CN116571263A - Preparation method of silicon dioxide supported nickel-based catalyst and application of catalyst in hydrogenation of5-hydroxymethylfurfural - Google Patents
Preparation method of silicon dioxide supported nickel-based catalyst and application of catalyst in hydrogenation of5-hydroxymethylfurfural Download PDFInfo
- Publication number
- CN116571263A CN116571263A CN202310540005.2A CN202310540005A CN116571263A CN 116571263 A CN116571263 A CN 116571263A CN 202310540005 A CN202310540005 A CN 202310540005A CN 116571263 A CN116571263 A CN 116571263A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- nickel
- supported nickel
- hydroxymethylfurfural
- hydrogenation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 112
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 239000003054 catalyst Substances 0.000 title claims abstract description 74
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 46
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 35
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 title abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 55
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 claims abstract description 31
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 22
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims abstract description 21
- YCZZQSFWHFBKMU-UHFFFAOYSA-N [5-(hydroxymethyl)oxolan-2-yl]methanol Chemical compound OCC1CCC(CO)O1 YCZZQSFWHFBKMU-UHFFFAOYSA-N 0.000 claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011203 carbon fibre reinforced carbon Chemical group 0.000 claims abstract description 12
- YSWBFLWKAIRHEI-UHFFFAOYSA-N 4,5-dimethyl-1h-imidazole Chemical compound CC=1N=CNC=1C YSWBFLWKAIRHEI-UHFFFAOYSA-N 0.000 claims abstract description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000012018 catalyst precursor Substances 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 239000002243 precursor Substances 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- 239000000047 product Substances 0.000 claims description 13
- -1 nitro, carbonyl Chemical group 0.000 claims description 12
- 229910052799 carbon Chemical group 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 8
- 229910000856 hastalloy Inorganic materials 0.000 claims description 8
- 238000003760 magnetic stirring Methods 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 claims description 6
- 229940078494 nickel acetate Drugs 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 4
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000012065 filter cake Substances 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 238000011946 reduction process Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 claims description 2
- CSDSSGBPEUDDEE-UHFFFAOYSA-N 2-formylpyridine Chemical compound O=CC1=CC=CC=N1 CSDSSGBPEUDDEE-UHFFFAOYSA-N 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 2
- 229940117916 cinnamic aldehyde Drugs 0.000 claims description 2
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 claims description 2
- FXHGMKSSBGDXIY-UHFFFAOYSA-N heptanal Chemical compound CCCCCCC=O FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 2
- 238000009210 therapy by ultrasound Methods 0.000 claims description 2
- DSLRVRBSNLHVBH-UHFFFAOYSA-N 2,5-furandimethanol Chemical compound OCC1=CC=C(CO)O1 DSLRVRBSNLHVBH-UHFFFAOYSA-N 0.000 abstract description 20
- 239000002904 solvent Substances 0.000 abstract description 7
- 239000002028 Biomass Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 229920000642 polymer Polymers 0.000 abstract description 4
- 239000000178 monomer Substances 0.000 abstract description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 21
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 10
- 229910000510 noble metal Inorganic materials 0.000 description 10
- NSQYDLCQAQCMGE-UHFFFAOYSA-N 2-butyl-4-hydroxy-5-methylfuran-3-one Chemical compound CCCCC1OC(C)=C(O)C1=O NSQYDLCQAQCMGE-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 208000016261 weight loss Diseases 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000006561 solvent free reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VOZFDEJGHQWZHU-UHFFFAOYSA-N (5-methylfuran-2-yl)methanol Chemical compound CC1=CC=C(CO)O1 VOZFDEJGHQWZHU-UHFFFAOYSA-N 0.000 description 2
- OYFRNYNHAZOYNF-UHFFFAOYSA-N 2,5-dihydroxyterephthalic acid Chemical compound OC(=O)C1=CC(O)=C(C(O)=O)C=C1O OYFRNYNHAZOYNF-UHFFFAOYSA-N 0.000 description 2
- GSNUFIFRDBKVIE-UHFFFAOYSA-N 2,5-dimethylfuran Chemical compound CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 2
- OXMIDRBAFOEOQT-UHFFFAOYSA-N 2,5-dimethyloxolane Chemical compound CC1CCC(C)O1 OXMIDRBAFOEOQT-UHFFFAOYSA-N 0.000 description 2
- QVYAWBLDJPTXHS-UHFFFAOYSA-N 5-hydroxyfuran-2-carbaldehyde Chemical compound OC1=CC=C(C=O)O1 QVYAWBLDJPTXHS-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910003849 O-Si Inorganic materials 0.000 description 2
- 229910003872 O—Si Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 108010031480 Artificial Receptors Proteins 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000013118 MOF-74-type framework Substances 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000002159 adsorption--desorption isotherm Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000013462 industrial intermediate Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B35/00—Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
- C07B35/02—Reduction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B41/00—Formation or introduction of functional groups containing oxygen
- C07B41/02—Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B43/00—Formation or introduction of functional groups containing nitrogen
- C07B43/04—Formation or introduction of functional groups containing nitrogen of amino groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/30—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
- C07C209/32—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
- C07C209/36—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/14—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
- C07C29/141—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/143—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
- C07C29/145—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/17—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
- C07C29/175—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of an oxo group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/62—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/03—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
- C07C5/05—Partial hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/28—Radicals substituted by singly-bound oxygen or sulphur atoms
- C07D213/30—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/10—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/12—Radicals substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/42—Singly bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to the field of catalysts, in particular to a method for preparing a silicon dioxide supported nickel-based catalyst and application thereof in hydrogenation of biomass platform molecules 5-hydroxymethylfurfural. By Ni 2+ And (3) coordinating with dimethylimidazole to form a Ni-ZIF polymer, adding triethylamine to enable the solution to be alkaline, and then dropwise adding tetraethyl silicate to enable the solution to be slowly hydrolyzed in the solution to prepare the silicon dioxide-loaded Ni catalyst precursor. The precursor is then calcined at high temperature under nitrogen to produce the silica supported nickel-based catalyst. The catalyst can catalyze the hydrogenation of5-hydroxymethylfurfural at room temperature to prepare polymer monomers 2, 5-furandimethanol and 2, 5-dimethyloltetrahydrofuran. The catalyst of the invention not only can catalyze the rapid reaction of5-hydroxymethylfurfural in the presence of water as a solvent, but also can directly catalyze the hydrogenation of5-hydroxymethylfurfural in the absence of solvent, and can catalyze the catalyst containing nitrateSubstrates having unsaturated groups such as a group, carbonyl group, carbon-carbon double bond, etc., exhibit good activity.
Description
Technical Field
The invention belongs to the field of organic synthesis, and particularly relates to a method for preparing 2, 5-furandimethanol and 2, 5-dimethyloltetrahydrofuran by catalyzing 5-hydroxymethylfurfural at room temperature without a solvent.
Background
With the development of socioeconomic performance, fossil resources dominate the traditional energy structure, but excessive reliance on fossil energy presents a series of economic, social and environmental problems. In order to reduce the dependence on fossil fuel resources, the development of renewable resources such as solar energy, wind energy, biomass energy and the like has important significance. Biomass energy is taken as the only renewable carbon source, and has good prospect for research and development. In biomass, 5-Hydroxymethylfurfural (HMF) as an important platform compound can be converted into a variety of high value-added chemicals such as polymer monomers, fine chemicals, fuel additives, liquid fuels, and the like. HMF hydro-reduction can produce a variety of chemicals such as 2, 5-furandimethanol (BHMF), 2, 5-dimethyloltetrahydrofuran (BHMTHF), 5-Methyl Furfuryl Alcohol (MFA), 2, 5-dimethylfuran, 2, 5-dimethyltetrahydrofuran (BMTHF).
Among the hydrogenated products of HMF, BHMF and BHMTHF are unique glycol industrial intermediates, have wide application prospects in biomass conversion, and can be used for preparing artificial receptors in molecular recognition and preparing artificial fibers, polyamides, polyethers, medicines, adhesives, furanyl resins and other high-added-value fine chemicals [ Hou q., et al biorefinery roadmap based on catalytic production and upgrading-hydroxyymethyl furfurals ]]. In recent years, selective hydrogenation of HMF to BHMF and BHMTHF has been reported in numerous catalytic systems, noble metal catalytic systems such as Pd, pt, ru and Ir and non-noble metals such as Co, ni and Cu and the like to selectively hydrogenate HMF to BHMF and BHMTHF [ Jiang Z.chemical transformations of5-hydroxymethylfurfural to highly added value products: present and future]. In noble metal catalytic systems, it is possible to use a relatively mild H 2 High selectivity conversion of HMF is achieved under conditions. But due to noble metalsThe reserves are low, the price is high, and the supply relation is greatly affected by market fluctuation, so that the development and practical industrial application of the noble metal catalyst are limited. In addition, under relatively harsh conditions, non-noble metal catalyst systems can also achieve efficient conversion of HMF and yield high yields comparable to noble metal catalysts. Such as Zhang et al [ Zhang et al, catalytic selective hydrogenation and rearrangement of5-hydroxymethylfurfural to, 3-hydroxyymethyl-cyclopentone over a bimetallic nickel-copper catalyst in water ]]The 2, 5-dihydroxyterephthalic acid is adopted as an organic ligand and Ni, co, cu, fe is adopted as a metal node, a series of MOF-74 derived single/double metal catalysts (Ni/C, cu/C, fe/C, co/C, ni-Cu, ni-Co, ni-Fe) are prepared, and the temperature is 140 ℃ and the pressure is 20bar H 2 The reaction is carried out for 5 hours, and only the HMF has the conversion rate of more than 99 percent and the BHMTHF yield of 79.1 percent under the catalysis of the Ni/C catalyst. Likozar et Al [ B.Likozaret Al process condition-based tuneable selective catalysis of Hydroxymethylfurfural (HMF) hydrogenation reactions to aromatic, saturated cyclic and linear poly-functional alcohols over Ni-Ce/Al 2 O 3 .]By Ni-Ce/Al 2 O 3 As a catalyst, by adjusting the reaction temperature and the solvent in a mixed system of water and THF, 140 ℃ and 50bar H 2 96% BHMF was obtained. At 190℃and 50bar H in n-butanol as solvent 2 88% BHMTHF was obtained. Zhu et al (Zhu Y, et al, radial design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxyymethylfurfural).]Develops a milder catalytic system by utilizing Ni and a carrier Al 2 O 3 Is strong in interaction with the Ni to prepare Ni-Al with the grain size of 3.7nm 2 O 3 Catalyst at 60℃and 60bar H 2 In the following, 100% conversion of HMF and 90.5% yield of BHMTHF were achieved, but there was a problem of serious catalytic deactivation. Patent publication No. CN 113773284A discloses a Co-Ni/SiO 2 Method for preparing BHMTHF by catalyzing 5-hydroxymethylfurfural by using water as solvent at 110 ℃ and 30bar H 2 The reaction was carried out for 4 hours, the yield of BHMTHF was 82.9%, but the reaction temperature was relatively high. The non-noble metal has rich reserve and low priceThe raw materials are relatively easy to obtain, and the like, however, under severe conditions, the HMF is easy to generate various side reactions such as hydrogenolysis, ring opening, polymerization and the like, and the preparation method brings great challenges for obtaining the BHMF and the BHMTHF with high yield and selectivity. Meanwhile, in the production process, a large amount of energy and funds are consumed for product separation and purification, so that the production cost of the product is increased, the HMF has good water solubility, and the environment-friendly and sustainable chemistry principle is considered, water is used as a reaction medium, or solvent-free reaction is directly adopted, so that the cost can be greatly reduced compared with expensive organic solvents. Therefore, the development of the high-efficiency and stable non-noble metal catalyst realizes the selective preparation of BHMF and BHMTHF under mild conditions, and can reduce the separation cost of the products, thereby having important scientific research value and industrial application significance.
Disclosure of Invention
To solve the problems in the prior art, the invention provides a silica supported nickel-based catalyst (Ni-NC/SiO 2 ) Is applied to the preparation of 2, 5-furandimethanol and 2, 5-dimethyloltetrahydrofuran in 5-hydroxymethylfurfural. The catalyst is a non-noble metal catalyst, and the preparation method is simple. The method can catalyze the rapid reaction of the 5-hydroxymethylfurfural in the presence of water as a solvent, and has mild reaction conditions to realize the room-temperature reaction. The catalyst can also directly catalyze the hydrogenation of5-hydroxymethylfurfural under the solvent-free condition, and simultaneously can catalyze substrates containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bonds and the like, and has good activity.
In order to achieve the above purpose, the present invention adopts the following technical scheme:
the invention provides a preparation method of a silicon dioxide supported nickel-based catalyst, which comprises the following steps:
(1) First, nickel acetate and P123 are dissolved in ethanol solution, and the solid is dissolved by ultrasonic treatment for a certain time and fully mixed and coordinated.
(2) Then, the dimethyl imidazole is dissolved in a certain amount of deionized water, and the magnetic stirring is uniform.
(3) And (3) rapidly pouring the solution obtained in the step (1) into the solution obtained in the step (2), magnetically stirring in a water bath for 0.5-2h, rapidly adding triethylamine, and continuously stirring for 0.5-2h. Slowly dripping tetraethyl orthosilicate into the solution, and stirring in a water bath for 10-20h. Then filtering, collecting filter cake, washing, vacuum drying to obtain light blue precursor (Ni-ZIF/SiO 2).
(4) The catalyst precursor (Ni-ZIF/SiO) obtained in the step (3) 2 ) The reduction is carried out in nitrogen atmosphere at 900 ℃ to obtain the nickel catalyst loaded by silicon dioxide.
The addition ratio of the nickel acetate to the P123 to the dimethylimidazole to the triethylamine to the tetraethyl orthosilicate to the ethanol to the deionized water is (0.05-1) g (0.1-3) g (0.1-2) g (0.05-1) g (0.05-2) g (10-50) mL. Preferably (0.1-0.5) g (0.5-2) g (0.5-1) g (0.2-1) g (0.5-1) g (15-25) mL.
Further, the ultrasonic time in the step (1) is 0.1 to 1h, and the preferable result is 0.5h.
Further, the water bath temperature in step (3) is 30-50 ℃, preferably 40 ℃.
Further, the preferable results of the stirring time in the step (3) are 0.5h, 1h, 15h, respectively.
Further, the reduction process in the step (4) is as follows: heating to 400 ℃ at a speed of5 ℃/min in a tube furnace filled with nitrogen, preserving heat for 0.5h, then continuously heating to 900 ℃ at a speed of 2 ℃/min, preserving heat for 2h, then programming to cool to 400 ℃ at a speed of 10 ℃/min, and then naturally cooling to room temperature.
The invention provides the silicon dioxide supported nickel catalyst prepared by the method.
The invention also provides a silica supported nickel catalyst (Ni-NC/SiO) 2 ) The method is applied to the preparation of 2, 5-dihydroxymethyl tetrahydrofuran by hydrogenating 5-hydroxy furfural.
Adding a catalyst, water and 5-hydroxymethylfurfural into a high-pressure-resistant hastelloy reaction kettle according to the dosage ratio of (10-50) mg (10-20) mL to 1mmol, sealing the reaction kettle, filling 1-50bar of hydrogen, and reacting for 1-12h at 25-60 ℃ under magnetic stirring to obtain 2, 5-dimethyloltetrahydrofuran.
Preferably, it is: adding a catalyst, water and 5-hydroxymethylfurfural into a high-pressure-resistant hastelloy reaction kettle according to the dosage ratio of 40mg to 10mL to 1mmol, sealing the reaction kettle, filling 40bar hydrogen, and reacting for 11h at 30 ℃ under magnetic stirring to obtain 2, 5-dimethyloltetrahydrofuran.
The invention also provides a nickel catalyst (Ni-NC/SiO) loaded by the silicon dioxide 2 ) The catalyst is applied to catalyzing the hydrogenation of substrates containing nitro, carbonyl, carbon-carbon double bonds and other unsaturated groups.
Adding a catalyst and a substrate containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bonds and the like into a high-pressure-resistant hastelloy reaction kettle according to the dosage ratio (50-120 mg:5 mmol), sealing the reaction kettle, then filling 1bar-50bar hydrogen, and reacting for 1-12h under magnetic stirring at 25-80 ℃ to obtain a corresponding hydrogenation product.
Preferably, it is: adding a catalyst and a substrate containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bonds and the like into a high-pressure-resistant hastelloy reaction kettle according to the proportion of 100mg to 5mmol, sealing the reaction kettle, then filling 40bar hydrogen, and reacting for 11 hours at 30-80 ℃ under magnetic stirring to obtain a corresponding hydrogenation product. The substrate containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bond and the like is:nitrobenzene, & gtof>5-hydroxymethylfurfural,>furfural, furaldehyde,Benzaldehyde, (-) -benzene>Cinnamaldehyde, & lt & gt>Heptaldehyde, & gt>Pyridine-2-carbaldehyde,Cyclopentanone, < - > or->1-acetophenone, < >>Any one of styrene.
Compared with the prior art, the invention has the following advantages and effects:
1. the invention uses Ni 2+ The catalyst is coordinated with dimethyl imidazole to form a Ni-ZIF polymer, so that the problem of migration and aggregation of metals in the roasting reduction process is solved, and meanwhile, silicon dioxide is adopted as a carrier, so that the content of nickel metal can be effectively reduced, the higher atom utilization rate is realized, the stability of the catalyst can be effectively improved, and the oxidation of the catalyst in air is reduced. The storage time of the catalyst is prolonged.
2. The catalyst prepared by the method is used for catalyzing the water phase hydrogenation of the 5-hydroxymethylfurfural. Compared with the existing method, the method is relatively friendly to the environment, has milder reaction temperature, and can realize the room temperature catalysis of the non-noble metal to prepare the 2, 5-dimethylolfuran by the 5-hydroxymethylfurfural.
3. The catalyst can realize solvent-free hydrogenation of5-hydroxymethylfurfural, and reduce energy consumption for separation and purification. And can catalyze unsaturated group substrates containing nitro, carbonyl, carbon-carbon double bond and the like to hydrogenate, and the catalyst has higher universality.
Drawings
FIG. 1 is a schematic flow chart of a catalyst preparation method of the present invention.
FIG. 2 is a silica supported nickel catalyst precursor (Ni-ZIF/SiO) prepared in example 1 2 ) Is a thermal weight graph of (2).
FIG. 3 silica supported nickel catalyst precursor (Ni-ZIF/SiO) prepared in example 1 2 ) X-ray diffraction pattern (XRD pattern).
FIG. 4 is a silica supported nickel catalyst (Ni-ZIF/SiO) prepared in example 1 2 ) Is a scanning electron microscope image of (c).
FIG. 5 silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) X-ray diffraction pattern (XRD pattern).
FIG. 6 silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) Nitrogen isothermal adsorption desorption curve and pore size distribution diagram.
FIG. 7 is a silica supported nickel catalyst (Ni-NC/SiO) prepared in example 1 2 ) Transmission electron microscopy images of (c).
FIG. 8 is a silica supported nickel catalyst (Ni-NC/SiO) prepared in example 1 2 ) Particle size distribution of nickel nanoparticles.
FIG. 9 is a silica supported nickel catalyst (Ni-NC/SiO) prepared in example 1 2 ) Scanning electron microscope-EDS (electron microscope-electron microscope) energy spectrum
FIG. 10 silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) X-ray photoelectron spectrum (XPS spectrum) Ni2p spectrum.
FIG. 11 silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) Is a hydrogen overflow detection object diagram.
FIG. 12 silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) Purifying the physical diagram after solvent-free reaction.
Detailed Description
The following detailed description of the embodiments of the present invention refers to the accompanying drawings, which are not intended to limit the scope of the invention.
Unless otherwise specified, reagents and equipment used in the following examples are commercially available products. The specific implementation cases are as follows:
example 1 preparation of silica supported nickel catalyst (Ni-NC/SiO 2):
the reaction process shown in FIG. 1 is specifically prepared by the following method.
(1) First, 0.18 of nickel acetate and 1gP123 were dissolvedDissolving in 20ml ethanol solution, and ultrasonic treating for 0.5 hr to dissolve solid completely and make Ni 2+ And P123.
(2) Then, 0.8g of dimethylimidazole was dissolved in 20ml of deionized water and stirred magnetically well.
(3) And (3) rapidly pouring the solution obtained in the step (1) into the solution obtained in the step (2), magnetically stirring in a water bath for 1h, rapidly adding 0.5g of triethylamine, and continuously stirring for 1h. Slowly dripping 0.45 g or 0.9g or 1.8g tetraethyl orthosilicate into the solution, and stirring in a water bath for 15h. Filtering, collecting filter cake, washing with absolute ethanol, and vacuum drying at 70deg.C to obtain light blue precursor (Ni-ZIF/SiO) 2 )。
(4) The catalyst precursor (Ni-ZIF/SiO) obtained in the step (3) 2 ) In nitrogen atmosphere, the temperature is programmed to 400 ℃ at a temperature rising rate of5 ℃/min, the mixture is kept for 0.5h, the temperature is continuously increased to 900 ℃ at a temperature rising rate of 2 ℃/min, the mixture is kept for 2h, and then the mixture is naturally cooled to room temperature after being programmed to 400 ℃ at a temperature of 10 ℃/min, so as to obtain the nickel catalyst loaded by silicon dioxide.
The silica supported nickel catalyst precursor prepared in example 1 (Ni-ZIF/SiO 2 ) Thermogravimetric analysis was performed. The obtained Ni-ZIF/SiO 2 The thermal decomposition diagram is shown in FIG. 2, and the test data shows that Ni-ZIF/SiO increases with increasing temperature 2 There are three rapid weight loss zones, 30 ℃ to 200 ℃ being the first weight loss zone, and the sample loses weight most rapidly around 197 ℃, which is likely to be the volatilization of water and residual P123 adsorbed by the material. The second rapid weight loss zone is 200-400 ℃, the weight loss speed is the fastest at 370 ℃, the Ni-ZIF structure may begin to collapse in the temperature zone, and partial carbon and nitrogen-containing substances begin to decompose. A rapid loss of weight peak also occurred at around 423 c, indicating further rapid collapse of the Ni-ZIF structure. Then along with the temperature rise, the weight of the material is slowly lost, the carbon material is possibly decomposed continuously at high temperature, nickel metal is reduced, the weight of Ni-ZIF/SiO2 is completely lost by 33.14 percent when the temperature reaches 900 ℃,
FIG. 3 is Ni-ZIF/SiO 2 XRD diffractograms, and physical patterns of different nickel contents. Along with the difference of the using amount of tetraethyl orthosilicate, the dioxygen obtained by hydrolysisThe amount of silicon carbide varies, as does the nickel content of the catalyst. Ni-ZIF/SiO catalyst with high nickel content 2 (H) Darker color, 2θ= 33.84 °,60.06 ° is the relevant diffraction peak of nickel, and its peak intensity is also stronger.
FIG. 4 is a Ni-ZIF/SiO 2 SEM characterization of the catalyst from which it can be seen that the precursors are dendritic with irregular particles cross-linked to each other, and are intricate and stacked on each other. Possibly this is Ni-NC/SiO 2 The reason for the large specific surface area of the catalyst. It is well known that catalysts have a large specific surface area and provide a large number of active sites per unit mass of catalyst in contact with the substrate, which increases the conversion rate of the substrate.
FIG. 5 is a silica supported nickel catalyst (Ni-NC/SiO) prepared in example 1 2 ) X-ray diffraction pattern (XRD pattern). The diffraction pattern of the catalyst and the nickel PDF card were well matched by comparison with the PDF card database (JCPDS, PDF # 04-0850). Characteristic peaks 2θ=44.4 °, 51.9 °, 76.5 ° correspond to (111), (200), and (220) crystal planes of nickel, respectively, and as the nickel content increases, the intensity of diffraction peaks is also stronger. In Ni-NC/SiO 2 In the XRD diffractogram of the catalyst, the strong peak 2θ=21.3° is a characteristic peak of silica. XRD results indicate that the silica supported nickel catalyst has been successfully prepared.
FIG. 6 is a silica supported nickel catalyst precursor (Ni-ZIF/SiO) prepared in example 1 2 ) And calcined catalyst (Ni-NC/SiO) 2 ) N of (2) 2 Adsorption-desorption and pore size distribution. Ni-NC/SiO 2 The nitrogen adsorption isotherm of the catalyst shows an adsorption-desorption isotherm of type IV of the H4 hysteresis loop, which indicates Ni-NC/SiO 2 The catalyst has mesoporous and irregular pore structure, and is slit-pore type. And Ni-ZIF/SiO 2 In contrast, after calcination, ni-NC/SiO 2 The specific surface area of the catalyst becomes smaller, which may be caused by collapse of the catalyst structure during calcination.
The silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) Scanning with a Transmission Electron Microscope (TEM), and obtaining a transmission electron microscope spectrum and a particle diameter distribution chart after treatment as shown in FIGS. 7 and 8, from the figuresIt can be found that: it is clear from the TEM image that the nickel nanoparticles are uniformly distributed on the silica support, have uniform size, and do not cause obvious agglomeration. The particle size distribution of the nickel nanoparticles is shown in FIG. 8, with an average particle size of 9.26nm. Consistent with the nickel nanoparticle particles calculated using the Scherrer equation after XRD data (calculated size: 9.18 nm). It should be noted that Ni-NC/SiO 2 The nickel nanoparticles in the TEM image of the catalyst did not significantly agglomerate, which is attributable to the coordination of nickel and dimethylimidazole in the precursor, resulting in high dispersion of nickel. It is demonstrated that highly dispersed silica supported nickel catalysts can be prepared by this method.
FIG. 9 is a silica supported nickel catalyst (Ni-NC/SiO) prepared in example 1 2 ) Is a scanning electron microscope-EDS spectrogram of (c). It can be seen that nickel element is uniformly distributed in the catalyst, and that part of nitrogen and carbon elements remain partially after the Ni-ZIF is roasted. This may be the reason for the high dispersion of nickel nanoparticles in the catalyst without significant agglomeration.
FIG. 10 is an X-ray photoelectron spectrum (XPS spectrum) Ni2p spectrum of a silica-supported nickel catalyst (Ni-NC/SiO 2) prepared in example 1. Peak at 852.6eV binding energy with metallic Ni 0 In relation, the 855.5eV binding energy is attributable to Ni in the oxidized state 2+ The 856.2eV binding energy is attributable to Ni-O-Si. Ni-NC/SiO compared with silicon dioxide directly loaded with nickel 2 Ni in the catalyst 0 The metal content is higher, the oxidation state content is only 15.5%, and the Ni-O-Si state content is also higher, which indicates that the interaction between nickel and the carrier is stronger, and the nickel nano-particles are more stable.
FIG. 11 silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) Hydrogen overflow detection graph of (2). Tungsten oxide is unreactive with hydrogen molecules at low temperatures (fig. 11-a, b), and high temperatures of 400 ℃ are required to react. When Ni-NC/SiO 2 Catalyst and WO 3 After mixing, the color of the mixed sample changed significantly from pale yellow to olive after 10min of treatment in a hydrogen atmosphere at 30 ℃ (FIG. 11-d), indicating that active hydrogen species transferred to WO under this condition 3 The catalyst showed that hydrogen flooding occurred. And the sample is treated at 60deg.C for 10minThe color of the sample is obviously deepened, which indicates that more hydrogen is dissociated from the active center of the catalyst under the high temperature condition, and more active hydrogen species overflows to WO 3 And thereby causes the color of the sample to change to a greyish green (fig. 11-e). When the sample was treated overnight at 30℃the colour of the sample changed to dark grey-green (FIG. 11-f), as can be explained by more active hydrogen species and WO 3 Combine to form H x WO 3 Experimental results confirm that hydrogen spills exist on the surface of the catalyst, so that the carrier can become an active center, and the contact probability of the reaction substrate and the active species is increased, which is probably one of reasons for high activity of the catalyst. Both increasing the temperature and extending the reaction time, more active hydrogen species can be produced, consistent with experimental data.
FIG. 12 is a silica supported nickel catalyst (Ni-NC/SiO) prepared in example 1 2 ) Purification scheme after solvent-free reaction. Adding a catalyst and a substrate containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bonds and the like into a high-pressure-resistant alloy reaction kettle according to the proportion of 100mg to 5mmol, sealing the reaction kettle, filling 40bar hydrogen, magnetically stirring, and reacting for 11h at 30-80 ℃. After the reaction is finished, other purification operations are not needed, and the product can be obtained into a pure product with higher purity through twice centrifugation.
Examples 2 to 6
The silica supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) The method is used for preparing 2, 5-dihydroxymethyl tetrahydrofuran by hydrogenating 5-hydroxy furfural, and comprises the following steps:
Ni-NC/SiO 2 Catalyst (40 mg), 5-hydroxymethylfurfural (1 mmol) and water (10 mL) were added to a high-pressure-resistant hastelloy reaction vessel, the reaction vessel was sealed, the air in the reaction vessel was replaced with hydrogen for 5 to 6 times, then hydrogen was charged under a certain pressure, the autoclave was heated to a set temperature (e.g., 60 ℃ C.) and stirred under magnetic stirring at a rate of 1000RPM (revolutions per minute, r/min) for 5 hours. Waiting for the end of the reaction, cooling the autoclave to room temperature and decompressing, filtering the reaction solution with a 0.45 μm organic filter head, subjecting the reaction solution to ultra-high phase liquid chromatography (Agilent 1260) detection, and identifying the product with a gas mass spectrometer (Trace 1300-ISQ). The reaction results of different hydrogen pressures affect the reaction rate, and are shown in table 1:
TABLE 1
Based on the above results, it is found that the higher the hydrogen pressure, the higher the conversion, the more 89% when the hydrogen pressure reaches 20bar, and the 99% when the hydrogen pressure reaches 30bar, so that the hydrogen pressure is preferably 20bar or more, more preferably 40bar.
Examples 7 to 11
According to the procedure and procedure of example 6, different reaction temperatures were varied to give 2, 5-furandimethanol and 2, 5-dimethyloltetrahydrofuran. As shown in table 2:
TABLE 2
Under the high temperature condition, the catalyst has stronger hydrogen activating capability and is more beneficial to the generation of 2, 5-dihydroxymethyl tetrahydrofuran. High conversion (99%) of HMF can be achieved at lower temperatures (25 ℃) and 62% of 2, 5-dimethyloltetrahydrofuran can be obtained at 30 ℃.2, 5-dihydroxymethyl tetrahydrofuran with 86% yield can be obtained by increasing the temperature to 60 ℃. In view of energy saving and good yield of 2, 5-dihydroxymethyl tetrahydrofuran at low temperature, the subsequent study was continued at 30 ℃.
Examples 12 to 18
The same procedure and procedure as in example 8 were followed, except that the reaction temperature was fixed at 30℃and the hydrogen pressure at 40bar, and the reaction time was changed, 2.5-furandimethanol and 2, 5-dimethyloltetrahydrofuran were also obtained, but the conversion and the yield were different, as shown in Table 3:
TABLE 3 Table 3
At the initial stage of the reaction, the HMF is rapidly converted, and the conversion rate of the HMF can reach 94% within 0.5h. The yields of BHMF and BHMTHF were 59% and 16%, respectively, and after the reaction time was extended to 1h, the HMF conversion was >99%, yielding 55% BHMF and 25% bhmth, and further extended to 11h over time, yielding 88% BHMTHF.
Examples 19 to 28
Silica-supported nickel catalyst prepared in example 1 (Ni-NC/SiO 2 ) The method is applied to solvent-free catalysis of5-hydroxy furfural and catalysis of hydrogenation of substrates containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bonds and the like, and comprises the following steps: adding one of a catalyst and a substrate containing unsaturated groups such as nitro, carbonyl, carbon-carbon double bonds and the like into a Hastelloy reaction kettle with high pressure resistance according to the proportion of 100mg to 5mmol, sealing the reaction kettle, replacing air in the reaction kettle with hydrogen for 5-6 times, then filling hydrogen with certain pressure, heating the reaction kettle to a set temperature (such as 30 ℃), and stirring for reaction for 11h at the speed of 1000RPM (rotating speed per minute, r/min) under magnetic stirring. After the reaction was completed, the autoclave was cooled to room temperature and depressurized, the autoclave was opened, the reaction mixture was filtered with an organic filter head of 0.45 μm, and the reaction mixture was subjected to gas chromatography (Agilen 7890B) and the product was identified by a gas mass spectrometer (Trace 1300-ISQ). As shown in table 4:
table 4 results of catalysts for different substrates
Claims (10)
1. A method for preparing a silica supported nickel-based catalyst, comprising the steps of:
(1) Dissolving nickel acetate and P123 in ethanol solution, and carrying out ultrasonic treatment to dissolve the solid and fully and uniformly mixing and coordinating;
(2) Dissolving dimethyl imidazole in deionized water, and magnetically stirring uniformly;
(3) Pouring the solution obtained in the step (1) into the solution obtained in the step (2) rapidly, magnetically stirring in a water bath for 0.5-2h, rapidly adding triethylamine, and continuously stirring for 0.5-2h; slowly dripping tetraethyl orthosilicate into the solution, and stirring in a water bath for 10-20h; filtering, collecting filter cake, washing, vacuum drying to obtain light blue precursor Ni-ZIF/SiO 2 ;
(4) The catalyst precursor Ni-ZIF/SiO obtained in the step (3) is prepared 2 Reducing in nitrogen atmosphere at 900-1000 deg.c to obtain nickel catalyst supported by silica;
wherein the addition ratio of the nickel acetate to the P123 to the dimethylimidazole to the triethylamine to the tetraethyl orthosilicate to the ethanol to the deionized water is 0.05-1g to 0.1-3g to 0.1-2g to 0.05-1g to 0.05-2g to 10-50mL.
2. The method for preparing a silica supported nickel-based catalyst according to claim 1, wherein the ultrasonic time in step (1) is 0.1 to 1h, preferably 0.5h;
the water bath temperature in the step (3) is 30-50 ℃, preferably 40 ℃;
and (3) stirring for 0.5h, 1h and 15h respectively.
3. The method for preparing a silica supported nickel-based catalyst according to claim 1, wherein: the addition ratio of the nickel acetate to the P123 to the dimethylimidazole to the triethylamine to the tetraethyl orthosilicate to the ethanol to the deionized water is 0.1-0.5g to 0.5-2g to 0.5-1g to 0.2-1g to 0.5-1g to 15-25mL.
4. The method for preparing a silica supported nickel-based catalyst according to claim 1, wherein: the reduction process in the step (4) is as follows: heating to 400 ℃ at a speed of5 ℃/min in a tube furnace filled with nitrogen, preserving heat for 0.5h, then continuously heating to 900 ℃ at a speed of 2 ℃/min, preserving heat for 2h, then programming to cool to 400 ℃ at a speed of 10 ℃/min, and then naturally cooling to room temperature.
5. A silica-supported nickel-based catalyst obtained by the method for producing a silica-supported nickel-based catalyst according to any one of claims 1 to 4.
6. The use of the silica supported nickel catalyst according to claim 5 in the preparation of 2, 5-dimethyloltetrahydrofuran by hydrogenation of5-hydroxy furfural.
7. The application according to claim 6, characterized in that it comprises the steps of:
adding a catalyst, water and 5-hydroxymethylfurfural into a high-pressure-resistant hastelloy reaction kettle according to the dosage ratio of 10-50mg to 10-20mL to 1mmol, sealing the reaction kettle, filling 1bar-50bar hydrogen, and reacting for 1-12h at 25-80 ℃ under magnetic stirring to obtain 2, 5-dimethyloltetrahydrofuran.
8. The use of the silica supported nickel catalyst according to claim 5 for catalyzing hydrogenation of substrates containing nitro, carbonyl, carbon-carbon double bond unsaturated groups.
9. The application according to claim 8, characterized in that it comprises the steps of:
adding a catalyst and a substrate containing nitro, carbonyl and carbon double bond unsaturated groups into a high-pressure-resistant hastelloy reaction kettle according to the proportion of 50-120mg to 5mmol, sealing the reaction kettle, filling 1bar-50bar hydrogen, magnetically stirring, and reacting at 25-80 ℃ for 1-12h to obtain a corresponding hydrogenation product.
10. Use according to claim 9, whichCharacterized in that the substrate containing nitro, carbonyl and carbon-carbon double bond unsaturated groups is:nitrobenzene, & gtof>5-hydroxymethylfurfural,>furfural, & lt & gt>Benzaldehyde, (-) -benzene>Cinnamaldehyde, & lt & gt>Heptaldehyde, & gt>Pyridine-2-carbaldehyde, < - > and->Cyclopentanone (C),1-acetophenone, < >>Any one of styrene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310540005.2A CN116571263B (en) | 2023-05-15 | 2023-05-15 | Preparation method of silicon dioxide supported nickel-based catalyst and application of catalyst in hydrogenation of 5-hydroxymethylfurfural |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310540005.2A CN116571263B (en) | 2023-05-15 | 2023-05-15 | Preparation method of silicon dioxide supported nickel-based catalyst and application of catalyst in hydrogenation of 5-hydroxymethylfurfural |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116571263A true CN116571263A (en) | 2023-08-11 |
CN116571263B CN116571263B (en) | 2024-05-03 |
Family
ID=87533518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310540005.2A Active CN116571263B (en) | 2023-05-15 | 2023-05-15 | Preparation method of silicon dioxide supported nickel-based catalyst and application of catalyst in hydrogenation of 5-hydroxymethylfurfural |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116571263B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108502895A (en) * | 2018-05-14 | 2018-09-07 | 浙江海洋大学 | A kind of silica@ZIF-8 nano materials and preparation method for transmitting active constituent |
CN110227551A (en) * | 2019-07-01 | 2019-09-13 | 湘潭大学 | A kind of nucleocapsid catalyst ZIF-67@SiO of hydrophobically modified2The method for preparing cinnamyl alcohol for cinnamic acid transfer hydrogenation |
CN110496614A (en) * | 2018-05-16 | 2019-11-26 | 中国科学院大连化学物理研究所 | Metallic catalyst, preparation method and the application in furfuryl alcohol is prepared in aqueous catalysis furfural hydrogenation |
CN112371153A (en) * | 2020-11-03 | 2021-02-19 | 湖北大学 | Bimetallic CoNi-ZIF derived CoNi @ CN catalyst, preparation method and catalytic hydrogenation application thereof |
CN113061122A (en) * | 2021-03-15 | 2021-07-02 | 昆明理工大学 | Preparation method of 2, 5-dihydroxymethyl tetrahydrofuran |
CN115678028A (en) * | 2022-10-27 | 2023-02-03 | 常熟理工学院 | Nano flower-shaped Ni-ZIF material and preparation method and application thereof |
CN116060012A (en) * | 2021-10-29 | 2023-05-05 | 中国石油化工股份有限公司 | SiO (silicon dioxide) 2 Supported Ni catalyst, preparation method and application thereof |
-
2023
- 2023-05-15 CN CN202310540005.2A patent/CN116571263B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108502895A (en) * | 2018-05-14 | 2018-09-07 | 浙江海洋大学 | A kind of silica@ZIF-8 nano materials and preparation method for transmitting active constituent |
CN110496614A (en) * | 2018-05-16 | 2019-11-26 | 中国科学院大连化学物理研究所 | Metallic catalyst, preparation method and the application in furfuryl alcohol is prepared in aqueous catalysis furfural hydrogenation |
CN110227551A (en) * | 2019-07-01 | 2019-09-13 | 湘潭大学 | A kind of nucleocapsid catalyst ZIF-67@SiO of hydrophobically modified2The method for preparing cinnamyl alcohol for cinnamic acid transfer hydrogenation |
CN112371153A (en) * | 2020-11-03 | 2021-02-19 | 湖北大学 | Bimetallic CoNi-ZIF derived CoNi @ CN catalyst, preparation method and catalytic hydrogenation application thereof |
CN113061122A (en) * | 2021-03-15 | 2021-07-02 | 昆明理工大学 | Preparation method of 2, 5-dihydroxymethyl tetrahydrofuran |
CN116060012A (en) * | 2021-10-29 | 2023-05-05 | 中国石油化工股份有限公司 | SiO (silicon dioxide) 2 Supported Ni catalyst, preparation method and application thereof |
CN115678028A (en) * | 2022-10-27 | 2023-02-03 | 常熟理工学院 | Nano flower-shaped Ni-ZIF material and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
RUN-PING YE ET AL.: "Engineering Ni/SiO2 catalysts for enhanced CO2 methanation", 《FUEL》, vol. 285, pages 81 - 10 * |
Also Published As
Publication number | Publication date |
---|---|
CN116571263B (en) | 2024-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109482235B (en) | Preparation method and application of N-doped mesoporous carbon supported metal nano catalyst | |
WO2024066446A1 (en) | Method for preparing cyclohexanone compound by photocatalysis of biomass phenolic compound | |
CN111574483A (en) | Preparation method of 2, 5-furandimethanol | |
CN113559861A (en) | Cu-Ni bimetallic catalyst for directly converting furfural into tetrahydrofurfuryl alcohol, preparation method and application | |
CN117019147A (en) | Synthesis method of high-dispersity supported catalyst and method for preparing furfuryl alcohol by catalyzing furfural by using high-dispersity supported catalyst | |
CN107684921B (en) | Catalyst for converting TMBQ into TMHQ and preparation method thereof | |
CN114085136B (en) | Method for preparing cyclopentanone by catalyzing furfural | |
CN111330580A (en) | Acid-resistant catalyst, preparation method thereof and application of acid-resistant catalyst in water-phase hydrogenation production of succinic acid | |
CN116571263B (en) | Preparation method of silicon dioxide supported nickel-based catalyst and application of catalyst in hydrogenation of 5-hydroxymethylfurfural | |
Hao et al. | Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst | |
CN114377718B (en) | Nickel-copper bimetallic catalyst and preparation method and application thereof | |
CN114733530B (en) | Hydrogenation catalyst of organic liquid hydrogen storage carrier, and preparation method and application thereof | |
CN113304756B (en) | Ni-Mo bimetal alloy catalyst and preparation method and application thereof | |
CN115069254A (en) | High-activity nickel-based catalyst, preparation method thereof and application thereof in furfural hydrogenation | |
CN112371170B (en) | Heterojunction nano composite catalyst and preparation method and application thereof | |
CN115385773A (en) | Method for preparing 1, 5-pentanediol through one-step hydrogenation of furfural | |
CN113336624B (en) | Method for selectively hydrogenating phenol on Ni-based catalyst | |
CN109675638B (en) | Composite catalytic material, preparation method and application in-situ dehydrogenation hydrogenation reaction mediated preparation of 2, 5-dimethylfuran | |
CN108101833B (en) | Method for synthesizing 9-ethyl octahydrocarbazole under catalysis of RuCo/N-CNTs catalyst | |
CN114713236B (en) | Ni-ReO x /TiO 2 Bimetallic catalyst, preparation method thereof and application thereof in selective hydrogenation of biomass aldehyde | |
CN113354510B (en) | Phenol selective hydrogenation method on Na modified NiCo catalyst | |
CN116510742B (en) | Preparation method and application of molybdenum-vanadium-oxygen cluster modified carbon-based ferric manganate composite catalyst | |
CN113336626B (en) | Phenol selective hydrogenation method on B modified NiCo catalyst | |
CN111253230A (en) | Method for preparing 3-hydroxymethylcyclopentanone by hydrogenating 5-hydroxymethylfurfural under catalysis of water phase | |
CN114471618B (en) | Sulfur-doped carbon-supported nickel-based catalyst, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |