岛素释放能力。利用这项技术,被包封的胰岛可能会持续更长的时间,从而为糖尿病患者提供更好的治疗。我们目前的研究结果表明,移植胰岛的移植物排斥反应可延缓90天以及血糖正常可保持90天。我们的初步评估使用藻酸盐作为生物材料进行,但也可以使用其他生物材料进行。
生物包封材料
天然聚合物和合成聚合物都已用于生物包封。藻酸盐、果胶、琼脂糖、胶原蛋白和透明质酸等天然聚合物丰富且具有生物相容性,可用于温和条件下的生物包封(GasperiniL,Mano JF,Reis RL.Natural polymers for the microencapsulation of cells.J RSoc Interface.2014;11(100):20140817)。然而,它们的产品质量和特性可能因资源和批次而异。众所周知,天然聚合物的纯度和组成,如藻酸盐的古罗糖醛酸和甘露糖醛酸的比例,会对胶囊的性能产生很大影响(Zhang WJ,Li BG,Zhang C,Xie XH,TangTT.Biocompatibility and membrane strength of C3H10T1/2cell-loaded alginate-based microcapsules.Cytotherapy.2008;10(1):90–97;Orive G,Santos E,Poncelet D,等人Cell encapsulation:technical and clinical advances.Trends PharmacolSci.2015;36(8):537–546和Zhang,W.Encapsulation of transgenic cells for genetherapy,Gene Therapy:principles and challenges.Hashad,D.,editor.InTech;InTech:Rijeka,Croatia;2015.)。合成聚合物,如聚乙二醇(PEG)、甲基丙烯酸2-羟乙酯(HEMA)和聚乳酸-羟基乙酸(PLGA),由于批次间的差异最小,表现出更一致的化学组成和分子量(Zhang W,He X.Microencapsulating and banking living cells for cell-basedmedicine.J Healthc Eng.2011;2(4):427–446;Zhang,W.Encapsulation of transgeniccells for gene therapy,Gene Therapy:principles and challenges.Hashad,D.,editor.InTech;InTech:Rijeka,Croatia;2015;Santos E,Zarate J,Orive G,HernándezRM,Pedraz JL.Biomaterials in cell microencapsulation.Adv Exp Med Biol.2010;670:5–21和Olabisi RM.Cell microencapsulation with synthetic polymers.J BiomedMater Res A.2015;103(2):846–859).当使用合成聚合物进行生物包封时,可能需要不利的条件,如暴露在紫外线和非生理pH和/或温度条件下(OlabisiRM.Cellmicroencapsulation with synthetic polymers.J Biomed Mater Res A.2015;103(2):846–859)。
在天然和合成聚合物中,藻酸盐和PEG是两种最常用的生物包封材料。藻酸盐是一种主要从海藻中提取的阴离子生物聚合物,是线性多糖(Bidarra SJ,Barrias CC,GranjaPL.Injectable alginate hydrogels for cell delivery in tissue engineering.ActaBiomater.2014;10(4):1646–1662)。藻酸盐由α-L-古罗糖醛酸(G)和β-D-甘露糖醛酸(M)段组成。藻酸盐分子之间GG-GG、MG-GG和MG-MG二价阳离子连接的形成导致藻酸盐的凝胶化(藻酸盐水凝胶的形成)(Zhang W,He X.Microencapsulating and banking living cellsfor cell-based medicine.J Healthc Eng.2011;2(4):427–446)。
一般来说,藻酸盐微胶囊可以用聚阳离子(如聚-L-赖氨酸或壳聚糖)包覆,以增强稳定性并赋予选择性渗透,PEG可改善组织工程应用的生物相容性(Zhang W,Zhao S,RaoW,等人A novel core-shell microcapsule for encapsulation and 3d culture ofembryonic stem cells.JMater Chem B Mater Biol Med.2013;2013(7):1002–1009;Gattás-Asfura K,Valdes M,Celik E,Stabler C.Covalent layer-by-layer assemblyofhyperbranchedpolymers on alginate microcapsules to impart stability andpermselectivity.J Mater Chem B Mater Biol Med.2014;2(46):8208–8219和Park HS,Kim JW,Lee SH,等人Antifibrotic effect of rapamycin containing polyethyleneglycol-coated alginate microcapsule in islet xenotransplantation.J Tissue EngRegen Med.201711(4):1274-1284)。藻酸盐还表现出优异的体内稳定性(Zanotti L,SarukhanA,Dander E,等人Encapsulated mesenchymal stem cells for in vivoimmunomodulation.Leukemia.2013;27(2):500–503)。然而,多种因素会影响移植后基于藻酸盐的胶囊的稳定性,如植入部位和胶囊组成(M,Appel AA,Somo SI,BreyEM.Long-term function of alginate-encapsulated islets.Tissue Eng Part BRev.2015;22(1):34–46)。据报道,异种移植术后9.5年从患者体内取出活的包封的猪胰岛(Elliott RB,Escobar L,Tan PL,MuzinaM,Zwain S,Buchanan C.Live encapsulatedporcine islets from a Type 1diabetic patient 9.5yr after xenotransplantation.Xenotransplantation.2007;14(2):157–161)。
PEG及其衍生物,例如聚乙二醇二丙烯酸酯(PEGDA),由于其生物相容性和可被改变以物理模拟软组织的能力,已被广泛用于组织工程(Olabisi RM,Lazard ZW,Franco CL,等人Hydrogel microsphere encapsulation ofa cell-based gene therapy systemincreases cell survival of injected cells,transgene expression,and bonevolume in a model of heterotopic ossification.Tissue Eng Part A.2010;16(12):3727–3736;Mumaw J,Jordan ET,Sonnet C,等人Rapid heterotrophic ossificationwith cryopreserved poly(ethylene glycol-)microencapsulated BMP2-expressingMSCs.Int J Biomater.2012;2012:861794)。PEG是为数不多的既可用于微胶囊化又可用于大胶囊化的合成聚合物之一(de Vos P,Lazarjani HA,Poncelet D,Faas MM.Polymers incell encapsulation from an enveloped cell perspective.Adv Drug DelivRev.2014;67–68:15–34),由于其非免疫原性和非抗原性,其已被广泛研究用于支架(如血管移植物)的表面改性,(Ren X,Feng Y,Guo J,等人Surface modification andendothelialization of biomaterials as potential scaffolds for vascular tissueengineering applications.Chem Soc Rev.2015;44(15):5680–5742;Pramanik S,Ataollahi F,Pingguan-Murphy B,OshkourAA,OsmanNA.In vitro study of surfacemodified poly(ethylene glycol)-impregnated sintered bovine bone scaffolds onhuman fibroblast cells.Sci Rep.2015;5:9806)。有不同的方法制备软PEG凝胶,例如通过无铜菌株叠氮化物炔环加成进行交联(M JonkerA,ABode S,H Kusters A,van Hest JC,DW.Soft PEG-Hydrogels with independently tunable stiffness and rgds-content for cell adhesion studies.Macromol Biosci.2015;15(10):1338–1347)和硫醇-烯点击化学(McKinnon DD,Kloxinb AM,Anseth KS.Synthetic hydrogel platformfor three-dimensional culture of embryonic stem cell-derivedmotorneurons.Biomater Sci.2013;1(5):460–469)。微胶囊产生均匀的表面,没有粗糙的边缘。Lathuilière等人(LathuilièreA,Cosson S,LutolfMP,Schneider BL,AebischerP.A high-capacity cell macroencapsulation system supporting the long-termsurvival of genetically engineered allogeneic cells.Biomaterials.2014;35(2):779–791)表明,包封在仿生PEG水凝胶基质中的肌源细胞可以在高密度下存活数月。此外,含雷帕霉素的PEG涂层已被证明能够提高异种移植过程中的藻酸盐微胶囊的生物相容性(Park HS,Kim JW,Lee SH,等人Antifibrotic effect ofrapamycin containingpolyethylene glycol-coated alginate microcapsule in isletxenotransplantation.J Tissue Eng Regen Med.201711(4):1274-1284)。
人们为了改善包封的细胞迁移、附着、增殖和基质重塑,探索了几种不同的方法。其中包括通过与Arg-Gly-Asp(RGD;一种细胞粘附基序)或明胶(Sarker B,RompfJ,SilvaR,等人Alginate-based hydrogels with improved adhesive properties for cellencapsulation.Int J Biol Macromol.2015;78:72–78)交联对包封材料进行化学修饰,以及将细胞包封在核壳结构的胶囊中(Agarwal P,Zhao S,Bielecki P,等人One-stepmicrofluidic generation of pre-hatching embryo-like core-shell microcapsulesfor miniaturized 3D culture of pluripotent stem cells.Lab Chip.2013;13(23):4525–4533和Zhao S,Agarwal P,Rao W,等人Coaxial electrospray ofliquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture ofpluripotent stem cells.Integr Biol(Camb).2014;6(9):874–884)。例如,包封在RGD肽修饰的藻酸盐微胶囊中的多种类型的细胞显示出改善的细胞粘附和增殖(Dumbleton J,Agarwal P,Huang H,等人The effect ofRGD peptide on 2D and miniaturized 3Dculture ofHEPM cells,MSCs,andADSCs with alginate hydrogel.Cell MolBioeng.2016Jun;9(2):277–288.)。为了产生液体核心,可以在液化中心之前用聚-L-赖氨酸或壳聚糖包被藻酸盐水凝胶珠(Zhang W,Zhao S,Rao W,等人Anovel core-shellmicrocapsule for encapsulation and 3d culture ofembryonic stem cells.J MaterChem B Mater Biol Med.2013;2013(7):1002–1009)。藻酸盐核壳微胶囊的一步制备已被用于包封胚胎干细胞,其具有改善的细胞增殖、聚集和定向分化效率(Agarwal P,Zhao S,Bielecki P,等人One-step microfluidic generation ofpre-hatching embryo-likecore-shell microcapsules for miniaturized 3D culture ofpluripotent stemcells.Lab Chip.2013;13(23):4525–4533和Zhao S,Agarwal P,Rao W,等人Coaxialelectrospray of liquid core-hydrogel shell microcapsules for encapsulationand miniaturized 3D culture of pluripotent stem cells.Integr Biol(Camb).2014;6(9):874–884)。
藻酸盐微胶囊可用于胰岛移植的临床试验和一些研究工作中,以保护分离的细胞免受免疫破坏。这些植入物治疗1型糖尿病患者的长期功能面临的挑战之一是藻酸盐微胶囊的免疫原性,免疫细胞会攻击微胶囊周围并阻断它(这一过程被称为纤维化)。我们将外来体包封在藻酸盐微胶囊中,发现对这些植入物的免疫反应明显低于正常藻酸盐。因此,我们植入了来自大鼠的胰岛,并将其包封在我们新开发的微胶囊中。然后,我们通过注射STZ(一种用于创建1型糖尿病小鼠模型的常用试剂),使完全免疫活性的小鼠患上糖尿病。我们发现,虽然市售的微胶囊可以治疗小鼠糖尿病2-3周,但我们开发的微胶囊治疗小鼠糖尿病至少三个月,当移植物被移除时,小鼠再次患上糖尿病。这种移植物移除是证明糖尿病是通过移植治疗的重要组成部分。我们和其他研究人员之前已经观察到藻酸盐胶囊植入后的无数免疫活化,巨噬细胞处于这种免疫反应的最前沿(Vieseh,O.等人2015Nature Materials14:643;Doloff,J.C.等人2017Nature Materials 16:671和Rezaa,M.M.等人2018Materials Today:Proceeding 5(7,part 3):15580-15585)。我们最近还观察到来自间充质干细胞(MSC)的外来体与巨噬细胞和T细胞的抗炎和免疫调节相互作用(Tsukamoto,K.等人2002Journal of Atherosclerosis and Thrombosis 9(1):57-64)。因此,我们假设在藻酸盐微胶囊中掺入外来体可以降低对藻酸盐的免疫反应,从而导致糖尿病小鼠的血糖受到长期控制。图1显示,与外来体和大鼠胰岛结合的藻酸盐微胶囊可延缓移植排斥反应,糖尿病小鼠的血糖正常保持了3个月。
所公开的杂合微胶囊中的外来体颗粒粒径可以改变,例如直径为10nm-500nm,包括10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、120nm、140nm、160nm、180nm、200nm、220nm、240nm、260nm、280nm、300nm、320nm、340nm、360nm、380nm、400nm、420nm、440nm、460nm、480nm和500nm。包封在杂合微胶囊中的外来体的数量范围为1×105-1×108,包括1×105、2×105、3×105、4×105、5×105、6×105、7×105、8×105、9×105、1×106、2×106、3×106、4×106、5×106、6×106、7×106、8×106、9×106、1×107、2×107、3×107、4×107、5×107、6×107、7×107、8×107、9×107和1×108
藻酸盐是用于长期治疗T1D的包封胰岛优选生物材料。然而,由于藻酸盐胶囊周围的内源性纤维化,胰岛和体内生态位之间的通信中断。然而,我们的策略在移植前形成了胰岛的保护性生物材料。这种类型的生物材料不仅可以改变胰岛移植的模式,而且可以影响生物材料干细胞移植领域。我们目前的研究结果表明,移植胰岛的移植物排斥反应可延缓90天和血糖正常保持90天。
微胶囊是一个周围有均匀壁的小球体。微胶囊内部的物质被称为核心、内相或填充物,而壁有时被称为外壳、涂层或膜。一些生物相容性材料,如脂质和聚合物,如藻酸盐,可以用作混合物,将所需的材料截留在内部。大多数微胶囊具有直径在几微米到几毫米之间的孔。示例性的涂层材料是乙基纤维素、聚乙烯醇、明胶和藻酸盐,例如藻酸钠。
具有释放以旁分泌或内分泌方式发挥作用的可溶性因子如细胞因子、趋化因子、胰岛素和生长因子的能力的细胞。这些因子可以系统地起作用,或者它们可以通过诱导局部(干)细胞或吸引细胞向移植部位迁移来促进器官或区域的自我修复。这种细胞包括天然分泌相关治疗因子的细胞,或经历表观遗传变化或基因工程的细胞,其导致细胞释放大量特定的分子制剂。示例包括分泌促进血管生成、抗炎、葡萄糖摄取和抗细胞凋亡的因子的细胞。
实施例1
使用干细胞来源的免疫调节生物材料在免疫活性糖尿病小鼠中进行异种胰岛移
对生物材料的异物反应损害了植入物的功能并导致医疗并发症。在这里,我们报道了一种混合藻酸盐微胶囊(AlgXO),通过释放来源于人脐带间充质干细胞(XO)的外来体来减弱植入后的免疫反应。释放后,XO抑制局部免疫微环境,在1型糖尿病免疫活性小鼠模型中,包封在AlgXO中的大鼠胰岛的异种移植导致>170天的血糖正常。体外分析显示,XO抑制CD3/CD28活化的脾细胞和CD3+T细胞的增殖。比较XO在纯化的CD3+T细胞和脾细胞中的抑制能力,我们发现XO在存在异源细胞群的脾细胞共培养物中对T细胞的抑制更为强烈。XO还抑制CD3/CD28活化的人外周血单个核细胞(PBMC),并减少其细胞因子分泌,包括IL-2、IL-6、IL-12p70、IL-22和TNFα。我们进一步证明,XO的作用机制可能是通过骨髓细胞介导的,XO部分通过干扰NFκB途径抑制小鼠和人类巨噬细胞。我们认为,通过控制XO的释放,AlgXO提供了一个有希望的新平台,可以缓解植入生物材料的局部免疫反应。
我们假设在藻酸盐微胶囊(AlgXO)内共移植XO将减轻植入后的FBR。在阻断这种炎症后,我们接下来假设在AlgXO内移植大鼠胰岛将延长免疫活性链脲佐菌素诱导的糖尿病小鼠中移植胰岛的功能。
结果
AlgXO微胶囊内胰岛异种移植延缓移植物排斥反应
我们首先从脐带来源的MSC(UC-MSC)中分离出XO,并表征了UC MSC及其XO的大小、数量和蛋白质生物标志物(图7)。我们选择UC-MSC是因为它们的可用性、非侵入性分离、快速增殖、适合扩大规模和优越的生物活性(Hass,R.,Kasper,C.,S.&Jacobs,R.Different populations and sources of human mesenchymal stem cells(MSC):acomparison ofadult and neonatal tissue-derived MSC.Cell Commun.Signal 9,12–12(2011))。制备了两种类型的藻酸盐微胶囊,即常规Ba2+交联超纯藻酸微胶囊(CTRL)和AlgXO。为了制备AlgXO,我们将XO装载在藻酸盐微胶囊中(图8,a)。为了量化AlgXO中的XO,我们溶解微胶囊并通过超速离心收集XO(图9)。约1000个AlgXO内的XO总数为5.43×109±4.84×109(n=4),而CTRL微胶囊内的XO低于纳米颗粒跟踪分析的检测限(NTA;图8,b)。
然后,我们试图研究AlgXO微胶囊中胰岛移植的功能。将大鼠胰岛(1500IEQ,胰岛当量)包封在AlgXO或CTRL微胶囊中,并移植到链脲佐菌素(STZ)处理的具有一周的高血糖的C57/BL6小鼠(n=5)的腹腔中。为了确保每次分离的大鼠胰岛的纯度和质量,并使胰岛之间的批次间差异最小化,我们对每一批次进行了质量控制(图10)。图2,a显示,在AlgXO内移植大鼠胰岛可为糖尿病小鼠提供>170天的正常血糖,而在CTRL微胶囊内移植的胰岛在一个月内功能性地未能调节小鼠的高血糖。为了确保血糖校正是由AlgXO移植引起的,而不是糖尿病小鼠的β细胞再生,我们在移植105天后通过冲洗腹腔移除了AlgXO移植物。选择这一时间,是因为不仅小鼠血糖正常,而且注射XO的组在一个月前血糖升高,这使我们能够确保移植物功能以及AlgXO与注射XO组的优越性。移植物移除后16小时内,非空腹血糖升高,小鼠仍处于高血糖状态(虚线,图2,a)。为了控制AlgXO对STZ诱导的糖尿病小鼠维持高血糖的影响,还将空的AlgXO微胶囊(即不含胰岛)移植到STZ诱导糖尿病C57/BL6小鼠的腹腔中,但其未能逆转高血糖(图11)。我们之所以设计这个实验,是因为最近的一项研究报告称,将UC-MSC来源的XO静脉注射到STZ诱导的糖尿病小鼠中,可以促进葡萄糖转运蛋白4的表达和膜转位,并降低高血糖的严重程度(Sun,Y.等人Human mesenchymal stem cell derivedexosomes alleviate type 2diabetes mellitus by reversing peripheral insulinresistance and relievingβ-cell destruction.ACS Nano 12,7613–7628(2018))。
接下来,我们提出疑问:是否可以通过施用未包封XO来延长胰岛异种移植的体内功能。因此,我们将1500IEQ大鼠胰岛移植到CTRL微胶囊中,同时注射(i.p.)8.1×109±7.3×108XO(n=4)。该剂量与先前进行的AlgXO异种移植研究中XO的剂量一致。在CTRL微胶囊中进行胰岛移植时,施用未包封的XO可使糖尿病小鼠的正常血糖保持2个月(图2,a),尽管其保持时间不如AlgXO移植。在移植1个月后,我们进一步测试了AlgXO移植对口服葡萄糖耐量试验(OGTT)的疗效(图2,b)。在葡萄糖激发开始30分钟后,非糖尿病小鼠的血糖达到291±120mg/dL(n=4)。同时,移植了AlgXO和CTRL微胶囊中胰岛的小鼠的血糖分别为386±91mg/dL和534±9mg/dL(n=4)。糖尿病小鼠(n=3)的这一数值为580±28mg/dL。我们将200mg/dL设置为糖尿病(高血糖)和非糖尿病(血糖正常)小鼠之间的正常血糖阈值。然后,我们试图找到每只小鼠在葡萄糖激发后达到血糖正常所需的时间。将5次多项式分配给OGTT曲线(图12,a和b),并根据多项式函数的值200计算血糖正常的时间。图2,c表明,非糖尿病小鼠在OGTT后达到血糖正常所需的平均时间为65±27分钟,而接受AlgXO移植的小鼠达到血糖正常的持续时间为103±32分钟。平均而言,与非糖尿病对照组相比,OGTT后AlgXO移植达到血糖正常的时间略长(n=6,p=0.063)。这种延缓可能是由于藻酸盐网络对胰岛素和葡萄糖扩散的阻碍。这些结果表明,在OGTT期间,AlgXO移植与非糖尿病小鼠具有相当的葡萄糖反应,而CTRL移植均未达到正常血糖。
胰岛移植的临床试验表明,同种异体或异种来源的胰岛会影响临床疗效,并导致相互矛盾的结果。尽管非免疫抑制糖尿病患者的异种移植部分减少了低血糖事件,但较高剂量的异种胰岛效果较差(Matsumoto,S.等人Clinical porcine isletxenotransplantation under comprehensive regulation.Transplant.Proc.46,1992–1995(2014)和Ekser,B.,Bottino,R.&Cooper,D.K.C.Clinical isletxenotransplantation:a step forward.EBioMedicine 12,22–23(2016))。我们进一步进行了AlgXO包封的胰岛剂量研究,以确定治疗剂量(图13,胰岛剂量研究),我们发现1500IEQ大鼠胰岛显示出比5000IEQ更长的正常血糖诱导,但较低的500IEQ未能纠正小鼠高血糖。
AlgXO可减少炎症和纤维化
接下来,我们试图描述延长AlgXO微胶囊内胰岛移植功能的可能机制。从广义上讲,从微胶囊技术的长期失败中,人们普遍认识到两个主要因素:(1)微胶囊缺乏营养和氧气可及性,这导致胰岛坏死(Evron,Y.等人Long-term viability and functionoftransplanted islets macroencapsulated at high density are achieved byenhanced oxygen supply.Sci.Rep.8,6508(2018)),和(2)移植后几周内,炎症异物反应(FBR)在微胶囊周围形成致密的纤维化组织,阻断胰岛的功能(Doloff,J.C.等人Colonystimulating factor-1receptor is a central component of the foreign bodyresponse to biomaterial implants in rodents and nonhumanprimates.Nat.Mater.16,671(2017);Bochenek,M.A.等人Alginate encapsulation aslong-term immune protection of allogeneic pancreatic islet cells transplantedinto the omental bursa of macaques.Nat.Biomed.Eng.2,810–821(2018)和RezaaMohammadi,M.,Rodrigez,S.,Cao,R.,Alexander,M.&Lakey,J.R.T.Immune response tosubcutaneous implants of alginate microcapsules.Mater.Today.:Proc.5,15580–15585(2018))。为了研究包封在AlgXO中的胰岛提供更长血糖校正的可能机制,我们检查了这两个因素(Bochenek,M.A.等人Alginate encapsulation as long-term immuneprotection ofallogeneic pancreatic islet cells transplanted into the omentalbursa ofmacaques.Nat.Biomed.Eng.2,810–821(2018);Farah,S.等人Long-term implantfibrosis prevention in rodents and nonhuman primates using crystallized drugformulations.Nat.Mater.18,892–904(2019);de Vos,P.,Hamel,A.F.&Tatarkiewicz,K.Considerations for successful transplantation of encapsulated pancreaticislets.Diabetologia 45,159–173(2002)和Vaithilingam,V.&Tuch,B.E.Islettransplantation and encapsulation:an update on recentdevelopments.Rev.Diabet.Stud.8,51(2011))。
在移植的早期阶段,胰岛的健康和存活力受到氧化应激的影响(可能在一周内),在后期阶段,炎症诱导的纤维化通过抑制氧气和代谢物扩散到微胶囊中而影响移植物的存活力(Bochenek,M.A.等人Alginate encapsulation as long-term immune protectionof allogeneic pancreatic islet cells transplanted into the omental bursa ofmacaques.Nat.Biomed.Eng.2,810–821(2018))。最近研究表明,MSC外来体可以减轻β细胞的凋亡和破坏(Sun,Y.等人Human mesenchymal stem cell derived exosomes alleviatetype 2diabetes mellitus by reversing peripheral insulin resistance andrelievingβ-cell destruction.ACS Nano 12,7613–7628(2018)),并提高胰岛在缺氧条件下的存活率(Nie,W.等人Human mesenchymal-stem-cells-derived exosomes areimportant in enhancing porcine islet resistance tohypoxia.Xenotransplantation 25,e12405(2018))。因此,我们推测XO可能增强大鼠胰岛的体外存活力,并发现XO(20μg/mL和200μg/mL剂量)以及AlgXO可增强大鼠胰岛的存活力(图14,a和b)。因此,在移植的早期阶段,AlgXO可能保留了被包封的胰岛的存活力。在移植后的较长时间内,我们试图了解胰岛的存活力。植入后1个月,取出两组的微胶囊,并进行TUNEL测定以比较胰岛的存活力。图14,c显示了TUNEL测定的结果,其中移植1个月后,AlgXO内移植的胰岛的TUNEL阳性面积(1.02%±0.32%)高于CTRL(6.44%±1.59%)(n=5,p=0.0256)。这表明移植1个月后,Alg XO内的胰岛具有更高的存活率。
然而,在移植的后期,炎症导致的FBR进一步损害了微囊内胰岛的存活力和功能。已证明抑制炎症导致的纤维化可以改善糖尿病啮齿类动物的移植胰岛的长期功能和血糖正常(Vegas,A.J.等人Long-term glycemic control using polymer-encapsulatedhuman stemcell–derived beta cells in immune-competent mice.Nat.Med.22,306–311(2016);Bochenek,M.A.等人Alginate encapsulation as long-term immune protectionofallogeneic pancreatic islet cells transplanted into the omental bursaofmacaques.Nat.Biomed.Eng.2,810–821(2018);Farah,S.等人Long-term implantfibrosis prevention in rodents and nonhuman primates using crystallized drugformulations.Nat.Mater.18,892–904(2019)和Vegas,A.J.等人Combinatorial hydrogellibrary enables identification ofmaterials that mitigate the foreign bodyresponse in primates.Nat.Biotechnol.34,345(2016))。认识到MSC来源的XO的多重抗炎特性(Riazifar,M.等人Stemcell-derived exosomes as nanotherapeutics forautoimmune and neurodegenerative disorders.ACS Nano 13,6670–6688(2019);Zhang,B.等人Mesenchymal stromal cell exosome-enhanced regulatory Tcell productionthrough an antigen-presenting cell-mediated pathway.Cytotherapy 20,687–696(2018)和Bai,L.等人Effects of mesenchymal stem cell-derived exosomes onexperimental autoimmune uveitis.Sci.Rep.7,4323(2017)),我们假设将大鼠胰岛包封在AlgXO微胶囊中可以减少炎症反应,从而导致免疫活性糖尿病小鼠的胰岛长期功能和血糖控制。为了研究对AlgXO和CTRL异种移植的炎症反应,我们外植了两组并分析免疫浸润。
由于1500IEQ CTRL移植在大约1个月内未能发挥作用(图2,a),我们在植入第31天从小鼠身上取出了CTRL和AlgXO异种移植物。接下来,我们分析了两种微胶囊周围的囊周附着,并观察到CTRL组被CD11b+细胞覆盖,而大多数AlgXO外植体是透明的(图2,d)。值得注意的是,来自AlgXO外植体的9%±3.6%的微胶囊显示出囊周细胞附着,显著低于CTRL外植体上的囊周细胞附着(图2,d,p<0.0001)。对浸润到CTRL微胶囊周围的亚型的分析显示存在CD11b+髓系来源细胞。如通过CD11b和MHCII标记物的共同定位所观察到的,至少在某些位置,CD11b+细胞表达MHCII+。作为主要的髓系来源细胞之一,巨噬细胞通常表达中等水平的MHCII以调节免疫耐受和局部监测以维持稳态免疫。然而,巨噬细胞会在促炎环境中上调MHCII的表达和抗原呈递能力,在这种环境中抗原可以呈递给CD4+淋巴细胞。
为了更好地理解XO对囊周环境的影响,我们在移植1个月后取出移植物,并分析了从外植体中获得的灌洗液。细胞因子和趋化因子的分析表明,与对照组相比,AlgXO移植囊周区域的MCP-1(20.6±1.8pg/ml至4.1±4.96pg/ml,n=3,p=0.0117)、IL-4(1.6±0.2pg/ml至0.2±0.2pg/ml,n=3、p=0.0012)和IL-12p70(6.7±6.6pg/ml至1.1±1.8pg/ml,n=3,p=0.0217)的分泌减少(图2,e)。MCP-1介导炎症单核细胞向炎症部位和IL-12p70的募集。这些结果总体上表明,与CTRL微胶囊相比,免疫细胞向AlgXO的募集较少。
接下来,我们试图进一步理解观察到的针对AlgXO和CTRL移植的不同炎症反应的机制。藻酸盐的免疫原性归因于两种不同的机制,这也可以被视为互补现象。首先,先前的研究表明,藻酸盐中的内毒素污染是主要的免疫原,包括脂多糖(LPS)、脂磷壁酸和肽聚糖(Paredes-Juarez,G.A.,de Haan,B.J.,Faas,M.M.&de Vos,P.The role ofpathogen-associated molecular patterns in inflammatory responses against alginate-based microcapsules.J.Control.Release 172,983–992(2013)和Paredes Juárez,G.A.,Spasojevic,M.,Faas,M.M.&de Vos,P.Immunological and technical considerationsin application of alginate-based microencapsulation systems.Front.Bioeng.Biotechnol.2,26(2014))。由于商业纯化的藻酸盐(如本研究中的UPLVG)中缺乏内毒素,其他人已经报道,即使没有内毒素,藻酸盐也可以增强免疫反应(Doloff,J.C.等人Colonystimulating factor-1receptor is a central component of the foreign bodyresponse to biomaterial implants in rodents and nonhumanprimates.Nat.Mater.16,671(2017)和Vegas,A.J.等人Combinatorial hydrogel libraryenables identification ofmaterials that mitigate the foreign body responseinprimates.Nat.Biotechnol.34,345(2016))。我们最近已经发现,即使是超纯藻酸盐也可以刺激巨噬细胞产生炎症谱系(Mohammadi,M.等人Controlled release of stem cellsecretome attenuates inflammatory response against implanted biomaterials.Adv.Healthc.Mater.9,e1901874(2020))。这些报告表明,这种炎症反应可能是由于藻酸盐的固有性质。例如,据报道,来源于藻酸盐的古罗糖寡糖部分通过Toll样受体4(TLR4)信号通路容易活化巨噬细胞(Mohammadi,M.等人Controlled release of stem cellsecretome attenuates inflammatory response against implanted biomaterials.Adv.Healthc.Mater.9,e1901874(2020)和Fang,W.等人Identification and activationof TLR4-mediated signalling pathways by alginate-derived guluronateoligosaccharide in RAW264.7 macrophages.Sci.Rep.7,1663(2017))。虽然这种反应的确切机制仍存在争议,但人们一致认为,解决对藻酸盐微胶囊的炎症反应可以预防或延缓纤维化。在这种情况下,许多研究小组已经报道了在抗纤维化装置内进行胰岛移植的长期疗效(Farah,S.等人Long-term implant fibrosis prevention in rodents andnonhuman primates using crystallized drug formulations.Nat.Mater.18,892–904(2019);Vegas,A.J.等人Combinatorial hydrogel library enables identification ofmaterials that mitigate the foreign body responseinprimates.Nat.Biotechnol.34,345(2016);Alagpulinsa,D.A.等人Alginate-microencapsulation ofhuman stem cell-derivedβcells with CXCL12 prolongs theirsurvival and function in immunocompetent mice without systemic immunosuppression.Am.J.Transplant.19,1930–1940(2019)和Liu,Q.等人Zwitterionically modifiedalginates mitigate cellular overgrowth for cell encapsulation.Nat.Commun.10,5262(2019))。
为了全面比较AlgXO和CTRL微胶囊的炎症反应,我们进一步关注了空微胶囊及其在体内诱导的炎症反应。我们将约3000个AlgXO或CTRL微胶囊移植到C57/BL6小鼠的皮下空间,两个微胶囊在2周后移出(图3,a)。选择了2周的时间点,因为已经确定为解决和反映C57/BL6小鼠16,64中固有和适应性免疫系统以及对植入材料的纤维化反应的合适时间点。在移植后第7天和第14天,还测定了血清细胞因子,反映了全身炎症反应(如果有的话)。在检测的11种细胞因子中,用AlgXO或CTRL皮下移植的小鼠的血清细胞因子之间没有显著差异(图3、b和图15)。虽然没有统计学意义,但用CTRL微胶囊移植2周的小鼠血清中MCP-1趋化因子的平均量(87.8±59.9pg/mL)比植入AlgXO微胶囊的小鼠(23.3±13.4pg/mL)高3.7倍。系统MCP-1之间的差异使我们进一步研究了循环炎症单核细胞对AlgXO和CTRL移植的反应。
骨髓驻留细胞对循环微生物分子或促炎细胞因子的检测可产生MCP-1以调节循环炎症单核细胞的频率65。MCP-1是一种趋化因子,与CCR2结合并介导炎症(Ly6Chigh)单核细胞募集到炎症部位。接下来,我们试图对植入后2周小鼠血液中的炎症单核细胞进行量化。图3,c显示了流式细胞术图及其对炎症单核细胞(CD45+CD11b+Ly6ChighLy6Gmed)66亚群的定量。移植AlgXO的小鼠的CD45+CD11b+Ly6ChighLy6Gmed(2.62%±0.4%)与CTRL微胶囊血液循环中的单核细胞(5.8%±1.4%)相比显著降低(n=3,p=0.002)。这些观察结果表明,AlgXO移植可能会减少针对藻酸盐微胶囊的全身性炎症反应。
循环单核细胞的目的地与MCP-1分泌位点相连(Lacey,D.C.等人Defining GM-CSF-andmacrophage-CSF-dependent macrophage responses by in vitromodels.J.Immunol.188,5752(2012)和Yoshimura,T.The chemokine MCP-1(CCL2)in thehost interaction with cancer:a foe or ally?Cell.Mol.Immunol.15,335–345(2018)),MCP-1分泌位点也是一个高炎症的部位。在本研究中,移植部位可能是炎症反应的主要部位(Mohammadi,M.等人Controlledrelease of stem cell secretome attenuatesinflammatory response against implanted biomaterials.Adv.Healthc.Mater.9,e1901874(2020))。因此,我们试图研究移植后2周植入物周围的局部炎症反应。我们发现,所有可检测的CTRL微胶囊都聚集成藻酸盐聚集体的团块(图3,d)。对于AlgXO,虽然一些微胶囊保持完整且未聚集(用白色箭头显示),但其余微胶囊被包封在周围有多条血管的假组织中。将来自两组的这些组织仔细分离,以避免含有小鼠的内源性组织。亮视野显微镜显示假组织已经包埋了微胶囊(图3,d)。在扫描电子显微镜评估下,检测到一些微胶囊(图3,d;白色虚线用于微胶囊的视觉引导)被粗糙的微观结构包围,AlgXO微胶囊被包封在光滑的结构中。将组织切成5-10μm的薄片,并用H&E和Masson三色染色法(MTS)进行染色。CTRL微胶囊周围形成的纤维化组织显示大部分单核细胞显著浸润,而在AlgXO纤维化组织中未观察到这种组织学(图3,d)。
为了更好地比较免疫环境,我们比较并量化了驱动纤维化反应的细胞成分。对两种纤维化组织进行不同免疫细胞染色,包括巨噬细胞(CD11b+和CD68+)、T细胞(CD3+)、促再生巨噬细胞(CD206)、抗原呈递细胞(MHCII)和平滑肌肌动蛋白纤维化标志物(αSMA)。DAPI复染色也用于计数纤维化组织内的总细胞浸润(图3、e和图16)。图3,f显示,在AlgXO纤维化组织中,微胶囊周围的总细胞浸润显著降低(p=0.011)。CD68(p=0.037)和MHCII(p=0.015)也观察到类似的趋势。相反,CD206表达之间没有关联(p=0.012)。
为了获得关于CTRL和AlgXO微胶囊周围纤维化组织的更全面的信息,我们使用流式细胞术在细胞水平上比较了两种微胶囊的成分。图3,g中的tSNE图显示了AlgXO和CTRL纤维化组织的高度分离的亚群。我们专门查询了AlgXO中不存在但CTRL中存在的亚群,如图3,g黑线区域(查询)所示。该亚群为CD45+CD11b+CD19+MHCII+CD3-Ly6C-,可能是记忆B细胞亚群。为了进一步评估纤维化微环境中B细胞的数量,我们分析了CD45+CD19+B细胞(图17,a)。与CTRL(22.5%±5.1%)相比,AlgXO(0.9%±0.5%)中的CD45+CD19+细胞显著减少(n=4,p<0.0001)。B淋巴细胞在对抗藻酸盐微胶囊的FBR中起着关键作用。特别是,据报道,B细胞的基因缺失以及CXCL13的中和作用可在2周的植入期内抑制对植入的藻酸盐微胶囊的FBR(Doloff,J.C.等人Colony stimulating factor-1receptor is a central component ofthe foreign body response to biomaterial implants in rodents andnonhumanprimates.Nat.Mater.16,671(2017)),这与我们在本研究中的观察结果一致。除了B细胞外,先天淋巴细胞和γδ+T细胞还导致慢性适应性抗原依赖性Th17细胞反应(Chung,L.等人Interleukin 17and senescent cells regulate the foreign bodyresponse to synthetic material implants in mice and humans.Sci.Transl.Med.12,eaax3799(2020))。在我们的研究中,我们发现与CTRL相比,AlgXO中的CD3+含量更高(p=0.026),这可能是由于AlgXO微环境中的血液/血管所致(图17,b)。这一点可以通过血管附近有T细胞得到进一步证实(图3,e)。虽然皮下AlgXO微胶囊周围的炎症反应减少,但在糖尿病小鼠的皮下空间内移植155IEQ大鼠胰岛并不能恢复正常血糖(图19),这可能是由于观察到的纤维化反应。
AlgXO减少异物反应的部分原因是以可控的方式释放外来体
我们继续研究XO控制释放对AlgXO炎症反应减少的影响。我们首先表征了AlgXO的物理和机械性能,并将其与CTRL微胶囊进行了比较,因为这些性能显著影响生物材料的生物反应。例如,水与生物材料表面的相互作用已被认为是决定生物材料免疫反应的基本特征。与亲水性材料相比,疏水性(和微亲水性)生物材料吸附更多的蛋白质。这主要是因为与亲水表面相邻的蛋白质必须取代更多与生物材料表面结合的水分子(Mohammadi,M.R.,Luong,J.C.,Kim,G.G.,Lau,H.&Lakey,J.R.T.in Handbook ofTissue EngineeringScaffolds,Vol.1(eds Mozafari,M.,Sefat,F.&Atala,A.)(Woodhead Publishing,2019)和Seong,S.-Y.&Matzinger,P.Hydrophobicity:an ancient damage-associatedmolecular pattern that initiates innate immune responses.Nat.Rev.Immunol.4,469–478(2004))。因此,我们试图使用气泡捕获接触角法测量AlgXO和CTRL生物材料的接触角。图4,a显示,AlgXO的接触角(156.3°±3.8°)高于CTRL微胶囊的接触角(150.2°±4.9°)。这表明AlgXO的疏水性略强;然而,没有显著的相关性(n=3,p=0.167)。疏水性的重要性在于蛋白质吸附在生物材料表面,这与FBR有关。许多研究报道,阻断生物材料的蛋白质吸附会沉默免疫反应(Vegas,A.J.等人Combinatorial hydrogel library enablesidentification of materials that mitigate the foreign body response inprimates.Nat.Biotechnol.34,345(2016)和Yesilyurt,V.等人A facile and versatilemethod to endow biomaterial devices with zwitterionic surfacecoatings.Adv.Healthc.Mater.6,1601091(2017))。这些蛋白质可能包括凝血级联(纤维蛋白原和组织因子)、补体级联(C5)和其他血浆来源的蛋白质(白蛋白和IgG)的成分(Anderson,J.M.,Rodriguez,A.&Chang,D.T.Foreign body reaction tobiomaterials.Semin.Immunol.20,86–100(2008))。在炎症的急性期,IgG和纤连蛋白的吸附导致中性粒细胞和巨噬细胞通过Mac-1介导附着在生物材料表面(Hu,W.J.,Eaton,J.W.&Tang,L.Molecular basis of biomaterial-mediated foreign body reactions.Blood98,1231–1238(2001))。因此,我们试图研究IgG在AlgXO和CTRL微胶囊上的吸附。与AlgXO(0.05%±0.06%)相比,IgG更明显地粘附在CTRL微胶囊的表面(2.70%±1.21%,n=3,p=0.0004)(图4,b)。AlgXO的较少的纤维化特性部分源于其表面蛋白质吸附较少。蛋白质在生物材料上的吸收及其构象可能导致不同生物材料相关分子模式的形成,从而引发炎症反应(Eslami-Kaliji,F.,Sarafbidabad,M.,Rajadas,J.&Mohammadi,M.R.Dendritic cellsas targets for biomaterial-based immunomodulation.ACS Biomater.Sci.Eng.6,2726–2739(2020))。
生物材料的机械性能与植入物的免疫反应有关。例如,巨噬细胞限制通过减少肌动蛋白聚合和LPS刺激的MRTF-A核转位来减少其炎症反应(Jain,N.&Vogel,V.Spatialconfinement downsizes the inflammatory response of macrophages.Nat.Mater.17,1134–1144(2018))。此外,巨噬细胞更深入地粘附在坚硬的表面上(Meli,V.S.等人Biophysical regulation ofmacrophages in health and disease.J.Leukoc.Biol.106,283–299(2019))。因此,我们试图表征AlgXO和CTRL微胶囊的机械性能(图4,c和d)。图4,c显示了悬臂的初始和最终垂直位置的图像,对微胶囊施加压力。应力-应变曲线(图4,d)显示了线性行为,其中AlgXO(104.7±61.4kPa)和CTRL(57.8±14.9kPa)的弹性模量之间的差异不显著(n=3,p=0.268)。
我们进一步提出疑问:可能在AlgXO的免疫调节特性中发挥作用的其他可能机制。我们最初的假设是,AlgXO的免疫调节作用部分是由于XO的释放。已证明MSC来源的XO在体外(Pacienza,N.等人In vitro macrophage assay predicts the in vivo anti-inflammatory potential ofexosomes from human mesenchymal stromalcells.Mol.Ther.Methods Clin.Dev.13,67–76(2019))和啮齿类动物模型(Lankford,K.L.等人Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord.PLoS ONE 13,e0190358(2018))具有免疫抑制功能。为了更好地理解这种可能性,我们试图发现AlgXO中的XO是否释放到微胶囊周围的微环境中。我们首先使用扫描电子显微镜(SEM)在风干的微胶囊上对CTRL和AlgXO微胶囊进行观察和比较。图4,e显示了AlgXO和CTRL微胶囊的SEM显微照片,表明存在50-200nm粒径的表面孔隙。AlgXO微胶囊的SEM显微照片显示了球形囊泡在AlgXO中的包封,以及它们可能从微胶囊表面释放(图4,e,右图,比例尺=1μm)。我们特别假设XO可以从AlgXO中释放(图4,f),因为它们很容易在细胞外基质的纳米网中扩散,并在体内长距离传递。最近,有研究表明,由于水通道蛋白-1介导的XO变形性,XO可以在藻酸盐基质(以及细胞外基质)内运输并向外扩散,尽管XO大于周围网络的网孔大小(Lenzini,S.,Bargi,R.,Chung,G.&Shin,J.-W.Matrix mechanics and waterpermeation regulate extracellular vesicletransport.Nat.Nanotechnol.15,217–223(2020))。接下来,我们在体外孵育AlgXO微胶囊,并测定XO的释放,证明XO在10天内的控制释放(图4,g)。我们发现,培养10分钟内释放3.03×1007±2.75×1007XO,10天内总释放量增加到2.49×1008±4.63×1007XO。需要注意的是,包封的XO总数为5.43×1009±4.84×1009(图8,b)。为了进一步了解XO的释放情况,我们基于直径(即XO的粒径范围)为50至150nm的纳米颗粒的菲克(Fickian)扩散来模拟对外来体的释放。图4,h显示了XO在50、100和150nm下的模拟扩散。上图是时间(s)与颗粒浓度(每μm3)以及与胶囊中心之间的距离(μm)。图4,h下图显示了XO从微胶囊向外扩散的热力图表示。在这些图中,显示了1mm×1mm的扩散微环境,蓝色表示扩散。这些模拟表明,较小的颗粒(直径为50nm)比150nm的颗粒扩散得更快。为了检查50-150nm范围之外的模拟模型,将更小(即10nm)和更大(200和500nm)的粒子输入到代码中。研究发现,在600s内,10nm具有加速的扩散速率,而500nm的颗粒则保留在微胶囊内,并且没有获得向外扩散(图20)。
XO抑制小鼠巨噬细胞和T淋巴细胞
与亲代细胞的抑制特性相似,来源于间充质干细胞的XO已被证明在体外(Pacienza,N.等人In vitro macrophage assay predicts the in vivo anti-inflammatory potential ofexosomes from human mesenchymal stromalcells.Mol.Ther.Methods Clin.Dev.13,67–76(2019))和啮齿类动物模型(Lankford,K.L.等人Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord.PLoS ONE 13,e0190358(2018))具有免疫抑制功能。我们最近发现,骨髓来源的MSC XO在抗CD3/CD28刺激活化后抑制人外周血单个核细胞(PBMC)(Riazifar,M.等人Stem cell-derived exosomes as nanotherapeuticsfor autoimmune and neurodegenerative disorders.ACS Nano 13,6670–6688(2019))。在补充IL-2的脾细胞共培养物中,骨髓来源的MSC XO也诱导CD4+CD25+FoxP3+调节性T细胞(Riazifar,M.等人Stem cell-derived exosomes as nanotherapeutics for autoimmuneand neurodegenerative disorders.ACS Nano 13,6670–6688(2019))。为了了解XO(来源于脐带)发挥其抑制功能的机制,我们首先研究了XO对活化的小鼠脾细胞的影响,然后研究了XO对从脾细胞中分离的纯化CD3+T细胞的影响(图5,a)。在存在和不存在XO的情况下,用平板结合的抗CD3和抗CD28在体外刺激来自C57/BL6野生型小鼠的细胞增殖染料eFluor670标记的脾细胞。20μg/mL和200μg/mLXO均抑制脾细胞增殖,其中活化的脾细胞增殖至9603±871,添加20μg/mL和200μg/mL XO可将计数减少至1253±1038(n=4,p<0.0001)和1570±1010(n=4,p<.0001)。
脾细胞内的细胞异质性使XO细胞机制的结论变得复杂。为了描述XO抑制能力的更详细的细胞机制,我们重点研究了XO对纯化T细胞活化的影响。因此,我们在纯化的T细胞共培养物中重复了T细胞增殖试验,这使我们能够深入了解XO和T淋巴细胞之间的相互作用。纯化的CD3+T细胞被活化(类似于脾细胞活化程序),4天后CD3/CD28活化的T细胞的CD4+计数为5217±378。添加20μg/mL和200μg/mLXO后,计数分别降至3889±2081(n=4,p=0.0031)和4387±1397(n=4,p=0.0057)。此外,CD3/CD28活化的T细胞的CD8+计数为2700±252,添加20μg/mL和200μg/mL XO可将计数分别降至1503±784(n=4,p=0.0018)和1766±628(n=4,p=0.0002)。有趣的是,XO在脾细胞共培养物中比纯化的T细胞抑制作用更强。这些结果表明,在脾细胞共培养物中,非T细胞(包括抗原呈递细胞(APC))显著参与XO抑制机制。这表明XO至少部分靶向APC等辅助细胞,而不是直接靶向T细胞,这与最近的研究一致(Zhang,B.等人Mesenchymal stromal cell exosome-enhanced regulatory Tcellproduction through an antigen-presenting cell-mediated pathway.Cytotherapy20,687–696(2018);和Zhang,B.等人Mesenchymal stem cells secrete immunologicallyactive exosomes.Stem Cells Dev.23,1233–1244(2014))。在更广泛的背景下,输注的MSC及其凋亡产物认为是被吞噬的,导致第三方吞噬细胞的产生,最终介导观察到的免疫调节作用(de Witte,S.F.H.等人Immunomodulationby therapeutic mesenchymal stromalcells(MSC)is triggered through phagocytosis of MSC by monocytic cells.StemCells 36,602–615(2018))。这些观察结果表明,XO首先与APC和吞噬细胞接触(Lankford,K.L.等人Intravenously delivered mesenchymal stem cell-derived exosomes targetM2-type macrophages in the injured spinal cord.PLoS ONE 13,e0190358(2018)和Zhang,B.等人Mesenchymal stromal cell exosome-enhanced regulatory Tcellproduction through an antigen-presenting cell-mediated pathway.Cytotherapy20,687–696(2018)),然后促进T细胞的免疫抑制。这些观察结果与我们早期的体内结果一致,其中CD3+T淋巴细胞不存在于从AlgXO微胶囊微环境中收集的灌洗液中,但存在于从CTRL微胶囊的微环境收集的灌洗液中(图18,d)。
为了从功能上验证XO是否对APC具有免疫调节作用,并深入了解XO的治疗机制,我们对活化的小鼠巨噬细胞和XO进行了共培养。最近,在用小鼠巨噬细胞体外培养和LPS注射小鼠模型中,在LPS诱导的炎症中,已经描述了来源于人源性MSC的XO的抗炎潜力(Pacienza,N.等人In vitro macrophage assay predicts the in vivo anti-inflammatory potential of exosomes from human mesenchymal stromalcells.Mol.Ther.Methods Clin.Dev.13,67–76(2019))。为了深入了解XO调节巨噬细胞活化的可能机制,我们从共培养物中分离上清液,并测定分泌的细胞因子的数量。在一组测试的细胞因子中,我们发现XO显著减少LPS刺激的巨噬细胞产生G-CSF、IFNγ、LIF、KC、MIP-2、RANTES、IL-6、LIX和VEGF(图5,e)。LPS活化NFκB途径和所有三种MAPK途径(ERK、JNK/SAPK和p38α),导致广泛的细胞反应,包括细胞分化、存活或凋亡以及炎症反应(Guha,M.&Mackman,N.LPS induction ofgene expression in human monocytes.Cell.Signal.13,85–94(2001))。巨噬细胞培养物中细胞因子和趋化因子的减少是NFκB炎症途径的标志,表明XO可能通过调节该途径而具有抗炎特性(见表1)。不受XO添加影响的炎症细胞因子/趋化因子包括TNFα、IL-2、IL-17和IL-1a(图21)。有趣的是,甚至IL-10的产生也因添加XO而减少,这表明在这种特定的实验环境和时间点下,XO具有免疫抑制作用。
XO抑制人T淋巴细胞并调节人巨噬细胞中的NFκB
到目前为止,我们的体内和体外试验证明了XO的异种免疫抑制能力。我们进一步提出疑问:XO的这种免疫抑制能力在人类来源的免疫细胞的可复制性,即同种异体反应。由于我们观察到体内AlgXO移植小鼠的炎症反应减少和耐受诱导,以及小鼠T细胞增殖和巨噬细胞活化减少,我们试图了解XO对体外人源免疫细胞的免疫调节作用。我们使用羧基荧光素琥珀酰亚胺酯(CFSE)标记的人外周血单个核细胞(PBMC)体外检测了XO对T细胞增殖的抑制活性。用珠结合的抗CD3/CD28(1:1比例)活化PBMC,并在有或没有XO的情况下进一步培养。20μg/mL和200μg/mL XO均抑制PBMC的活化(图6,a)。从数量上讲,添加20μg/mL和200μg/mL XO可将活化T细胞的计数分别从24002±6762减少到2342±910(n=3;p=0.029)和2102±1121(n=3,p=0.027)(图6,b)。这些结果与先前的研究一致,在先前的研究报道,MSC来源的外来体抑制T细胞活化和增殖的能力(Riazifar,M.等人Stem cell-derived exosomesas nanotherapeutics for autoimmune and neurodegenerative disorders.ACS Nano13,6670–6688(2019);Hass,R.,Kasper,C.,S.&Jacobs,R.Different populationsand sources of human mesenchymal stem cells(MSC):a comparison of adult andneonatal tissue-derived MSC.Cell Commun.Signal 9,12–12(2011)和Bai,L.等人Effects of mesenchymal stem cell-derived exosomes on experimental autoimmuneuveitis.Sci.Rep.7,4323(2017))。这些结果共同表明,XO对T细胞活化具有有效的抑制作用,尽管这种抑制背后的机制仍有待充分理解。
为了更好地了解潜在的细胞途径,我们进行了Luminex测定,以测定PBMC共培养物上清液中的一些细胞因子谱(图6,c和图22)。我们特别检测了与巨噬细胞和促炎T淋巴细胞亚群相关的细胞因子,如在针对生物材料的FBR中发挥关键作用的Th1和Th17淋巴细胞(Chung,L.等人Interleukin 17and senescent cells regulate the foreign bodyresponse to synthetic material implants in mice and humans.Sci.Transl.Med.12,eaax3799(2020)和Sommerfeld,S.D.等人Interleukin-36γ–producing macrophagesdrive IL-17–mediated fibrosis.Science.Immunology 4,eaax4783(2019))。此外,最近的报道已经证明了XO在体外和体内对Th1/Th17细胞极化的抑制作用(Riazifar,M.等人Stem cell-derived exosomes as nanotherapeutics for autoimmune andneurodegenerative disorders.ACS Nano 13,6670–6688(2019);Shigemoto-Kuroda,T.等人MSC-derived extracellular vesicles attenuate immune responses in twoautoimmune murine models:Type 1diabetes and uveoretinitis.Stem Cell Rep.8,1214–1225(2017)和Bai,L.等人Effects of mesenchymal stem cell-derived exosomeson experimental autoimmune uveitis.Sci.Rep.7,4323(2017))。为了从机制上探讨XO在抑制T细胞向Th1/Th17亚型诱导中的作用,我们测定了几种关键的代表性Th1和Th17细胞因子。在XO存在的情况下,几种促炎性Th1和Th17细胞因子(包括IL-12p70(Th1)、TNFα(Th1)、IL-6(Th17)和IL-22(Th17))的水平显著降低(图6,c)。IFNγ(Th1)呈下降趋势,但并不显著(图22)。有趣的是,XO显著降低了IL-2的产生,IL-2是刺激T淋巴细胞生长、增殖和分化的关键细胞因子。
细胞因子通常被认为是“信号3”,其使辅助T细胞极化为Th1(例如,通过IL-12暴露)或Th17(通过IL-6和IL-23)亚群。此外,细胞因子在抗原反应性T淋巴细胞的克隆扩增和持久性及其效应活性中发挥着重要作用。例如,IFN-γ、IL-12和IL-23与初始CD4+T细胞上表达的受体结合,并通过活化信号转导子和转录活化子1(STAT1)、STAT4和T盒转录因子(T-bet)来驱动Th1细胞的分化(Luckheeram,R.V.,Zhou,R.,Verma,A.D.&Xia,B.CD4+T cells:differentiation and functions.J.Immun.Res.2012,on the internet at:doi.org/10.1155/2012/925135(2012)和Acharya,S.等人Amelioration of Experimentalautoimmune encephalomyelitis and DSS induced colitis by NTG-A-009through theinhibition of Th1 and Th17 cells differentiation.Sci.Rep.8,7799(2018))。此外,TNF–TNFR通过两种方式控制T细胞反应。首先,TNF–TNFR直接向T细胞或同源APC提供增殖和存活信号,调节效应和/或记忆CD4+或CD8+T细胞的频率,这些细胞可以在抗原刺激下从初始T细胞分化而来。其次,它们通过促进细胞因子如IL-4和IFNγ的产生来直接控制T细胞功能,或通过刺激专业或非专业APC产生促炎细胞因子如IL-1和IL-12来间接控制T细胞的功能(Croft,M.The role ofTNF superfamily members in T-cell function anddiseases.Nat.Rev.Immunol.9,271–285(2009))。上调的IL-6与其受体结合并活化类视黄醇相关孤儿受体γT(RORγT)和STAT3,驱动Th17细胞分化和功能(Acharya,S.等人Amelioration ofExperimental autoimmune encephalomyelitis andDSS inducedcolitis byNTG-A-009through the inhibition ofTh1 and Th17cellsdifferentiation.Sci.Rep.8,7799(2018)和Korn,T.等人IL-6controls Th17 immunityinvivo by inhibiting the conversion ofconventional T cells into Foxp3regulatory T cells.Proc.NatlAcad.Sci.USA 105,18460(2008))。然后,由于IL-23和TGFβ3的刺激,致病性Th17细胞极化(Lee,Y.等人Induction andmolecular signatureofpathogenic TH17 cells.Nat.Immunol.13,991(2012))。
我们和其他人已经观察到,MSC仅在脾细胞或外周血单个核细胞存在的情况下,而不是在纯化的CD4+T细胞存在的条件下,在trans-well系统中诱导Treg扩增(Riazifar,M.等人Stem cell-derived exosomes as nanotherapeutics for autoimmune andneurodegenerative disorders.ACS Nano 13,6670–6688(2019);Tasso,R.等人Development of sarcomas in mice implanted with mesenchymal stem cells seededonto bioscaffolds.Carcinogenesis 30,150–157(2008);Tasso,R.等人Mesenchymalstem cells induce functionally active T-regulatory lymphocytes in aparacrinefashion and ameliorate experimental autoimmune uveitis.InvestigativeOphthalmol.Vis.Sci.53,786–793(2012)和English,K.等人Cell contact,prostaglandinE2 and transforming growth factor beta 1play non-redundant roles in humanmesenchymal stem cell induction of CD4+CD25Highforkhead box P3+regulatory Tcells.Clin.Exp.Immunol.156,149–160(2009))。外来体处理的单核细胞性THP-1(但不是MyD88缺陷型THP-1)细胞以一个外来体处理的THP-1细胞与1000个CD4+T细胞的比例将活化的CD4+T淋巴细胞极化为CD4+CD25+FoxP3+Treg(Zhang,B.等人Mesenchymal stem cellssecrete immunologically active exosomes.Stem Cells Dev.23,1233–1244(2013))。XO(以及MSC)很可能通过与髓系相互作用发挥其免疫抑制作用,事实上,在体外用MSC-EV处理的巨噬细胞或单核细胞的过继转移可以保护肺部免受损伤(Mansouri,N.等人Mesenchymalstromal cell exosomes prevent and revert experimental pulmonary fibrosisthrough modulation ofmonocyte phenotypes.JCI Insight 4,e128060(2019))。接下来,我们试图深入了解XO抑制巨噬细胞活化的机制,即利用巨噬细胞对NFκB活化产生荧光素酶。图6,d显示了在存在和不存在XO的情况下,10ng/mL和100ng/mL LPS刺激后荧光素酶活性(NFκB活性)的代表性图像。使用所需的等效区域定量IVIS成像的发光计数,表明添加200μg/mLXO可降低10ng/mL LPS(p=0.044)和100ng/mL LPS(p=0.004)活化的THP-1巨噬细胞的NFκB活化。有趣的是,20μg/mL的XO不能有效降低NFκB的活化。重复相同的条件,并使用酶标仪获取信号,证明XO抑制NFκB活化的效力具有相似的趋势(图6,d)。向培养物中添加200μg/mL XO,将10ng/mL LPS激活的THP-1细胞的发光计数从1097±64降低到762±71(n=4,p=0.0132)。向培养物中添加200μg/mL XO,将100ng/mL LPS活化的THP-1细胞的发光计数从857±112降低到336±32(n=4,p=0.0042)。令人惊讶的是,XO影响了未活化的THP-1细胞的NFκB活化。添加20μg/mLXO可将THP-1细胞中的NFκB活性从109±17上调至203±20(n=4,p=0.0117)。此外,添加200μg/mLXO可将THP-1细胞中的NFκB活性从109±17上调至215±23(n=4,p=0.0105)。这些结果表明XO可上调或下调巨噬细胞中的NFκB活性,部分地概括了它们的亲代MSC,因为MSC本身已被证明可以调节NFκB(Capcha,J.M.C.等人Wharton’sjelly-derived mesenchymal stem cells attenuate sepsis-induced organ injurypartially via cholinergic anti-inflammatory pathway activation.Am.J.Physiol.-Regulatory,Integr.Comp.Physiol.318,R135–R147(2019))。NFκB控制先天免疫和适应性免疫的多个方面,并在调节先天免疫细胞和炎症T细胞的功能、活化和存活方面发挥关键作用(Liu,T.,Zhang,L.,Joo,D.&Sun,S.-C.NF-κB signaling in inflammation.SignalTransduct.Target.Ther.2,17023(2017))。据报道,NF-κB途径对PDMS(Moore,L.B.,Sawyer,A.J.,Charokopos,A.,Skokos,E.A.&Kyriakides,T.R.Loss ofmonocytechemoattractant protein-1alters macrophage polarization and reduces NFkappaBactivation in the foreign body response.ActaBiomater.11,37–47(2015))、聚乙二醇(Amer,L.D.等人Inflammation via myeloid differentiation primary response gene88signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol)hydrogels.Acta Biomater.100,105–117(2019))和藻酸盐(Yang,D.&Jones,K.S.Effect ofalginate on innate immune activation ofmacrophages.J.Biomed.Mater.Res.Part A 90A,411–418(2009)和Mohammadi,M.等人Controlled releaseofstem cell secretome attenuates inflammatory response against implantedbiomaterials.Adv.Healthc.Mater.9,e1901874(2020))有反应,并且NFκB的减少与纤维化的减少相关(Moore,L.B.&Kyriakides,T.R.in Immune Responses to Biosurfaces(edsLambris,J.D.,Ekdahl,K.N.,Ricklin,D.&Nilsson,B.)(Springer InternationalPublishing,2015)和Moore,L.B.,Sawyer,A.J.,Charokopos,A.,Skokos,E.A.&Kyriakides,T.R.Loss of monocyte chemoattractant protein-1alters macrophagepolarization and reduces NFkappaB activation in the foreign bodyresponse.Acta Biomater.11,37–47(2015))。
讨论
针对植入材料的FBR会导致患者不依从和各种健康并发症(Mohammadi,M.R.,Luong,J.C.,Kim,G.G.,Lau,H.&Lakey,J.R.T.in Handbook ofTissue EngineeringScaffolds,Vol.1(eds Mozafari,M.,Sefat,F.&Atala,A.)(Woodhead Publishing,2019);Swanson,E.Analysis of US Food and DrugAdministration breast implantpostapproval studies finding an increased risk of diseases and cancer:why theconclusions are unreliable.Ann.Plast.Surg.82,253–254(2019)和Headon,H.,Kasem,A.&Mokbel,K.Capsular contracture after breast augmentation:an update forclinical practice.Arch.Plast.Surg.42,532–543(2015))。此外,如果目标是在生物材料内进行细胞移植,FBR会导致非功能性移植物被瘢痕组织吞噬(Bochenek,M.A.等人Alginate encapsulation as long-term immune protection ofallogeneic pancreaticislet cells transplanted into the omental bursa ofmacaques.Nat.Biomed.Eng.2,810–821(2018))。这是组织工程和假体产品、传感器和功能细胞移植的临床转化中的主要挑战之一。一个示例是已经研究了大约40年的藻酸盐微胶囊(Franklin Lim,F.&Sun,A.M.Microencapsulated islets as bioartificial endocrine pancreas.Science 210,908–910(1980))。过去十年的努力已经确定,FBR可以通过藻酸盐纯度(Paredes-Juarez,G.A.,de Haan,B.J.,Faas,M.M.&de Vos,P.A technology platform to test theefficacy ofpurification ofalginate.Materials 7,2087–2103(2014))、微胶囊粒径64、表面化学(Vegas,A.J.等人Combinatorial hydrogel library enables identificationof materials that mitigate the foreign body response inprimates.Nat.Biotechnol.34,345(2016)和Liu,Q.等人Zwitterionically modifiedalginates mitigate cellular overgrowth for cell encapsulation.Nat.Commun.10,5262(2019))和藻酸盐组合物(Farah,S.等人Long-term implant fibrosis preventionin rodents and nonhuman primates using crystallized drugformulations.Nat.Mater.18,892–904(2019))来调节。我们最近发现,即使是超纯藻酸盐也能活化小鼠巨噬细胞分泌促炎细胞因子,而UC-MSC分泌的条件培养基抑制这种刺激,部分是通过干扰NFκB途径(Mohammadi,M.等人Controlled release of stem cellsecretome attenuates inflammatory response against implantedbiomaterials.Adv.Healthc.Mater.9,e1901874(2020))。这种细胞因子的分泌并不是藻酸盐刺激所独有的。甚至与不含内毒素的壳聚糖或聚乳酸共培养的人巨噬细胞也已报道分泌IL-8、MIP-1、MCP-1和RANTES或IL-6、IL-8和MCP-197。我们已经描述了两种机制来解释基于藻酸盐的炎症反应的原因。一些研究表明,藻酸盐中存在的免疫原(如脂多糖(LPS)、脂磷壁酸和肽聚糖)是炎症的主要诱因(Paredes-Juarez,G.A.,de Haan,B.J.,Faas,M.M.&de Vos,P.The roleof pathogen-associated molecular patterns in inflammatory responses againstalginate-based microcapsules.J.Control.Release 172,983–992(2013)和Paredes-Juarez,G.A.,de Haan,B.J.,Faas,M.M.&de Vos,P.Atechnology platform to test theefficacy ofpurification ofalginate.Materials 7,2087–2103(2014))。有人报道称,在他们的藻酸盐中未检测到这种污染物(Doloff,J.C.等人Colony stimulating factor-1receptor is acentral component ofthe foreign body response to biomaterialimplants in rodents and nonhuman primates.Nat.Mater.16,671(2017)和Vegas,A.J.等人Combinatorial hydrogel library enables identification ofmaterials thatmitigate the foreign body response in primates.Nat.Biotechnol.34,345(2016)),并将炎症反应与藻酸盐的固有特性联系起来。藻酸盐是一种从海洋褐藻中提取的天然酸性多糖(Fang,W.等人Identification and activation of TLR4-mediated signallingpathways by alginate-derived guluronate oligosaccharide in RAW264.7macrophages.Sci.Rep.7,1663(2017)和Bi,D.等人Alginate enhances Toll-likereceptor 4-mediated phagocytosis by murine RAW264.7 macrophages.Int.J.Biol.Macromol.105,1446–1454(2017))。藻酸盐由β-(1,4)-D-甘露糖醛酸(M)和其C5差向异构体α-(1,4)-L-古罗糖醛酸(G)的不同区段组成,据报道,来源于藻酸盐的古罗糖寡糖可部分通过Toll样受体4(TLR4)信号通路易于活化巨噬细胞(Fang,W.等人Identification andactivation ofTLR4-mediated signalling pathways by alginate-derived guluronateoligosaccharide in RAW264.7 macrophages.Sci.Rep.7,1663(2017)和Bi,D.等人Alginate enhances Toll-like receptor 4-mediatedphagocytosis by murine RAW264.7macrophages.Int.J.Biol.Macromol.105,1446–1454(2017))。
为此,可以声称,缺乏炎症反应的藻酸盐制剂可以增强其在免疫活性啮齿动物中的性能(例如,细胞移植的功能)。在这里,我们开发了一种藻酸盐的混合平台,可以以可控的方式释放脐带来源的MSC外来体。该平台降低了对异种移植的炎症反应,导致T1D免疫活性小鼠模型中的血糖控制>170天。即使在移植时单次注射XO,移植排斥反应也平均延缓约40天。已证明,解决移植物的炎症反应可将功能性胰岛移植延长至一年(Vegas,A.J.等人Long-term glycemic control using polymer-encapsulated human stem cell–derivedbeta cells in immune-competent mice.Nat.Med.22,306–311(2016);Farah,S.等人Long-term implant fibrosis prevention in rodents and nonhuman primates usingcrystallized drug formulations.Nat.Mater.18,892–904(2019)和Alagpulinsa,D.A.等人Alginate-microencapsulation ofhuman stemcell-derivedβcells with CXCL12prolongs their survival and function in immunocompetent mice without systemicimmunosuppression.Am.J.Transplant.19,1930–1940(2019))。已发现局部免疫抑制的寿命和机制是决定移植胰岛耐久性的关键因素。
为了更好地理解XO在细胞水平上的治疗机制,我们发现XO的免疫抑制活性在异质性脾细胞群体中比在共培养物中仅存在CD3+T细胞时更明显(图5)。尽管XO对活化T细胞的影响仍存在争议(Zhang,B.等人Mesenchymal stem cells secrete immunologicallyactive exosomes.Stem Cells Dev.23,1233–1244(2013)和Xie,M.等人Immunoregulatoryeffects of stem cell-derived extracellular vesicles on immunecells.Front.Immunol.11,13–13(2020)),本研究表明XO可能通过与髓系相互作用发挥其免疫抑制作用。据广泛报道,这种类型的抑制是由于调节性T细胞(Treg)(Riazifar,M.等人Stem cell-derived exosomes as nanotherapeutics for autoimmune andneurodegenerative disorders.ACS Nano 13,6670–6688(2019);Zhang,B.等人Mesenchymal stromal cell exosome-enhanced regulatory Tcell production throughan antigen-presenting cell-mediated pathway.Cytotherapy 20,687–696(2018)和Zhang,B.等人Mesenchymal stem cells secrete immunologically activeexosomes.Stem Cells Dev.23,1233–1244(2013))、细胞周期抑制(Lee,S.等人Mesenchymal stem cell-derived exosomes suppress proliferation of T cells byinducing cell cycle arrest through p27kip1/Cdk2 signaling.Immunol.Lett.225,16–22(2020))和腺苷能免疫抑制(E.等人Adenosinergic immunosuppression byhuman mesenchymal stromal cells requires co-operation with T cells.Stem Cells34,781–790(2016))的诱导。对多种信号通路的干扰不仅使XO成为一种激动人心的治疗性生物制剂,而且还表明这种特性可能产生潜在的多因素副作用。未来的详细机制研究需要解决MSC来源XO的治疗与副作用方面,以及围绕其批次间变化和与其储存相关的挑战的问题。
虽然本文AlgXO的应用主要集中在胰岛移植上,但其核心技术可以广泛应用于细胞移植和因免疫反应引起的排斥反应的其他领域。
补充材料
我们最近对骨髓来源的MSC来源的外来体(Riazifar M,等人Stem Cell-DerivedExosomes as Nanotherapeutics for Autoimmune and NeurodegenerativeDisorders.ACS Nano 13,6670-6688(2019))和微泡(Mohammadi MR,等人Isolation andcharacterization ofmicrovesicles from mesenchymal stem cells.Methods,(2019))进行了类似的表征,并发现钙联蛋白标记物可作为区分外来体和微泡以及XO纯度的标记物之一。比较MSC来源的MV和MSC来源的外来体的蛋白质印迹法结果1表明,钙联蛋白和CD81可能用于区分外来体和MV。使用NTA分析对XO进行图像化和定量,其中达到100%融合度的情况下,从约1.5亿至1.9亿培养的MSC中分离出1.7×1012±7.6×1011XO/mL平均直径为105±48nm的球形颗粒(图7,c)。在开发分析XO的方法时,我们特别寻求测定TGFβ-1和PD-L1的表达,因为我们认为其在癌症细胞上的表达XO在肿瘤微环境的免疫逃避中起着关键作用(Daassi D,Mahoney KM,Freeman GJ.The importance of exosomal PDL1 in tumourimmune evasion.Nature Reviews Immunology,(2020);Chen G,等人Exosomal PD-L1contributes to immunosuppression and is associated with anti-PD-1response.Nature 560,382-386(2018)和Haderk F,等人Tumor-derived exosomesmodulate PD-L1 expression in monocytes.Science Immunology 2,eaah5509(2017))。
胰岛剂量研究
胰岛移植的临床试验表明,同种异体或异种来源的胰岛会影响临床疗效,并导致相互矛盾的结果。更具体地说,尽管在非免疫抑制的糖尿病患者中进行异种移植部分减少了低血糖事件,但更高剂量的异种胰岛效果较差(Matsumoto S,等人Clinical PorcineIslet Xenotransplantation Under Comprehensive Regulation.TransplantationProceedings 46,1992-1995(2014)和Ekser B,Bottino R,Cooper DKC.Clinical IsletXenotransplantation:A Step Forward.EBioMedicine 12,22-23(2016))。该试验的结果表明,与更高剂量的异种胰岛(即15000或20000IEQ/kg)相比,5000IEQ/kg的异种胰岛移植具有更好的血糖控制和移植物功能。有趣的是,最近的一项自体移植临床试验表明,胰岛剂量和移植物功能之间存在强烈的剂量-反应关系(Chinnakotla S,等人FactorsPredicting Outcomes After a Total Pancreatectomy and IsletAutotransplantation Lessons Learned From Over 500Cases.Annals of Surgery 262,610–622(2015))。该试验表明,与高剂量(≥5000IEQ/kg或更高剂量)相比,低剂量(<2000IEQ/kg)胰岛移植患者的胰岛移植失败可能性高出25倍(Chinnakotla S,等人FactorsPredicting Outcomes After a Total Pancreatectomy and IsletAutotransplantationLessons Learned From Over500Cases.Annals ofSurgery 262,610–622(2015))。因此,我们试图了解这些观察结果是否可以在我们的临床前糖尿病小鼠模型中复制,我们发现异种胰岛剂量是移植治疗效果的关键决定因素。我们使用低剂量(500IEQ)和高剂量(5000IEQ)胰岛移植在AlgXO和CTRL微胶囊中。AlgXO内的胰岛(5000IEQ)可在约80天内逆转高血糖,但在更长时间内未能逆转。令人惊讶的是,CTRL微胶囊中的5000个IEQ胰岛不能持续逆转STZ小鼠的高血糖(图13,a)。我们进一步重复了5000IEQ移植组中AlgXO移植对OGTT的疗效,并与非糖尿病对照组进行了比较(图13,b)。将5次多项式分配给每只小鼠的OGTT曲线(图13,c),并根据多项式函数的值200计算血糖正常的时间。图13,d表明,接受AlgXO移植的小鼠在OGTT后达到正常血糖的平均时间为112±32分钟。这表明,与非糖尿病小鼠相比,接受AlgXO移植的小鼠的葡萄糖反应延缓(p=0.08)。此外,接受CTRL微胶囊中5000IEQ胰岛的10只糖尿病小鼠中,有6只在移植后一天内死亡,而AlgXO组的这一比例为8分之一(图13,e,p=0.0018)。因此,在移植了高剂量胰岛的小鼠中,AlgXO微胶囊延缓了移植物排斥反应并延长了正常血糖持续时间(图13,f);然而,其疗效低于中等剂量的胰岛,即1500IEQ。我们进一步测试了较低剂量的胰岛(500IEQ),其中AlgXO和CTRL微胶囊都不能逆转受体小鼠的高血糖(图13,g)。
皮下微胶囊周围的免疫微环境
我们发现,在AlgXO纤维化组织中,微胶囊周围的总细胞浸润显著降低(p=0.011)。CD68(p=0.037)和MHCII(p=0.015)也观察到类似的趋势。相反,CD206表达之间没有相关性(p=0.012)。虽然这些观察结果表明,AlgXO纤维化微环境中的免疫浸润较少,发现T细胞亚群(CD3+)和纤维化标志物(αSMA)在AlgXO纤维化微环境中表达更多。这些混合结果与我们关于AlgXO微胶囊在体内的抗炎和/或抗纤维化反应的初步假设相悖。特别是,在AlgXO微环境中高度表达的αSMA是活化的肌成纤维细胞的标志物,其负责植入的藻酸盐微胶囊的纤维化和下游胶原沉积(DoloffJC,等人Colony stimulating factor-1receptoris a central component of the foreign body response to biomaterial implantsin rodents and non-humanprimates.Nature Materials 16,671(2017))。然而,αSMA也是一种在周细胞以及动脉和小动脉周围的血管平滑肌细胞中表达的收缩蛋白(KornfieldTE,Newman EA.Regulation of Blood Flow in the Retinal Trilaminar VascularNetwork.The Journal of Neuroscience 34,11504(2014))。在组织学观察中,发现αSMA细胞具有与血管结构一致的圆形结构(图3,e)。接下来,我们对血管的形成进行定量,发现AlgXO的2周外植体的皮下区域(和微胶囊周围)内有更多的血管(图16,a)。我们进一步从纤维化组织中分离细胞,并使用流式细胞术分析其亚群。与对照组(83.0%±12.8%)相比,从AlgXO纤维化组织中收集的CD45+细胞显著(n=4;p<0.0001)升高(33.1%±8.0%)(图16,b)。进一步分析组织切片中的αSMA,显示AlgXO纤维化微环境中存在血管系统,显示血管形状的微结构(图第16,c和d)。这些结果总体上表明,AlgXO纤维化组织周围存在血管系统和较少的炎症环境。
我们继续进行实验,以进一步研究AlgXO微胶囊的抗炎特性。免疫浸润可以用炎症区域周围灌洗液中存在的细胞类型来表征,特别是对于基于生物材料的炎症(Vegas AJ,等人Combinatorial hydrogel library enables identification of materials thatmitigate the foreign body response in primates.Nature Biotechnology 34,345(2016)和Vegas AJ,等人Long-term glycemic control using polymer-encapsulatedhuman stem cell–derived beta cells in immune-competent mice.Nature Medicine22,306-311(2016))。首先分析皮下灌洗液中的活细胞的普通淋巴细胞标志物(CD45)。图18,a和b显示,在移植CTRL的小鼠灌洗液中,CD45+细胞的百分比为41.6%±4.2%,在移植AlgXO的小鼠中为8.5%±5.2%(n=4,p<0.0001)。CD45+细胞的分门控中,CD11b+细胞的百分比从CTRL的68.4%±9.4%下降到AlgXO微胶囊的17.6%±13.4%(p<0.0001)。约68.2%±9.5%的CD11b+细胞也表达CTRL的MHCII,而AlgXO微胶囊的这一百分比为23.5%±16.3%(p<0.0001)。有趣的是,没有检测到CTRL的CD45+CD11b+MHCII-CD206+(M2样巨噬细胞(Vlahos AE,Cober N,Sefton MV.Modular tissue engineering for thevascularization of subcutaneously transplanted pancreatic islets.Proceedingsof the National Academy of Sciences 114,9337–9342(2017))),而从AlgXO微胶囊的周围环境中回收的用于灌洗的巨噬细胞为3.7%±1.9%(p<0.0001)。
为了获得关于灌洗免疫谱的更全面的信息,我们通过tSNE表征在细胞水平上比较了两种微胶囊的灌洗成分。图18,c和d显示了tSNE图和两个亚群,分析免疫标记物。查询1(对CTRL中存在但AlgXO中不存在的特定亚群进行门控)是CD45+CD11b+CD3-CD19-MHCII-Ly6C-Ly6G-,它可能是非活化的树突细胞(Hey Y-Y,Tan JKH,O’Neill HC.RedefiningMyeloid Cell Subsets in Murine Spleen.Front Immunol 6,652(2016))。查询2(对存在于AlgXO中但不存在于CTRL中的特定亚群进行门控)显示具有CD45-CD11b-CD3-CD19-MHCII-Ly6C-Ly6G-标记的细胞亚群,其可能既不是髓系来源也不是淋巴系来源。这些结果总体上支持了对AlgXO植入物的炎症反应减少,而AlgXO周围形成了非炎症组织。应该注意的是,在AlgXO或CTRL内移植1500IEQ大鼠胰岛,在皮下移植时未能调节血糖异常(图19)。有趣的是,虽然1500IEQ胰岛在腹膜内移植时可以调节小鼠的高血糖,但皮下移植未能做到这一点。更强的纤维化反应、缺乏活动能力和皮下缺氧环境的组合可能是造成这种差异的原因之一。
纳米颗粒释放模型的模拟
为了更好地理解AlgXO控制释放XO的时空分布,我们使用MATLAB代码模拟了这种释放。对直径为300μm的AlgXO内均匀空间分布的XO进行了模拟。由于XO的粒径分布为50nm-150nm,我们使用50nm、100nm和150nm的纳米颗粒粒径进行模拟。为了进一步验证和表征释放曲线,还在我们的模拟模型中测试了其他粒径(即10nm、200nm和500nm)。在我们的实验研究中使用了2.5%(重量/体积)的藻酸盐。因此,我们使用相同的百分比来计算藻酸盐的孔隙率(方程1)。
建模假设
1.微胶囊粒径和孔隙率
对粒径均匀且空间分布的微胶囊进行模拟,假设直径为300μm。2%(重量/体积)的值评估为所有模拟的默认值。藻酸盐固体的孔隙率通过方程1计算。
ρ1是颗粒密度,ρ2是体积密度,ρ3是流体密度。对于藻酸盐固体,颗粒密度为1.6g/ml,流体密度为水的密度,即1g/ml。体积密度将基于藻酸盐的浓度(Calg),如方程2所示。
2.周围介质
假设植入胶囊并被生理液包围,则周围粘度选择为3.5×10-3Pa×s。
3.温度
假设植入胶囊,微胶囊和周围环境的温度应接近体温,即37度。
4.XO浓度
XO在微胶囊内均匀混合,初始浓度为10个颗粒/μm3
5.XO大小
XO通常在30nm-150nm之间。因此,我们将粒径设置为10nm、50nm、100nm、200nm和500nm,以观察随着粒径变化的不同结果。大于450nm的颗粒不能从胶囊中扩散出来(FultzMJ,Barber SA,Dieffenbach CW,Vogel SN.Induction of IFN-γin macrophages by lipopolysaccharide.International Immunology 5,1383-1392(1993))。
6.扩散模型
为了简化我们的建模,我们只是基于梯度密度差异假设XO从微胶囊中扩散出来。我们还假设一个均匀的球体对称地向任何方向扩散。因此,我们建立了XO的一维扩散模型。
数学模型假设
1.一维扩散方程
我们使用热力学方程来计算纳米颗粒的一维扩散。热力学方程是一个偏微分方程,如方程3所示。
C是浓度梯度,t是时间,x是距胶囊中心的距离。D是XO在特定位置的扩散系数。
2.微胶囊外的扩散系数
为了确定胶囊外的扩散系数,我们使用斯托克斯-爱因斯坦方程(Stroke-Einstein)(方程4)。
其中R是气体常数,NA是阿伏伽德罗常数,T是以开尔文为单位的温度,η是溶液的粘度,r是XO的半径。
3.胶囊内的有效扩散系数
多孔介质内部的有效扩散系数主要取决于介质的孔隙率和曲折度。通常,有效扩散系数(Deff)可以基于方程5来计算。
对于多孔介质,通常在孔隙率和曲折度之间存在关系,如方程6所示。
由于微胶囊直径为约150μm,该程序将模拟从0到500μm的浓度梯度。选择600s的运行时间来观察区域内的浓度变化。绘制了纳米颗粒对10nm、50nm、100nm、200nm和500nm的扩散(图4,h)。如图所示,直径较小的纳米颗粒比直径较大的纳米颗粒扩散得更快(图20)。直径为500nm的颗粒不能扩散出胶囊。在600s内,对于粒径为10nm的颗粒,胶囊中心的颗粒浓度将降至初始浓度的40%。对于50nm的纳米颗粒,胶囊中心的浓度将降至初始浓度的80%。对于100nm和200nm,微胶囊中心的浓度没有显著下降。胶囊外纳米颗粒的浓度也取决于颗粒粒径。600s后,对于10nm纳米颗粒,胶囊外纳米颗粒的浓度将大于15个颗粒/μm3。对于50nm、100nm和200nm,距离胶囊中心350μm处没有足够的纳米颗粒(浓度<1个颗粒/μm3)。
通过我们的高通量细胞因子测定,我们发现XO显著减少LPS刺激的巨噬细胞产生G-CSF、IFNγ、LIF、KC、MIP-2、RANTES、IL-6、LIX和VEGEF(图5,e)。这些细胞因子和趋化因子是NFκB炎症途径的标志,表明XO可能通过调节该途径具有抗炎特性。这些细胞因子可能具有互补作用。例如,趋化信号包括CXC趋化因子,如CXCL1/KC、CXCL2/MIP-2和CXCL5/LIX,以及CXCL8/IL-8,它们是NG的有效化学引诱剂,并且它们的产生增加导致中性粒细胞浸润和外渗(AmanzadaA,Moriconi F,Mansuroglu T,Cameron S,Ramadori G,A MalikI.Induction of chemokines and cytokines before neutrophils and macrophagerecruitment in different regions of rat liver after TAAadministration.Laboratory Investigation 94,235-247(2014))。表1总结了这些细胞因子的功能及其与NFκB途径的关系。
表1XO对巨噬细胞细胞因子的影响
方法
UC-MSC及其XO的分离和表征
根据IRB豁免协议#2016-2791,选择在UCI医疗中心分娩的足月妊娠期年龄为18-40岁的健康孕妇(>37周)进行脐带采集。任何已知的复杂妊娠都被排除在采集之外。根据先前发表的方法分离脐带来源的间充质干细胞(UC-MSC),并进行了一些修饰(Lu,L.-L.等人Isolation and characterization of human umbilical cord mesenchymal stem cellswith hematopoiesis-supportive function and otherpotentials.Haematologica 91,1017–1026(2006))。简言之,在无菌层流细胞培养罩下用PBS洗涤UC,并纵向切割以去除血管。然后将组织切成2-3mm3的片段,并在37℃下,在含有5%CO2的湿润培养箱中与0.09%II型胶原酶(Sigma)一起孵育45分钟。消化后,将组织通过100μm网眼大小的过滤器。然后将细胞在300×g和4℃下离心20分钟,并重悬于补充有10%FBS、1%青霉素/链霉素和1%L-谷氨酰胺的DMEM/F12(Gibco)中。将细胞转移到175-cm2的烧瓶中,并在37℃、含5%CO2的湿润空气中孵育。将烧瓶静置2-3天,然后更换培养基以去除非贴壁细胞。然后对贴壁细胞的表面标记物进行表征,以进一步证实其MSC来源。图7,a显示分离的细胞具有低表达的Stro-1、高表达的CD90/Thy1、CD146/MCAM、CD105/内皮蛋白、CD166、CD44,而细胞对CD19、CD45和CD106呈阴性。这样的表达谱与之前的报道一致(Mennan,C.,Garcia,J.,Roberts,S.,Hulme,C.&Wright,K.A comprehensive characterisation of large-scale expanded human bonemarrow and umbilical cordmesenchymal stem cells.Stem Cell Res.Ther.10,99(2019)和Lv,F.J.,Tuan,R.S.,Cheung,K.M.&Leung,V.Y.Concise Review:The surfacemarkers and identity of human mesenchymal.Stem Cells Stem Cells 32,1408–1419(2014))。UC-MSC在无血清培养基中进一步培养2天。接下来,根据已报道的方法进行外来体分离(Riazifar,M.等人Stemcell-derived exosomes as nanotherapeutics forautoimmune and neurodegenerative disorders.ACS Nano 13,6670–6688(2019)和Mohammadi,M.R.等人Isolation and characterization of microvesicles frommesenchymal stem cells.Methods 177,50–57(2019))。简言之,将MSC培养物的条件培养基以300×g离心10分钟。收集上清液并转移到超离心管(Polyallomer Quick-Sealcentrifuge tubes 25×89mm,Beckman Coulter)中。然后将样品在Beckman Colter超级离心机(Optima L-90K或Optima XE-90Ultracentrifuge,Beckman Coulter)中以16500×g(Type Ti 45,Beckman Coulter)离心20分钟,以去除微泡。然后仔细收集上清液,并使用Type Ti 45转子在4℃下以120000×g离心2.5小时。将外来体颗粒重悬于PBS中,并在4℃下以120000×g洗涤1次。然后将颗粒重悬在PBS中并在-80℃下储存。根据国际细胞外囊泡学会制定的方案对XO进行表征,其中存在CD63、TSG101、GAPDH、半乳糖凝集素-1和Hsp70,而不存在内质网标志物钙联蛋白(图7,b)。将20μm XO与1X RIPA(Cell SignalingTechnologies,美国)缓冲液混合,并超声处理5分钟,处理三次,其间有涡流。使用BCA蛋白质测定试剂盒(Thermo Scientific Pierce,Rockford,伊利诺伊州,美国)测定蛋白质含量。然后,将25μL BSA标准品或25μL样品转移到96孔板中,并加入200ml工作试剂。将平板在37℃下孵育30分钟,并使用SpectraMax 384Plus分光光度计在562nm和Soft Max Pro软件(Molecular Devices,1311Orleans Drive,Sunnyvale,加利福尼亚州,美国)分析吸光度。然后在梯度预制聚丙烯酰胺凝胶(Bio-Rad Laboratories,Hercules,加利福尼亚州,美国)上对20μg蛋白质进行电泳。随后将样品转移到硝酸纤维素膜上,之后在4℃下用补充有0.1%聚山梨醇酯20(TBST)的Tris缓冲盐水中的5%印迹级别的阻滞剂脱脂奶粉(Bio-Rad Laboratories)封闭过夜。用TBST洗涤膜,然后与抗钙连蛋白(clone H-70;Santa Cruz Biotechnology,Santa Cruz,加利福尼亚州,美国),半乳糖凝集素-1/LGALS1(D608T),兔单克隆抗体(编号12936),CD63兔单克隆抗体(编号EXOAB-CD63A-1),GAPDH兔单克隆抗体(编号ab181602),Hsp70兔单克隆抗体(编号EXOAB-Hsp70A-1)和TSG101(clone4A10;Abcam,剑桥,英国)的一抗孵育,溶解在0.25%印迹级阻滞剂脱脂奶粉中于4℃过夜。接下来,将用TBST洗涤膜10分钟,洗涤三次。将二抗ECL抗兔IgG辣根过氧化物酶连接的F(ab’)2片段(驴,抗兔)(GE Healthcare,白金汉郡,英国)在TBST中的0.25%印迹级阻滞剂脱脂奶粉中稀释,并孵育1.5小时。用ECLPrime蛋白印迹检测(GE Healthcare)和VersaDoc4000MP(Bio-Rad Laboratories)分析膜。XO用抗CD63修饰的磁珠(外来体分离CD63,批号OK527,Life TechnologiesAS,奥斯陆,挪威)标记过夜,轻轻搅拌。用PBS中1%去除外来体的FBS洗涤磁珠,然后与人IgG(Sigma-Aldrich)在4℃孵育15分钟。在另一个洗涤步骤之后,将磁珠与PE-TGFβ,PE/Cy7-PD-L1和APC/Cy7-MHCII或同种型对照(Biolegend,圣地亚哥,美国)一起温育40分钟,并在室温下轻轻搅拌。在另一个洗涤步骤后,使用FACSAria(BDBioscience)分析样品,并使用FlowJo软件(Tri Star,Ashland,俄勒冈州,美国)处理数据。与抗CD63包被的磁珠结合的XO上TGFβ,PD-L1和MHCII表达的流式细胞术分析表明TGFβ-1和MHCII的表达最低,并且不存在PD-L1(图7,d)。
微胶囊制备
UPLVG藻酸盐(桑维卡,挪威)是通过将2.5%w/v溶解在0.9%无菌盐水溶液中,并安装在空气驱动静电微胶囊发生器上(Nisco Engineering Inc.,Oslo,Norway)制成的。将藻酸盐溶液逐滴加入由20mM无菌氯化钡和25mM HEPES溶液组成的无菌过滤(0.22μm)凝胶溶液中,生成直径约350μm的圆形微胶囊。通过添加7.05×1010±3.69×1010XO/mL制备AlgXO微凝胶,在室温(RT)下解冻10至20分钟。然后通过在100×g和4℃下离心5分钟洗涤微胶囊。
溶解微胶囊和XO收集。
我们首先使用EDTA螯合剂优化了微胶囊的溶解。将浓度为0.5M的EDTA(Sigma-Aldrich)溶解在DI水中,制成储备溶液。进行稀释以测试来自储备溶液的浓度为5mM和10mM的螯合剂活性。在AlgXO或CTRL微胶囊(n=1000个微胶囊/组)上加入每种螯合溶液1毫升,并在相差成像下进行测试。使用EVOS成像系统显微镜(20/40PH 2×;ThermoFisherScientific)获得图像,并以1分钟的间隔拍摄图像。为了确定解离,拍摄图像并使用ImageJ中的微胶囊分析程序(Microcapsule Analysis Program.v5.0.2)分析图像。然后,如前所述,通过程序检测到的微胶囊数量对图像进行量化(Rodriguez,S.等人Characterizationofchelator-mediated recovery of pancreatic islets from barium-stabilizedalginate microcapsules.Xenotransplantation 27,e12554(2019))。基于以下百分比绘制曲线:溶解微胶囊的百分比=在t>0时检测到的微胶囊在t 1/40时检测到微胶囊。根据结果,将微胶囊在10mM EDTA溶液中溶解10分钟(图9)。为了量化包封在AlgXO中的XO,然后将溶解的溶液在4℃和120000×g下超速离心2.5小时。将外来体颗粒重悬于PBS中,并在-80℃下储存,直到进一步分析。
大鼠胰岛质量控制和存活力。
使用4至6周龄的雄性Sprague-Dawley(SD)大鼠(Envigo Harlan,休斯顿,TX)作为胰岛供体。使用标准胶原酶消化和梯度纯化进行胰岛分离。将总导管夹在十二指肠中膜侧。使用23G针将冰冷的胶原酶V溶液(6-7ml,HBSS+浓度为1mg/ml)注射到胆总管(CBD)中。然后从腹腔背壁取出胰腺,并将其转移到冰盒上的50ml锥形管中。将锥形管中的胰腺在37℃水浴(30rpm振荡)下保持17分钟,之后将20ml冷HBSS+加入锥形管中,并用手剧烈振荡。然后使用非连续密度梯度分离和纯化胰岛。从每个分离的批次中,测试胰岛的质量,包括DTZ、存活力和葡萄糖刺激的胰岛素释放(GSIR)测定。在每批胰岛分离后和植入前,我们进行了质量控制测试,以确定胰岛存活力和功能是否适合移植。使用DTZ染色测量的胰岛计数和纯度(每只大鼠胰腺)为947±137IEQ(图10)。每个分离批次的存活率都在90%以上,平均为93%±2%。为了量化胰岛的存活力,将100IEQ胰岛(包封或裸露)用钙黄绿素AM(CalAM,Invitrogen,编号C1430)对活细胞染色30分钟,用碘化丙啶(PI,Invit罗格恩,编号P3566)对死细胞和垂死细胞染色30分钟。使用酶标仪(Tecan Infinite F200;Tecan)分析染色的胰岛。胰岛存活力计算公式为:(CalAM+细胞)/(CalAM+细胞+PI+细胞)×100。在植入前进行GSIR测定以确保胰岛质量。从每个分离批次中,每个样品100IE胰岛的三个技术复制品在37℃和5%CO2下按相应顺序在每个培养基中孵育1小时:低葡萄糖(2.8mmol/L;L1)、高葡萄糖(28mmol/L;H)、高血糖加3-异丁基-1-甲基黄嘌呤(28mmol/L+0.1mmol/L IBMX;H+),最后恢复到低葡萄糖(2.8mmol/L;L2)。收集上清液并在-20℃下储存,直到进行分析。使用猪胰岛素酶联免疫吸附试验(Mercodia,编号#10-1200-01)测定孵育过程中释放的胰岛素浓度。然后使用具有450nm波长滤波器的酶标仪(Tecan Infinite F200和Magellan V7)测定吸光度,并表示为(μg/L)。刺激指数(SI)计算为高血糖条件下分泌的胰岛素浓度与第一次低血糖孵育条件下分泌胰岛素浓度的比值。我们的胰岛质量控制标准为:SI单位>2,存活力>90%,纯度>90%(DTZ)。
扫描电子显微镜。
在SEM分析之前,将AlgXO和CTRL微胶囊在无菌室中风干。将干燥的样品放置在碳抽头成像柱上。我们使用了Philips XL-30FEG SEM和EDS(Noran 6)系统,这是一种热离子场发射SEM,具有由先进计算机技术控制的全自动枪配置(放大倍数高达×800000,分辨率为2nm)。在0.5kV电压和10pA的束电流下,工作距离被调整为10mm。
小鼠注射链脲佐菌素
注射链脲佐菌素(STZ;Sigma CAS#:18883-66-4)之前,C57/BL6小鼠禁食过夜(至少12小时)。注射前将STZ(180mg/kg小鼠体重)溶于10ml STZ缓冲液(0.1M柠檬酸钠缓冲液pH=4.5)中。在腹膜内给药之前,将缓冲液涡旋并在冰上保持约15分钟。为了确保STZ的诱导,小鼠必须高血糖至少一周,并定义为尾静脉的非空腹血糖水平≥350mg/dl。为了最大限度地减少手术引起的死亡率,在移植前通过注射胰岛素调节小鼠的血糖。本研究中的所有血糖读数均为非空腹血糖。
胰岛移植。
动物手术和方案的实施符合UCI动物护理委员会(IACUC)批准的所有相关道德法规。STZ诱导的8至10周龄的糖尿病或非糖尿病免疫功能小鼠(雄性C57BL/6小鼠;JacksonLaboratory)用2.5%异氟烷麻醉,然后将它们的腹部(或上背部)剃毛,用优碘和70%乙醇消毒。使用1mL移液管进行注射,将微胶囊(有或没有胰岛)移植到沿着背部顶部形成的0.5厘米切口中进行植入。对于腹膜内移植,沿腹部中线和腹膜壁切开0.5–1.0cm,然后进行钝性剥离。将微胶囊装入无菌移液管吸头进行注射。然后用缝线缝合腹膜壁。
葡萄糖耐量测试
小鼠在口服葡萄糖耐量测试(OGTT)前禁食10-14小时。接下来,通过将30%的葡萄糖溶解在DPBS(3mg/kg小鼠体重)中来制备新鲜的葡萄糖溶液。在施用葡萄糖之前,测定小鼠的血糖。用2%异氟烷吸入麻醉小鼠,并通过口服管饲法注射葡萄糖溶液。接下来,在注射葡萄糖后10、20、30、60、90、120和180分钟通过尾静脉剪断法测定血糖。使用血糖仪(NEXT glucometer,Ascensia Diabetes Care,Parsippany,NJ)测定从尾静脉获得的血液样本的血糖水平。
纤维组织切片
切割纤维组织(含有微胶囊),并在4℃的4%PFA中固定过夜。接下来,用PBS 3×洗涤组织,并将其包埋在2%琼脂(编号:A1296,Sigma,美国)中。然后用蜡将琼脂模具嵌入塑料中。将整个盒置于58℃石蜡浴中15分钟。然后使用带有Superfrost载玻片的RM2255切片机(Leica)以7μm厚度对组织切片。染色前,进行乙醇梯度脱水和石蜡包埋循环。
灌洗和纤维组织流式细胞术
在从皮下或腹膜内区域移除植入物之前,在离外植体较远的部位形成小切口。用移液管在纤维化微胶囊周围来回注射1毫升冷DPBS 3×,取出悬浮细胞并用DPBS洗涤。在细胞因子分析的情况下,从腹腔收集的灌洗液立即在-80℃冷冻柜中冷冻,直到用干冰运送到Eve技术公司(Eve Technologies)(卡尔加里,加拿大),使用Mouse Focused 32-PlexDiscovery Assay(编号:17619)分析细胞因子。为了分析细胞群,分离的细胞用CD3(1:500稀释,Biolegend编号:100203)、CD11b(1:200稀释,Biolegend编号:101211)、I-A/I–E(1:200稀释,Biolegend编号107628)、CD19(1:200稀释,Biolegend编号:115507)和CD206(1:200稀释,Biolegend,编号:141711)在2%BSA和1%热灭活FBS中染色。从微胶囊周围的纤维化组织中分离的细胞使用了类似的板,但略有差异。为了从纤维化组织中分离细胞,首先将其切成2-5毫米的片,然后使用10mM EDTA溶解微胶囊(见图9)。流式细胞术数据的聚类是通过将所有3个生物复制连接到一个文件中,并使用tSNE(t分布随机邻域嵌入)插件进行1000次迭代聚类来完成的,操作条件为θ=0.5。数据显示为用户门控数量,并根据其各自的X和YtSNE坐标绘制图形。
Click-iTPlus TUNEL分析
为了分析移植胰岛在体内的存活力,我们在移植1个月后取出微胶囊,并根据制造商方案(编号:C10617,Invitrogen)进行TUNEL测定。简言之,用冷PBS洗涤3×微胶囊,并在4℃下在4%福尔马林中固定24小时。使用1×RIPA缓冲液将样品透化20分钟,并用冷PBS冲洗。TdT反应在Click-iT-Plus反应之后进行。最后,用1:2000稀释液进行DAPI复染15分钟,并使用Olympus FV3000激光扫描共聚焦光谱倒置显微镜(Olympus,美国)对微胶囊进行成像。然后使用imageJ分析对总信号面积进行量化,并比较AlgXO和CTRL微胶囊中胰岛的面积百分比。
控制释放研究
制备后,将约1000个AlgXO和CTRL微胶囊置于6孔板中,置于温度为37℃,含有5%CO2的加湿培养箱中。在共同培养后的指定时间点(图4,g),收集1mL培养上清液,并在孔内更换1mL无菌DPBS,以保持培养体积恒定。将板密封,以最大限度地减少由于蒸发造成的水分损失。然后使用NTA测定分离培养基的总蛋白浓度和外来体含量。
纳米粒子跟踪分析
使用NanosightNS3000系统(Malvern Instruments,美国)进行NTA。XO(来自超速离心过程或控释实验)悬浮在PBS中,每毫升含有约107-1010个颗粒,符合Nanosight NS3000的检测限。使用垂直于光束轴排列的光学显微镜,基于光散射分析外来体。记录了一段60秒的视频,随后使用NTA软件进行分析。
气泡捕获接触角法
我们使用了定制的捕获气泡,修改了常规接触角设备(MCA-3,Kyowa InterfaceScience)。在两个载玻片之间的毛细管空间内形成薄AlgXO和CTRL水凝胶。然后将载玻片顶部的水凝胶合并到盛水的烧杯中,并将相机聚焦在水凝胶上。然后在水凝胶表面封闭小气泡,在水凝胶表面形成水-固-气相。使用带有接触角插件的ImageJ软件,在适当的情况下使用圆形和/或椭圆形拟合,测量从气泡捕获的图像和接触角。
微胶囊的机械性能和物理性能
使用微型拉伸压缩测试系统(MicroTester G2,CellScale,安大略省,加拿大)测定微胶囊的机械性能。通过将一个1mm×1mm的压板连接到154μm的悬臂上并安装到仪器上而构建探针。用移液管将微胶囊转移到预先装满水的试验箱中。使用压板悬臂装置分离单个微胶囊,通过MicroTester上的附加显微镜进行定向以聚焦。对于0-50%的压缩应变,使用200s的加载时间、10s的保持时间和20s的释放时间来测定作为时间函数的力。力分辨率调整为1μN,空间分辨率调整为1.5μm。以200ms的间隔记录测定结果。然后将力-位移数据转换为应力-应变,并使用相关曲线从<0.2应变的应力-变形曲线中获得线性回归线。
H&E、Masson三色染色和免疫荧光染色
用三色染色观察胶囊周围的胶原纤维化。2周后从小鼠身上取出CTRL微胶囊,并在4℃下使用4%多聚甲醛固定过夜,然后包埋在石蜡中并切片。在组织染色之前,使用二甲苯对切片进行脱蜡。苏木精和伊红(H&E)染色按照标准程序进行,并使用Permount(FisherScientific)和0.17mm玻璃盖玻片安装载玻片。然后,将组织样本置于在载玻片上,并在Nikon Ti–E荧光显微镜(Leica,美国)下成像。
进行免疫荧光成像以确定微胶囊周围浸润的免疫群体。皮下植入2周后收集的微胶囊然后在琼脂中封闭,并进行石蜡包埋,然后切割并固定。进行乙醇和二甲苯处理以对样品进行脱蜡,然后在高压锅中用柠檬酸盐缓冲溶液对球体进行热介导的抗原回收。之后使用1%牛血清白蛋白(BSA)溶液将微胶囊封闭1小时。接下来,将含有微胶囊的组织切片在免疫染色混合物溶液中孵育1小时,免疫染色混合物溶液由DAPI(500nM)、αSMA(1:500稀释液,Biolegend编号:MMS-466S)、CD68(1:200稀释液,Biolegend编号:B229996)、CD3(1:500稀释液,Biolegend编号:100203)、CD11b(1:200稀释液,Biolegend编号:101211)、I-A/I–E(1:200稀释液,Biolegend编号:107628)和CD206(1:200稀释液,Biolegend,编号:141711)的2%BSA溶液组成。为了对从腹腔内收集的微胶囊进行染色,用溶于5%BSA溶液中的0.1%吐温20洗涤微胶囊三次,并保存在50%甘油溶液中。然后将球体转移到载玻片上,并使用配备有5和×10物镜的Olympus FV3000激光扫描共聚焦光谱倒置显微镜(Olympus,美国)成像。使用405、488和640nm固态激光器,并将所有通道的激光功率调整为1-1.5%。
还通过IgG荧光抗体(PE小鼠IgG1κ同种型ctrl克隆:MOPC-21,Biolegend,编号:400111,1:200)与AlgXO或CTRL微胶囊在37℃下的振荡板上共孵育24小时来进行蛋白质吸附。然后用5mLPBS将微胶囊洗涤2×,并转移到载玻片上,并使用Olympus FV3000激光扫描共聚焦光谱倒置显微镜(Olympus,美国)成像。使用488nm固态激光器,并将激光功率调整为1-1.5%。
人PBMC增殖和细胞因子测定
通过密度梯度离心(Ficoll-Pague plus,GE Healthcare)从健康和匿名献血者(UCI临床和过渡科学研究所)的血沉棕黄层中分离外周血单个核细胞(PBMC)。对于增殖测定,将20μg XO与1×105CFSE[5(6)-羧基荧光素茚乙酸N-琥珀酰亚胺酯](MolecularProbes,Eugene,OR)标记的PBMC孵育。为了活化T细胞增殖,使用用于细胞扩增和活化的DynabeadsTM人T活化剂CD3/CD28,PBMC:DynabeadsTM的比例为1:1。4天后使用流式细胞仪(FACSAria,BD)分析PBMC增殖,并使用FlowJo分析数据。对于细胞因子分析,细胞在含有10%热灭活FBS、1%青霉素/链霉素和1%谷氨酰胺的RPMI 1640中培养。将细胞转移到96或48孔板中,并在37℃、含5%CO2的湿润气氛的条件下孵育。使用用于T细胞扩增和活化的DynabeadsTM人T活化剂CD3/CD28,PBMC:DynabeadsTM的比例为1:1。将XO与新鲜培养基(浓度分别为20μg/mL和200μg/mL)混合。然后在存在和不存在XO的情况下将DynaBeads添加到分离的PBMC中。收集上清液,并使用Luminex检测法分析分泌的细胞因子。收集50μl PBMC培养上清液,在-80℃下冷冻,或立即使用人类定制的带有Luminex 77的ProcartaPlex(11plex,ThermoFisher Scientific,维也纳,奥地利)进行分析。然后将结果记录为平均荧光强度(MFI)。
脾细胞和T细胞增殖测定
从Jackson实验室购买FVB/n小鼠的脾,解剖雄性小鼠,使用70μm无菌过滤器过滤成单细胞悬浮液,并使用三氯化乙酸(TAC)去除红细胞。用PBS洗涤脾细胞一次,并以15×106/mL重悬于染色缓冲液(含0.01%BSA的PBS溶液)中。用增殖染料eFluorTM 670(ThermoFisher Scientific,编号:65-0840-85)对脾细胞进行染色,每10M细胞使用5mM染料,并在37℃水浴中孵育10分钟。最后,将细胞洗涤并以1M/mL重悬于RPMI 1640w/HEPES+L-谷氨酰胺(Gibco,编号:2240-105)完全培养基中,完全培养基含有10%FBS(AtlantaBiologicals,编号:S11550)、1X非必需氨基酸(Gibco,编号:11146-050)、100U/mL青霉素–100μg/mL链霉素(Gibco、编号:15140163)、1mM丙酮酸钠(Gibco编号:11360-070)和55μMβ-巯基乙醇(Gibco编号:21985-023),eFluorTM将670个标记的脾细胞(50×103/孔)接种在96孔板(VWR,编号:10062-902)U形底部中,并用具有CD3(0.5μg/mL、Tonbo,编号:70-0031)和CD28(1μg/mL;Tonbo,编号:70-0281)的板结合的抗亚美尼亚仓鼠IgG(30μg/mL,JacksonImmuno Research,编号:127-005-099)活化。细胞接种后,将浓度为20μg/mL或200μg/mL的XO加入共培养物中。培养4天后,用Zombie Live/Dead Dye(Biolegend,编号:42105)对细胞进行染色,并分析活细胞的增殖。
对T淋巴细胞进行了类似的步骤,其中按照制造商的说明,使用EasySepTM小鼠T细胞分离试剂盒(StemCell Technologies,编号:19851)处理分离的脾细胞。共培养4天后,收集T细胞并用抗小鼠CD16/32(Biolegend,编号:101302)封闭,用Zombie Live/Dead Dye和荧光偶联抗体:CD4(BioLegend,编号=100512;克隆RM4-5)和CD8(Biolegend,编号:100709;克隆53-6.7)染色。使用BD LSR II或BD LSRFortessaTM X-20流式细胞仪处理细胞,并使用FlowJo软件v10.0.7(Tree Star,Inc)进行分析。
巨噬细胞活化试验
RAW 264.7细胞购自ATCC(编号:TIB-71),NFκB报告基因THP-1_Lucia人细胞系购自InvivoGen(编号:thpl-nfkb),用于本研究的下游实验。在有1%青霉素/链霉素和1%L-谷氨酰胺的情况下,添加10%热灭活FBS的RPMI 1640中培养5-10代。然后用10ng/mL或100ng/mL的LPS(Invitrogen,编号:50-112-2025)刺激细胞。然后将受刺激和未受刺激的细胞与结果部分中提到的浓度的XO混合。对照细胞、存在和不存在XO的LPS刺激细胞以及存在和不存在XO的非刺激细胞(每种条件下100000个细胞)在37℃、含5%CO2的加湿培养箱中共培养10-14小时。接下来,收集上清液用于细胞因子分析。上清液在2500×g和4℃下离心5分钟,并在-80℃下储存。然后用干冰将样品运送到Eve技术公司(Eve Technologies)(卡尔加里,加拿大),使用小鼠聚焦32-Plex发现测定法(Mouse Focused 32-PlexDiscoveryAssay)(编号:17619)分析细胞因子。
IVIS成像
用NFκB报告基因THP-1_Lucia人细胞系来测定NFκB活性。这些细胞是通过稳定整合NFκB诱导的Luc报告基因构建体而改造的THP-1单核细胞系。用Quanti-Luc(编号:rep-qlc2)很容易评估细胞培养上清液中NFκB诱导的分泌型萤光素酶的水平。因此,这些细胞可以定量测定NFκB的活化。在无酚培养基中培养细胞,并收集上清液(如“方法”的体外共培养部分所述)。加入浓度为1mg/mL的QUANT-Luc测定溶液并孵育30秒。然后在IVIS成像仪(或VersaDoc 4000MP)中对所得平板成像。优化的采集设置为曝光时间0.2s、视场12.5、光圈数16、分箱因数4。
动物研究
根据美国国立卫生研究院的指导方针,所有动物程序均在加州大学欧文分校机构动物护理和使用委员会(方案编号:AUP-17-241)的批准下进行。

Claims (20)

1.一种杂合微胶囊,包括:
(a)包含一种或多种生物相容性材料的外壳,
(b)包含在微胶囊中的外来体,以及
(c)包封在所述微胶囊内的一种或多种治疗细胞,其中所述治疗细胞能够释放一种或多种治疗药剂。
2.根据权利要求1所述的杂合微胶囊,其中所述一种或多种生物相容性材料是选自藻酸盐、果胶、琼脂糖、胶原和透明质酸的天然材料,或选自聚乙二醇(PEG)、甲基丙烯酸2-羟乙酯(HEMA)和聚乳酸-羟基乙酸(PLGA)的合成材料。
3.根据权利要求2所述的杂合微胶囊,其中所述一种或多种生物相容性材料包括藻酸盐或其衍生物。
4.根据权利要求3所述的杂合微胶囊,其中所述藻酸盐或其衍生物是交联的超纯藻酸盐。
5.根据权利要求1所述的杂合微胶囊,其中所述外壳的外表面是亲水的,并且阻止与蛋白质结合。
6.根据权利要求1所述的杂合微胶囊,其中所述外来体来源于间充质干细胞(MSC)。
7.根据权利要求6所述的杂合微胶囊,其中所述间充质干细胞是脐带间充质干细胞。
8.根据权利要求7所述的杂合微胶囊,其中所述脐带间充质干细胞是人脐带间充质干细胞。
9.根据权利要求1所述的杂合微胶囊,其中所述外来体的粒径为10nm-500nm。
10.根据权利要求9所述的杂合微胶囊,其中所述外来体的粒径为20nm-200nm。
11.根据权利要求1所述的杂合微胶囊,包括微胶囊内的1×105–1×108的外来体。
12.根据权利要求1所述的杂合微胶囊,其中所述一种或多种治疗细胞包括胰岛。
13.根据权利要求12所述的杂合微胶囊,其中所述微胶囊包含1-10个胰岛当量(IEQ)细胞。
14.一种权利要求1所述的杂合微胶囊的制备方法,包括:
(a)从间充质干细胞(MSC)中分离外来体,
(b)获得能够释放一种或多种治疗药剂的治疗细胞,以及
(c)将外来体和治疗细胞加入微胶囊中。
15.根据权利要求14所述的方法,其中所述微胶囊是藻酸盐微胶囊。
16.根据权利要求14所述的方法,其中所述MSC是脐带来源的MSC(UCMSC)。
17.一种治疗受试者的方法,包括向受试者施用根据权利要求1所述的杂合微胶囊,其中所述杂合微胶囊包含的治疗细胞向所述受试者释放治疗药剂,并且其中所述杂合微囊释放外来体以有效减弱基于免疫的异物反应(FBR)并增强所述包封的治疗细胞的活力。
18.根据权利要求17所述的方法,其中所述治疗细胞是胰岛,并且其中所述受试者接受1型糖尿病治疗。
19.一种减弱受试者对微胶囊的免疫反应的方法,所述方法包括向所述受试者施用微胶囊,所述微胶囊包括包含在所述微胶囊内的外来体,其中所述外来体从微胶囊中释放,并且其中在释放时,所述外来体抑制局部免疫微环境并有效地减弱所述免疫反应。
20.根据权利要求19所述的方法,其中对所述微胶囊的免疫反应是对所述微囊中的生物材料的基于免疫的异物反应(FBR)。
CN202180083235.XA 2020-10-09 2021-10-07 用于治疗移植排斥反应的免疫工程生物材料 Pending CN116615449A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063089726P 2020-10-09 2020-10-09
US63/089,726 2020-10-09
PCT/US2021/053948 WO2022076673A1 (en) 2020-10-09 2021-10-07 Immunoengineering biomaterials for treatment of graft rejection

Publications (1)

Publication Number Publication Date
CN116615449A true CN116615449A (zh) 2023-08-18

Family

ID=81125545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180083235.XA Pending CN116615449A (zh) 2020-10-09 2021-10-07 用于治疗移植排斥反应的免疫工程生物材料

Country Status (8)

Country Link
US (1) US20230372403A1 (zh)
EP (1) EP4225336A4 (zh)
KR (1) KR20230079403A (zh)
CN (1) CN116615449A (zh)
AU (1) AU2021358076A1 (zh)
CA (1) CA3195160A1 (zh)
MX (1) MX2023004136A (zh)
WO (1) WO2022076673A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168215B2 (en) * 2006-06-16 2012-05-01 Fmc Biopolymer As Alginate coated, collagen matrix cellular device, preparative methods, and uses thereof
WO2012112982A2 (en) * 2011-02-18 2012-08-23 Massachusetts Institute Of Technology Hydrogel encapsulated cells and anti-inflammatory drugs
JP2015509366A (ja) * 2012-02-22 2015-03-30 ブレインステム バイオテック リミテッド 神経幹細胞および運動ニューロンの生成
WO2015191547A1 (en) * 2014-06-09 2015-12-17 Cornell University Implantable therapeutic delivery system and methods thereof
JP2020515544A (ja) * 2017-03-25 2020-05-28 ユニバーシティ オブ マイアミ 治療細胞を含む生物学的足場

Also Published As

Publication number Publication date
AU2021358076A1 (en) 2023-06-15
MX2023004136A (es) 2023-06-22
EP4225336A4 (en) 2024-11-20
US20230372403A1 (en) 2023-11-23
KR20230079403A (ko) 2023-06-07
AU2021358076A9 (en) 2024-10-03
EP4225336A1 (en) 2023-08-16
WO2022076673A1 (en) 2022-04-14
CA3195160A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
Mohammadi et al. Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation
Liu et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation
Lih et al. Biomimetic porous PLGA scaffolds incorporating decellularized extracellular matrix for kidney tissue regeneration
Fonseca et al. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems
Li et al. Pore size of 3D-printed polycaprolactone/polyethylene glycol/hydroxyapatite scaffolds affects bone regeneration by modulating macrophage polarization and the foreign body response
Cravedi et al. Regenerative immunology: the immunological reaction to biomaterials
Moisenovich et al. Composite scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D cell culturing
Yang et al. An injectable double-network hydrogel for the co-culture of vascular endothelial cells and bone marrow mesenchymal stem cells for simultaneously enhancing vascularization and osteogenesis
JP7033066B2 (ja) 免疫寛容応答を生成する組成物及び方法
JP2018521717A (ja) 細胞および細胞凝集体を封入するための多層ヒドロゲルカプセル
Li et al. Immunosuppressive PLGA TGF-β1 microparticles induce polyclonal and antigen-specific regulatory T cells for local immunomodulation of allogeneic islet transplants
Jeyagaran et al. Type 1 diabetes and engineering enhanced islet transplantation
White et al. Engineering strategies to improve islet transplantation for type 1 diabetes therapy
RU2665359C2 (ru) Элюирующая матрица и ее применения
Tan et al. Bioactivation of encapsulation membranes reduces fibrosis and enhances cell survival
Shi et al. Immune-protective formulations and process strategies for improved survival and function of transplanted islets
Abbaszadeh et al. Emerging strategies to bypass transplant rejection via biomaterial-assisted immunoengineering: Insights from islets and beyond
Mohammadi et al. Controlled release of stem cell secretome attenuates inflammatory response against implanted biomaterials
Srinivasan et al. Controlled delivery of immunomodulators from a biomaterial scaffold niche to induce a tolerogenic phenotype in human dendritic cells
Liu et al. Impact of marine-based biomaterials on the immunoregulatory properties of bone marrow-derived mesenchymal stem cells: potential use of fish collagen in bone tissue engineering
Bal et al. Sequential coating of insulin secreting beta cells within multilayers of polysaccharide nanogels
Neshat et al. Improvement of islet engrafts via Treg induction using immunomodulating polymeric tolerogenic microparticles
Tao et al. Tissue engineering for mimics and modulations of immune functions
Hwang et al. Encapsulation of human islets using a biomimetic self-assembled nanomatrix gel for protection against cellular inflammatory responses
CN116615449A (zh) 用于治疗移植排斥反应的免疫工程生物材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination