CN116566450A - 一种基于zynq的波束控制算法实现方法 - Google Patents
一种基于zynq的波束控制算法实现方法 Download PDFInfo
- Publication number
- CN116566450A CN116566450A CN202310833194.2A CN202310833194A CN116566450A CN 116566450 A CN116566450 A CN 116566450A CN 202310833194 A CN202310833194 A CN 202310833194A CN 116566450 A CN116566450 A CN 116566450A
- Authority
- CN
- China
- Prior art keywords
- implementation method
- zynq
- control algorithm
- angle
- beam control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004364 calculation method Methods 0.000 claims abstract description 28
- 238000004891 communication Methods 0.000 claims abstract description 16
- 238000013461 design Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000011161 development Methods 0.000 abstract description 11
- 238000012545 processing Methods 0.000 description 20
- 230000009286 beneficial effect Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/046—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0682—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/084—Equal gain combining, only phase adjustments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
本发明公开了无线通信技术领域的一种基于ZYNQ的波束控制算法实现方法,步骤一:将PS的输出端与PL的输入端采用AXI接口连接,PS与PL连接形成ZYNQ;步骤二:PS对外部通信指令进行接收并解析;步骤三:将PS解析的信息通过AXI接口传输至PL;步骤四:PL进行遍历计算,并且采用流水线设计。本发明降低开发难度、缩减开发周期、释放PL硬件资源的同时保证算法实现时间指标。
Description
技术领域
本发明属于无线通信技术领域,具体是一种基于ZYNQ的波束控制算法实现方法。
背景技术
波束控制算法是一种利用信号处理技术,在传输和接收无线电信号时对主要方向上的功率进行最大化或最小化的算法。其目的是提高通信系统中信号强度及质量,降低能耗和多路径干扰。常见的波束控制算法包括最小均方误差(LMS)算法、卡尔曼滤波(KF)算法、最大似然(ML)估计算法等。
在相控阵天线技术中,控制芯片(常用FPGA)需要完成波束解算算法,根据输入的整机波束指向指令,计算出天线阵列中每个通道的幅度和相位值,并根据计算出的幅度相位值控制相控阵天线幅相芯片,进而形成所需的空间波束。
当前常规波束解算算法中的角度预处理、角度修正、坐标系转换、通道幅相遍历计算等过程均用FPGA完成所有算法,并且在通道幅相遍历计算过程中需要流水线设计,以发挥FPGA并行计算的优势,进而满足波束切换时间要求。
例如中国专利,公告号为:CN113259033B,该发明公开了一种基于FPGA的动态毫米波通信场景中高速波束控制方法,包括以下步骤:在通信系统的接收端通过全码本扫描进行波束的初始化,建立起初始通信波束;建立波束控制模块与基带处理FPGA间的数据通信,用于触发波束跟踪过程并进行波束测量;建立波束训练状态机实现波束跟踪算法模型;通过SPI高速串口传输天线控制信息实现波束控制模块对天线的控制;每次波束训练结束后进行波束质量的判断,如果判定为波束选择失败则需要进行波束恢复;波束训练结束后选定最佳传输波束进行数据传输,并等待下一个周期的训练触发信号。本发明通过定义SPI高速模式写入协议控制天线,实现了微秒级别的波束切换间隔。
但是在实际使用时,由于所有计算过程均在FPGA中实现。FPGA虽具有并行处理的优势,但仅在“全通道遍历计算”这一步有优势,其他步骤均是一次性过程,无优势;由于FPGA的芯片特点和定点计算特点,在完成复杂数学算法运算时,与ARM等处理器相比,其开发难度更难,开发周期更长,占用芯片内部资源更多等劣势。
而ZYNQ是一款由赛灵思推出的器件系列,它采用了基于ARMCortex-A9处理器的XilinxFPGA架构。这种设计充分结合了高性能的处理和可编程逻辑技术,可以使工程师更加轻松地开发复杂的系统级应用。ZYNQ芯片集成了处理器子系统(PS)和编程逻辑资源(PL),并且具有高速外设接口、存储控制器等功能。ZYNQ的优势在于具有低功耗、高性能、灵活性强、易于使用和低成本等特点,广泛应用于通信、工业控制、汽车电子、视频图像处理等领域。所以本发明提出一种基于ZYNQ的波束控制算法实现方法。
发明内容
本发明提出了一种基于ZYNQ的波束控制算法实现方法,降低开发难度、缩减开发周期、释放PL硬件资源的同时保证算法实现时间指标。
为了实现上述目的,本发明的技术方案如下:一种基于ZYNQ的波束控制算法实现方法,
步骤一:将PS的输出端与PL的输入端采用AXI接口连接,PS与PL连接形成ZYNQ。
步骤二:PS对外部通信指令进行接收并解析和预计算。
步骤三:将PS解析的信息通过AXI接口传输至PL。
步骤四:PL进行遍历计算,并且采用流水线设计。
采用上述方案后实现了以下有益效果:主要含义为借助PS和PL之间的AXI接口实现两者之间快速、稳定的数据交互,从而实现高效信息处理。
具体来说,步骤一中的AXI接口连接方式可以使得PS和PL之间的数据传输更加简便可靠;步骤二中,PS可以根据内部算法和外部通信指令解析并处理各类信息,这些信息可以基于AXI接口通过对应的总线协议被有效地传递给PL;步骤三中,通过AXI接口,PL可以直接获取到PS产生的各项控制信号、计算结果以及状态更新等信息,以此作为自身计算、控制和反馈的参考,提高处理效率和准确度;步骤四中的流水线设计可以实现多阶段并行处理,即将数据分成若干阶段,让每个阶段都独立、并列地执行不同的计算任务,从而进一步提高了整个系统的处理速度和性能表现。
本发明的步骤流程可以降低系统延迟,最大限度地提高系统响应速度:可以避免由于数据传输繁琐等原因导致的数据误差和丢失问题;可以利用PL的高计算性能,提高系统的并行处理效率和处理能力。
总之,基于ZYNQ的波束控制算法实现方法,可以降低开发难度、缩减开发周期、释放PL硬件资源的同时保证算法实现时间指标。
进一步,步骤二中的PS进行的解析为:角度预处理、坐标系转换和角度修正。
原理及有益效果:PS对外部通信指令进行角度预处理、坐标系转换和角度修正的解析,其具体原理为,在接收到外部通信指令后,PS首先对数据进行角度预处理,识别出目标物体在原始坐标系中的方位角和俯仰角等关键参数。然后,利用坐标系转换模型将原始数据从传感器产生的运动坐标系转换到固定坐标系或其他需要的坐标系中,以消除运动带来的影响,获得更准确的目标位置信息。最后,利用角度修正算法对目标的方位角和俯仰角等参数进行调整和微调,提高控制信号和数据处理的精度和稳定性。
PS的这种预处理和解析方式可以提高数据处理效率与信号分析精度;同时可以缩短数据解析和处理时间,减小计算误差,提高系统性能与稳定性,进而提升装备的可靠性和实用性。
进一步,坐标系转换为:
s=acosd(cosd(a)*cosd(b));
p=atand(tand(b)/sind(a));
其中:a为方位角,b为俯仰角;s为离轴角,p为旋转角,d表示括号中a、b的单位为度。
原理及有益效果:坐标系转换中,s和p分别为离轴角和旋转角,用于描述从一个直角坐标系到另一个直角坐标系的转换关系。
设a和b分别为原始坐标系中的方位角和俯仰角,s和p则为目标坐标系中的离轴角和旋转角。具体来说,s表示目标坐标系相对于原始坐标系沿着离轴方向(即与原始坐标系垂直方向)的旋转角度,而p则表示绕着该轴转动后相对于原始坐标系的旋转角度。
这种坐标系的转换方式可以依据具体的数学模型和坐标系的特征对数据进行准确的处理和估算,从而提高传感器控制精度、定位精度和导航精度等重要技术指标;可以缩短数据处理时间,减小计算误差,提高系统性能与稳定性,进而提升装备的可靠性和实用性;可以适应不同物理量之间的变换和转换,方便用户在实际应用中进行量化处理和比较分析,从而发挥更大的应用价值。
进一步,角度修正采用二维线性插值。
原理及有益效果:角度修正采用二维线性插值,即给定一组角度修正参数(通常包括俯仰角和方位角)的情况下,根据输入的实际俯仰角和方位角对目标点处的修正值进行预测。二维线性插值算法的基本原理是通过双线性插值对四个角度修正参数之间的关系进行估算,并根据目标点周围的控制点位置和权重计算出目标点修正参数的近似值。
二维线性插值的优势在于它能够更加精确地估算不同位置上的修正值,并减少由于采样误差和数据不足导致的装备控制精度不高的情况。相比于传统的插值算法,二维线性插值更符合实际物理过程,可以更好地处理接近连续的控制参数,同时还可以在估算过程中对周围数据进行平滑处理,提高了算法的可靠性和稳定性。
r_ab=u-floor(u/1.28)*1.28;
r_ac=v-floor(v/1.28)*1.28;
u_itab=u_b_in*r_ab+u_a_in*(1.28-r_ab);
u_itcd=u_d_in*r_ab+u_c_in*(1.28-r_ab);
u_it=u_itcd*r_ac+u_itab*(1.28-r_ac);
u_out=u_it/1.28/1.28
U_FPGA=(u_out+u)*1.28
v_itab=v_b_in*r_ab+v_a_in*(1.28-r_ab);
v_itcd=v_d_in*r_ab+v_c_in*(1.28-r_ab);
v_it=v_itcd*r_ac+v_itab*(1.28-r_ac);
v_out=v_it/1.28/1.28
V_FPGA=(v_out+v)*1.28
其中u、v为外部指令输入的方位、俯仰角,u_a_in、u_b_in、u_c_in、u_d_in、v_a_in、v_b_in、v_c_in、v_d_in为二维线性插值所需的4对参数。
原理二维线性插值的计算方法,主要用于在给定四个控制点的情况下,根据输入的方位角和俯仰角对相邻位置的数值进行估算。具体来说,通过对输入方位角和俯仰角进行归一化和截取处理,将其转换为在1.28×1.28的正方形区域内的坐标r_ab和r_ac。然后根据已知的4对参数进行双线性插值,得到目标点处的近似数值。
其中,双线性插值的原理是在确定目标点所在的矩形区域后,对该区域内的四个顶点按照一定的权重进行加权平均,从而得到目标点的近似值。上述计算方法主要应用于图像处理、数值分析等领域,在对局部区域进行变换或估算时非常有用。
上述算法可以大幅提高计算速度和效率,并且可以通过调节U_FPGA和V_FPGA系数来适应不同的应用场景和精度需求;同时还能大幅降低计算成本和能耗,进而实现更加高效的算法实现和应用。
进一步,步骤四中的遍历计算为:
C(dx,dy)=-2π(dx*sinθ*cosφ+dy*sinθ*sinφ)/λ
ux=MUX_F*sinθ*cosφ
vx=MUX_F*sinθ*sinφ
MUX_F=-(360/C)*f*2^22/128=-1.2*f*2^15
其中C为光速=300*10^9mm/s,其中C为光速=300*10^9mm/s,(dx,dy)为天线单元在直角坐标系中的物理坐标值,单位为mm,θ,φ分别为天线球坐标系下的离轴角和旋转角参数,λ为信号波长,f为信号频率,单位为Ghz;ux,vx,MUX_F三个变量是计算过程的中间变量。
原理及有益效果:上述算法是遍历计算的一种实现方式,用于计算在特定方向上接收到或发射的电磁波信号的相位偏移。
具体来说,算法通过计算入射信号在两个正交方向上的分量(即dx、dy)的加权和,并根据入射角度进行相位调整,从而得到对应位置的相位偏移值。
其中,MUX_F是一个常量系数,与频率f有关,其值可以通过给定的参数计算得到。随着频率的变化,MUX_F也会相应的变化,进而影响到最终的相位偏移结果。因此,上述算法的好处是可以根据不同的频率设置不同的MUX_F值,从而实现对不同频带的天线进行灵活设计和优化。
另外,算法中的360/C值与波长λ有关,可以将其理解为单位波长相位偏移量。因此,算法中的分母C表示了光速导致的一个相位增量,其值越大,则单位距离所对应的相位差就越小,因而可以实现更加精细的相位控制和调节,提高接收或发射信号的准确性和灵敏度。
进一步,步骤一中PS输入端接口与外部指令接口连接。
原理及有益效果:PS输入端接口和外部指令接口连接可以提供更加灵活的控制和操作方式;还可以使得ZYNQ可以轻松地集成到各种应用中,并方便快速地进行功能扩展或性能优化。
PS输入端接口可以连接各种输入设备,如USB、以太网、SD卡、HDMI等,并通过ARM处理器进行处理和控制。而外部指令接口则可以使用外部硬件模块直接向PS发送指令,从而实现对系统级应用的动态调整和优化,无需重新编程FPGA逻辑,这大大提高了开发效率。
进一步,步骤一中PL输出端接口与幅相芯片控制接口连接。
原理及有益效果:PL输出端接口与幅相芯片控制接口连接可以将FPGA逻辑的输出信号与模拟电路进行连接和处理;通过PL输出端接口可以快速完成数字控制信号转换为模拟控制信号的过程,从而提高了系统的响应速度;利用PL的可编程性,可以减少使用额外的模拟控制器等硬件,从而降低系统成本。
附图说明
图1为本发明基于ZYNQ的波束控制算法实现方法实施例的硬件平台架构示意图。
图2为本发明基于ZYNQ的波束控制算法实现方法实施例的算法实现分工示意图。
实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“竖向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
下面通过具体实施方式进一步详细说明:
实施例1,基本如附图1和图2所示:一种基于ZYNQ的波束控制算法实现方法,
步骤一:将PS的输出端与PL的输入端采用AXI接口连接,PS与PL连接形成ZYNQ。
步骤二:PS对外部通信指令进行接收并解析和预计算。
步骤三:将PS解析的信息通过AXI接口传输至PL。
步骤四:PL进行遍历计算,并且采用流水线设计。
具体实施过程如下:
步骤一:将PS与PL采用AXI接口连接,PS与PL连接形成ZYNQ;PS输入端接口与外部指令接口连接;PL输出端接口与幅相芯片控制接口连接。
步骤二:PS对外部通信指令进行接收并进行角度预处理、坐标系转换和角度修正等的解析和预计算,PS进行的解析和预计算包括但不限于这3步,所有不需要遍历计算的算法均适用,如直方图均衡化、颜色空间转换和位运算等。
其中角度预处理:无固定算法,根据不同需求而定。
坐标系转换为:
s=acosd(cosd(a)*cosd(b));
p=atand(tand(b)/sind(a));
其中:a为方位角,b为俯仰角;s为离轴角,p为旋转角,d表示括号中a、b的单位为度。
角度修正采用二维线性插值:
r_ab=u-floor(u/1.28)*1.28;
r_ac=v-floor(v/1.28)*1.28;
u_itab=u_b_in*r_ab+u_a_in*(1.28-r_ab);
u_itcd=u_d_in*r_ab+u_c_in*(1.28-r_ab);
u_it=u_itcd*r_ac+u_itab*(1.28-r_ac);
u_out=u_it/1.28/1.28
U_FPGA=(u_out+u)*1.28
v_itab=v_b_in*r_ab+v_a_in*(1.28-r_ab);
v_itcd=v_d_in*r_ab+v_c_in*(1.28-r_ab);
v_it=v_itcd*r_ac+v_itab*(1.28-r_ac);
v_out=v_it/1.28/1.28
V_FPGA=(v_out+v)*1.28
其中u、v为外部指令输入的方位、俯仰角,u_a_in、u_b_in、u_c_in、u_d_in、v_a_in、v_b_in、v_c_in、v_d_in为二维线性插值所需的4对参数(本实施例中,4对参数由实验测试获得)。
步骤三:将PS解析的信息通过AXI接口传输至PL。
步骤四:PL进行遍历计算,并且采用流水线设计。
遍历计算为:
C(dx,dy)=-2π(dx*sinθ*cosφ+dy*sinθ*sinφ)/λ
ux=MUX_F*sinθ*cosφ
vx=MUX_F*sinθ*sinφ
MUX_F=-(360/C)*f*2^22/128=-1.2*f*2^15
其中C为光速=300*10^9mm/s,其中C为光速=300*10^9mm/s,(dx,dy)为天线单元在直角坐标系中的物理坐标值,单位为mm,θ,φ分别为天线球坐标系下的离轴角和旋转角参数,λ为信号波长,f为信号频率,单位为Ghz;ux,vx,MUX_F三个变量是计算过程的中间变量。
本发明的步骤流程可以降低系统延迟,最大限度地提高系统响应速度:可以避免由于数据传输繁琐等原因导致的数据误差和丢失问题;可以利用PL的高计算性能,提高系统的并行处理效率和处理能力。
总之,基于ZYNQ的波束控制算法实现方法,可以降低开发难度、缩减开发周期、释放PL硬件资源的同时保证算法实现时间指标。
以上所述的仅是本发明的实施例,方案中公知的具体结构和/或特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。
Claims (7)
1.一种基于ZYNQ的波束控制算法实现方法,其特征在于具体步骤为:
步骤一:将PS的输出端与PL的输入端采用AXI接口连接,PS与PL连接形成ZYNQ;
步骤二:PS对外部通信指令进行接收并解析和预计算;
步骤三:将PS解析的信息通过AXI接口传输至PL;
步骤四:PL进行遍历计算,并且采用流水线设计。
2.根据权利要求1所述的一种基于ZYNQ的波束控制算法实现方法,其特征在于:步骤二中的PS进行的解析为:角度预处理、坐标系转换和角度修正。
3.根据权利要求2所述的一种基于ZYNQ的波束控制算法实现方法,其特征在于:坐标系转换为:
s=acosd(cosd(a)*cosd(b));
p=atand(tand(b)/sind(a));
其中:a为方位角,b为俯仰角;s为离轴角,p为旋转角,d表示括号中a、b的单位为度。
4.根据权利要求2所述的一种基于ZYNQ的波束控制算法实现方法,其特征在于:角度修正采用二维线性插值。
5.根据权利要求1所述的一种基于ZYNQ的波束控制算法实现方法,其特征在于:步骤四中的遍历计算为:
C(dx,dy)=-2π(dx*sinθ*cosφ+dy*sinθ*sinφ)/λ
ux=MUX_F*sinθ*cosφ
vx=MUX_F*sinθ*sinφ
MUX_F=-(360/C)*f*2^22/128=-1.2*f*2^15
其中C为光速=300*10^9mm/s,(dx,dy)为天线单元在直角坐标系中的物理坐标值,单位为mm;θ,φ分别为天线球坐标系下的离轴角和旋转角参数,λ为信号波长,f为信号频率,单位为Ghz;ux,vx,MUX_F三个变量是计算过程的中间变量。
6.根据权利要求1所述的一种基于ZYNQ的波束控制算法实现方法,其特征在于:PS输入端接口为外部指令接口。
7.根据权利要求1所述的一种基于ZYNQ的波束控制算法实现方法,其特征在于:PL输出端接口为幅相芯片控制接口。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310833194.2A CN116566450B (zh) | 2023-07-10 | 2023-07-10 | 一种基于zynq的波束控制算法实现方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310833194.2A CN116566450B (zh) | 2023-07-10 | 2023-07-10 | 一种基于zynq的波束控制算法实现方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116566450A true CN116566450A (zh) | 2023-08-08 |
CN116566450B CN116566450B (zh) | 2023-09-12 |
Family
ID=87496866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310833194.2A Active CN116566450B (zh) | 2023-07-10 | 2023-07-10 | 一种基于zynq的波束控制算法实现方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116566450B (zh) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105534546A (zh) * | 2015-12-30 | 2016-05-04 | 哈尔滨工业大学 | 一种基于zynq系列fpga的超声成像方法 |
CN110244304A (zh) * | 2019-04-15 | 2019-09-17 | 浙江工业大学 | 一种基于zynq的侧扫声纳信号处理方法 |
CN209964052U (zh) * | 2019-08-09 | 2020-01-17 | 天津讯联科技有限公司 | 一种无人机地面天线波束控制系统 |
CN112154317A (zh) * | 2018-04-26 | 2020-12-29 | 贝克顿·迪金森公司 | 颗粒分析仪的表征和分选 |
CN113219434A (zh) * | 2021-04-27 | 2021-08-06 | 南京理工大学 | 一种基于Zynq芯片的自适应宽带数字调零系统和方法 |
CN113541719A (zh) * | 2021-06-16 | 2021-10-22 | 北京无线电测量研究所 | 一种基于zynq的开放式多通道数字收发组件和方法 |
US20210357742A1 (en) * | 2018-10-03 | 2021-11-18 | Northeastern University | Real-Time Cognitive Wireless Networking Through Deep Learning in Transmission and Reception Communication Paths |
CN113743475A (zh) * | 2021-08-10 | 2021-12-03 | 中国电子科技集团公司第二十七研究所 | 一种基于ukf的实时多源数据融合方法 |
CN113783601A (zh) * | 2021-08-31 | 2021-12-10 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 动态波束形成及空分复用方法 |
CN113992205A (zh) * | 2021-10-26 | 2022-01-28 | 成都中科合迅科技有限公司 | 一种基于zynq的多路dac的参考时钟快速同步系统 |
US20220337651A1 (en) * | 2021-04-15 | 2022-10-20 | Palomar Products, Inc. | Intercommunication system |
CN115576230A (zh) * | 2022-08-29 | 2023-01-06 | 西安电子科技大学 | 一种应用于水下探测的基于波束形成的硬件加速方法 |
CN116260691A (zh) * | 2023-02-17 | 2023-06-13 | 电子科技大学 | 数字可重构智能反射表面的实时驱动系统、方法及终端 |
CN116299589A (zh) * | 2022-10-20 | 2023-06-23 | 极诺星空(北京)科技有限公司 | 一种星载超小型gnss掩星探测仪 |
-
2023
- 2023-07-10 CN CN202310833194.2A patent/CN116566450B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105534546A (zh) * | 2015-12-30 | 2016-05-04 | 哈尔滨工业大学 | 一种基于zynq系列fpga的超声成像方法 |
CN112154317A (zh) * | 2018-04-26 | 2020-12-29 | 贝克顿·迪金森公司 | 颗粒分析仪的表征和分选 |
US20210357742A1 (en) * | 2018-10-03 | 2021-11-18 | Northeastern University | Real-Time Cognitive Wireless Networking Through Deep Learning in Transmission and Reception Communication Paths |
CN110244304A (zh) * | 2019-04-15 | 2019-09-17 | 浙江工业大学 | 一种基于zynq的侧扫声纳信号处理方法 |
CN209964052U (zh) * | 2019-08-09 | 2020-01-17 | 天津讯联科技有限公司 | 一种无人机地面天线波束控制系统 |
US20220337651A1 (en) * | 2021-04-15 | 2022-10-20 | Palomar Products, Inc. | Intercommunication system |
CN113219434A (zh) * | 2021-04-27 | 2021-08-06 | 南京理工大学 | 一种基于Zynq芯片的自适应宽带数字调零系统和方法 |
CN113541719A (zh) * | 2021-06-16 | 2021-10-22 | 北京无线电测量研究所 | 一种基于zynq的开放式多通道数字收发组件和方法 |
CN113743475A (zh) * | 2021-08-10 | 2021-12-03 | 中国电子科技集团公司第二十七研究所 | 一种基于ukf的实时多源数据融合方法 |
CN113783601A (zh) * | 2021-08-31 | 2021-12-10 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 动态波束形成及空分复用方法 |
CN113992205A (zh) * | 2021-10-26 | 2022-01-28 | 成都中科合迅科技有限公司 | 一种基于zynq的多路dac的参考时钟快速同步系统 |
CN115576230A (zh) * | 2022-08-29 | 2023-01-06 | 西安电子科技大学 | 一种应用于水下探测的基于波束形成的硬件加速方法 |
CN116299589A (zh) * | 2022-10-20 | 2023-06-23 | 极诺星空(北京)科技有限公司 | 一种星载超小型gnss掩星探测仪 |
CN116260691A (zh) * | 2023-02-17 | 2023-06-13 | 电子科技大学 | 数字可重构智能反射表面的实时驱动系统、方法及终端 |
Non-Patent Citations (5)
Title |
---|
SUNITA RAMAGOND: "A review and analysis of communication logic between PL and PS in ZYNQ AP SoC", 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION * |
李帅: "基于麦克风阵列的自适应实时定位系统的研究及实现", 中国优秀硕士学位论文全文数据库 * |
秦鸿瑜: "基于ZYNQ7010的储能变流器控制平台研究", 《现代工业经济和信息化》, no. 3 * |
蔡烜伟: "基于ZYNQ的侧扫声纳图像获取方法研究", 中国优秀硕士学位论文全文数据库 * |
隋尚兼: "基于ZYNQ SoC的多通道宽带雷达回波模拟研究", 中国优秀硕士学位论文全文数据库 * |
Also Published As
Publication number | Publication date |
---|---|
CN116566450B (zh) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107102291B (zh) | 基于虚拟阵列内插的无网格化互质阵列波达方向估计方法 | |
CN107315160B (zh) | 基于内插虚拟阵列信号原子范数最小化的互质阵列波达方向估计方法 | |
CN107329110A (zh) | 基于稀疏阵列直接内插的波达方向估计方法 | |
CN111190181B (zh) | 颠簸平台无人机载sar实时成像处理方法 | |
CN109787671B (zh) | 一种混合波束成形装置及方法 | |
CN104615854A (zh) | 一种基于稀疏约束的波束展宽和旁瓣抑制方法 | |
CN110045361A (zh) | 球面相控阵单脉冲数字跟踪系统 | |
CN108732562A (zh) | 一种相控阵雷达 | |
CN106772256A (zh) | 一种有源相控阵雷达天线子阵划分方法 | |
CN114117565A (zh) | 一种基于深度学习的平面阵列天线辐射方向图综合方法 | |
CN109639329B (zh) | 唯相位加权波束快速赋形方法 | |
CN114035162B (zh) | 一种雷达时序逻辑控制系统及方法 | |
CN116566450B (zh) | 一种基于zynq的波束控制算法实现方法 | |
CN113093094A (zh) | 一种基于相位调控超表面的智能入射波方向探测方法 | |
CN109765556A (zh) | 一种基于级数反演的双基sar快速几何校正方法及装置 | |
CN115276678B (zh) | 一种可重构的相位一致性阵列发射系统 | |
CN115296704B (zh) | 分布式毫米波有源相控阵天线控制系统及控制方法 | |
CN113437518B (zh) | 一种基于抛物面统一测控天线的扫描捕获方法 | |
CN107728102A (zh) | 一种阵列传感器的波达方向估计方法 | |
CN111257860B (zh) | 一种基于fpga的相控阵列天线控制系统 | |
CN113671485A (zh) | 基于admm的米波面阵雷达二维doa估计方法 | |
US6056780A (en) | Method for the positioning of electromagnetic sensors or transmitters in an array | |
CN107466063B (zh) | 一种通信卫星多波束无线测试方法 | |
CN114065491B (zh) | 一种宽带数字阵列波束重构及资源配置方法 | |
CN211126078U (zh) | 中低轨卫星跟踪天线控制系统及信号传输系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |