CN116505886A - Voltage ripple reduction in power management circuits - Google Patents
Voltage ripple reduction in power management circuits Download PDFInfo
- Publication number
- CN116505886A CN116505886A CN202310044807.4A CN202310044807A CN116505886A CN 116505886 A CN116505886 A CN 116505886A CN 202310044807 A CN202310044807 A CN 202310044807A CN 116505886 A CN116505886 A CN 116505886A
- Authority
- CN
- China
- Prior art keywords
- voltage
- power amplifier
- modulation
- output
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000009467 reduction Effects 0.000 title abstract description 6
- 239000003990 capacitor Substances 0.000 claims description 56
- 230000001939 inductive effect Effects 0.000 claims description 31
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
Abstract
公开了功率管理电路中的电压波动减小。所述功率管理电路包含功率放大器电路和包络跟踪集成电路(ETIC),所述功率放大器电路被配置成基于调制电压放大射频(RF)信号,所述ETIC被配置成经由导电路径将所述调制电压提供到所述功率放大器电路。值得注意的是,在所述功率放大器电路的输入处呈现的输出阻抗可以与所述功率放大器电路中的调制负载电流相互作用,以产生所述调制电压中的电压波动,从而潜在地引起所述RF信号中的非期望错误。此处,所述ETIC被配置成基于所述调制电压中的所述电压波动的反馈修改所述调制电压。因此,有可能减小所述功率放大器电路的所述输入处的所述输出阻抗,从而减小所述调制电压中的所述电压波动。
Voltage fluctuation reduction in power management circuits is disclosed. The power management circuit includes a power amplifier circuit configured to amplify a radio frequency (RF) signal based on a modulation voltage, and an envelope tracking integrated circuit (ETIC), the ETIC configured to transmit the modulated signal via a conductive path. voltage is supplied to the power amplifier circuit. It is worth noting that the output impedance presented at the input of the power amplifier circuit can interact with the modulating load current in the power amplifier circuit to produce voltage fluctuations in the modulation voltage, potentially causing the Undesired errors in RF signals. Here, the ETIC is configured to modify the modulation voltage based on feedback of the voltage fluctuations in the modulation voltage. Therefore, it is possible to reduce the output impedance at the input of the power amplifier circuit, thereby reducing the voltage fluctuation in the modulation voltage.
Description
相关申请related application
本申请要求2022年1月27日提交的美国临时专利申请序列号63/303,532的权益,所述美国临时专利申请的公开内容通过引用整体并入本文。This application claims the benefit of US Provisional Patent Application Serial No. 63/303,532, filed January 27, 2022, the disclosure of which is incorporated herein by reference in its entirety.
技术领域technical field
本公开的技术大体上涉及减小功率管理电路中调制电压的电压波动。The techniques of this disclosure generally relate to reducing voltage fluctuations of modulation voltages in power management circuits.
背景技术Background technique
第五代(5G)新无线电(NR)(5G-NR)被广泛认为是超越当前第三代(3G)和第四代(4G)技术的下一代无线通信技术。在这方面,能够支持5G-NR无线通信技术的无线通信装置预期将实现更高的数据速率、改进的覆盖范围、增强的信号传导效率和减少的延迟。Fifth-generation (5G) New Radio (NR) (5G-NR) is widely regarded as the next generation of wireless communication technology beyond the current third-generation (3G) and fourth-generation (4G) technologies. In this regard, wireless communication devices capable of supporting 5G-NR wireless communication technology are expected to achieve higher data rates, improved coverage, enhanced signal conduction efficiency, and reduced delay.
5G-NR系统中的下行和上行传输广泛基于正交频分复用(OFDM)技术。在基于OFDM的系统中,物理无线电资源被划分为频域中的多个副载波和时间域中的多个OFDM符号。副载波通过副载波间隔(SCS)相互正交地分离。OFDM符号由循环前缀(CP)分隔,所述CP充当保护频带,以帮助克服OFDM符号之间的符号间干扰(ISI)。The downlink and uplink transmissions in 5G-NR systems are widely based on Orthogonal Frequency Division Multiplexing (OFDM) technology. In OFDM based systems, physical radio resources are divided into subcarriers in the frequency domain and OFDM symbols in the time domain. The subcarriers are orthogonally separated from each other by subcarrier spacing (SCS). OFDM symbols are separated by a cyclic prefix (CP), which acts as a guard band to help overcome inter-symbol interference (ISI) between OFDM symbols.
基于OFDM的系统中传送的射频(RF)信号通常被调制成频率域中的多个副载波和时间域中的多个OFDM符号。由RF信号占据的多个副载波共同地限定RF信号的调制带宽。另一方面,多个OFDM符号限定期间传送RF信号的多个时间间隔。在5G-NR系统中,RF信号通常以超过200MHz(例如,1GHz)的高调制带宽调制。A radio frequency (RF) signal transmitted in an OFDM based system is typically modulated into multiple subcarriers in the frequency domain and multiple OFDM symbols in the time domain. The multiple subcarriers occupied by the RF signal collectively define the modulation bandwidth of the RF signal. On the other hand, a plurality of OFDM symbols define a plurality of time intervals during which RF signals are transmitted. In 5G-NR systems, RF signals are typically modulated with a high modulation bandwidth exceeding 200 MHz (eg, 1 GHz).
OFDM符号的持续时间取决于SCS和调制带宽。下表(表1)提供了由用于各种SCS和调制带宽的3G合作伙伴计划(3GPP)标准限定的一些OFDM符号持续时间。值得注意的是,调制带宽越高,OFDM符号持续时间将越短。例如,当SCS为120KHz并且调制带宽为400MHz时,OFDM符号持续时间为8.93μs。The duration of an OFDM symbol depends on the SCS and modulation bandwidth. The following table (Table 1) provides some OFDM symbol durations defined by the 3G Partnership Project (3GPP) standards for various SCS and modulation bandwidths. It is worth noting that the higher the modulation bandwidth, the shorter the OFDM symbol duration will be. For example, when the SCS is 120KHz and the modulation bandwidth is 400MHz, the OFDM symbol duration is 8.93μs.
表1Table 1
值得注意的是,无线通信装置依赖于电池单元(例如,Li离子电池)为其操作和服务供电。尽管电池技术最近取得了进展,但无线通信装置可能不时地处于低电量状态。在此方面,期望延长电池寿命,同时使得OFDM符号之间能够实现快速电压变化。Notably, wireless communication devices rely on battery cells (eg, Li-ion batteries) to power their operations and services. Despite recent advances in battery technology, wireless communication devices may be in a low battery state from time to time. In this regard, it is desirable to extend battery life while enabling fast voltage changes between OFDM symbols.
发明内容Contents of the invention
本公开的实施例涉及功率管理电路中的电压波动减小。所述功率管理电路包含功率放大器电路和包络跟踪集成电路(ETIC),所述功率放大器电路被配置成基于调制电压放大射频(RF)信号,所述ETIC被配置成经由导电路径将所述调制电压提供到所述功率放大器电路。值得注意的是,在所述功率放大器电路的输入处呈现的输出阻抗(例如,与ETIC和导电路径相关联的电感阻抗)可以与所述功率放大器电路中的调制负载电流相互作用,以产生所述调制电压中的电压波动,从而潜在地引起所述RF信号中的非期望错误。在本文公开的实施例中,所述ETIC被配置成基于指示在所述功率放大器输入处接收的所述调制电压中的电压波动的反馈修改所述调制电压。通过基于对所述电压波动的了解来修改所述调制电压,有可能减小所述功率放大器电路的所述输入处的所述输出阻抗,从而减小所述调制电压中的所述电压波动。Embodiments of the present disclosure relate to voltage fluctuation reduction in power management circuits. The power management circuit includes a power amplifier circuit configured to amplify a radio frequency (RF) signal based on a modulation voltage, and an envelope tracking integrated circuit (ETIC), the ETIC configured to transmit the modulated signal via a conductive path. voltage is supplied to the power amplifier circuit. Notably, the output impedance presented at the input of the power amplifier circuit (e.g., the inductive impedance associated with the ETIC and conductive path) can interact with the modulating load current in the power amplifier circuit to produce the voltage fluctuations in the modulation voltage, potentially causing undesired errors in the RF signal. In embodiments disclosed herein, the ETIC is configured to modify the modulation voltage based on feedback indicative of voltage fluctuations in the modulation voltage received at the input of the power amplifier. By modifying the modulation voltage based on knowledge of the voltage fluctuations, it is possible to reduce the output impedance at the input of the power amplifier circuit, thereby reducing the voltage fluctuations in the modulation voltage.
在一个方面,提供一种功率管理电路。所述功率管理电路包含功率放大器电路。所述功率放大器电路被配置成基于在功率放大器输入处接收的调制电压放大RF信号。在所述功率放大器输入处接收的所述调制电压包括由在所述功率放大器输入处呈现的输出阻抗引起的电压波动。所述功率管理电路还包含ETIC。所述ETIC包含经由导电路径耦合到所述功率放大器输入的电压输出。所述ETIC还包含电压调制电路。所述电压调制电路被配置成基于调制目标电压在所述电压输出处产生所述调制电压。所述电压调制电路还被配置成接收功率放大器电压反馈,所述功率放大器电压反馈指示在所述功率放大器输入处接收的所述调制电压中的所述电压波动。所述电压调制电路还被配置成基于所述功率放大器电压反馈修改所述调制电压,以引起所述输出阻抗中的减小,从而减小在所述功率放大器输入处接收的所述调制电压中的所述电压波动。In one aspect, a power management circuit is provided. The power management circuitry includes power amplifier circuitry. The power amplifier circuit is configured to amplify an RF signal based on a modulation voltage received at a power amplifier input. The modulation voltage received at the power amplifier input includes voltage fluctuations caused by an output impedance presented at the power amplifier input. The power management circuit also includes an ETIC. The ETIC includes a voltage output coupled to the power amplifier input via a conductive path. The ETIC also includes a voltage modulation circuit. The voltage modulation circuit is configured to generate the modulation voltage at the voltage output based on a modulation target voltage. The voltage modulation circuit is further configured to receive power amplifier voltage feedback indicative of the voltage fluctuation in the modulation voltage received at the power amplifier input. The voltage modulation circuit is further configured to modify the modulation voltage based on the power amplifier voltage feedback to cause a decrease in the output impedance, thereby reducing the modulation voltage received at the power amplifier input. of the voltage fluctuations.
本领域技术人员在阅读以下对于优选实施例的具体说明以及相关的附图后,将会认识到本公开的范围并且了解其另外的方面。Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects after reading the following detailed description of the preferred embodiment and the associated drawings.
附图说明Description of drawings
并入本说明书中并形成本说明书的一部分的附图说明了本公开的几个方面,并且连同说明书一起用于解释本公开的原理。The accompanying drawings, which are incorporated in and form a part of this specification, illustrate several aspects of the disclosure and together with the description serve to explain the principles of the disclosure.
图1A是基于常规方法的示例性现有发射电路的示意图,其中功率管理电路被配置成减小调制电压中的电压波动;FIG. 1A is a schematic diagram of an exemplary prior art transmit circuit based on a conventional approach, wherein a power management circuit is configured to reduce voltage fluctuations in a modulation voltage;
图1B是图1A中的功率管理电路的示例性电模型的示意图;FIG. 1B is a schematic diagram of an exemplary electrical model of the power management circuit in FIG. 1A;
图1C是提供根据调制频率而变化的量值阻抗的示例性图示的曲线图;FIG. 1C is a graph providing an exemplary illustration of magnitude impedance as a function of modulation frequency;
图2是根据本公开的实施例配置以通过减小在功率放大器电路的功率放大器输入处呈现的输出阻抗来减小调制电压中的电压波动的示例性功率管理电路的示意图;并且2 is a schematic diagram of an exemplary power management circuit configured to reduce voltage fluctuations in a modulation voltage by reducing an output impedance presented at a power amplifier input of a power amplifier circuit in accordance with an embodiment of the present disclosure; and
图3是提供图2的功率管理电路中的电压放大器的内部结构的示例性图示的示意图。FIG. 3 is a schematic diagram providing an exemplary illustration of the internal structure of a voltage amplifier in the power management circuit of FIG. 2 .
具体实施方式Detailed ways
下文阐述的实施例表示使本领域技术人员能够实践实施例并说明实践实施例的最佳模式所必需的信息。在根据附图阅读以下描述时,本领域技术人员将理解本公开的概念,并将认识到这些概念在此未特别述及的应用。应理解,这些概念和应用落入本公开和所附权利要求的范围内。The embodiments set forth below represent the information necessary to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It is to be understood that these concepts and applications fall within the scope of this disclosure and the appended claims.
应理解,尽管术语第一、第二等在本文中可以用于描述各种元件,但这些元件不应受这些术语限制。这些术语仅用于区分一个元件与另一个元件。例如,在不脱离本公开的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。如本文所用,术语“和/或”包含相关联所列项目中的一个或多个项目的任何和所有组合。It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
应当理解,当例如层、区域或衬底的元件被称为“在另一元件上”或“延伸到”另一元件上时,其可以直接在另一元件上或直接延伸到另一元件上,或者也可以存在中间元件。相反,当元件被称为“直接在另一元件上”或“直接延伸到另一元件上”时,不存在中间元件。同样,应理解,当例如层、区域或衬底的元件被称为“在另一元件上方”或“在另一元件上方延伸”时,其可以直接在另一元件上方或直接在另一元件上方延伸,或者也可以存在中间元件。相反,当元件被称为“直接在另一元件上方”或“直接在另一元件上方”延伸时,不存在中间元件。还将理解,当元件被称为“连接”或“耦合”到另一元件时,其可以直接连接或耦合到另一元件,或者可以存在中间元件。相反,当元件被称为“直接连接”或“直接耦合”到另一元件时,不存在中间元件。It will be understood that when an element such as a layer, region or substrate is referred to as being "on" or "extending onto" another element, it can be directly on or directly extending onto the other element. , or intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly extending onto" another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being "on" or "extending over" another element, it can be directly on or directly on the other element. extends above, or intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or extending "directly over" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.
例如“以下”或“以上”或“上”或“下”或“水平”或“竖直”的相对术语在本文中可以用于描述一个元件、层或区域与如图所示的另一元件、层或区域的关系。应理解,这些术语和上面讨论的那些旨在包含除附图中描绘的朝向之外的装置的不同朝向。Relative terms such as "below" or "above" or "upper" or "lower" or "horizontal" or "vertical" may be used herein to describe the difference between an element, layer or region and another element as shown in the figures. , layer or region relationship. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
本文所用的术语仅用于描述特定实施例的目的,并且不旨在限制本公开。如本文所用,除非上下文另外明确指示,否则单数形式“一(a/an)”和“所述”也旨在包含复数形式。还应理解,当在本文中使用时,项“包括(comprises/comprising)”和/或包含(includes/including)指定存在所述特征、整数、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、部件和/或它们的群组。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms "a" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It is also to be understood that when used herein, the term "comprises/comprising" and/or includes/including specifies the presence of said features, integers, steps, operations, elements and/or parts, but does not exclude One or more other features, integers, steps, operations, elements, components and/or groups thereof are present or added.
除非另外定义,否则本文使用的所有术语(包含技术和科学术语)具有与本公开所属领域的普通技术人员通常理解的相同含义。将进一步理解的是,除非本文明确地定义,否则本文使用的术语应被解释为具有与其在本说明书的上下文和相关技术中的含义一致的含义,并且将不以理想化或过于正式的意义来解释。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that, unless expressly defined herein, terms used herein should be interpreted to have meanings consistent with their meanings in the context of this specification and related art, and will not be interpreted in an idealized or overly formal sense explain.
本公开的实施例涉及功率管理电路中的电压波动减少。所述功率管理电路包含功率放大器电路和包络跟踪集成电路(ETIC),所述功率放大器电路被配置成基于调制电压放大射频(RF)信号,所述ETIC被配置成经由导电路径将所述调制电压提供到所述功率放大器电路。值得注意的是,在所述功率放大器电路的输入处呈现的输出阻抗(例如,与ETIC和导电路径相关联的电感阻抗)可以与所述功率放大器电路中的调制负载电流相互作用,以产生所述调制电压中的电压波动,从而潜在地引起所述RF信号中的非期望错误。在本文公开的实施例中,所述ETIC被配置成基于指示在所述功率放大器输入处接收的所述调制电压中的电压波动的反馈修改所述调制电压。通过基于对所述电压波动的了解来修改所述调制电压,有可能减小所述功率放大器电路的所述输入处的所述输出阻抗,从而减小所述调制电压中的所述电压波动。Embodiments of the present disclosure relate to voltage fluctuation reduction in power management circuits. The power management circuit includes a power amplifier circuit configured to amplify a radio frequency (RF) signal based on a modulation voltage, and an envelope tracking integrated circuit (ETIC), the ETIC configured to transmit the modulated signal via a conductive path. voltage is supplied to the power amplifier circuit. Notably, the output impedance presented at the input of the power amplifier circuit (e.g., the inductive impedance associated with the ETIC and conductive path) can interact with the modulating load current in the power amplifier circuit to produce the voltage fluctuations in the modulation voltage, potentially causing undesired errors in the RF signal. In embodiments disclosed herein, the ETIC is configured to modify the modulation voltage based on feedback indicative of voltage fluctuations in the modulation voltage received at the input of the power amplifier. By modifying the modulation voltage based on knowledge of the voltage fluctuations, it is possible to reduce the output impedance at the input of the power amplifier circuit, thereby reducing the voltage fluctuations in the modulation voltage.
在论述本公开的具体电压波动减小实施例之前,从图2开始,首先参考图1A-1C论述现有发射电路的简要概述,以帮助理解与基于减小电压波动的常规方法有关的一些问题。Before discussing specific voltage fluctuation reduction embodiments of the present disclosure, starting from FIG. 2, a brief overview of existing transmitting circuits is first discussed with reference to FIGS. .
图1A是基于常规方法的示例性现有发射电路10的示意图,其中功率管理电路12被配置成减小调制电压VCC中的电压波动VCC-RP。功率管理电路12包含ETIC 14和功率放大器电路16。ETIC 14被配置成基于调制目标电压VTGT产生调制电压VCC,并且经由耦合在ETIC 14的电压输出20与功率放大器电路16的功率放大器输入22之间的导电路径18(例如,导电迹线)将所述调制电压VCC提供到功率放大器电路16。功率放大器电路16被配置成基于调制电压VCC放大RF信号24。FIG. 1A is a schematic diagram of an exemplary conventional transmit circuit 10 based on a conventional approach, in which a power management circuit 12 is configured to reduce voltage fluctuation V CC-RP in a modulation voltage V CC . Power management circuitry 12 includes ETIC 14 and power amplifier circuitry 16 . ETIC 14 is configured to generate modulation voltage V CC based on modulation target voltage V TGT , and via conductive path 18 (e.g., a conductive trace) coupled between voltage output 20 of ETIC 14 and power amplifier input 22 of power amplifier circuit 16 The modulation voltage V CC is provided to a power amplifier circuit 16 . Power amplifier circuit 16 is configured to amplify RF signal 24 based on modulation voltage V CC .
值得注意的是,可能存在从功率放大器输入22到功率放大器电路的实际电压输入26(例如,收集器节点)的内部路由距离。鉴于内部路由距离远远短于导电路径18,因此下文忽略了内部路由距离。因此,如本文所示的功率放大器输入22可以等同于功率放大器电路16的实际电压输入26。It is worth noting that there may be an internal routing distance from the power amplifier input 22 to the actual voltage input 26 (eg collector node) of the power amplifier circuit. Since the internal routing distance is much shorter than the conductive path 18, the internal routing distance is ignored below. Therefore, the power amplifier input 22 as shown herein may be equated to the actual voltage input 26 of the power amplifier circuit 16 .
功率管理电路12可以耦合到收发器电路28。在本文中,收发器电路28被配置成产生RF信号24和调制目标电压VTGT。Power management circuitry 12 may be coupled to transceiver circuitry 28 . Herein, the transceiver circuit 28 is configured to generate the RF signal 24 and modulate the target voltage V TGT .
电压波动VCC-RP可以基于功率管理电路12的等效电模型进行定量分析。在这方面,图1B是图1A中的功率管理电路12的示例性等效电模型30的示意图。图1A和1B之间的共同元件以共同的元件标号示出,并且本文将不再重新描述。The voltage fluctuation V CC-RP can be quantitatively analyzed based on the equivalent electrical model of the power management circuit 12 . In this regard, FIG. 1B is a schematic diagram of an exemplary equivalent electrical model 30 of the power management circuit 12 in FIG. 1A . Common elements between FIGS. 1A and 1B are shown with common element numbers and will not be re-described herein.
ETIC 14固有地具有可以通过ETIC电感LETIC建模的电感阻抗ZETIC。导电路径18还可以与可以通过迹线电感LTRACE建模的电感迹线阻抗ZTRACE相关联。因此,从功率放大器输入22朝着ETIC 14看,功率放大器电路16将看到包含电感阻抗ZETIC和电感迹线阻抗ZTRACE两者的输出阻抗ZOUT。ETIC 14 inherently has an inductive impedance Z ETIC that can be modeled by ETIC inductance L ETIC . Conductive path 18 may also be associated with an inductive trace impedance Z TRACE which may be modeled by trace inductance L TRACE . Thus, looking from the power amplifier input 22 towards the ETIC 14, the power amplifier circuit 16 will see an output impedance ZOUT comprising both the inductive impedance ZETIC and the inductive trace impedance ZTRACE .
功率放大器电路16可以建模为电流源。在这方面,功率放大器电路16将基于调制电压VCC对负载电流ILOAD进行调制。负载电流ILOAD可以与输出阻抗ZOUT相互作用,以在功率放大器输入22处接收的调制电压VCC中产生电压波动VCC-RP。在这方面,电压波动VCC-RP是调制负载电流ILOAD和输出阻抗ZOUT的函数,如下面的等式(等式1)所示。The power amplifier circuit 16 can be modeled as a current source. In this regard, the power amplifier circuit 16 will modulate the load current I LOAD based on the modulation voltage V CC . The load current I LOAD may interact with the output impedance Z OUT to produce a voltage fluctuation V CC-RP in the modulation voltage V CC received at the power amplifier input 22 . In this regard, the voltage fluctuation V CC-RP is a function of the modulating load current I LOAD and the output impedance Z OUT as shown in the following equation (Equation 1).
VCC-RP=ILOAD*ZOUT (等式1)V CC-RP = I LOAD * Z OUT (equation 1)
值得注意的是,根据等式(等式1),可以通过降低在功率放大器输入22处看到的输出阻抗ZOUT来减小电压波动VCC-RP。在这方面,用于减小图1A的功率管理电路12中的电压波动VCC-RP的常规方法是在功率放大器电路16内部添加解耦电容器CPA并且尽可能靠近功率放大器输入22。通过添加解耦电容器CPA,输出阻抗ZOUT可以简单地表示为等式(等式2)。It is worth noting that, according to equation (Equation 1), the voltage fluctuation V CC-RP can be reduced by reducing the output impedance Z OUT seen at the power amplifier input 22 . In this regard, a conventional approach for reducing voltage fluctuation V CC-RP in the power management circuit 12 of FIG. 1A is to add a decoupling capacitor C PA inside the power amplifier circuit 16 and as close as possible to the power amplifier input 22 . By adding a decoupling capacitor C PA , the output impedance Z OUT can be simply expressed as an equation (Equation 2).
ZOUT=ZCPA||(ZETIC+ZTRACE) (等式2)Z OUT =Z CPA ||(Z ETIC +Z TRACE ) (Equation 2)
在等式(等式2)中,ZCPA表示解耦电容器CPA的电容阻抗。电容阻抗ZCPA和电感阻抗ZETIC以及ZTRACE各自可以根据下面的等式(等式3.1-3.3)确定。In the equation (Equation 2), Z CPA represents the capacitive impedance of the decoupling capacitor C PA . The capacitive impedance Z CPA and the inductive impedance Z ETIC and Z TRACE can each be determined according to the following equations (Equations 3.1-3.3).
|ZCPA|=1/2πf*CPA (等式3.1)|Z CPA |=1/2πf*C PA (equation 3.1)
|ZETIC|=2πf*LETIC (等式3.2)|Z ETIC |=2πf*L ETIC (equation 3.2)
|ZTRACE|=2πf*LTRACE (等式3.3)|Z TRACE |=2πf*L TRACE (equation 3.3)
在等式(等式3.1-3.3)中,f表示负载电流ILOAD的调制频率。在这方面,电容阻抗ZCPA、电感阻抗ZETIC和电感迹线阻抗ZTRACE各自为调制频率f的函数。图1C是提供量值阻抗对调制频率f的示例性图示的曲线图。In the equations (Equations 3.1-3.3), f represents the modulation frequency of the load current I LOAD . In this regard, the capacitive impedance Z CPA , the inductive impedance Z ETIC and the inductive trace impedance Z TRACE are each a function of the modulation frequency f. FIG. 1C is a graph providing an exemplary illustration of magnitude impedance versus modulation frequency f.
当调制频率f低于10MHz时,输出阻抗ZOUT由电感阻抗ZETIC的实部和电感迹线阻抗ZTRACE的实部支配。介于10MHz与100MHz之间时,输出阻抗ZOUT由电感阻抗ZETIC和电感迹线阻抗ZTRACE支配。在1000MHz以上时,输出阻抗ZOUT将由电容阻抗ZCPA支配。When the modulation frequency f is lower than 10MHz, the output impedance Z OUT is dominated by the real part of the inductive impedance Z ETIC and the real part of the inductive trace impedance Z TRACE . Between 10MHz and 100MHz, the output impedance Z OUT is dominated by the inductor impedance Z ETIC and the inductor trace impedance Z TRACE . Above 1000MHz, the output impedance Z OUT will be dominated by the capacitive impedance Z CPA .
在本文中,RF信号24的调制带宽BWMOD可以落入100MHz与1000MHz之间(例如,100-500MHz)。在此频率范围中,输出阻抗ZOUT将通过输出阻抗ZOUT确定,如等式(等式2)表示的。Herein, the modulation bandwidth BW MOD of the RF signal 24 may fall between 100 MHz and 1000 MHz (eg, 100-500 MHz). In this frequency range, the output impedance Z OUT will be determined by the output impedance Z OUT as expressed by the equation (Equation 2).
值得注意的是,根据等式(等式2和3.1),电容阻抗ZCPA以及因此输出阻抗ZOUT将随电容CPA的增加而减小。在这方面,用于降低波动电压VCC-RP的常规方法主要依赖于添加具有更大电容(例如,1F至2F)的解耦电容器CPA。然而,这样做可能引起一些明显的问题。It is worth noting that according to the equations (Equations 2 and 3.1), the capacitive impedance Z CPA and thus the output impedance Z OUT will decrease as the capacitance C PA increases. In this regard, conventional methods for reducing the fluctuating voltage V CC-RP mainly rely on adding a decoupling capacitor C PA with a larger capacitance (eg, 1F to 2F). However, doing so can cause some obvious problems.
应当理解,调制电压VCC的变化率(ΔVCC或dV/dt)可能受到解耦电容器CPA的电容的相反的影响,如下面的等式(等式4)所示。It should be appreciated that the rate of change (ΔV CC or dV/dt) of the modulation voltage V CC may be oppositely affected by the capacitance of the decoupling capacitor C PA as shown in the following equation (Equation 4).
ΔVCC=ICC/CPA(等式4)ΔV CC =I CC /C PA (Equation 4)
在等式(等式4)中,ICC表示当解耦电容器CPA充电或放电时通过ETIC 14提供的低频电流(又称起动电流)。在这方面,解耦电容器CPA具有的电容越大,则需要越大量的低频电流ICC来以所需的变化率(ΔVCC)改变调制电压VCC。因此,现有发射电路10可能对电池寿命造成负面影响。In the equation (Equation 4), I CC represents the low frequency current (also known as cranking current) supplied through the ETIC 14 when the decoupling capacitor C PA is charged or discharged. In this regard, the greater the capacitance that the decoupling capacitor C PA has, the greater the amount of low frequency current I CC required to vary the modulation voltage V CC at the desired rate of change (ΔV CC ). Therefore, existing transmit circuits 10 may negatively impact battery life.
如果低频电流ICC保持在较低电平以延长电池寿命,则现有发射电路10可能难以满足所需的变化率(ΔVCC),特别是当基于正交频分复用(OFDM)对RF信号24进行调制从而以毫米波(mmWave)频谱发射时。因此,现有发射电路10可能无法在OFDM符号之间改变调制电压VCC。If the low frequency current I CC is kept at a low level to prolong battery life, the existing transmit circuit 10 may struggle to meet the required rate of change (ΔV CC ), especially when RF is based on Orthogonal Frequency Division Multiplexing (OFDM) Signal 24 is modulated for transmission in the millimeter wave (mmWave) spectrum. Therefore, the existing transmit circuit 10 may not be able to vary the modulation voltage V CC between OFDM symbols.
另一方面,如果减小解耦电容器CPA的电容有助于改进调制电压VCC的变化率(ΔVCC)并减小起动电流ICC,则这样做可能导致输出阻抗ZOUT的减小不足,并且因此引起电压波动VCC-RP。因此,期望在提高调制电压VCC的变化率(ΔVCC)并且减小起动电流ICC的同时,充分地减小调制带宽BWMOD内的波动电压VCC-RP。On the other hand, if reducing the capacitance of the decoupling capacitor C PA helps improve the rate of change (ΔV CC ) of the modulation voltage V CC and reduces the starting current I CC , doing so may result in an insufficient reduction of the output impedance Z OUT , and thus cause voltage fluctuation V CC-RP . Therefore, it is desirable to sufficiently reduce the fluctuation voltage V CC -RP within the modulation bandwidth BW MOD while increasing the rate of change (ΔV CC ) of the modulation voltage V CC and reducing the starting current I CC .
图2是根据本公开的实施例配置以通过减小在功率放大器电路36的功率放大器输入34处呈现的输出阻抗ZOUT来减小调制电压VCC中的电压波动VCC-RP的示例性功率管理电路32的示意图。此处,功率放大器电路36被配置成经由导电路径38(例如,导电迹线)接收调制电压VCC,并且基于调制电压VCC放大RF信号40。功率放大器电路36包含解耦电容器CPA。类似于图1A中的功率放大器电路16中的解耦电容器CPA,还提供尽可能靠近功率放大器输入34的解耦电容器CPA。2 is an exemplary power configuration configured to reduce the voltage fluctuation V CC-RP in the modulation voltage V CC by reducing the output impedance Z OUT presented at the power amplifier input 34 of the power amplifier circuit 36 according to an embodiment of the present disclosure. Schematic diagram of the management circuit 32. Here, power amplifier circuit 36 is configured to receive modulation voltage V CC via conductive path 38 (eg, a conductive trace) and to amplify RF signal 40 based on modulation voltage V CC . The power amplifier circuit 36 includes a decoupling capacitor C PA . Similar to the decoupling capacitor C PA in the power amplifier circuit 16 in FIG. 1A , a decoupling capacitor C PA is also provided as close as possible to the power amplifier input 34 .
功率管理电路32包含ETIC 42。ETIC 42包含电压调制电路44。所述电压调制电路44被配置成基于调制目标电压VTGT在电压输出46处产生调制电压VCC。此处,电压输出46经由导电路径38耦合到功率放大器输入34。Power management circuitry 32 includes ETIC 42 . ETIC 42 includes voltage modulation circuitry 44 . The voltage modulation circuit 44 is configured to generate a modulation voltage V CC at a voltage output 46 based on a modulation target voltage V TGT . Here, voltage output 46 is coupled to power amplifier input 34 via conductive path 38 .
与图1A中的功率管理电路12类似,解耦电容器CPA具有电容阻抗ZCPA,ETIC 42固有地具有电感阻抗ZETIC,并且导电路径38固有地与电感迹线阻抗ZTRACE相关联,这可以如等式(等式3.1-3.3)中所表示。因此,功率放大器电路36将看到在RF信号40的调制带宽(例如,100-500MHz)内的如等式(等式2)中确定的输出阻抗ZOUT。此处,功率放大器电路36还作为电流源操作,其可基于调制电压VCC来感应调制负载电流ILOAD。与图1A中的功率管理电路12类似,调制负载电流ILOAD可以与输出阻抗ZOUT相互作用,以产生功率放大器输入34处接收的调制电压VCC中的电压波动VCC-RP。Similar to power management circuit 12 in FIG. 1A , decoupling capacitor C PA has capacitive impedance Z CPA , ETIC 42 inherently has inductive impedance Z ETIC , and conductive path 38 is inherently associated with inductive trace impedance Z TRACE , which can As represented in the equations (Equations 3.1-3.3). Accordingly, the power amplifier circuit 36 will see an output impedance Z OUT as determined in equation (Equation 2) within the modulation bandwidth of the RF signal 40 (eg, 100-500 MHz). Here, the power amplifier circuit 36 also operates as a current source that can sense a modulated load current I LOAD based on the modulated voltage V CC . Similar to power management circuit 12 in FIG. 1A , modulated load current I LOAD may interact with output impedance Z OUT to produce a voltage ripple V CC-RP in modulated voltage V CC received at power amplifier input 34 .
在本文公开的实施例中,与图1A中的功率放大器电路16中的解耦电容器CPA相比,解耦电容器CPA具有更小的电容(例如,100pF)。通过采用较小的解耦电容器CPA,有可能提高调制电压VCC的变化率(ΔVCC)以满足例如第五代(5G)和5G新无线电(5G-NR)的高级无线系统中的串流电压切换时间要求(例如,根据OFDM符号或子符号),同时减小起动电流ICC以延长电池寿命。In embodiments disclosed herein, decoupling capacitor C PA has a smaller capacitance (eg, 100 pF) than decoupling capacitor C PA in power amplifier circuit 16 in FIG. 1A . By adopting a smaller decoupling capacitor C PA , it is possible to increase the rate of change (ΔV CC ) of the modulation voltage V CC to meet the serial requirements in advanced wireless systems such as fifth generation (5G) and 5G new radio (5G-NR). Current voltage switching time requirements (for example, according to OFDM symbol or sub-symbol), while reducing the starting current I CC to prolong battery life.
此外,功率管理电路32被配置成通过减小在功率放大器输入34处呈现的输出阻抗POUT和/或在功率放大器输入34处产生陷波滤波器来减小调制电压VCC中的电压波动VCC-RP。结果,功率管理电路32可以在RF信号40的调制带宽内实现限定的性能阈值,例如RMS EVM和/或峰值EVM。Furthermore, the power management circuit 32 is configured to reduce the voltage fluctuation V in the modulation voltage V CC by reducing the output impedance P OUT presented at the power amplifier input 34 and/or creating a notch filter at the power amplifier input 34 CC-RP . As a result, power management circuitry 32 may achieve defined performance thresholds, such as RMS EVM and/or peak EVM, within the modulation bandwidth of RF signal 40 .
在实施例中,电压调制电路44包含电压放大器48(表示为“VA”),作为实例,所述电压放大器可以是运算放大器(OpAmp)。电压放大器48被配置成基于调制目标电压VTGT和供电电压VSUP在电压放大器输出50处产生初始调制电压VAMP。电压调制电路44还包含耦合在电压放大器输出50与电压输出46之间的偏移电容器COFF。偏移电容器COFF被配置成将初始调制电压VAMP升高偏移电压VOFF,以在电压输出46处产生调制电压VCC(VCC=VAMP+VOFF)。In an embodiment, the voltage modulation circuit 44 includes a voltage amplifier 48 (denoted "VA"), which may be an operational amplifier (OpAmp), as an example. Voltage amplifier 48 is configured to generate an initial modulation voltage V AMP at voltage amplifier output 50 based on modulation target voltage V TGT and supply voltage V SUP . Voltage modulation circuit 44 also includes an offset capacitor C OFF coupled between voltage amplifier output 50 and voltage output 46 . Offset capacitor C OFF is configured to boost initial modulation voltage V AMP by offset voltage V OFF to produce modulation voltage V CC at voltage output 46 (V CC =V AMP +V OFF ).
电压放大器48还被配置成接收调制电压反馈VCC-FB,所述反馈指示在电压输出46处的调制电压VCC,从而使电压调制电路44成为闭环电路。因此,电压放大器48可以基于调制反馈VCC-FB调节初始调制电压VAMP,并且因此调节调制电压VCC,以更好地跟踪调制目标电压VTGT。Voltage amplifier 48 is also configured to receive modulation voltage feedback V CC-FB indicative of modulation voltage V CC at voltage output 46 , thereby making voltage modulation circuit 44 a closed loop circuit. Accordingly, the voltage amplifier 48 can adjust the initial modulation voltage V AMP , and thus the modulation voltage V CC , based on the modulation feedback V CC-FB to better track the modulation target voltage V TGT .
电压放大器48包含输入/偏置级52和输出级54。输出级54串联耦合到电压放大器输出50。根据本公开的实施例,输出级54被配置成接收功率放大器电压反馈VCC-PA-FB,所述反馈指示如在功率放大器输入34处接收的调制电压VCC。输出级54可以经由反馈路径56接收功率放大器电压反馈VCC-PA-FB。与导电路径38类似,反馈路径56与电感反馈迹线阻抗ZTRACE-FB相关联,所述电感反馈迹线阻抗可由反馈电感LTRACE-FB建模。Voltage amplifier 48 includes an input/bias stage 52 and an output stage 54 . Output stage 54 is coupled in series to voltage amplifier output 50 . According to an embodiment of the present disclosure, output stage 54 is configured to receive power amplifier voltage feedback V CC-PA-FB indicative of modulation voltage V CC as received at power amplifier input 34 . Output stage 54 may receive power amplifier voltage feedback V CC-PA-FB via feedback path 56 . Like conductive path 38 , feedback path 56 is associated with an inductive feedback trace impedance Z TRACE-FB that can be modeled by feedback inductance L TRACE-FB .
可以理解的是,由于功率放大器电压反馈VCC-PA-FB是从功率放大器输入34提供的,因此功率放大器电压反馈VCC-PA-FB将包含如在功率放大器输入34处接收的调制电压VCC中的电压波动VCC-RP。因此,电压放大器48可以基于功率放大器电压反馈VCC-PA-FB修改初始调制电压VAMP,以使得输出阻抗ZOUT在功率放大器输入34处减小,因此有助于减小在功率放大器输入34处接收的调制电压VCC中的电压波动VCC-RP。It will be appreciated that since the power amplifier voltage feedback V CC-PA-FB is provided from the power amplifier input 34, the power amplifier voltage feedback V CC-PA-FB will contain the modulation voltage V as received at the power amplifier input 34 The voltage in CC fluctuates V CC-RP . Therefore, the voltage amplifier 48 can modify the initial modulation voltage V AMP based on the power amplifier voltage feedback V CC-PA-FB such that the output impedance Z OUT is reduced at the power amplifier input 34 , thus helping to reduce the output impedance Z OUT at the power amplifier input 34 . The voltage fluctuation V CC-RP in the modulation voltage V CC received at .
作为实例,ETIC 42可以包含控制电路58,所述控制电路可以是现场可编程门阵列(FPGA)或专用集成电路(ASIC)。在实施例中,控制电路58可例如经由控制信号60控制电压放大器48以基于功率放大器电压反馈VCC-PA-FB修改初始调制电压VAMP,从而减小功率放大器输入34处的输出阻抗ZOUT。As an example, ETIC 42 may contain control circuitry 58, which may be a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). In an embodiment, control circuit 58 may control voltage amplifier 48, eg, via control signal 60, to modify initial modulation voltage V AMP based on power amplifier voltage feedback V CC-PA-FB , thereby reducing output impedance Z OUT at power amplifier input 34 .
图3是提供图2中的电压放大器48的内部结构的示例性图示的示意图。图2与3之间的共同元件在这里以共同的元件标号示出,并且在本文中不再重复描述。FIG. 3 is a schematic diagram providing an exemplary illustration of the internal structure of voltage amplifier 48 in FIG. 2 . Common elements between Figures 2 and 3 are shown here with common element numbers and will not be described repeatedly herein.
在实施例中,输入/偏置级52被配置成接收调制电压VTGT和调制电压反馈VCC-FB。因此,输入/偏置级52产生一对偏置信号62P(又称为第一偏置信号)、62N(又称为第二偏置信号)以控制输出级54。In an embodiment, input/bias stage 52 is configured to receive modulation voltage V TGT and modulation voltage feedback V CC-FB . Accordingly, the input/bias stage 52 generates a pair of bias signals 62P (also referred to as a first bias signal), 62N (also referred to as a second bias signal) to control the output stage 54 .
在实施例中,输出级54被配置成基于偏置信号62P、62N中的选定一个在电压放大器输出50处产生初始调制电压VAMP。输出级54还被配置成接收功率放大器电压反馈VCC-FB。因此,输出级54可以基于功率放大器电压反馈VCC-FB修改初始调制电压VAMP,以减小输出阻抗ZOUT并且由此减小功率放大器输入34处的电压波动VCC-RP。In an embodiment, the output stage 54 is configured to generate an initial modulation voltage V AMP at the voltage amplifier output 50 based on a selected one of the bias signals 62P, 62N. Output stage 54 is also configured to receive power amplifier voltage feedback V CC-FB . Accordingly, output stage 54 may modify initial modulation voltage V AMP based on power amplifier voltage feedback V CC-FB to reduce output impedance Z OUT and thereby reduce voltage fluctuation V CC-RP at power amplifier input 34 .
在实施例中,输出级54包含第一晶体管64P和第二晶体管64N。在非限制性实例中,第一晶体管64P是p型场效应晶体管(pFET),并且第二晶体管64N是n型场效应晶体管(nFET)。在此实例中,第一晶体管64P包含第一源电极C1、第一漏电极D1和第一栅电极G1,并且第二晶体管64N包含第二源电极C2、第二漏电极D2和第二栅电极G2。具体地,第一漏电极D1被配置成接收供电电压VSUP,第二漏电极D2耦合到接地(GND),并且第一源电极C1和第二源电极C2均耦合到电压放大器输出50。In an embodiment, the output stage 54 includes a first transistor 64P and a second transistor 64N. In a non-limiting example, first transistor 64P is a p-type field effect transistor (pFET), and second transistor 64N is an n-type field effect transistor (nFET). In this example, the first transistor 64P includes a first source electrode C 1 , a first drain electrode D 1 , and a first gate electrode G 1 , and the second transistor 64N includes a second source electrode C 2 , a second drain electrode D 2 and the second gate electrode G 2 . Specifically, the first drain electrode D1 is configured to receive the supply voltage V SUP , the second drain electrode D2 is coupled to ground (GND), and both the first source electrode C1 and the second source electrode C2 are coupled to the voltage amplifier output 50.
第一栅电极G1耦合到输入/偏置级52以接收偏置信号62P,并且第二栅电极G2耦合到输入/偏置级52以接收偏置信号62N。此处,输入/偏置级52被配置成响应于调制电压VCC的增加产生偏置信号62P或响应于调制电压VCC的降低产生偏置信号62N。具体地,第一晶体管64P将响应于接收到偏置信号62P而被导通以输出初始调制电压VAMP并提供来自供电电压VSUP的高频电流IAMP(例如,交流电),并且第二晶体管64N将响应于接收到偏置信号62N而被导通以输出来自供电电压VSUP的初始调制电压VAMP并将高频电流IAMP下沉到GND。The first gate electrode G1 is coupled to the input/bias stage 52 to receive a bias signal 62P, and the second gate electrode G2 is coupled to the input/bias stage 52 to receive a bias signal 62N. Here, input/bias stage 52 is configured to generate bias signal 62P in response to an increase in modulation voltage V CC or to generate bias signal 62N in response to a decrease in modulation voltage V CC . Specifically, the first transistor 64P will be turned on in response to receiving the bias signal 62P to output the initial modulation voltage V AMP and provide a high frequency current I AMP (for example, alternating current) from the supply voltage V SUP , and the second transistor 64N will be turned on in response to receiving the bias signal 62N to output the initial modulation voltage V AMP from the supply voltage V SUP and sink the high frequency current I AMP to GND.
在此实施例中,输出级54还包含第一米勒电容器(Miller capacitor)CMiller1和第二米勒电容器CMiller2。具体地,第一米勒电容器CMiller1耦合在电压放大器输出50与第一栅电极G1之间,并且第二米勒电容器CMiller2耦合在电压放大器输出50与第二栅电极G2之间。在这方面,输出级54可以被视为典型AB类轨到轨(rail-rail)OpAmp输出级。第一米勒电容器CMiller1和第二米勒电容器CMiller2不仅可以稳定第一晶体管64P和第二晶体管64N的控制(例如,缓解所谓的米勒效应(Miller effect)),还可以减小电压放大器48的闭环输出阻抗。In this embodiment, the output stage 54 further includes a first Miller capacitor C Miller1 and a second Miller capacitor C Miller2 . Specifically, a first Miller capacitor C Miller1 is coupled between the voltage amplifier output 50 and the first gate electrode G1 , and a second Miller capacitor C Miller2 is coupled between the voltage amplifier output 50 and the second gate electrode G2 . In this regard, output stage 54 may be considered a typical Class AB rail-to-rail OpAmp output stage. The first Miller capacitor C Miller1 and the second Miller capacitor C Miller2 can not only stabilize the control of the first transistor 64P and the second transistor 64N (eg, alleviate the so-called Miller effect), but also reduce the voltage amplifier 48 closed-loop output impedance.
值得注意的是,由于第一米勒电容器CMiller1和第二米勒电容器CMiller2各自耦合到电压放大器输出50,第一米勒电容器CMiller1和第二米勒电容器CMiller2可以仅减小作为在功率放大器输入34处所见的输出阻抗ZOUT的一部分的电感阻抗ZETIC。因此,为了进一步减小输出阻抗ZOUT,还有必要减小电感迹线阻抗ZTRACE。It is worth noting that since the first Miller capacitor C Miller1 and the second Miller capacitor C Miller2 are each coupled to the voltage amplifier output 50, the first Miller capacitor C Miller1 and the second Miller capacitor C Miller2 can only be reduced as in The inductive impedance Z ETIC is a fraction of the output impedance Z OUT seen at the power amplifier input 34 . Therefore, in order to further reduce the output impedance Z OUT , it is also necessary to reduce the inductive trace impedance Z TRACE .
在这方面,输出级54进一步包含第一电阻器-电容器(RC)电路66P和第二RC电路66N。第一RC电路66P和第二RC电路66N均经由反馈路径56耦合到功率放大器输入34,从而接收功率放大器电压反馈VCC-FB。具体地,第一RC电路66P耦合在功率放大器输入34与第一栅电极G1之间,并且第二RC电路66N耦合在功率放大器输入34与第二栅电极G2之间。因此,第一RC电路66P可以使功率放大器电压反馈VCC-FB与偏置信号62P组合,从而修改偏置信号62P。类似地,第二RC电路66N可以使功率放大器电压反馈VCC-FB与偏置信号62N组合,从而修改偏置信号62N。In this regard, the output stage 54 further includes a first resistor-capacitor (RC) circuit 66P and a second RC circuit 66N. First RC circuit 66P and second RC circuit 66N are each coupled to power amplifier input 34 via feedback path 56 to receive power amplifier voltage feedback V CC-FB . Specifically, a first RC circuit 66P is coupled between the power amplifier input 34 and the first gate electrode G1 , and a second RC circuit 66N is coupled between the power amplifier input 34 and the second gate electrode G2 . Accordingly, the first RC circuit 66P may combine the power amplifier voltage feedback V CC-FB with the bias signal 62P, thereby modifying the bias signal 62P. Similarly, the second RC circuit 66N may combine the power amplifier voltage feedback V CC-FB with the bias signal 62N, thereby modifying the bias signal 62N.
在实施例中,第一RC电路66P包含第一可调节电阻器RFB1和第一可调节电容器CFB1,并且第二RC电路66N包含第二可调节电阻器RFB2和第二可调节电容器CFB2。反馈路径56与电感反馈迹线阻抗ZTRACE-FB相关联的调用可由反馈电感LTRACE-FB进行建模。因此,第一可调节电阻器RFB1、第一可调节电容器CFB1和反馈电感LTRACE-FB可以与第一电阻器-电感器-电容器(RLC)电路等同,所述第一RLC电路具有如下文等式(等式5)中表示的第一共振频率f1。In an embodiment, the first RC circuit 66P includes a first adjustable resistor R FB1 and a first adjustable capacitor C FB1 , and the second RC circuit 66N includes a second adjustable resistor R FB2 and a second adjustable capacitor C FB2 . The invocation of the feedback path 56 associated with the inductive feedback trace impedance Z TRACE-FB may be modeled by the feedback inductance L TRACE-FB . Thus, the first adjustable resistor R FB1 , the first adjustable capacitor C FB1 and the feedback inductance L TRACE-FB can be identified with a first resistor-inductor-capacitor (RLC) circuit having The first resonant frequency f 1 expressed in the text equation (Equation 5).
同样地,第二可调节电阻器RFB2、第二可调节电容器CFB2和反馈电感LTRACE-FB可以与第二RLC电路等同,所述第二RLC电路具有如下文等式(等式6)中表示的第二共振频率f2。Likewise, the second adjustable resistor R FB2 , the second adjustable capacitor C FB2 and the feedback inductance L TRACE-FB can be identified with a second RLC circuit having the following equation (Equation 6) The second resonant frequency f 2 represented in .
根据等式(等式5和6),可各自调节第一可调节电容器CFB1和第二可调节电容器CFB2,以与反馈电感LTRACE-FB共振,从而以第一共振频率f1和第二共振频率f2中的相应一个创建低阻抗反馈路径。第一可调节电阻器RFB1将在调制带宽BWMOD上对第一谐振频率f1进行去Q,以防止第一可调节电容器CFB1和反馈电感LTRACE-FB以第一谐振频率f1进入振荡。同样地,第二可调节电阻器RFB2将在调制带宽BWMOD上对第二共振频率f2进行去Q,以防止第二可调节电容器CFB2和反馈电感LTRACE-FB以第二共振频率f2进入振荡。According to the equations (Equations 5 and 6), the first adjustable capacitor C FB1 and the second adjustable capacitor C FB2 can be individually adjusted to resonate with the feedback inductance L TRACE-FB so that at the first resonant frequency f 1 and the second A corresponding one of the two resonant frequencies f2 creates a low impedance feedback path. The first adjustable resistor R FB1 will de-Q the first resonant frequency f1 over the modulation bandwidth BW MOD to prevent the first adjustable capacitor C FB1 and the feedback inductance L TRACE-FB from entering at the first resonant frequency f1 oscillation. Likewise, the second adjustable resistor R FB2 will de-Q the second resonant frequency f2 over the modulation bandwidth BW MOD to prevent the second adjustable capacitor C FB2 and the feedback inductance L TRACE-FB at the second resonant frequency f 2 goes into oscillation.
当在功率放大器输入34处看到的电压波动VCC-RP被馈送回到第一栅电极G1或第二栅电极G2时,第一晶体管64P和第二晶体管64N可以像共同源放大器一样起作用,其放大并反转在电压放大器输出50处的初始调制电压VAMP,并且因此放大并反转ETIC 42的电压输出46。反转初始调制电压VAMP将使得负载电流ILOAD中的更多通过导电路径38(又称为迹线电感器LTRACE)流动到GND,而不是通过功率放大器电路36流动,因此降低电感迹线阻抗ZTRACE,并且因此降低功率放大器输入34处的输出阻抗ZOUT。When the voltage fluctuation VCC-RP seen at the power amplifier input 34 is fed back to the first gate electrode G1 or the second gate electrode G2 , the first transistor 64P and the second transistor 64N can act like a common source amplifier Functioning, it amplifies and inverts the initial modulation voltage V AMP at the voltage amplifier output 50 , and thus amplifies and inverts the voltage output 46 of the ETIC 42 . Reversing the initial modulation voltage V AMP will cause more of the load current I LOAD to flow through the conduction path 38 (aka trace inductor L TRACE ) to GND rather than through the power amplifier circuit 36, thus reducing the inductance of the trace impedance Z TRACE , and thus reduces the output impedance Z OUT at the input 34 of the power amplifier.
因此,通过调节第一可调节电容器CFB1、第一可调节电阻器RFB1、第二可调节电容器CFB2和/或第二可调节电阻器RFB2,有可能将输出阻抗ZOUT减小到整个调制带宽BWMOD。在实施例中,第一可调节电容器CFB1、第一可调节电阻器RFB1、第二可调节电容器CFB2和/或第二可调节电阻器RFB2可由控制电路58经由控制信号60调节。Therefore, by adjusting the first adjustable capacitor C FB1 , the first adjustable resistor R FB1 , the second adjustable capacitor C FB2 and/or the second adjustable resistor R FB2 , it is possible to reduce the output impedance Z OUT to The entire modulation bandwidth BW MOD . In an embodiment, the first adjustable capacitor C FB1 , the first adjustable resistor R FB1 , the second adjustable capacitor C FB2 , and/or the second adjustable resistor R FB2 are adjustable by the control circuit 58 via the control signal 60 .
通过采用第一米勒电容器CMiller1和第二米勒电容器CMiller2来帮助减小电感阻抗ZETIC,并且进一步采用第一RC电路66P和第二RC电路66N来帮助减小电感迹线阻抗ZTRACE,有可能减小输出阻抗ZOUT,从而减小调制电压VCC中的电压波动VCC-RP。模拟显示,在200MHz负载电流调制频率下,功率管理电路32可将电压波动VCC-RP的RMS值从231mV减少到134mV,如图1A中的功率管理电路12中所示,这相当于改善了42%。Help reduce the inductive trace impedance Z ETIC by employing a first Miller capacitor C Miller1 and a second Miller capacitor C Miller2 , and further employ a first RC circuit 66P and a second RC circuit 66N to help reduce the inductive trace impedance Z TRACE , it is possible to reduce the output impedance Z OUT , thereby reducing the voltage fluctuation V CC-RP in the modulation voltage V CC . The simulation shows that under the 200MHz load current modulation frequency, the power management circuit 32 can reduce the RMS value of the voltage fluctuation VCC -RP from 231mV to 134mV, as shown in the power management circuit 12 in FIG. 1A, which is equivalent to improving 42%.
参考图2,ETIC 42进一步包含开关电路68。在实施例中,开关电路68包含经由功率电感器LP耦合到电压输出46的多电平电荷泵(MCP)70。作为实例,MCP 70可以是降压-升压电压转换器,其被配置成基于电池电压VBAT产生低频电压VDC。具体地,MCP 70可以在降压模式下操作以产生处于0×VBAT或1×VBAT的低频电压VDC,或者在升压模式下操作以产生处于2×VBAT的低频电压VDC。因此,通过基于适当的占空比将MCP 70配置成在0×VBAT、1×VBAT和/或2×VBAT之间切换,MCP 70可以产生处于多个电压电平的低频电压VDC。Referring to FIG. 2 , the ETIC 42 further includes a switching circuit 68 . In an embodiment, switching circuit 68 includes a multilevel charge pump (MCP) 70 coupled to voltage output 46 via power inductor L P . As an example, MCP 70 may be a buck-boost voltage converter configured to generate a low frequency voltage V DC based on a battery voltage V BAT . Specifically, the MCP 70 can operate in a buck mode to generate a low frequency voltage V DC at 0×V BAT or 1×V BAT , or in a boost mode to generate a low frequency voltage V DC at 2×V BAT . Thus, by configuring MCP 70 to switch between 0×V BAT , 1×V BAT and/or 2×V BAT based on an appropriate duty cycle, MCP 70 can generate a low frequency voltage V DC at multiple voltage levels .
功率电感器LP被配置成基于低频电压VDC感应低频电流ICC(又称为起动电流)。如图1A中先前所描述,低频电流ICC被提供给功率放大器输入34以对解耦电容器CPA充电。The power inductor L P is configured to induce a low frequency current I CC (also referred to as cranking current) based on the low frequency voltage V DC . As previously described in FIG. 1A , the low frequency current I CC is provided to the power amplifier input 34 to charge the decoupling capacitor C PA .
本领域的技术人员将认识到对本公开的优选实施例的改进和修改。所有此类改进和修改都被认为是在本文所公开的概念和以下权利要求的范围内。Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63/303,532 | 2022-01-27 | ||
US17/826,311 | 2022-05-27 | ||
US17/826,311 US20230238927A1 (en) | 2022-01-27 | 2022-05-27 | Voltage ripple reduction in a power management circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116505886A true CN116505886A (en) | 2023-07-28 |
Family
ID=87319040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310044807.4A Pending CN116505886A (en) | 2022-01-27 | 2023-01-30 | Voltage ripple reduction in power management circuits |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116505886A (en) |
-
2023
- 2023-01-30 CN CN202310044807.4A patent/CN116505886A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230238927A1 (en) | Voltage ripple reduction in a power management circuit | |
US11906992B2 (en) | Distributed power management circuit | |
US10862428B2 (en) | Feed-forward envelope tracking | |
US11539289B2 (en) | Multi-level charge pump circuit | |
US11463048B2 (en) | Distributed feed-forward envelope tracking system | |
US11031911B2 (en) | Envelope tracking integrated circuit and related apparatus | |
US11108359B2 (en) | Multi-amplifier envelope tracking circuit and related apparatus | |
US10505502B2 (en) | Wide modulation bandwidth radio frequency circuit | |
US12206365B2 (en) | Voltage ripple suppression in a transmission circuit | |
US11522456B2 (en) | Supply modulator for power amplifier | |
KR101797068B1 (en) | Average current mode control of multi-phase switching power converters | |
CN107438940A (en) | Switching regulator circuit and method with reconfigurable inductance | |
US9024691B2 (en) | Adaptive power amplifier and methods of making same | |
JP2023529096A (en) | energy harvesting system | |
US20120217822A1 (en) | Variable capacitance circuit | |
US11699950B2 (en) | Fast-switching power management circuit operable to prolong battery life | |
CN116505886A (en) | Voltage ripple reduction in power management circuits | |
US10152077B2 (en) | Voltage generating circuit and pre-driving signal generating module | |
US12199570B2 (en) | Envelope tracking integrated circuit for reducing in-rush battery current | |
US20230387860A1 (en) | Voltage ripple reduction in a power management circuit | |
CN117155315A (en) | Voltage ripple reduction in power management circuits | |
US11658614B2 (en) | Supply voltage circuit for reducing in-rush battery current in an envelope tracking integrated circuit | |
US20230253922A1 (en) | Wide bandwidth power amplifier apparatus | |
WO2024123410A1 (en) | Distributed power management circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40088020 Country of ref document: HK |
|
SE01 | Entry into force of request for substantive examination |