CN116209499A - Volume correlation of dose and dose rate information for radiation treatment planning - Google Patents
Volume correlation of dose and dose rate information for radiation treatment planning Download PDFInfo
- Publication number
- CN116209499A CN116209499A CN202180044851.4A CN202180044851A CN116209499A CN 116209499 A CN116209499 A CN 116209499A CN 202180044851 A CN202180044851 A CN 202180044851A CN 116209499 A CN116209499 A CN 116209499A
- Authority
- CN
- China
- Prior art keywords
- dose
- visualization
- volume
- gui
- dose rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 142
- 230000005855 radiation Effects 0.000 title claims abstract description 67
- 238000013439 planning Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000009877 rendering Methods 0.000 claims abstract description 23
- 238000012800 visualization Methods 0.000 claims description 57
- 238000003860 storage Methods 0.000 claims description 30
- 206010028980 Neoplasm Diseases 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 18
- 238000013507 mapping Methods 0.000 claims description 8
- 238000001959 radiotherapy Methods 0.000 description 21
- 238000009826 distribution Methods 0.000 description 18
- 239000003086 colorant Substances 0.000 description 17
- 238000012545 processing Methods 0.000 description 12
- 230000001186 cumulative effect Effects 0.000 description 11
- 210000000056 organ Anatomy 0.000 description 8
- 238000002591 computed tomography Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000002721 intensity-modulated radiation therapy Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012384 transportation and delivery Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 238000013179 statistical model Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002727 particle therapy Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 241001123605 Peru tomato mosaic virus Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000920 organ at risk Anatomy 0.000 description 1
- 239000000082 organ preservation Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002720 stereotactic body radiation therapy Methods 0.000 description 1
- 238000002717 stereotactic radiation Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1038—Treatment planning systems taking into account previously administered plans applied to the same patient, i.e. adaptive radiotherapy
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N2005/1041—Treatment planning systems using a library of previously administered radiation treatment applied to other patients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N2005/1074—Details of the control system, e.g. user interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/1087—Ions; Protons
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Surgery (AREA)
- Urology & Nephrology (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求由Lansonneur等人于2020年6月23日提交的美国临时申请序列号63/043,027,标题为“Correlation of Dose and dose rate information to Volume forradiation treatment planning”的优先权,其通过引用以其整体并入本文。This application claims priority to U.S. Provisional Application Serial No. 63/043,027, filed June 23, 2020, by Lansonneur et al., entitled "Correlation of Dose and dose rate information to Volume radiation treatment planning," which is incorporated by reference in its Incorporated into this article as a whole.
背景技术Background technique
使用辐射疗法来处理癌症是众所周知的。通常,辐射疗法涉及将高能质子、光子、离子或电子辐射(“治疗辐射”)的射束引导到处理靶标中的靶标或体积(例如,包括肿瘤或病变的体积)中。The use of radiation therapy to treat cancer is well known. In general, radiation therapy involves directing beams of high-energy proton, photon, ion, or electron radiation ("therapeutic radiation") into a target or volume within the treatment target (eg, a volume including a tumor or lesion).
在用辐射处理患者之前,开发特定于该患者的处理计划。该计划使用可以基于过去经验的模拟和优化来定义治疗的各个方面。通常,处理计划的目的是向不健康组织递送足够的辐射,同时最小化周围健康组织对辐射的暴露。Before treating a patient with radiation, a treatment plan specific to that patient is developed. The plan uses simulations and optimizations that can be based on past experience to define aspects of the treatment. Typically, the goal of a treatment plan is to deliver sufficient radiation to unhealthy tissue while minimizing radiation exposure to surrounding healthy tissue.
计划者的目的是寻找关于多个临床目的最优的解决方案,这在朝向一个目的的改进可能对达到另一个目的具有有害影响的意义上是矛盾的。例如,使肝脏免于受到一定剂量辐射的处理计划可能导致胃受到过多辐射。这些类型的折衷导致迭代过程,其中计划者创建不同的计划以寻找最适合于实现期望结果的一个计划。The aim of the planner is to find the optimal solution with respect to multiple clinical objectives, which is contradictory in the sense that improvements towards one objective may have detrimental effects on the attainment of another. For example, a treatment plan that spares the liver a certain dose of radiation may result in too much radiation to the stomach. These types of tradeoffs lead to an iterative process in which the planner creates different plans to find the one that is best suited to achieve the desired outcome.
相对最近的辐射生物学研究已经证明了在单个短时间段内将整个相对高的治疗辐射剂量递送到靶标的有效性。该类型的处理在本文中通常被称为FLASH辐射疗法(FLASHRT)。迄今为止的证据表明,当组织暴露于高辐射剂量仅很短的时间段时,FLASH RT有利地使正常健康组织免于损伤。Relatively recent radiation biology studies have demonstrated the effectiveness of delivering an entire relatively high therapeutic radiation dose to a target within a single short period of time. This type of treatment is generally referred to herein as FLASH radiation therapy (FLASHRT). Evidence to date suggests that FLASH RT advantageously spares normal healthy tissue from damage when the tissue is exposed to high radiation doses for only a short period of time.
FLASH RT引入了传统辐射处理规划没有捕捉到的重要相互依赖性。诸如剂量-体积直方图和剂量率体积直方图的当前工具不捕捉剂量和剂量率的相互依赖性。例如,从临床医生的角度来看,开发针对高质量计划的剂量率分布并不是微不足道的,因为如果剂量在某些区域中被最小化,则正常组织可能受益于这些区域中的低剂量率。而且,例如,照射处理体积中有限数目的斑点可以导致高剂量率的递送,但是导致在肿瘤水平上的低剂量均匀性,而另一方面,可以通过以降低剂量率为代价增加斑点数目来改善计划质量。FLASH RT introduces important interdependencies not captured by traditional radiation treatment planning. Current tools such as dose-volume histograms and dose-rate-volume histograms do not capture the interdependence of dose and dose rate. For example, from a clinician's perspective, it is not trivial to develop a dose rate profile for a high-quality plan, since normal tissue may benefit from low dose rates in certain regions if dose is minimized in these regions. Also, for example, irradiating a limited number of spots in the treatment volume can lead to high dose rate delivery, but low dose uniformity at the tumor level, while on the other hand, can be improved by increasing the number of spots at the expense of reduced dose rate. plan quality.
发明内容Contents of the invention
在一方面,本发明提供了一种如权利要求1所限定的计算机系统。在另一方面,本发明提供了一种具有计算机可执行指令的非暂态计算机可读存储介质,该计算机可执行指令用于使计算机系统执行如权利要求12所限定的用于规划辐射处理的方法。在另一方面,本发明提供了一种具有计算机可执行指令的非暂态计算机可读存储介质,该计算机可执行指令用于使计算机系统执行如权利要求17所限定的用于规划辐射处理的方法。在从属权利要求中指定了可选特征。In one aspect, the invention provides a computer system as defined in
因此,根据本发明的一些实施例提供了一种用于FLASH辐射处理(FLASH RT)的生成和评估辐射处理计划以及基于这些计划的改进辐射处理的改进方法。Accordingly, some embodiments according to the present invention provide an improved method for generating and evaluating radiation treatment plans for FLASH radiation treatment (FLASH RT) and improving radiation treatment based on these plans.
在一些实施例中,用于规划辐射处理的计算机实现的方法包括访问包括针对处理靶标中的子体积(例如,构成子体积的体积的任何三维形状中任何数目的体素)的计算剂量和计算剂量率的信息,并且还访问包括子体积的作为计算剂量和计算剂量率的函数的度量值(例如,数目、百分比或分数)的信息。然后显示包括基于计算剂量、计算剂量率和度量值的绘制(例如,视觉显示)的图形用户界面(GUI)。In some embodiments, a computer-implemented method for planning radiation treatment includes accessing calculations including calculated doses and calculated information on the dose rate, and also accesses information including a measure (eg, number, percentage, or fraction) of the subvolume as a function of the calculated dose and the calculated dose rate. A graphical user interface (GUI) including rendering (eg, a visual display) based on the calculated dose, calculated dose rate, and metric values is then displayed.
在一些实施例中,绘制包括作为GUI的第一维度(例如,可视化的元素或方面,或虚拟空间中的空间维度)的剂量-体积直方图的可视化(例如,图形元素)、作为GUI的第二维度的剂量率-体积直方图的可视化、以及作为GUI的第三维度的度量值的可视化。例如,绘制可以包括每个子体积的计算剂量率的可视化、每个子体积的计算剂量的可视化,以及每个子体积的度量的可视化。在一些实施例中,绘制还包括处方剂量和处方剂量率的可视化。在一些实施例中,绘制还包括每个子体积的正常组织并发症概率的可视化。在一些实施例中,绘制还包括每个子体积的肿瘤控制概率的可视化。在一些实施例中,不同的属性值(例如,颜色、图案、灰度级、字母数字文本或亮度)与可视化的元素相关联。In some embodiments, a visualization (e.g., a graphical element) comprising a dose-volume histogram as a first dimension (e.g., an element or aspect of the visualization, or a spatial dimension in a virtual space) of the GUI is drawn, as a second dimension of the GUI Visualization of dose rate-volume histograms in two dimensions, and visualization of metric values in a third dimension as a GUI. For example, rendering may include visualization of calculated dose rates for each subvolume, visualization of calculated doses for each subvolume, and visualization of metrics for each subvolume. In some embodiments, mapping also includes visualization of prescribed dose and prescribed dose rate. In some embodiments, mapping also includes visualization of the normal tissue complication probability for each subvolume. In some embodiments, the mapping also includes visualization of the probability of tumor control for each subvolume. In some embodiments, different property values (eg, color, pattern, gray scale, alphanumeric text, or brightness) are associated with the visualized elements.
显示GUI允许临床医生更好地评估剂量率和剂量均匀性之间的平衡,该GUI在单个绘制中可视化针对处理靶标中的子体积的计算剂量和计算剂量率,以及子体积的作为计算剂量和计算剂量率的函数的度量值。基本上在单次扫视中,临床医生可以评估所建议的辐射处理计划的质量,对所建议的计划做出改变,并且评估改变的结果。Allowing clinicians to better assess the balance between dose rate and dose uniformity, a GUI is displayed that visualizes the calculated dose and calculated dose rate for a subvolume in the treatment target, as well as the calculated dose and A measure of the function that calculates the dose rate. Essentially in a single glance, the clinician can assess the quality of the proposed radiation treatment plan, make changes to the suggested plan, and evaluate the results of the changes.
在辐射疗法技术中,其中粒子束的强度在递送场上是恒定的或调制的,诸如在强度调制辐射疗法(IMRT)和强度调制粒子疗法(IMPT)中,射束强度在患者的每个处理区域(处理靶标中的体积)上是变化的。取决于处理模式,可用于强度调制的自由度包括射束整形(准直),射束加权(点扫描)和入射角(其可以被称为射束几何形状)。这些自由度导致几乎无限数目的潜在处理计划,因此持续有效地生成和评估高质量的处理计划超出了人类的能力并且依赖于计算机系统的使用,特别是在考虑与使用辐射疗法来处理如癌症的疾病相关联的时间限制,以及在任何给定时间段期间经历或需要经历辐射疗法的大量患者的情况下。In radiation therapy techniques, where the intensity of the particle beam is constant or modulated over the delivery field, such as in intensity-modulated radiation therapy (IMRT) and intensity-modulated particle therapy (IMPT), the beam intensity varies with each treatment of the patient. The area (volume within the treatment target) is varied. Depending on the processing mode, the degrees of freedom available for intensity modulation include beam shaping (collimation), beam weighting (spot scanning) and angle of incidence (which may be referred to as beam geometry). These degrees of freedom lead to an almost infinite number of potential treatment plans, so consistently and efficiently generating and evaluating high-quality treatment plans is beyond human capabilities and relies on the use of computer systems, especially when considered in relation to the use of radiation therapy to treat conditions such as cancer. Time constraints associated with disease, and the presence of large numbers of patients undergoing or needing to undergo radiation therapy during any given time period.
根据本发明的一些实施例通过将FLASH RT扩展到更多种处理平台和靶标位点(例如,肿瘤)来改进辐射处理计划和处理本身。与用于FLASH剂量率的常规技术相比,通过优化被递送到处理靶标的体积中不健康组织(例如,肿瘤)的剂量率与被递送到周围健康组织的剂量率之间的平衡,如本文所述生成的处理计划对于使健康组织免受辐射是更优的。当与FLASH剂量率一起使用时,因为剂量是在短时间段内(例如,小于一秒)施用的,患者运动的管理被简化。处理计划虽然仍然是复杂的任务,但相对于常规处理计划得到了改进。除这些益处之外,GUI通过允许计划者容易地可视化所建议的处理计划的关键要素、容易地可视化所建议的计划的改变对那些要素的影响并且比较不同的计划,以及定义和建立优化目标来促进处理计划。Some embodiments according to the invention improve radiation treatment planning and treatment itself by extending FLASH RT to a wider variety of treatment platforms and target sites (eg, tumors). By optimizing the balance between the dose rate delivered to unhealthy tissue (e.g., a tumor) in the volume of the treatment target and the dose rate delivered to surrounding healthy tissue, as compared to conventional techniques for FLASH dose rate, as described herein The treatment plan generated above is optimal for sparing healthy tissue from radiation. When used with the FLASH dose rate, management of patient motion is simplified because the dose is administered over a short period of time (eg, less than a second). Processing planning, while still a complex task, has been improved over conventional processing planning. In addition to these benefits, the GUI helps planners by allowing planners to easily visualize key elements of proposed treatment plans, easily visualize the impact of changes to proposed plans on those elements and compare different plans, and define and establish optimization goals Facilitate treatment plans.
总之,根据本公开的一些实施例涉及生成和实现处理计划,该处理计划是最有效的(相对于其他计划)并且具有最小的(或最可接受的)副作用(例如,被处理的区域之外的较低剂量率)。因此,根据本发明的一些实施例具体地改进了辐射处理计划的领域,并且总体上改进了辐射疗法的领域。根据本发明的一些实施例允许更快地生成更有效的处理计划。此外,根据本发明的一些实施例有助于改善计算机的功能,因为例如通过降低生成处理计划的复杂性,更少的计算资源被需要和消耗,也意味着计算机资源被释放以执行其它任务。In summary, some embodiments according to the present disclosure relate to generating and implementing a treatment plan that is the most effective (relative to other plans) and has the fewest (or most acceptable) side effects (e.g., outside the treated area lower dose rates). Thus, some embodiments according to the invention improve the field of radiation treatment planning in particular, and the field of radiation therapy in general. Some embodiments according to the invention allow for faster generation of more efficient treatment plans. Furthermore, some embodiments according to the present invention help to improve the functionality of the computer because, for example, by reducing the complexity of generating processing plans, less computing resources are required and consumed, which also means that computer resources are freed up to perform other tasks.
除诸如IMRT和IMPT的辐射疗法技术之外,根据本发明的实施例可以用于空间分割辐射疗法,包括高剂量空间分割栅格辐射疗法、迷你束辐射疗法和微束辐射疗法。In addition to radiation therapy techniques such as IMRT and IMPT, embodiments according to the present invention may be used in spatially fractionated radiation therapy, including high-dose spatially fractionated grid radiation therapy, mini-beam radiation therapy, and micro-beam radiation therapy.
在阅读了以下在各个附图中说明的详细描述之后,本领域技术人员将认识到根据本发明的实施例的这些和其他目的与优点。These and other objects and advantages according to embodiments of the present invention will be appreciated by those skilled in the art after reading the following detailed description illustrated in the various figures.
提供本概述以介绍在以下详细描述中进一步描述的一些概念。本概述不旨在标识所要求保护的主题的关键特征或必要特征,也不旨在用于限制所要求保护的主题的范围。This overview is provided to introduce some concepts that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
附图说明Description of drawings
并入本说明书并形成本说明书的一部分并且其中相同的数字描述相同的元件的附图图示了本公开的实施例,并且与详细描述一起用于解释本公开的原理。The accompanying drawings, which are incorporated in and form a part of this specification and in which like numerals describe like elements, illustrate embodiments of the disclosure and, together with the detailed description, serve to explain the principles of the disclosure.
图1是可以在其上实现本文所述的实施例的计算机系统的一个示例的框图。Figure 1 is a block diagram of one example of a computer system upon which embodiments described herein may be implemented.
图2是图示根据本发明的实施例中的自动辐射疗法处理计划系统的一个示例的框图。Figure 2 is a block diagram illustrating one example of an automated radiation therapy treatment planning system in an embodiment according to the invention.
图3图示了根据本发明的实施例中的基于知识的计划系统。Figure 3 illustrates a knowledge-based planning system in an embodiment according to the invention.
图4是图示了可以在其上实现根据本发明的实施例的辐射疗法系统的所选部件的框图。Figure 4 is a block diagram illustrating selected components of a radiation therapy system upon which an embodiment according to the present invention may be implemented.
图5A和图5B图示了根据本发明的一个实施例中的剂量率-体积直方图的示例。5A and 5B illustrate examples of dose rate-volume histograms in one embodiment according to the invention.
图5C图示了根据本发明的一个实施例中的处理靶标的体积中的子体积。Figure 5C illustrates sub-volumes within a volume of treatment targets in one embodiment according to the invention.
图5D图示了根据本发明的一个实施例中的照射时间-体积直方图的一个示例。Figure 5D illustrates an example of an illumination time-volume histogram in one embodiment according to the invention.
图6是根据本发明的实施例中用于辐射处理计划的计算机实现的操作的一个示例的流程图。6 is a flowchart of one example of computer-implemented operations for radiation treatment planning in an embodiment in accordance with the invention.
图7图示了根据本发明的实施例中的剂量率等值线的一个示例。Figure 7 illustrates an example of dose rate contours in an embodiment according to the invention.
图8、图9和图10是根据本发明的实施例中用于规划辐射处理的计算机实现的操作的一个示例的流程图。8, 9, and 10 are flowcharts of one example of computer-implemented operations for planning radiation treatment in an embodiment in accordance with the invention.
图11、图12、图13A、图13B、图14-28、图29A、图29B、图30A、图30B和图31-35是显示设备上的图形用户界面的示例,并且用于根据本发明的实施例的规划辐射处理。Figures 11, 12, 13A, 13B, 14-28, 29A, 29B, 30A, 30B and 31-35 are examples of graphical user interfaces on display devices and are used in accordance with the present invention An embodiment of planning radiation treatment.
具体实施方式Detailed ways
现在将详细参考本公开的各个实施例,其示例在附图中被图示。尽管结合这些实施例进行描述,但是应当理解,这些实施例并不旨在将本公开限制于这些实施例。相反,本公开旨在覆盖可被包括在由所附权利要求限定的本公开的精神和范围内的备选、修改和等同物。此外,在本公开的以下详细描述中,阐述了许多具体细节以便提供对本公开的透彻理解。然而,应当理解,可以在没有这些具体细节的情况下实施本公开。在其他情况下,没有详细描述公知的方法、过程、部件和电路,以免不必要地模糊本公开的各方面。Reference will now be made in detail to various embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. While described in conjunction with these embodiments, it will be understood that they are not intended to limit the disclosure to these embodiments. On the contrary, the disclosure is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the disclosure as defined by the appended claims. Furthermore, in the following detailed description of the present disclosure, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it is understood that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present disclosure.
以下详细描述的一些部分按照过程、逻辑块、处理和对计算机存储器内的数据位的操作的其它符号表示来呈现。这些描述和表示是数据处理领域的技术人员用来将其工作的实质最有效地传达给本领域的其他技术人员的手段。在本申请中,过程,逻辑块,过程等被认为是导致期望结果的步骤或指令的自相容序列。步骤是利用物理量的物理操纵的步骤。通常,尽管不是必须的,这些量采取能够在计算机系统中被存储、传送、组合、比较和以其它方式操纵的电或磁信号的形式。主要出于通用的原因,将这些信号称为事务、比特、值、元素、符号、字符、样本、像素等有时被证明是方便的。Some portions of the detailed description that follows are presented in terms of procedures, logical blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. In this application, a procedure, logic block, procedure, etc. is considered to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those employing physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as transactions, bits, values, elements, symbols, characters, samples, pixels, or the like.
然而,应当记住,所有这些和类似的术语将与适当的物理量相关联,并且仅仅是应用于这些量的方便标记。除非特别声明,否则如从以下讨论中显而易见的,应当理解,贯穿本公开,利用诸如“访问”、“生成”、“表示”、“应用”、“指示”、“存储”、“使用”、“调整”、“包括”、“计算”、“运算”、“确定”、“可视化”、“显示”、“绘制”、“关联”、“分区间”或“舍入”等术语的讨论是指计算机系统或类似电子计算设备或处理器(例如,图1的计算机系统100)的动作和过程(例如,图6和图8-10的流程图)。计算机系统或类似的电子计算设备操纵并转换被表示为计算机系统存储器、寄存器或其它这种信息存储、传输或显示设备内的物理(电子)量的数据。It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless otherwise stated, as will be apparent from the following discussion, it should be understood that throughout this disclosure references to terms such as "access", "generate", "represent", "apply", "instruct", "store", "use", Discussion of terms such as "adjust", "include", "compute", "operate", "determine", "visualize", "display", "draw", "relate", "interval", or "round" is Refers to the actions and processes (eg, the flowcharts of FIGS. 6 and 8-10 ) of a computer system or similar electronic computing device or processor (eg,
接下来的讨论包括诸如“剂量”、“剂量率”、“能量”等术语。除非另有说明,否则值与每个这样的术语相关联。例如,剂量具有值并且可以具有不同的值。为简单起见,术语“剂量”可以指例如剂量的值,除非另有说明或从讨论中显而易见。The ensuing discussion includes terms such as "dose", "dose rate", "energy", etc. Unless otherwise stated, a value is associated with each such term. For example, dose has a value and can have different values. For simplicity, the term "dosage" may refer to values such as dosage unless otherwise stated or apparent from the discussion.
下面的详细描述的部分是根据方法来呈现和讨论的。尽管在本文的附图(例如,图6和图8-10)中公开了描述这些方法的操作的步骤及其排序,但是这些步骤和排序仅是示例。实施例非常适合于以不同于本文所描绘和描述的序列来执行本文附图的流程图中所列举的各种其它步骤或步骤的变型。Portions of the detailed description below are presented and discussed in terms of methods. Although steps and their ordering describing the operation of these methods are disclosed in the figures herein (eg, FIGS. 6 and 8-10 ), these steps and ordering are merely examples. Embodiments are well suited to performing various other steps or variations of steps recited in the flowcharts of the figures herein, in sequences other than those depicted and described herein.
可以在计算机可执行指令的一般上下文中讨论本文所述的实施例,该计算机可执行指令驻留在某种形式的计算机可读存储介质上(诸如程序模块),由一个或多个计算机或其它设备执行。作为示例而非限制,计算机可读存储介质可以包括非暂态计算机存储介质和通信介质。通常地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、部件、数据结构等。程序模块的功能可按需组合或分布在各个实施例中。Embodiments described herein may be discussed in the general context of computer-executable instructions residing on some form of computer-readable storage medium, such as a program module, and executed by one or more computers or other device execution. By way of example, and not limitation, computer readable storage media may comprise non-transitory computer storage media and communication media. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The functions of the program modules can be combined or distributed in various embodiments as required.
计算机存储介质包括以用于存储诸如计算机可读指令、数据结构、程序模块或其它数据等信息的任何方法或技术实现的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、闪存或其它存储器技术、光盘ROM(CD-ROM)、数字多功能盘(DVD)或其它光存储、磁盘存储器、磁带、磁盘存储或其它磁存储设备、或可以用于存储所需信息并且可以被访问以检索该信息的任何其它介质。Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media include, but are not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable ROM (EEPROM), flash memory or other memory technologies, compact disc ROM (CD-ROM), digital multifunction Disk (DVD) or other optical storage, magnetic disk storage, magnetic tape, magnetic disk storage or other magnetic storage device, or any other medium that can be used to store the desired information and can be accessed to retrieve that information.
通信介质可以体现计算机可执行指令、数据结构和程序模块,并且包括任何信息传送介质。作为示例而非限制,通信介质包括诸如有线网络或直接有线连接的有线介质,以及诸如声学、射频(RF)、红外和其它无线介质的无线介质。上述任何的组合也可以被包括在计算机可读介质的范围内。Communication media can embody computer-executable instructions, data structures and program modules and includes any information delivery media. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
使用不同类型的直方图的辐射处理计划Radiation treatment plans using different types of histograms
图1示出了可以在其上实现本文所述的实施例的计算机系统100的一个示例的框图。在其最基本的配置中,系统100包括至少一个处理单元102和存储器104。该最基本的配置在图1中由虚线106图示。系统100还可以具有附加的特征和/或功能。例如,系统100还可以包括附加的存储装置(可移除和/或不可移除),包括但不限于磁盘或光盘或磁带。这种附加的存储装置在图1中由可移除存储装置108和不可移除存储装置120图示。系统100还可以包含(多个)通信连接122,该通信连接允许设备例如在使用到一个或多个远程计算机的逻辑连接的网络化环境中与其他设备通信。FIG. 1 shows a block diagram of one example of a
系统100还包括(多个)输入设备124,诸如键盘、鼠标、笔、语音输入设备、触摸输入设备等。还包括(多个)输出设备126,诸如显示设备、扬声器、打印机等。显示设备可以是例如阴极射线管显示器、发光二极管显示器或液晶显示器。
在图1的示例中,存储器104包括与“优化器”模型150相关联的计算机可读指令、数据结构、程序模块等。然而,优化器模型150也可以替代地驻留在由系统100使用的任何一个计算机存储介质中,或者可以被分布在计算机存储介质的某种组合上,或者可以被分布在联网计算机的某种组合上。下面描述优化器模型150的功能。In the example of FIG. 1 ,
图2是图示根据本发明的实施例中的自动化辐射疗法处理规划系统200的一个示例的框图。系统200包括接收患者特异性信息(数据)201的输入接口210、实现优化器模型150的数据处理部件220,以及输出接口230。系统200整体或部分地可以在计算机系统100(图1)上或使用计算机系统100(图1)被实现为软件程序、硬件逻辑或其组合。Figure 2 is a block diagram illustrating one example of an automated radiation therapy
在图2的示例中,患者特异性信息被提供给优化器模型150并由其处理。在实施例中,优化器模型150产生预测结果,然后基于预测结果的处理计划可以被生成。In the example of FIG. 2 , patient-specific information is provided to and processed by
图3图示了根据本发明的实施例中的基于知识的规划系统300。在图3的示例中,系统300包括知识库302和处理规划工具集310。知识库302包括患者记录304(例如,辐射处理计划)、处理类型306和统计模型308。图3的示例中的处理规划工具集310包括当前患者记录312、处理类型314、医学图像处理模块316、优化器模型(模块)150、剂量分布模块320和最终辐射处理计划322。FIG. 3 illustrates a knowledge-based
处理规划工具集310通过知识库302(通过患者记录304)搜索与当前患者记录312相似的先前患者记录。统计模型308可以用于将针对当前患者记录312的预测结果与统计患者进行比较。使用当前患者记录312、所选择的处理类型306以及所选择的统计模型308、工具集310生成辐射处理计划322。
更具体地,基于过去的临床经验,当患者表现出特定的诊断、阶段、年龄、体重、性别、合并症等时,可以存在最经常使用的处理类型。通过选择计划者已经在过去为类似患者使用的处理类型,可以选择第一步处理类型314。处理计划过程中可以包括患者结果,其可以包括作为剂量率和患者特定处理类型结果的函数的正常组织并发症概率(例如,局部复发失败,以及作为剂量和/或剂量率的函数的总存活率)。医学图像处理模块316提供二维截面切片的自动轮廓描绘和自动分割(例如,来自诸如但不限于计算机断层摄影(CT)、正电子发射断层摄影-CT、磁共振成像和超声的任何成像模式),以使用当前患者记录312中的医学图像来形成三维(3D)图像。剂量分布图和剂量率分布图由剂量和剂量率分布模块320计算,剂量和剂量率分布模块320可以利用优化器模型150。More specifically, based on past clinical experience, there may be the type of treatment that is most frequently used when a patient exhibits a particular diagnosis, stage, age, weight, sex, comorbidities, and the like. The first step treatment type can be selected 314 by selecting a treatment type that the planner has used in the past for similar patients. Patient outcomes can be included in the treatment planning process, which can include normal tissue complication probabilities as a function of dose rate and patient-specific treatment type outcomes (e.g., local recurrence failure, and overall survival as a function of dose and/or dose rate ). The medical image processing module 316 provides automatic contouring and automatic segmentation of two-dimensional cross-sectional slices (e.g., from any imaging modality such as, but not limited to, computed tomography (CT), positron emission tomography-CT, magnetic resonance imaging, and ultrasound) , to form a three-dimensional (3D) image using the medical images in the
在根据本发明的实施例中,优化器模型150使用剂量预测模型来提供例如3D剂量分布、注量和剂量率,以及相关联的剂量-体积直方图(DVH)和剂量率-体积直方图(DRVH)。In an embodiment according to the invention, the
接下来的讨论涉及射束、体积、剂量、剂量率和其它元素或值。下面的讨论是在处理规划工具集310和优化器模型150(图3)中的建模元素和计算值的上下文中,除非在讨论中另有说明或明确说明。The discussion that follows deals with beams, volumes, doses, dose rates, and other elements or values. The following discussion is in the context of processing modeling elements and calculated values in
图4是示出可以在其上实现根据本发明的实施例的辐射疗法系统400的所选部件的框图。在图4的示例中,系统400包括射束系统404和喷嘴406。FIG. 4 is a block diagram illustrating selected components of a
射束系统404生成并传输射束401。射束401可以是质子束、电子束、光子束、离子束或原子核束(例如,碳、氦和锂)。在实施例中,根据射束的类型,射束系统404包括在朝向喷嘴406的方向上引导(例如,弯曲,控向或引导)射束系统并将其引导到喷嘴406中的部件。在实施例中,辐射疗法系统可以包括一个或多个多叶准直器(MLC);每个MLC叶可以由控制系统410独立地来回移动,以动态地整形射束可以通过的孔径,以遮挡或不遮挡射束的部分,从而控制射束形状和曝光时间。射束系统404还可以包括用于调节(例如,减小)进入喷嘴406的射束能量的部件。
喷嘴406用于将射束对准处理室中被支撑在患者支撑装置408(例如,椅子或桌子)上的各个位置(处理靶标中的体积)(例如,患者中的体积)。处理靶标中的体积可以是器官、器官的一部分(例如,器官内的体积或区域)、肿瘤、患病组织或患者轮廓。处理靶标中的体积可以包括不健康组织(例如,肿瘤)和健康组织。可以将处理靶标中的体积(虚拟地)划分为多个体素。子体积可以包括单个体素或多个体素。The
喷嘴406可以被安装在龙门架或龙门架的一部分上,龙门架可以相对于患者支撑装置408移动,患者支撑装置408也可以是可移动的。在实施例中,射束系统404也被安装在龙门架上或是龙门架的一部分。在另一实施例中,射束系统与龙门架分离(但与其通信)。
图4的控制系统410接收并实现规定的辐射处理计划。在实施例中,控制系统410包括计算机系统,该计算机系统具有处理器、存储器、输入设备(例如,键盘)以及可能以公知方式的显示器。控制系统410可以接收关于系统400的操作的数据。控制系统410可以根据其接收的数据以及根据规定的辐射处理计划来控制射束系统404、喷嘴406和患者支撑装置408的参数,包括诸如射束的能量、强度、方向、尺寸和/或形状的参数。The
如上所述,进入喷嘴406的射束401具有特定的能量。因此,在根据本公开的实施例中,喷嘴406包括影响(例如,减小,调制)射束能量的一个或多个部件。术语“射束能量调节器”在本文中用作用于影响射束能量的一个或多个部件的一般术语,以便根据射束的类型来控制射束的范围(例如,射束穿透进入靶的程度)、控制由射束递送的剂量和/或控制射束的深度-剂量曲线。例如,对于具有布拉格峰的质子束或离子束,束能量调节器可以控制在处理靶标的体积中布拉格峰的位置。在各个实施例中,射束能量调节器407包括范围调制器、范围移位器、或范围调制器和范围移位器两者。As mentioned above, the
在辐射疗法技术中,其中粒子束的强度在递送场上是恒定的或调制的,诸如强度调制辐射疗法(IMRT)和强度调制粒子疗法(IMPT),射束强度在患者中的每个处理区域(处理靶标中的体积)上是变化的。根据处理模式,可用于强度调制的自由度包括射束整形(准直)、射束加权(点扫描)和入射角(其可以被称为射束几何形状)。这些自由度导致几乎无限数目的潜在处理计划,并且因此持续有效地生成和评估高质量的处理计划超出了人类的能力并且依赖于计算机系统的使用,特别是在考虑与使用辐射疗法来处理如癌症的疾病相关联的时间限制,以及在任何给定时间段期间经历或需要经历辐射疗法的大量患者的情况下。In radiation therapy techniques in which the intensity of the particle beam is constant or modulated across the delivery field, such as Intensity Modulated Radiation Therapy (IMRT) and Intensity Modulated Particle Therapy (IMPT), the beam intensity is constant or modulated at each treatment region in the patient (the volume in the treatment target) is variable. Depending on the processing mode, the degrees of freedom available for intensity modulation include beam shaping (collimation), beam weighting (spot scanning) and angle of incidence (which may be referred to as beam geometry). These degrees of freedom lead to an almost infinite number of potential treatment plans, and thus the consistent and efficient generation and evaluation of high-quality treatment plans is beyond human capabilities and relies on the use of computer systems, especially when considered in relation to the use of radiation therapy to treat diseases such as cancer time constraints associated with the disease, and the large number of patients undergoing or needing to undergo radiation therapy during any given time period.
射束401实际上可以具有任何规则或不规则的截面(例如,射束的眼视图)形状。例如,射束401的形状可以使用遮挡射束的一部分或多个部分的MLC来限定。不同的射束可以具有不同的形状。The
在实施例中,射束401包括一定数目的射束段或子射束(也可以被称为光点)。为射束401指定最大能量(例如,80MeV),并且将每个射束段的能级定义为最大能量的百分比或分数。实质上,每个射束段按照其能级被加权;一些射束段被加权以具有比其它射束段更高的能级。通过加权每个射束段的能量,实际上,每个射束段的强度也被加权。使用射束能量调节器407可以为每个射束段实现所定义的能级或强度。In an embodiment, the
每个射束段可以递送相对高的剂量率(在相对短的时间段内的相对高的剂量)。例如,每个射束段可以在小于一秒内递送至少40格雷(Gy),并且可以每秒递送多达120Gy或更多。Each beam segment can deliver a relatively high dose rate (relatively high dose over a relatively short period of time). For example, each beam segment may deliver at least 40 Grays (Gy) in less than a second, and may deliver as much as 120 Gy per second or more.
在操作中,在实施例中,顺序地递送射束段。例如,将第一射束段递送到处理靶标中的体积(开启),并且然后关闭,然后将第二射束段开启,然后关闭,依此类推。每个射束段可以仅被开启几分之一秒(例如,毫秒量级)。In operation, in an embodiment, beam segments are delivered sequentially. For example, a first beam segment is delivered to the volume in the treatment target (on), and then off, then a second beam segment is on, then off, and so on. Each beam segment may only be turned on for a fraction of a second (eg, on the order of milliseconds).
可以从不同的方向并且在同一平面或不同的平面中使用和施加单个射束。备选地,可以在同一平面或不同平面中使用多个射束。射束的方向和/或数目可以在多个疗程(即,在时间上分割)上变化,使得在处理靶标的体积上递送均匀的剂量。在任何一个时间递送的射束的数目取决于辐射处理系统(例如,图4的辐射处理系统400)中的龙门架或喷嘴的数目以及处理计划。A single beam can be used and applied from different directions and in the same plane or in different planes. Alternatively, multiple beams may be used in the same plane or in different planes. The direction and/or number of beams may be varied over multiple sessions (ie, split in time) such that a uniform dose is delivered over the volume of the treatment target. The number of beams delivered at any one time depends on the number of gantry or nozzles in the radiation treatment system (eg,
在根据本发明的实施例中,针对处理靶标中的体积生成DRVH(其不同于DVH)。DRVH可以基于所建议的辐射处理计划生成。DRVH可以被存储在计算机系统存储器中,并且用于生成将用于治疗患者的最终辐射处理计划。可以调整对剂量率有影响的参数值,直到DRVH满足患者治疗的目标或与之相关的目标。In an embodiment according to the invention, a DRVH (which is distinct from a DVH) is generated for the volume in the treatment target. A DRVH can be generated based on a proposed radiation treatment plan. The DRVH can be stored in computer system memory and used to generate the final radiation treatment plan to be used to treat the patient. Values of parameters affecting dose rate may be adjusted until the DRVH meets or relates to goals for patient therapy.
图5A图示了根据本发明的实施例中的DRVH 500的一个示例。DRVH绘制了处理靶标频率分布中的累积剂量率-体积,其总结了感兴趣的处理靶标体积内的模拟剂量率分布,该模拟剂量率分布由所建议的辐射处理计划产生。可以使用图1的优化器模型150来确定模拟剂量率分布。DRVH指示剂量率和接收该剂量率的处理靶标的体积的百分比。例如,如图5A所示,处理靶标中100%的体积接收X或更大(至少X)的剂量率,处理靶标中50%的体积接收Y或更大(至少Y)的剂量率,等等。DRVH 500可以被显示为图形用户界面(GUI)或其一部分(参见下面的讨论)。Figure 5A illustrates an example of a
例如,处理靶标中的体积可以包括不同的器官,或者其可以包括健康组织和不健康组织(例如,肿瘤)。相应地,参考图5B和图5C,DRVH 510包括多条曲线512和514,分别示出了针对处理靶标中的体积504的第一子体积522(例如,针对一个器官、或针对健康组织)的模拟剂量率分布和针对第二子体积524(例如,针对第二器官、或针对不健康组织)的模拟剂量率分布。DRVH中可以包括两个以上的模拟剂量率分布。DRVH 510可以被显示为或作为GUI的一部分。For example, a volume in a treatment target may include different organs, or it may include healthy tissue and unhealthy tissue (eg, a tumor). Accordingly, referring to FIGS. 5B and 5C , the
在根据本发明的实施例中,针对处理靶标中的体积生成照射时间-体积直方图(其不同于DVH和/或DRVH,但可以与DVH和/或DRVH一起使用)。照射时间-体积直方图可以被存储在计算机系统存储器中,并且与DVH和/或DRVH结合或代替DVH和/或DRVH用于生成辐射处理计划。In an embodiment according to the invention, an illumination time-volume histogram (which is different from, but can be used with, DVH and/or DRVH) is generated for the volume in the treatment target. The exposure time-volume histogram may be stored in computer system memory and used in conjunction with or instead of the DVH and/or DRVH to generate a radiation treatment plan.
图5D图示了根据本发明的一个实施例中的照射时间-体积直方图550的一个示例。照射时间-体积直方图绘制了处理靶标频率分布中的累积照射时间-体积图,其总结了处理靶标的体积内的模拟照射时间分布,该模拟照射时间分布将由所建议的辐射处理计划产生。使用图1的优化器模型150可以确定模拟照射时间分布。照射时间-体积直方图指示照射时间(时间长度)和被照射这些时间长度的体积的百分比。DRVH 550可以被显示为或作为GUI的一部分。Figure 5D illustrates an example of an illumination time-
图6是用于辐射处理计划的计算机实现的操作的一个示例的流程图600,该辐射处理计划包括生成根据本发明的一些实施例中的DVH、DRVH或照射时间-体积直方图。流程图600可以被实现为驻留在某种形式的计算机可读存储介质上(例如,在图1的计算机系统100的存储器中)的计算机可执行指令(例如,图1的优化器模型150)。6 is a
在图6的框602中,定义(例如,使用图1和图2的优化器模型150)所建议的辐射处理计划,将其存储在计算机系统存储器中,并从该存储器访问。所建议的辐射处理计划包括可能影响剂量和剂量率的参数值以及其他参数。可以影响剂量和剂量率的参数包括但不限于处理靶标中的体积的照射次数、每次照射的持续时间(照射时间)和每次照射中沉积的剂量。参数还可以包括将被引导到处理靶标的体积中的射束的方向,以及每个射束的射束能量。参数还可以包括在其期间施加照射的时间段(例如,在诸如一小时的时间段上施加多次照射,其中该时间段中的每次照射与下一次照射相隔另一时间段)和每个照射时间段之间的时间间隔(例如,每个小时长的时间段与下一个时间段相隔一天)。如果处理靶标中的体积被划分成子体积或体素,则参数值可以基于每个子体积或每个体素(例如,每个子体积或体素的值)。In
在优化模型150(图3)中可以利用适当的(多个)剂量阈值曲线(例如,正常组织保留剂量与剂量率或照射时间的关系)来制定针对辐射处理计划的剂量限制。例如,可以使用适当的(例如,组织相关的)剂量阈值曲线来确定射束方向(龙门架角度)和射束段权重。即,可以在辐射处理规划期间调整影响剂量的参数,使得剂量阈值曲线中的限制被满足。剂量阈值曲线可以是组织相关的。例如,针对肺的剂量阈值曲线可以不同于针对脑的剂量阈值曲线。Appropriate dose threshold curve(s) (eg, normal tissue retained dose versus dose rate or exposure time) can be utilized in optimization model 150 (FIG. 3) to formulate dose limits for radiation treatment plans. For example, beam direction (gantry angle) and beam segment weighting can be determined using an appropriate (eg tissue-dependent) dose threshold curve. That is, parameters affecting dose can be adjusted during radiation treatment planning such that constraints in the dose threshold curve are met. Dose threshold curves can be tissue dependent. For example, the dose threshold curve for the lungs may be different than the dose threshold curve for the brain.
剂量限制可以包括但不限于:对靶标中每个子体积(体素)的照射时间的最大限制(例如,对于靶组织的每个体素,治疗时间小于x1秒);对靶标外每个子体积(体素)的辐照时间的最大限制(例如,对于正常组织的每个体素,治疗时间小于x2秒;x1和x2可以相同或不同);对靶标中每个子体积(体素)的剂量率的最小限制(例如,对于靶标组织的每个体素,剂量率大于y1 Gy/sec);和/或对靶标外的每个子体积(体素)的剂量率的最小限制(例如,对于正常组织的每个体素,剂量率大于y2 Gy/sec;y1和y2可以相同或不同)。通常,限制旨在最小化正常组织被照射的时间量。Dose constraints may include, but are not limited to: a maximum limit on irradiation time for each subvolume (voxel) in the target (e.g., treatment time less than x1 seconds for each voxel of target tissue); voxel) of irradiation time (e.g., treatment time is less than x2 seconds for each voxel of normal tissue; x1 and x2 can be the same or different); minimum dose rate for each subvolume (voxel) in the target constraints (e.g., dose rate greater than y1 Gy/sec for each voxel of target tissue); and/or minimum constraints on dose rate for each subvolume (voxel) outside the target (e.g., for each voxel of normal tissue prime, the dose rate is greater than y2 Gy/sec; y1 and y2 can be the same or different). Typically, the limits are aimed at minimizing the amount of time normal tissue is irradiated.
在框604中,在一个实施例中,基于提出的辐射处理计划中的参数值来生成DVH和DRVH。可以确定每个子体积或体素的剂量和剂量率。剂量率是每次照射中沉积的剂量之和除以照射持续时间之和。剂量率可以使用精细时间指数(例如,毫秒量级的时间增量)来确定和记录;即,例如,每个子体积或体素的剂量可以以每束和每部分的每毫秒量级的时间增量来记录。剂量和剂量率是累积的。例如,取决于射束方向和能量,处理靶标中的体积的一些部分(例如,子体积或体素)的累积剂量和剂量率可以高于其他部分。可以计算每个子体积或体素的剂量和剂量率,以包括射线追踪(和蒙特卡罗模拟),其中跟踪每个射束粒子以确定每个粒子的一次散射、二次散射等,以在每次照射的过程中获得真实的基于体素或基于子体积的剂量率。In
在一个实施例中,生成照射时间-体积直方图。照射时间-体积直方图可以基本上以与刚刚描述的用于产生成DRVH的方式相同的方式生成。In one embodiment, an illumination time-volume histogram is generated. Irradiation time-volume histograms can be generated in essentially the same manner as just described for generating DRVHs.
在框606中,DVH、DRVH和/或照射时间-体积直方图可以通过确定提出的辐射处理计划是否满足为患者的处理指定的目标(例如,临床目的)来评估。临床目的或目标可以根据一组质量度量来表示(诸如目标均匀性、重要器官保留等),这些度量具有相应的目标值。评估直方图的另一种方式是基于知识的方法,该方法并入并且反映从其他患者的多个先前的类似治疗中收集的目前最佳实践。又一种协助计划者的方式是使用多标准优化(MCO)方法用于处理规划。帕累托表面导航是一种便于探索临床目的之间权衡的MCO技术。对于一组给定的临床目的,如果处理计划满足这些目的,并且如果在不恶化至少一个其他度量的情况下没有度量可以被改善,则该处理计划被认为是帕累托最优的。In
如上所述,对于FLASH RT,可以使用小于1秒内至少40Gy的剂量率,以及每秒多达120Gy或更多的剂量率。因此,评估DVH和DRVH的另一种方式是基于FLASH RT剂量率定义剂量阈值和剂量率阈值,并且还指定处理靶标中的针对剂量和剂量率的阈值。DVH和DRVH可以通过确定处理靶标中的体积的度量(例如,子体积或体素的分数、数目或百分比)是否满足剂量和剂量率阈值来评估。例如,如果处理靶标中60%的体积(具体地,处理靶标中的体积部分包括不健康组织)接收至少50Gy每秒的剂量率,则可以认为剂量率体积直方图是令人满意的。As noted above, for FLASH RT, dose rates of at least 40 Gy in less than 1 second, and as much as 120 Gy per second or more, can be used. Therefore, another way to assess DVH and DRVH is to define dose thresholds and dose rate thresholds based on the FLASH RT dose rate, and also specify thresholds for dose and dose rate in treatment targets. DVH and DRVH can be assessed by determining whether a measure of the volume in the treatment target (eg, fraction, number, or percentage of subvolumes or voxels) satisfies dose and dose rate thresholds. For example, a dose rate volume histogram may be considered satisfactory if 60% of the volume in the treatment target (in particular, the fraction of the volume in the treatment target comprising unhealthy tissue) receives a dose rate of at least 50 Gy per second.
在图6的框608中,可以迭代地调整提出的辐射处理计划的参数值中的一些或全部参数值,以生成不同的DVH、DRVH和/或照射时间-体积直方图,以确定产生直方图(或多个直方图)的最终一组参数值,该直方图产生最佳地满足患者处理的目标(临床目标)或满足上述阈值的规定(最终)辐射处理计划。In
在框610中,最终一组参数值然后被包括在用于处理患者的规定辐射处理计划中。In
一般而言,根据本发明的实施例基于剂量、剂量率和/或照射时间来优化辐射处理计划。这不是说处理计划优化仅仅基于剂量、剂量率和/或照射时间。In general, radiation treatment plans are optimized based on dose, dose rate, and/or exposure time in accordance with embodiments of the present invention. This is not to say that treatment plan optimization is based solely on dose, dose rate and/or exposure time.
处理计划的剂量、剂量率和体积的相关性Correlation of dose, dose rate and volume for treatment plans
图8、图9和图10是根据本发明的实施例中用于规划辐射处理的计算机实现的方法的示例的流程图800、900和1000(800-1000)。流程图800-1000可以被实现为驻留在某种形式的计算机可读存储介质(例如,图1的计算机系统100的存储器中)上的计算机可执行指令(例如,图1的优化器模型150)。在这些实施例中,作为所公开的方法的结果,生成并且显示GUI。例如,GUI在单次绘制中可视化处理靶标中的子体积的计算剂量(例如,总计算剂量)和计算剂量率,以及子体积的作为计算剂量和计算剂量率的函数的度量值。在图11、图12、图13A、图13B和图14-28、图29A、图29B、图30A、图30B和图31-35中提供了根据本发明的GUI的示例。8, 9, and 10 are
在图8的框802中,从计算机系统存储器访问包括针对处理靶标中的子体积(例如,构成子体积的体积的任何三维形状的任何数目的体素)的计算剂量(例如,总计算剂量)和计算剂量率的信息,以及包括子体积的作为计算剂量和计算剂量率的函数的度量值(例如,数目、百分比或分数)的信息。In
在框804中,还从计算机系统存储器访问包括子体积的作为计算剂量(例如,总的计算剂量)和计算剂量率的函数的度量值(数目、百分比或分数)的信息。In
在框806中,在计算机系统的显示设备126(图1)上显示包括基于计算剂量、计算剂量率和度量值的绘制(例如,视觉显示)的GUI。In
在图8的框808中,不同的属性值(例如,颜色、图案、灰度级、字母数字文本或亮度)与GUI中的可视化的元素相关联。In
现在参考图9,在框902中,从计算机系统存储器访问辐射处理计划。辐射处理计划包括,例如,将被引导到并进入处理靶标中的体积的射束的数目、射束的方向,以及每个射束的剂量率范围。Referring now to FIG. 9, in
在框904中,使用射束的数目和方向以及剂量率的范围来计算每个子体积的剂量(例如,总剂量)。In
在框906中,使用射束的数目和方向以及剂量率的范围来计算每个子体积的剂量率。In
在框908中,针对剂量(例如,总剂量)的不同水平或范围(例如,区间)和剂量率的不同水平或范围(例如,区间),确定被计算为接收至少相应剂量水平(例如,总剂量)和至少相应剂量率水平的子体积的度量值(例如,数目、分数或百分比)。In
在框910中,在显示设备126(图1)上显示包括基于计算剂量、计算剂量率和度量值的绘制(例如,视觉显示)的GUI。In
现在参考图10,在框1002中,生成处理靶标中的体积的DVH。Referring now to FIG. 10, in
在框1004中,生成体积的DRVH。In
在框1006中,在计算机系统的显示设备126(图1)上显示包括DVH和DRVH的组合绘制的GUI。组合绘制将被计算为接收给定剂量的体积的度量可视化为剂量率的函数,并且也将被计算为接收给定剂量率的体积的度量可视化为剂量的函数。In
在实施例中,如上所述生成的和显示的GUI中的绘制包括作为GUI的第一维度(例如,可视化的元素或方面,或虚拟空间中的空间维度)的DVH的可视化(例如,图形元素)、作为GUI的第二维度的DRVH的可视化,以及作为GUI的第三维度的度量值的可视化。例如,绘制可以包括每个子体积的计算剂量率的可视化、每个子体积的计算剂量(例如,计算的总剂量)的可视化、以及每个子体积的度量的可视化。在实施例中,绘制还包括处方剂量和处方剂量率的可视化。在实施例中,绘制还包括每个子体积的正常组织并发症概率(NTCP)的可视化。在实施例中,绘制还包括每个子体积的肿瘤控制概率(TCP)的可视化。In an embodiment, the rendering in the GUI generated and displayed as described above includes the visualization of the DVH (e.g., the graphic element ), visualization of DRVH as the second dimension of the GUI, and visualization of metric values as the third dimension of the GUI. For example, rendering may include visualization of calculated dose rates for each subvolume, visualization of calculated doses for each subvolume (eg, calculated total dose), and visualization of metrics for each subvolume. In an embodiment, the mapping also includes visualization of the prescribed dose and prescribed dose rate. In an embodiment, the mapping also includes visualization of the normal tissue complication probability (NTCP) for each subvolume. In an embodiment, the mapping also includes visualization of the probability of tumor control (TCP) for each subvolume.
虽然图6和图8-10中的操作是以串联和特定顺序呈现的,但是本发明不限于此。这些操作可以以不同的顺序和/或并行地执行,并且操作也可以以迭代的方式执行。如上所述,由于需要被考虑的不同参数、这些参数的值的范围、这些参数的相互关系、对有效的又对患者的风险最小的处理计划的需要,以及对快速生成高质量处理计划的需要,使用在计算机系统100(图1)上一致执行的优化器模型150用于如本文所公开的辐射处理计划是重要的。Although the operations in FIG. 6 and FIGS. 8-10 are presented in series and in a particular order, the invention is not limited thereto. These operations may be performed in a different order and/or in parallel, and operations may also be performed in an iterative fashion. As mentioned above, due to the different parameters that need to be considered, the ranges of values of these parameters, the interrelationships of these parameters, the need for efficient treatment plans with minimal risk to the patient, and the need for rapid generation of high quality treatment plans , it is important to use an
图11、图12、图13A、图13B和图14-28、图29A、图29B、图30A、图30B和图31-35图示了根据本发明的实施例中可用于显示与规划辐射处理相关联的信息的GUI的示例。GUI可以使用上述方法来生成,并且使用驻留在某种形式的计算机可读存储介质(例如,图1的计算机系统100的存储器)上的计算机可执行指令(例如,图1的优化器模型150)来实现,并且可以被显示在计算机系统的输出设备126上。11, 12, 13A, 13B, and 14-28, 29A, 29B, 30A, 30B, and 31-35 illustrate radiation treatments that may be used to display and plan radiation in accordance with an embodiment of the invention. An example of a GUI with associated information. The GUI may be generated using the methods described above, and using computer-executable instructions (e.g., the
根据本发明的实施例不限于图11、图12、图13A、图13B和图14-28、图29A、图29B、图30A、图30B和图31-35图示的GUI。通常,根据本发明的实施例中的GUI允许剂量、剂量率、每个体积的剂量和剂量率、以及作为剂量的函数和作为剂量率的函数的体积的度量之间的相互依赖性容易地被可视化,以用于辐射处理规划。在下面的讨论中,剂量、剂量率等是计算值。Embodiments in accordance with the invention are not limited to the GUIs illustrated in FIGS. 11, 12, 13A, 13B and 14-28, 29A, 29B, 30A, 30B and 31-35. In general, the GUI in embodiments according to the invention allows the interdependence between dose, dose rate, dose per volume and dose rate, and measures of volume as a function of dose and as a function of dose rate to be easily visualized. Visualization for radiation treatment planning. In the discussion below, doses, dose rates, etc. are calculated values.
此外,所公开的GUI可以包括除示例中所包括的信息之外的信息。例如,GUI还可以用于呈现诸如将被引导到每个子体积中的射束的方向和每个射束的射束能量的信息。Furthermore, the disclosed GUIs may include information other than that included in the examples. For example, the GUI can also be used to present information such as the direction of the beams to be directed into each sub-volume and the beam energy of each beam.
在实施例中,下拉菜单或其它类型的GUI元素(图中未示出)可以用于选择和建立GUI的设置(例如,属性、阈值等)以及将在任何一个时间显示的信息的(多个)类型。In an embodiment, drop-down menus or other types of GUI elements (not shown) may be used to select and establish GUI settings (e.g., properties, thresholds, etc.) and (multiple) of information to be displayed at any one time. )type.
此外,GUI不一定是静态显示。例如,GUI中呈现的信息可以被编程为随时间或响应于用户输入而改变,以图示累积剂量或剂量率与时间的关系。此外,例如,GUI可以被编程为按顺序呈现处理靶标中的体积的不同截面切片,以向二维表示提供深度维度,或者操纵(例如,旋转)虚拟三维表示,使得其可以从不同的视角观看。Furthermore, a GUI does not have to be a static display. For example, the information presented in the GUI can be programmed to change over time or in response to user input to illustrate cumulative dose or dose rate versus time. Also, for example, the GUI can be programmed to sequentially present different cross-sectional slices of the volume in the treatment target to provide a depth dimension to the two-dimensional representation, or to manipulate (e.g., rotate) the virtual three-dimensional representation so that it can be viewed from different perspectives .
在图11的示例中,GUI 1100包括剂量率与剂量关系的二维绘制。在两个维度上绘制每个子体积(例如,体素)的剂量和剂量率。子体积的分布(度量)被投影到剂量轴上以生成DVH,并且也被投影到剂量率轴上以生成DRVH。In the example of FIG. 11 ,
在图12的示例中,GUI 1200包括针对正常组织和针对肿瘤的剂量率与剂量关系的二维绘制。每个子体积(例如,体素)的剂量和剂量率在两个维度上被可视化(绘制)。在针对正常组织的曲线图中定义了组织特异性过滤器,在针对肿瘤组织的曲线图中定义了肿瘤特异性过滤器。可以定义不同的过滤器以说明不同组织对剂量和剂量率的响应。可以对体素进行颜色编码,以指示NTCP和TCP的相对值。在图12的示例中,颜色键被包括在GUI 1200中,并且如图所示与每个曲线图相关联。可以将曲线图中的体素的颜色与键进行比较,以指示NTCP或TCP的相对值。In the example of FIG. 12, GUI 1200 includes two-dimensional plots of dose rate versus dose for normal tissue and for tumor. Dose and dose rate per subvolume (eg, voxel) are visualized (plotted) in two dimensions. Tissue-specific filters are defined in the graph for normal tissue and tumor-specific filters are defined in the graph for tumor tissue. Different filters can be defined to account for different tissue responses to dose and dose rate. Voxels can be color coded to indicate relative values of NTCP and TCP. In the example of FIG. 12, a color key is included in GUI 1200 and is associated with each graph as shown. The color of the voxel in the graph can be compared to the key to indicate the relative value of NTCP or TCP.
在图13A和图13B的示例中,GUI 1300包括剂量和剂量率的可视化。GUI 1300包括在处理靶标的体积的等中心点处的平面的绘制。平面的总面积被划分成不同的较小区域,其中每个较小区域的尺寸指示(例如,成正比)接收一定剂量水平(图13A)或剂量率(图13B)的靶的体积。可以对较小的区域进行颜色编码以指示剂量水平。在图13A和图13B的示例中,颜色键被包括在GUI 1300中,以将绘制中的颜色分别与不同的剂量水平和不同的剂量率水平相关联。每个较小区域的颜色可以与键中的颜色进行比较,以确定每个较小区域的剂量/剂量率水平。In the example of FIGS. 13A and 13B ,
在图14的示例中,GUI 1400包括沿一个轴的剂量和沿对应的轴接收给定剂量的体积的度量(百分比)的绘制,以及沿另一个轴的剂量率和沿对应的轴接收给定剂量率的体积的百分比的绘制。GUI 1400对于可视化和识别定性趋势是有用的。在该图中,每个“X”表示具有剂量和剂量率的一个体素。每个“X”具有一定的透明度,使得图中的点的密度可以被可视化。In the example of FIG. 14 ,
在图15的示例中,GUI 1500包括在一个轴上的剂量率水平(范围或区间)和在另一个轴上的剂量水平(范围或区间)的二维绘制。将接收剂量和剂量率的给定组合的体积的度量(百分比)投影到绘制中。在图15的示例中,大约9%的体积以大约每秒250Gy的剂量率接收至少大约17.5Gy的剂量。可以对体积的投影进行颜色编码,以指示接收给定剂量和剂量率的体积的度量。在图15的示例中,颜色键被包括在GUI 1500中,以将绘制中的颜色与体积的不同度量相关联。体积的投影的一种或多种颜色可以与键中的颜色进行比较,以确定针对每个较小区域的剂量/剂量率水平。In the example of FIG. 15,
GUI 1500允许容易地可视化和识别总的定量特性。例如,如图16、图17和图18中的圆圈区域所示,峰值分别为每秒18Gy和260Gy的场内剂量率梯度和场边缘被容易地可视化。
在图19的示例中,GUI 1900包括在一个轴上的剂量率水平(范围或区间)和在另一个轴上的剂量水平(范围或区间)的二维绘制。在该示例中,对于绘制中的每个点,剂量水平和剂量率处或高于剂量水平和剂量率的体积的度量(例如,百分比)被表示为颜色。在图19的示例中,颜色键被包括在GUI 1900中,以将绘制中的颜色与体积的不同度量相关联。此外,在该示例中,水平切片(由图19中的虚线指示)表示高于给定剂量率的体积区域的DVH。In the example of FIG. 19,
在图20的示例中,GUI 2000包括在一个轴上的剂量率水平(范围或区间)和在另一个轴上的剂量水平(范围或区间)的二维绘制。在该示例中,绘制中的每条线表示在给定剂量水平和剂量率处或高于给定剂量水平和剂量率的体积的度量(例如,百分比)。在图20的示例中,每条线是不同的颜色,并且颜色键被包括在GUI 2000中以将绘制中的线的颜色与体积的不同度量相关联。例如,在图21的示例中,大约60%的体积以每秒至少250Gy的剂量率接收至少17.5Gy。In the example of FIG. 20,
在图22的示例中,GUI 2000还包括表示处方剂量和剂量率的区域2010。在该示例中,处方是每秒至少150Gy到90%的体积,该90%的体积接收超过10Gy。在该示例中,因为区域2010被对应于90%的体积的线包围,所以满足处方。In the example of FIG. 22,
在图23的示例中,对于给定的剂量率(例如,每秒至少40Gy),GUI 2300包括在一个轴上的剂量率水平(范围或区间)的二维绘制和在另一个轴上的接收给定剂量的体积的度量(分数)。在该示例中,绘制中的每条线表示不同的子体积(例如,规划靶标体积(PTV)、右肺和脊髓)。在图23的示例中,每条线是不同的颜色,并且颜色键被包括在GUI 2300中以将绘制中的线的颜色与相关联的子体积相关联。在该示例中,80%的PTV接收高于60Gy的剂量和每秒40Gy的剂量率。In the example of FIG. 23 , for a given dose rate (e.g., at least 40 Gy per second),
在图24的示例中,GUI 2400包括在一个轴上的剂量率水平(范围或区间)和在另一个轴上接收给定剂量的体积的度量(百分比)的二维绘制。GUI 2400表示某一剂量率处或高于某一剂量率的区域的DVH曲线图。在该示例中,绘制中的每条线表示不同的剂量率。在图24的示例中,每条线是不同的颜色,并且颜色键被包括在GUI 2400中以将绘制中的线的颜色与不同的剂量率相关联。In the example of FIG. 24,
在图25的示例中,对于给定的剂量率(例如,每秒150Gy),GUI 2500包括在一个轴上的剂量率水平(范围或区间)的二维绘制和在另一个轴上的接收给定剂量的体积的度量(百分比)。GUI 2500表示在给定剂量率处或高于给定剂量率的区域的DVH的可视化(曲线图)。在图25的示例中,GUI 2500还包括表示处方剂量和剂量率的区域2502。在该示例中,处方是每秒至少150Gy到90%的体积,该90%的体积接收超过10Gy。In the example of FIG. 25 , for a given dose rate (e.g., 150 Gy per second),
在图26的示例中,GUI 2600包括一个轴上的剂量率水平(范围或区间)和另一个轴上的剂量水平(范围或区间)的散点图的绘制,示出了不同子体积(例如,脊髓、右肺和PTV)的剂量和剂量率分布。在该示例中,每个子体积被表示为不同的颜色,并且颜色键被包括在GUI 2600中以将绘制中的颜色与不同的子体积相关联。In the example of FIG. 26 ,
在图27和图28的示例中,GUI 2700和2800包括体积的绘制(例如,CT图像)。在这些示例中,使用不同颜色的轮廓线来勾勒体积中具有高于特定阈值、低于特定阈值或在特定范围内的剂量和剂量率的部分(例如,体素)。颜色键被包括在GUI 2700和2800中,以将绘制中的颜色与例如剂量水平相关联。在图27的示例中,仅对于剂量率在每秒40Gy和120Gy之间的子体积(体素),在所描绘的矩形区域中示出剂量分布。在图28的示例中,所描绘的矩形区域包含具有高于10Gy的剂量和高于每秒10Gy的剂量率的体素。In the examples of FIGS. 27 and 28 ,
在图29A的示例中,GUI 2900包括累积剂量与时间的关系的绘制。GUI 2900对于确定递送给定剂量水平(例如,90%)所需的时间间隔(dt)是有用的。In the example of FIG. 29A ,
图29B图示了GUI 2910的示例,其中每个体素指定多于一个的剂量率。当指定特定剂量或剂量率范围时,显示对应的剂量。在图29B的示例中,图中的下线(可以使用第一种颜色来显示)表示作为时间函数的剂量率,图中的上线(可以用第二种不同的颜色来显示)表示作为时间函数的累积剂量。上线的斜率是作为时间函数的剂量率。对于图示的体素,GUI2910提供剂量、平均剂量率和将针对剂量率或剂量率范围递送的剂量的可视化。在该示例中,GUI 2910示出了剂量为60Gy,平均剂量率约为每秒40Gy,并且以每秒150Gy至200Gy范围内的剂量率递送约40Gy的剂量。Figure 29B illustrates an example of a
在图30A的示例中,GUI 3000包括等剂量轮廓线在体积(例如,CT图像)中的剂量率分布上的叠加的绘制。在图30A的示例中,不同的颜色用于指示不同的剂量水平和不同的剂量率。颜色键被包括在GUI 3000中,以将绘制中的颜色与剂量水平和剂量率相关联。通过使用图中所示的指针来选择将在GUI 3000中被绘制的不同剂量水平和不同剂量率,可以使用键来操纵绘制。例如,一种颜色可以用于表示5-11Gy范围内的剂量,并且该颜色的不同阴影可以用于表示对应于该剂量范围的不同剂量率范围(例如,每秒151-201Gy、201-252Gy和252-303Gy)。用户可以交互地改变指针在垂直和水平轴之一或两者上的位置。通过改变这些指针的位置,与特定颜色或阴影相关联的剂量和剂量率的相应范围也被改变,并且GUI3000中的等剂量轮廓线也将相应地被改变。In the example of FIG. 30A ,
图30B图示了GUI 3010的一个示例,其中对应于特定剂量率范围的剂量被绘制在CT图像(例如,也在图30A中示出的CT图像)的顶部。在该示例中,针对每个体素单独地应用剂量率范围限制,并且剂量的对应部分被可视化。备选地,可以可视化受每个体素中的累积剂量限制的剂量率分布;例如,GUI可以在每个体素中显示剂量率,在该剂量率处,每个体素处已经累积了百分之X的剂量。用户可以选择用于选择每个体素显示的剂量率的剂量百分比。与上述类似,用户也可以交互地选择和调整指针的位置以将颜色与剂量范围相关联。在该示例中,用户还可以调整指针的位置以选择剂量率范围。在GUI3010中仅绘制将以所选剂量率递送的剂量。图30B的示例示出了针对将以每秒201-252Gy的剂量率范围递送的剂量的等剂量轮廓线。Figure 30B illustrates an example of a
在图31的示例中,对于给定体积或子体积(例如,结构“S1”),GUI 3100包括在曲线图的一个轴上的剂量率水平(范围或区间)和在曲线图的另一个轴上接收给定剂量的体积的度量(百分比)的二维绘制。曲线图中的线描绘了可视化的不同区域。这些线界定了表示对应于不同剂量率的不同DVH的区域。在该示例中,每个区域由不同的着色级别表示,并且键被包括在GUI 3100中以将可视化中的着色级别与剂量级别和剂量率相关联。此外,在该示例中,不同的指针被包括在绘制中以指示不同的目的(例如,处方剂量和剂量率)。In the example of FIG. 31 , for a given volume or subvolume (e.g., structure "S1"),
在图32的示例中,GUI 3200包括在三维中射束叠加的区域的绘制。体素被射束穿过的次数是颜色编码的。GUI 3200包括在可视化中示出的体积的平面中的x和y坐标,并且还包括指示体积中的平面的深度的z坐标。在图32的示例中勾勒了体积中的特定靶标。在该示例中,示出了五个射束,并且键被包括在GUI 3200中以将体素的颜色与到达该体素的射束的数目相关联。In the example of FIG. 32 ,
在图33的示例中,GUI 3300包括在高于某一剂量率阈值处(例如,高于每秒40Gy)递送的累积剂量的绘制。在图33的示例中,不同的颜色用于指示不同的累积剂量。颜色键被包括在GUI 3300中,以将绘制中的颜色与剂量水平和剂量率相关联。在图33的示例中勾勒了体积中的特定靶标。In the example of FIG. 33 ,
在图34的示例中,GUI 3400包括在低于某一剂量率阈值(例如,低于每秒40Gy)处递送的累积剂量的绘制。在图34的示例中,不同的颜色用于指示不同的累积剂量。颜色键被包括在GUI 3400中,以将绘制中的颜色与剂量水平和剂量率相关联。在图34的示例中勾勒了体积中的特定靶标。In the example of FIG. 34 ,
在图35的示例中,GUI 3500包括在高于某一剂量率阈值处(例如,高于40Gy每秒)递送的剂量的DVH的绘制。在该示例中,虚线表示总DVH,并且实线表示高于某一剂量率阈值(例如,高于每秒40Gy)的DVH。每对实线和虚线之间的差异指示没有以足够高的剂量率递送的处于危险体积的器官部分。在图35的示例中,不同的颜色用于指示不同的器官或结构。颜色键被包括在GUI 3500中,以将绘制中的颜色与不同的器官或结构相关联。In the example of FIG. 35 ,
总之,根据本发明的一些实施例通过将FLASH RT扩展到更广泛种类的处理平台和靶标位点来改进辐射处理规划和处理本身。与常规技术相比,即使对于非FLASH剂量率,通过按照设计减小(如果不是最小化)到正常组织(在靶标外)的剂量的幅度(以及在一些情况下的积分),如本文所述生成的处理计划对于使正常组织免受辐射是更优的。当与FLASH剂量率一起使用时,因为剂量是在短时间段内(例如,小于一秒)施用的,患者运动的管理被简化。处理规划,虽然仍然是寻找竞争参数和相关参数之间的平衡的复杂任务,但相对于常规规划而言被简化。本文所述的技术可以用于立体定向辐射外科以及具有单个或多个转移瘤的立体定向身体辐射疗法。In summary, some embodiments according to the invention improve radiation treatment planning and treatment itself by extending FLASH RT to a wider variety of treatment platforms and target sites. Compared to conventional techniques, even for non-FLASH dose rates, by design reducing (if not minimizing) the magnitude (and in some cases integration) of the dose to normal tissue (off-target), as described herein The resulting treatment plan is optimal for sparing normal tissue from radiation. When used with the FLASH dose rate, management of patient motion is simplified because the dose is administered over a short period of time (eg, less than a second). Process planning, while still a complex task of finding a balance between competing and relevant parameters, is simplified relative to conventional planning. The techniques described herein can be used in stereotactic radiation surgery and stereotactic body radiation therapy with single or multiple metastases.
除了这些益处之外,GUI还通过允许计划者容易地可视化所建议的处理计划的关键元素(例如,每个子体积的剂量率),容易地可视化所建议的计划的改变对那些元素的影响,以及容易地可视化不同计划之间的比较来促进处理规划。In addition to these benefits, the GUI also readily visualizes the impact of changes to the proposed treatment plan on those elements by allowing the planner to easily visualize key elements of the proposed treatment plan (e.g., dose rate per subvolume), and Easily visualize comparisons between different plans to facilitate treatment planning.
除了其中粒子束的强度在递送场上是恒定的或调制的(诸如IMRT和IMPT)的辐射处理技术以外,根据本发明的实施例可以用于空间分割辐射处理,包括高剂量空间分割栅格辐射处理、迷你束辐射疗法和微束辐射处理。In addition to radiation treatment techniques where the intensity of the particle beam is constant or modulated over the delivery field (such as IMRT and IMPT), embodiments according to the invention may be used for space-fractionated radiation treatment, including high-dose space-fractionated grid radiation treatment, mini-beam radiation therapy and micro-beam radiation treatment.
尽管已经用特定于结构特征和/或方法动作的语言描述了本主题,但是应当理解,所附权利要求中限定的主题不必限于上述特定特征或动作。相反,上述特定特征和动作是作为实现权利要求的示例形式而公开的。Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Claims (20)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063043027P | 2020-06-23 | 2020-06-23 | |
US63/043,027 | 2020-06-23 | ||
US202016919011A | 2020-07-01 | 2020-07-01 | |
US16/919,011 | 2020-07-01 | ||
US17/323,942 US11992703B2 (en) | 2020-06-23 | 2021-05-18 | Correlation of dose and dose rate information to volume for radiation treatment planning |
US17/323,942 | 2021-05-18 | ||
PCT/EP2021/067101 WO2021259977A1 (en) | 2020-06-23 | 2021-06-23 | Correlation of dose and dose rate information to volume for radiation treatment planning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116209499A true CN116209499A (en) | 2023-06-02 |
Family
ID=79282016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180044851.4A Pending CN116209499A (en) | 2020-06-23 | 2021-06-23 | Volume correlation of dose and dose rate information for radiation treatment planning |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4168113A1 (en) |
CN (1) | CN116209499A (en) |
WO (1) | WO2021259977A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11590363B2 (en) * | 2021-06-29 | 2023-02-28 | Varian Medical Systems International Ag | Assessing treatment parameters for radiation treatment planning |
US12186587B2 (en) * | 2022-03-30 | 2025-01-07 | Varian Medical Systems, Inc. | High dose rate radiotherapy treatment planning, system and method |
CN119345620A (en) * | 2024-12-23 | 2025-01-24 | 厦门大学附属第一医院(厦门市第一医院、厦门市红十字会医院、厦门市糖尿病研究所) | Auxiliary decision model for improving radiotherapy effect |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10744343B2 (en) * | 2017-04-28 | 2020-08-18 | Elekta Instrument Ab | Convex inverse planning method |
US11712579B2 (en) * | 2017-07-21 | 2023-08-01 | Varian Medical Systems, Inc. | Range compensators for radiation therapy |
US10092774B1 (en) * | 2017-07-21 | 2018-10-09 | Varian Medical Systems International, AG | Dose aspects of radiation therapy planning and treatment |
US20200286601A1 (en) * | 2019-03-06 | 2020-09-10 | Varian Medical Systems | Graphical display of dose rate information for radiation treatment planning |
-
2021
- 2021-06-23 CN CN202180044851.4A patent/CN116209499A/en active Pending
- 2021-06-23 EP EP21739027.7A patent/EP4168113A1/en active Pending
- 2021-06-23 WO PCT/EP2021/067101 patent/WO2021259977A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP4168113A1 (en) | 2023-04-26 |
WO2021259977A1 (en) | 2021-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110709134B (en) | Dosage aspects of radiation therapy planning and treatment | |
US12161881B2 (en) | Radiation treatment based on dose rate | |
US11865364B2 (en) | Flash therapy treatment planning and oncology information system having dose rate prescription and dose rate mapping | |
EP3934748B1 (en) | Graphical display of dose rate information for radiation treatment planning | |
US11116995B2 (en) | Radiation treatment planning based on dose rate | |
US11992703B2 (en) | Correlation of dose and dose rate information to volume for radiation treatment planning | |
US20230191153A1 (en) | Assessing treatment parameters for radiation treatment planning | |
CN116209499A (en) | Volume correlation of dose and dose rate information for radiation treatment planning | |
CN117651586A (en) | Dose rate robustness analysis for uncertainty in radiation treatment plans | |
CN113877082B (en) | Method and system for planning radiation treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230529 Address after: California, USA Applicant after: VARIAN MEDICAL SYSTEMS, Inc. Applicant after: Siemens Medical International Co.,Ltd. Applicant after: Varian Medical System particle therapy Co.,Ltd. Address before: California, USA Applicant before: VARIAN MEDICAL SYSTEMS, Inc. Applicant before: M. Falketz Applicant before: J. Perez Applicant before: C. Smith Applicant before: A - Harrington Applicant before: E. Abel Applicant before: L. Halk Applicant before: Siemens Medical International Co.,Ltd. Applicant before: Varian Medical System particle therapy Co.,Ltd. Applicant before: P. Lansonell Applicant before: P. Nemeray Applicant before: 5. Petaga Applicant before: S. Bousold Applicant before: M. Rossi Applicant before: M. S. Roper |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |