CN115942105A - Method, device and camera for scheduling and running AI model in camera - Google Patents
Method, device and camera for scheduling and running AI model in camera Download PDFInfo
- Publication number
- CN115942105A CN115942105A CN202110908521.7A CN202110908521A CN115942105A CN 115942105 A CN115942105 A CN 115942105A CN 202110908521 A CN202110908521 A CN 202110908521A CN 115942105 A CN115942105 A CN 115942105A
- Authority
- CN
- China
- Prior art keywords
- model
- camera
- frame rate
- models
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 123
- 230000008569 process Effects 0.000 claims abstract description 72
- 238000013473 artificial intelligence Methods 0.000 claims description 261
- 238000012545 processing Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 23
- 238000004590 computer program Methods 0.000 claims description 17
- 241001522296 Erithacus rubecula Species 0.000 claims 2
- 238000011017 operating method Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Studio Devices (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及智能终端技术领域,特别涉及一种摄像头中AI模型的调度运行方法、装置和摄像头。The embodiments of the present application relate to the technical field of smart terminals, and in particular to a method and device for scheduling and running an AI model in a camera, and a camera.
背景技术Background technique
当前,带有摄像头的大屏在提供摄像头相关的人工智能(artificialintelligence,AI)能力时,可以采用以下这种方式:在大屏侧内置AI模型,在运行时,根据应用的需要,通过远程网络驱动程序接口规范(remote network driver interfacespecification,RNDIS)的套接字(socket)接口,将AI模型发送至摄像头侧,AI模型运行在摄像头侧。其中,大屏与摄像头之间通过物理通用串行总线(universal serial bus,USB)传输线连接;RNDIS使用USB协议作为下层传输,向上层提供虚拟的以太网连接。Currently, when a large screen with a camera provides camera-related artificial intelligence (AI) capabilities, the following method can be used: a built-in AI model on the side of the large screen, at runtime, according to the needs of the application, through the remote network The socket (socket) interface of the driver interface specification (remote network driver interface specification, RNDIS) sends the AI model to the camera side, and the AI model runs on the camera side. Among them, the large screen and the camera are connected through a physical universal serial bus (USB) transmission line; RNDIS uses the USB protocol as the lower layer transmission, and provides a virtual Ethernet connection to the upper layer.
但是,这种实现方式中,在运行时,根据应用的需要,大屏向摄像头传输AI模型之后,摄像头侧一次只能处理一个AI模型,不支持多个AI模型同时运行。However, in this implementation, at runtime, according to the needs of the application, after the large screen transmits the AI model to the camera, the camera can only process one AI model at a time, and does not support multiple AI models running at the same time.
发明内容Contents of the invention
本申请实施例提供了一种摄像头中AI模型的调度运行方法、装置和摄像头,本申请实施例还提供一种计算机可读存储介质,以实现摄像头侧可以同时运行至少两个帧率不敏感型AI模型,并且同时运行的AI模型在同一个轮转周期内处理的数据帧一致,可以提升AI模型结果的一致性。Embodiments of the present application provide a method and device for scheduling and running an AI model in a camera, and a camera. The embodiments of the present application also provide a computer-readable storage medium, so that at least two frame rate-insensitive AI models can be simultaneously run on the camera side. AI models, and the data frames processed by the AI models running at the same time in the same cycle are consistent, which can improve the consistency of the results of the AI models.
第一方面,本申请实施例提供了一种摄像头中人工智能AI模型的调度运行方法,应用于所述摄像头,所述摄像头与电子设备连接,所述摄像头中加载至少两个AI模型,所述方法包括:接收所述电子设备发送的AI模型轮转指令;在每个轮转周期中,在分配给第一AI进程的时间片上,运行第一AI模型,通过所述第一AI模型对当前轮转周期对应帧中的图像数据进行处理;其中,所述第一AI模型为可进行时间片轮转的AI模型组合中的任意一个AI模型,所述第一AI模型运行在所述第一AI进程中,所述图像数据是所述摄像头采集的。In the first aspect, an embodiment of the present application provides a method for scheduling and running an artificial intelligence AI model in a camera, which is applied to the camera, the camera is connected to an electronic device, and at least two AI models are loaded in the camera. The method includes: receiving an AI model rotation instruction sent by the electronic device; in each rotation cycle, in the time slice allocated to the first AI process, running the first AI model, and using the first AI model to update the current rotation cycle Processing the image data in the corresponding frame; wherein, the first AI model is any AI model in a combination of AI models capable of time slice rotation, and the first AI model runs in the first AI process, The image data is collected by the camera.
上述摄像头中人工智能AI模型的调度运行方法中,摄像头接收电子设备发送的AI模型轮转指令之后,在每个轮转周期中,在分配给第一AI进程的时间片上,运行第一AI模型,通过第一AI模型对当前轮转周期对应帧中的图像数据进行处理。从而摄像头侧可以同时运行至少两个帧率不敏感型AI模型,并且同时运行的AI模型在同一个轮转周期内处理的数据帧一致,可以提升AI模型结果的一致性。In the method for scheduling and running the artificial intelligence AI model in the above camera, after the camera receives the AI model rotation instruction sent by the electronic device, in each rotation cycle, the first AI model is run on the time slice allocated to the first AI process, through The first AI model processes the image data in the frame corresponding to the current rotation period. Therefore, at least two frame rate-insensitive AI models can be run simultaneously on the camera side, and the data frames processed by the AI models running at the same time are consistent in the same rotation cycle, which can improve the consistency of AI model results.
其中一种可能的实现方式中,所述分配给第一AI进程的时间片根据所述第一AI进程处理一帧图像数据所需的时间确定。In one possible implementation manner, the time slice allocated to the first AI process is determined according to the time required by the first AI process to process one frame of image data.
其中一种可能的实现方式中,所述当前轮转周期对应帧的帧序号根据当前轮转周期的序号和所述当前轮转周期中包括的每个AI进程处理一帧图像数据所需的时间确定。In one possible implementation manner, the frame number of the frame corresponding to the current rotation cycle is determined according to the sequence number of the current rotation cycle and the time required for each AI process included in the current rotation cycle to process a frame of image data.
其中一种可能的实现方式中,所述接收所述电子设备发送的AI模型轮转指令之前,还包括:在所述电子设备启动,并且所述摄像头启动完毕之后,接收所述电子设备发送的至少两个AI模型;按照AI模型对帧率的需求和对视频帧的计算方式,将所述至少两个AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型;从所述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合。In one possible implementation manner, before receiving the AI model rotation instruction sent by the electronic device, it also includes: after the electronic device is started and the camera is started, receiving at least Two AI models; divide the at least two AI models into a frame rate-sensitive AI model and a frame rate-insensitive AI model according to the frame rate requirements of the AI model and the calculation method of the video frame; from the frame rate In the rate-insensitive AI model, select the AI model combination that can perform time slice rotation.
其中一种可能的实现方式中,所述按照AI模型对帧率的需求和对视频帧的计算方式,将所述至少两个AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型包括:针对所述至少两个AI模型中的任一AI模型,如果所述AI模型需求的视频帧帧率大于预定的帧率阈值,并且所述AI模型对视频帧的计算结果向前依赖,则确定所述AI模型为帧率敏感型AI模型;如果所述AI模型需求的视频帧帧率小于或等于预定的帧率阈值,并且所述AI模型对视频帧的计算结果相互独立,则确定所述AI模型为帧率不敏感型AI模型。In one possible implementation, the at least two AI models are divided into a frame rate sensitive AI model and a frame rate insensitive AI model according to the frame rate requirements of the AI model and the calculation method for video frames. The model includes: for any AI model in the at least two AI models, if the frame rate of the video frame required by the AI model is greater than a predetermined frame rate threshold, and the calculation result of the AI model depends on the video frame forward , it is determined that the AI model is a frame rate-sensitive AI model; if the video frame rate required by the AI model is less than or equal to a predetermined frame rate threshold, and the calculation results of the AI model for video frames are independent of each other, then It is determined that the AI model is a frame rate insensitive AI model.
其中一种可能的实现方式中,所述从所述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合包括:根据运行所述帧率不敏感型AI模型的AI进程所要求的最低帧率,以及所述AI进程处理一帧数据所需的时间,从所述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合。In one possible implementation manner, the selecting an AI model combination capable of time slice rotation from the frame rate-insensitive AI models includes: The required minimum frame rate, and the time required for the AI process to process a frame of data, from the frame rate insensitive AI model, select an AI model combination that can perform time slice rotation.
第二方面,本申请实施例提供一种摄像头中人工智能AI模型的调度运行装置,该装置包含在摄像头中,该装置具有实现第一方面及第一方面的可能实现方式中摄像头行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。例如,接收模块或单元、处理模块或单元、发送模块或单元等。In the second aspect, the embodiment of the present application provides a device for scheduling and running the artificial intelligence AI model in the camera, the device is included in the camera, and the device has the function of implementing the camera behavior in the first aspect and possible implementations of the first aspect. The functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware. Hardware or software includes one or more modules or units corresponding to the functions described above. For example, a receiving module or unit, a processing module or unit, a sending module or unit, and the like.
第三方面,本申请实施例提供一种摄像头,所述摄像头与电子设备连接,所述摄像头包括:一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述摄像头执行时,使得所述摄像头执行以下步骤:接收所述电子设备发送的AI模型轮转指令;在每个轮转周期中,在分配给第一AI进程的时间片上,运行第一AI模型,通过所述第一AI模型对当前轮转周期对应帧中的图像数据进行处理;其中,所述第一AI模型为可进行时间片轮转的AI模型组合中的任意一个AI模型,所述第一AI模型运行在所述第一AI进程中,所述图像数据是所述摄像头采集的。In a third aspect, an embodiment of the present application provides a camera, the camera is connected to an electronic device, and the camera includes: one or more processors; memory; multiple application programs; and one or more computer programs, wherein the The one or more computer programs are stored in the memory, the one or more computer programs include instructions that, when executed by the camera, cause the camera to perform the following steps: receiving the electronic device The AI model rotation instruction sent; in each rotation cycle, in the time slice allocated to the first AI process, run the first AI model, and use the first AI model to process the image data in the frame corresponding to the current rotation cycle ; Wherein, the first AI model is any AI model in the AI model combination that can perform time slice rotation, the first AI model runs in the first AI process, and the image data is the camera Collected.
其中一种可能的实现方式中,所述分配给第一AI进程的时间片根据所述第一AI进程处理一帧图像数据所需的时间确定。In one possible implementation manner, the time slice allocated to the first AI process is determined according to the time required by the first AI process to process one frame of image data.
其中一种可能的实现方式中,所述当前轮转周期对应帧的帧序号根据当前轮转周期的序号和所述当前轮转周期中包括的每个AI进程处理一帧图像数据所需的时间确定。In one possible implementation manner, the frame number of the frame corresponding to the current rotation cycle is determined according to the sequence number of the current rotation cycle and the time required for each AI process included in the current rotation cycle to process a frame of image data.
其中一种可能的实现方式中,当所述指令被所述摄像头执行时,使得所述摄像头执行所述接收所述电子设备发送的AI模型轮转指令的步骤之前,还执行以下步骤:在所述电子设备启动,并且所述摄像头启动完毕之后,接收所述电子设备发送的至少两个AI模型;按照AI模型对帧率的需求和对视频帧的计算方式,将所述至少两个AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型;从所述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合。In one possible implementation manner, when the instruction is executed by the camera, before the camera executes the step of receiving the AI model rotation instruction sent by the electronic device, the following steps are further performed: After the electronic device is started and the camera is started, at least two AI models sent by the electronic device are received; according to the frame rate requirement of the AI model and the calculation method for the video frame, the at least two AI models are divided into It is a frame rate sensitive AI model and a frame rate insensitive AI model; from the frame rate insensitive AI models, select an AI model combination that can perform time slice rotation.
其中一种可能的实现方式中,当所述指令被所述摄像头执行时,使得所述摄像头执行所述按照AI模型对帧率的需求和对视频帧的计算方式,将所述至少两个AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型的步骤包括:针对所述至少两个AI模型中的任一AI模型,如果所述AI模型需求的视频帧帧率大于预定的帧率阈值,并且所述AI模型对视频帧的计算结果向前依赖,则确定所述AI模型为帧率敏感型AI模型;如果所述AI模型需求的视频帧帧率小于或等于预定的帧率阈值,并且所述AI模型对视频帧的计算结果相互独立,则确定所述AI模型为帧率不敏感型AI模型。In one possible implementation manner, when the instruction is executed by the camera, the camera executes the calculation method of the at least two AI The step of classifying the model into a frame rate sensitive AI model and a frame rate insensitive AI model includes: for any AI model in the at least two AI models, if the video frame rate required by the AI model is greater than a predetermined Frame rate threshold, and the AI model is forward dependent on the calculation result of the video frame, then it is determined that the AI model is a frame rate sensitive AI model; if the video frame rate required by the AI model is less than or equal to the predetermined frame rate threshold, and the calculation results of the AI model for video frames are independent of each other, then it is determined that the AI model is a frame rate insensitive AI model.
其中一种可能的实现方式中,当所述指令被所述摄像头执行时,使得所述摄像头执行所述从所述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合的步骤包括:根据运行所述帧率不敏感型AI模型的AI进程所要求的最低帧率,以及所述AI进程处理一帧数据所需的时间,从所述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合。In one possible implementation manner, when the instruction is executed by the camera, the camera is made to perform the step of selecting a combination of AI models capable of time slice rotation from the frame rate insensitive AI models. The steps include: according to the minimum frame rate required by the AI process running the frame rate insensitive AI model, and the time required for the AI process to process one frame of data, from the frame rate insensitive AI model, Select an AI model combination that can perform time slice rotation.
应当理解的是,本申请实施例的第二方面和第三方面与本申请实施例的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。It should be understood that the second aspect and the third aspect of the embodiment of the present application are consistent with the technical solution of the first aspect of the embodiment of the present application, and the beneficial effects obtained in each aspect and the corresponding feasible implementation manners are similar, so details are not repeated here.
第四方面,本申请实施例提供一种计算机可读存储介质,上述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行第一方面提供的方法。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the above-mentioned computer-readable storage medium, and when running on a computer, causes the computer to execute the method provided in the first aspect.
第五方面,本申请实施例提供一种计算机程序,当上述计算机程序被计算机执行时,用于执行第一方面提供的方法。In a fifth aspect, an embodiment of the present application provides a computer program, which is used to execute the method provided in the first aspect when the above computer program is executed by a computer.
在一种可能的设计中,第四方面和第五方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。In a possible design, the programs in the fourth aspect and the fifth aspect may be stored in whole or in part on a storage medium packaged with the processor, or stored in part or in whole in a storage medium not packaged with the processor. on memory.
附图说明Description of drawings
图1为本申请一个实施例提供的摄像头的结构示意图;FIG. 1 is a schematic structural diagram of a camera provided by an embodiment of the present application;
图2为本申请一个实施例中提供的应用场景的示意图;FIG. 2 is a schematic diagram of an application scenario provided in an embodiment of the present application;
图3为本申请一个实施例提供的摄像头中AI模型的调度运行方法的流程图;FIG. 3 is a flowchart of a method for scheduling and running an AI model in a camera according to an embodiment of the present application;
图4为本申请另一个实施例提供的摄像头中AI模型的调度运行方法的流程图;4 is a flowchart of a method for scheduling and running an AI model in a camera according to another embodiment of the present application;
图5为本申请再一个实施例提供的摄像头中AI模型的调度运行方法的流程图;FIG. 5 is a flow chart of a method for scheduling and running an AI model in a camera according to yet another embodiment of the present application;
图6为本申请一个实施例提供的各个AI进程处理的帧的示意图;FIG. 6 is a schematic diagram of frames processed by each AI process provided by an embodiment of the present application;
图7为本申请另一个实施例提供的摄像头的结构示意图。FIG. 7 is a schematic structural diagram of a camera provided by another embodiment of the present application.
具体实施方式Detailed ways
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。The terms used in the embodiments of the present application are only used to explain specific embodiments of the present application, and are not intended to limit the present application.
当前,带有摄像头的大屏在提供摄像头相关的AI能力时,有以下三种方式:Currently, there are three ways to provide camera-related AI capabilities for large screens with cameras:
1)在摄像头系统中内置AI模型,AI模型运行在摄像头侧;1) An AI model is built into the camera system, and the AI model runs on the camera side;
但是当在摄像头系统中内置AI模型时,一方面,由于视频相关AI模型较大,受限于摄像头系统的存储能力较小,内置AI模型的个数受限,对外呈现的结果为大屏的摄像头AI功能有限;另一方面,AI模型内置于摄像头系统中时,AI模型的更新依赖于摄像头系统更新,AI模型更新的代价较大。However, when the AI model is built into the camera system, on the one hand, due to the large video-related AI model, limited by the small storage capacity of the camera system, the number of built-in AI models is limited, and the result presented externally is a large-screen The AI function of the camera is limited; on the other hand, when the AI model is built into the camera system, the update of the AI model depends on the update of the camera system, and the cost of updating the AI model is relatively high.
2)在大屏主板侧内置AI模型,AI模型运行在主板侧。2) Built-in AI model on the motherboard side of the large screen, and the AI model runs on the motherboard side.
但是,当在主板侧内置AI模型时,主板侧需要集成视频编码、图像处理、视频解码等硬件模块,对从摄像头送过来的视频流进行解码、AI模型应用、图像处理、视频编码,代价较高。However, when the AI model is built on the motherboard side, hardware modules such as video encoding, image processing, and video decoding need to be integrated on the motherboard side to decode the video stream sent from the camera, apply the AI model, image processing, and video encoding. high.
3)在大屏侧内置AI模型,在运行时,根据应用的需要,通过RNDIS(使用USB协议作为下层传输,向上层提供虚拟的以太网连接)的socket接口,将AI模型发送至摄像头侧,AI模型运行在摄像头侧。3) Built-in AI model on the large screen side, at runtime, according to the needs of the application, send the AI model to the camera side through the socket interface of RNDIS (using the USB protocol as the lower layer transmission, providing a virtual Ethernet connection to the upper layer), The AI model runs on the camera side.
当在大屏侧内置AI模型,在运行时,根据应用的需要,向摄像头传输AI模型时,一方面,由于AI模型较大,向摄像头传输AI模型、摄像头加载AI模型的过程需要消耗较长时间,导致应用体验不佳;另一方面,摄像头侧未对AI模型进行分类、调度,一次只能处理一个AI模型,不支持多个AI模型同时运行。When the built-in AI model is built on the large screen side, when the AI model is transmitted to the camera according to the needs of the application during operation, on the one hand, due to the large size of the AI model, the process of transmitting the AI model to the camera and loading the AI model to the camera takes a long time. time, leading to poor application experience; on the other hand, the AI model is not classified and scheduled on the camera side, and only one AI model can be processed at a time, and multiple AI models are not supported to run at the same time.
在双驱动协议的摄像头解决方案基础上,针对摄像头未对AI模型进行调度,不支持多个AI模型同时运行的问题,本申请实施例提供一种摄像头中AI模型的调度运行方法,在双驱动协议的摄像头解决方案基础上,可以使得摄像头支持多个AI模型同时运行:On the basis of the camera solution of the dual-drive protocol, in view of the problem that the camera does not schedule the AI model and does not support the simultaneous operation of multiple AI models, the embodiment of this application provides a method for scheduling and running the AI model in the camera. Based on the camera solution of the protocol, the camera can support multiple AI models to run simultaneously:
1、根据AI模型对帧率的需求、对视频帧的计算方式,将AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型。1. According to the frame rate requirement of the AI model and the calculation method of the video frame, the AI model is divided into a frame rate sensitive AI model and a frame rate insensitive AI model.
2、针对帧率不敏感型AI模型,通过给定的约束条件,判断其是否可以进行多AI轮转,并计算其轮转周期。2. For the frame rate insensitive AI model, judge whether it can perform multi-AI rotation through the given constraints, and calculate its rotation period.
本申请实施例提供的摄像头中AI模型的调度运行方法可以应用于摄像头,上述摄像头可以包括:一个或多个处理器;存储器;多个应用程序;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令,当所述指令被摄像头执行时,可以使得上述摄像头执行本申请实施例提供的摄像头中AI模型的调度运行方法。The method for scheduling and running the AI model in the camera provided in the embodiment of the present application can be applied to the camera, and the above-mentioned camera can include: one or more processors; memory; multiple application programs; and one or more computer programs, wherein one or more One or more computer programs are stored in the memory, and one or more computer programs include instructions. When the instructions are executed by the camera, the above-mentioned camera can be made to execute the method for scheduling and running the AI model in the camera provided by the embodiment of the present application.
示例性的,图1为本申请一个实施例提供的摄像头的结构示意图,如图1所示,摄像头100可以包括处理器110和存储器120。Exemplarily, FIG. 1 is a schematic structural diagram of a camera provided by an embodiment of the present application. As shown in FIG. 1 , the
可以理解的是,本申请实施例示意的结构并不构成对摄像头100的具体限定。在本申请另一些实施例中,摄像头100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。It can be understood that the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),和/或神经网络处理器(neural-networkprocessing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。The
存储器120可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(random access memory,RAM)和/或高速缓存存储器。存储器120可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请实施例提供的方法。The
具有一组(至少一个)程序模块的程序/实用工具,可以存储在存储器120中,这样的程序模块包括——但不限于——操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块通常执行本申请所描述的实施例中的功能和/或方法。A program/utility having a set (at least one) of program modules may be stored in
处理器110通过运行存储在存储器120中的程序,从而执行各种功能应用以及数据处理,例如实现本申请所示实施例提供的摄像头中人工智能AI模型的调度运行方法。The
进一步地,摄像头100还可以包括镜头130、感光元件140和通信接口150。Further, the
物体通过镜头130生成光学图像投射到感光元件140。感光元件140可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件140把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。The object generates an optical image through the
通信接口150用于摄像头100与电子设备之间的交互。The
本申请实施例提供的摄像头中人工智能AI模型的调度运行方法可以应用在摄像头与电子设备(例如:大屏)之间通过双协议通信的方案中,如图2所示,摄像头100与电子设备22之间通过USB视频规范(USB video-class,UVC)+RNDIS进行通信,摄像头代理(cameraproxy)是运行在电子设备上与摄像头进行通信的代理程序。图2为本申请一个实施例中提供的应用场景的示意图。The scheduling and running method of the artificial intelligence AI model in the camera provided by the embodiment of the present application can be applied in the solution of dual-protocol communication between the camera and the electronic device (for example: large screen). As shown in FIG. 2 , the
图2中,摄像头100与电子设备22之间通过USB线连接,支持USB1.0/2.0/3.0。In FIG. 2 , the
其中,上述电子设备可以为大屏、智能手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或个人数字助理(personal digital assistant,PDA)等设备;本申请实施例对电子设备的具体类型不作任何限制。本申请以下实施例以大屏为例进行说明。Wherein, the above-mentioned electronic devices may be large screens, smart phones, tablet computers, wearable devices, vehicle-mounted devices, augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, notebook computers, super mobile personal computers ( ultra-mobile personal computer, UMPC), netbook or personal digital assistant (personal digital assistant, PDA); the embodiment of the present application does not make any limitation on the specific type of electronic equipment. The following embodiments of the present application take a large screen as an example for illustration.
为了便于理解,本申请以下实施例将以具有图1所示结构的摄像头,结合图2所示的应用场景,对本申请实施例提供的摄像头中AI模型的调度运行方法进行具体阐述。For ease of understanding, the following embodiments of the present application will use the camera with the structure shown in FIG. 1 in combination with the application scenario shown in FIG. 2 to specifically describe the method for scheduling and running the AI model in the camera provided by the embodiments of the present application.
图3为本申请一个实施例提供的摄像头中AI模型的调度运行方法的流程图,应用于摄像头100,摄像头100与电子设备22连接。本实施例中,摄像头100中加载至少两个AI模型,如图3所示,上述摄像头中人工智能AI模型的调度运行方法可以包括:FIG. 3 is a flow chart of a method for scheduling and running an AI model in a camera provided by an embodiment of the present application, which is applied to the
步骤301,接收电子设备22发送的AI模型轮转指令。
步骤302,在每个轮转周期中,在分配给第一AI进程的时间片上,运行第一AI模型,通过第一AI模型对当前轮转周期对应帧中的图像数据进行处理;其中,上述第一AI模型为可进行时间片轮转的AI模型组合中的任意一个AI模型,第一AI模型运行在第一AI进程中,上述图像数据是摄像头100采集的。
其中,分配给第一AI进程的时间片可以根据第一AI进程处理一帧图像数据所需的时间确定。Wherein, the time slice allocated to the first AI process may be determined according to the time required by the first AI process to process one frame of image data.
当前轮转周期对应帧的帧序号根据当前轮转周期的序号和当前轮转周期中包括的每个AI进程处理一帧图像数据所需的时间确定。由此可以看出,在一个轮转周期内,每个AI模型处理的帧的帧序号是一样的,从而同时运行的AI模型在同一个轮转周期内处理的数据帧一致,可以提升AI模型结果的一致性。The frame number of the frame corresponding to the current rotation period is determined according to the sequence number of the current rotation period and the time required for each AI process included in the current rotation period to process a frame of image data. It can be seen from this that within a rotation period, the frame numbers of the frames processed by each AI model are the same, so that the data frames processed by the AI models running at the same time are consistent in the same rotation period, which can improve the accuracy of the AI model results. consistency.
上述摄像头中人工智能AI模型的调度运行方法中,摄像头100接收电子设备22发送的AI模型轮转指令之后,在每个轮转周期中,在分配给第一AI进程的时间片上,运行第一AI模型,通过第一AI模型对当前轮转周期对应帧中的图像数据进行处理。从而摄像头侧可以同时运行至少两个帧率不敏感型AI模型,并且同时运行的AI模型在同一个轮转周期内处理的数据帧一致,可以提升AI模型结果的一致性。In the method for scheduling and running the artificial intelligence AI model in the above-mentioned camera, after the
图4为本申请另一个实施例提供的摄像头中AI模型的调度运行方法的流程图,如图4所示,本申请图3所示实施例中,步骤301之前,还可以包括:Fig. 4 is a flowchart of a method for scheduling and running an AI model in a camera according to another embodiment of the present application. As shown in Fig. 4, in the embodiment shown in Fig. 3 of the present application, before
步骤401,在电子设备22启动,并且摄像头100启动完毕之后,摄像头100接收电子设备22发送的至少两个AI模型。
步骤402,摄像头100按照AI模型对帧率的需求和对视频帧的计算方式,将至少两个AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型。In
具体地,摄像头100按照AI模型对帧率的需求和对视频帧的计算方式,将至少两个AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型可以为:针对至少两个AI模型中的任一AI模型,如果AI模型需求的视频帧帧率大于预定的帧率阈值,并且该AI模型对视频帧的计算结果向前依赖,则确定上述AI模型为帧率敏感型AI模型;如果AI模型需求的视频帧帧率小于或等于预定的帧率阈值,并且该AI模型对视频帧的计算结果相互独立,则确定上述AI模型为帧率不敏感型AI模型。Specifically, the
其中,上述预定的帧率阈值可以在具体实现时,根据系统性能和/或实现需求等自行设定,本实施例对上述预定的帧率阈值的大小不作限定,举例来说,上述预定的帧率阈值可以为15帧/秒。Wherein, the predetermined frame rate threshold above can be set by itself according to system performance and/or implementation requirements during specific implementation. This embodiment does not limit the size of the predetermined frame rate threshold above. For example, the above predetermined frame rate The rate threshold may be 15 frames per second.
步骤403,摄像头100从上述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合。In
具体地,摄像头100从上述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合可以为:根据运行上述帧率不敏感型AI模型的AI进程所要求的最低帧率,以及上述AI进程处理一帧数据所需的时间,从上述帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合。Specifically, the
下面以电子设备为大屏为例,对本申请实施例提供的摄像头中AI模型的调度运行方法进行说明,图5为本申请再一个实施例提供的摄像头中AI模型的调度运行方法的流程图,如图5所示,上述摄像头中AI模型的调度运行方法可以包括:Taking the electronic device as a large screen as an example, the method for scheduling and running the AI model in the camera provided by the embodiment of the present application will be described below. FIG. 5 is a flow chart of the method for scheduling and running the AI model in the camera provided in another embodiment of the present application. As shown in Figure 5, the scheduling and running method of the AI model in the camera may include:
步骤501,大屏启动后,待摄像头100启动完成之后,大屏通过RNDIS的socket接口将所有的AI模型发送至摄像头100。
步骤502,摄像头100对AI模型进行分组,按照AI模型对帧率的需求、对视频帧的计算方式,将AI模型分为帧率敏感型AI和帧率不敏感型AI两种类型。
具体地,帧率敏感型AI模型:此类AI模型对视频帧的实时性要求高(例如:大于15帧/秒)、对视频帧的计算结果向前依赖;Specifically, frame rate-sensitive AI model: this type of AI model has high real-time requirements for video frames (for example: greater than 15 frames per second), and the calculation results of video frames are forward-dependent;
帧率不敏感型AI模型:此类AI模型对视频帧的实时性要求低(例如:小于或等于15帧/秒)、对视频帧的计算结果相互独立。Frame rate insensitive AI model: This type of AI model has low real-time requirements for video frames (for example: less than or equal to 15 frames per second), and the calculation results of video frames are independent of each other.
步骤503,针对帧率不敏感型AI模型,计算可进行时间片轮转的AI模型组合。
具体地,可以通过以下两个条件从帧率不敏感型AI模型中,选择可进行时间片轮转的AI模型组合:Specifically, the following two conditions can be used to select the AI model combination that can perform time slice rotation from the frame rate insensitive AI model:
1)用FPSAI表示进行时间片轮转的AI模型组合的AI帧率,第i个AI进程AIi的最低帧率为FPSAIi,则FPSAI=max(FPSAI1,FPSAI2,…,FPSAIn)。1) FPS AI is used to represent the AI frame rate of the AI model combination for time slice rotation, and the lowest frame rate of the i-th AI process AI i is FPS AIi , then FPS AI = max(FPS AI1 , FPS AI2 ,..., FPS AIn ).
2)假设可同时加载n个AI进程,其中第i个AI进程AIi处理一帧数据所需的时间为:timeAIi,则这n个进程需要满足式(1)。2) Assuming that n AI processes can be loaded at the same time, the time required for the i-th AI process AI i to process one frame of data is: time AIi , then these n processes need to satisfy formula (1).
步骤504,在运行时,摄像头100接收到大屏侧发送的AI模型轮转指令之后,对可进行时间片轮转的AI模型组合中的各AI模型进行时间片轮转。
在一次轮转中,第i个AI进程AIi分配的时间片为: In one rotation, the time slice allocated by the i-th AI process AI i is:
在第i个轮转周期中,各个AI进程处理的帧均相同,帧序号可以按照式(2)确定。In the i-th rotation cycle, the frames processed by each AI process are the same, and the frame number can be determined according to formula (2).
图6为本申请一个实施例提供的各个AI进程处理的帧的示意图,参见图6,进程AI1、AI2和AI3在第一个轮转周期中处理的帧为帧1,在第二个轮转周期中处理的帧为帧6。Fig. 6 is a schematic diagram of frames processed by each AI process provided by an embodiment of the present application. Referring to Fig. 6, the frame processed by processes AI1, AI2 and AI3 in the first rotation cycle is
具体实现时,对可进行时间片轮转的AI模型组合中的各AI模型进行时间片轮转可以为:在分配给第i个AI进程的时间片上,运行AIi模型,通过AIi模型对当前轮转周期对应帧中的图像数据进行处理。而第i个轮转周期对应的帧的帧序号可以按照式(2)确定。In specific implementation, the time slice rotation for each AI model in the AI model combination that can perform time slice rotation can be: in the time slice allocated to the i-th AI process , run the AI i model, and process the image data in the frame corresponding to the current rotation cycle through the AI i model. The frame sequence number of the frame corresponding to the i-th rotation period can be determined according to formula (2).
需要说明的是,摄像头100接收到大屏侧发送的AI模型轮转指令可以为:大屏中设置有AI模型轮转的功能开关,用户将该功能开关置于开启状态,然后,在摄像头100运行时,摄像头100接收到大屏侧发送的AI模型轮转指令。It should be noted that the AI model rotation instruction received by the
本申请实施例提供的摄像头中AI模型的调度运行方法中,将AI模型分为帧率敏感型AI模型和帧率不敏感型AI模型,针对帧率不敏感型AI模型,对其进行时间片轮转调度,摄像头100支持多个AI模型同时运行。另外,本申请实施例中,在电子设备开机,并且摄像头100开机之后,电子设备就将AI模型发送给摄像头100,摄像头100接收到AI模型之后,加载AI模型,而不是在应用调用时才发送、加载AI模型,避免了在应用启动时,因需要加载AI模型而导致的效果时延,提升了应用体验。In the scheduling operation method of the AI model in the camera provided by the embodiment of the present application, the AI model is divided into a frame rate sensitive AI model and a frame rate insensitive AI model, and for the frame rate insensitive AI model, it is time sliced Round-robin scheduling, the
可以理解的是,上述实施例中的部分或全部步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。It can be understood that some or all of the steps or operations in the foregoing embodiments are only examples, and other operations or modifications of various operations may also be performed in the embodiment of the present application. In addition, various steps may be performed in different orders presented in the above embodiments, and it may not be necessary to perform all operations in the above embodiments.
可以理解的是,摄像头为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本申请所公开的实施例描述的各示例的算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。It can be understood that, in order to realize the above functions, the camera includes hardware and/or software modules corresponding to each function. In combination with the algorithm steps of the examples described in the embodiments disclosed in the present application, the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions in combination with the embodiments for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
本实施例可以根据上述方法实施例对摄像头进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。In this embodiment, the functional modules of the camera may be divided according to the above method embodiments. For example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one module. The above integrated modules may be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
图7为本申请另一个实施例提供的摄像头的结构示意图,在采用对应各个功能划分各个功能模块的情况下,图7示出了上述实施例中涉及的摄像头700的一种可能的组成示意图,如图7所示,该摄像头700可以包括:接收单元701、处理单元702和发送单元703;FIG. 7 is a schematic structural diagram of a camera provided in another embodiment of the present application. In the case of dividing each functional module corresponding to each function, FIG. 7 shows a possible composition diagram of the
其中,接收单元701可以用于支持摄像头700执行步骤301,步骤401和步骤504等,和/或用于本申请实施例所描述的技术方案的其他过程;Wherein, the receiving
处理单元702可以用于支持摄像头700执行步骤302,以及步骤402~403和步骤502~504等,和/或用于本申请实施例所描述的技术方案的其他过程。The
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。It should be noted that all relevant content of the steps involved in the above method embodiments can be referred to the function description of the corresponding function module, and will not be repeated here.
本实施例提供的摄像头700,用于执行上述摄像头中AI模型的调度运行方法,因此可以达到与上述方法相同的效果。The
应当理解的是,摄像头700可以对应于图1所示的摄像头100。其中,接收单元701和发送单元703的功能可以由图1所示的摄像头100中的通信接口150实现;处理单元702的功能可以由图1所示的摄像头100中的处理器110实现。It should be understood that the
在采用集成的单元的情况下,摄像头700可以包括处理模块、存储模块和通信模块。In the case of an integrated unit, the
其中,处理模块可以用于对摄像头700的动作进行控制管理,例如,可以用于支持摄像头700执行上述接收单元701、处理单元702和发送单元703执行的步骤。存储模块可以用于支持摄像头700存储程序代码和数据等。通信模块,可以用于支持摄像头700与其他设备的通信。Wherein, the processing module can be used to control and manage the actions of the
其中,处理模块可以是处理器或控制器,其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片和/或Wi-Fi芯片等与其他电子设备交互的设备。Wherein, the processing module may be a processor or a controller, which may realize or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present application. The processor can also be a combination of computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (digital signal processing, DSP) and a microprocessor, and the like. The storage module may be a memory. Specifically, the communication module may be a device that interacts with other electronic devices, such as a radio frequency circuit, a Bluetooth chip, and/or a Wi-Fi chip.
在一个实施例中,当处理模块为处理器,存储模块为存储器时,本实施例所涉及的摄像头700可以为具有图1所示结构的设备。In an embodiment, when the processing module is a processor and the storage module is a memory, the
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请图3~图5所示实施例提供的方法。The embodiment of the present application also provides a computer-readable storage medium. The computer-readable storage medium stores a computer program. When it is run on a computer, the computer executes the program provided by the embodiments shown in FIGS. 3 to 5 of the present application. method.
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请图3~图5所示实施例提供的方法。The embodiment of the present application also provides a computer program product, the computer program product includes a computer program, and when it is run on a computer, it causes the computer to execute the method provided in the embodiments shown in FIG. 3 to FIG. 5 of the present application.
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。In the embodiments of the present application, "at least one" means one or more, and "multiple" means two or more. "And/or" describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, or B exists alone. Among them, A and B can be singular or plural. The character "/" generally indicates that the contextual objects are an "or" relationship. "At least one of the following" and similar expressions refer to any combination of these items, including any combination of single items or plural items. For example, at least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, or Can be multiple.
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art can appreciate that each unit and algorithm steps described in the embodiments disclosed herein can be realized by a combination of electronic hardware, computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。In several embodiments provided in this application, if any function is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。The foregoing is only a specific implementation of the present application. Any person skilled in the art within the technical scope disclosed in the present application can easily think of changes or substitutions, which should be covered by the protection scope of the present application. The protection scope of the present application shall be based on the protection scope of the claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110908521.7A CN115942105A (en) | 2021-08-09 | 2021-08-09 | Method, device and camera for scheduling and running AI model in camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110908521.7A CN115942105A (en) | 2021-08-09 | 2021-08-09 | Method, device and camera for scheduling and running AI model in camera |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115942105A true CN115942105A (en) | 2023-04-07 |
Family
ID=86699399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110908521.7A Pending CN115942105A (en) | 2021-08-09 | 2021-08-09 | Method, device and camera for scheduling and running AI model in camera |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115942105A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116260990A (en) * | 2023-05-16 | 2023-06-13 | 合肥高斯智能科技有限公司 | AI asynchronous detection and real-time rendering method and system for multipath video streams |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106446696A (en) * | 2015-08-10 | 2017-02-22 | 联想(北京)有限公司 | Information processing method and electronic device |
CN111862107A (en) * | 2019-04-30 | 2020-10-30 | 百度时代网络技术(北京)有限公司 | Method and system for processing images |
CN112261289A (en) * | 2020-10-16 | 2021-01-22 | 海信视像科技股份有限公司 | Display device and AI algorithm result acquisition method |
CN112965804A (en) * | 2021-03-25 | 2021-06-15 | 深圳市优必选科技股份有限公司 | Method, device, terminal, system and storage medium for processing information |
CN113037971A (en) * | 2021-03-03 | 2021-06-25 | 深圳市浩科电子有限公司 | Method for multi-AI model parallel processing of multi-channel video |
-
2021
- 2021-08-09 CN CN202110908521.7A patent/CN115942105A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106446696A (en) * | 2015-08-10 | 2017-02-22 | 联想(北京)有限公司 | Information processing method and electronic device |
CN111862107A (en) * | 2019-04-30 | 2020-10-30 | 百度时代网络技术(北京)有限公司 | Method and system for processing images |
CN112261289A (en) * | 2020-10-16 | 2021-01-22 | 海信视像科技股份有限公司 | Display device and AI algorithm result acquisition method |
CN113037971A (en) * | 2021-03-03 | 2021-06-25 | 深圳市浩科电子有限公司 | Method for multi-AI model parallel processing of multi-channel video |
CN112965804A (en) * | 2021-03-25 | 2021-06-15 | 深圳市优必选科技股份有限公司 | Method, device, terminal, system and storage medium for processing information |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116260990A (en) * | 2023-05-16 | 2023-06-13 | 合肥高斯智能科技有限公司 | AI asynchronous detection and real-time rendering method and system for multipath video streams |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114443256B (en) | Resource scheduling method and electronic equipment | |
EP3402163B1 (en) | Method and device for managing resources in cloud platform | |
JP7418569B2 (en) | Transmission and synchronization techniques for hardware-accelerated task scheduling and load balancing on heterogeneous platforms | |
JP2014525619A (en) | Data processing system | |
CN103970710A (en) | Adaptive Service Controller, System On Chip And Method Of Controlling The Same | |
WO2022179486A1 (en) | Multi-core processor task scheduling method and apparatus, and device and storage medium | |
WO2018223786A1 (en) | Cloud desktop system, and image sequence compression and encoding method, and medium therefor | |
CN112887608A (en) | Image processing method and device, image processing chip and electronic equipment | |
CN103116517B (en) | The method of adjustment of I/O passage and adjusting apparatus under virtual platform | |
WO2024119823A1 (en) | Gpu computing resource management method and apparatus, electronic device and readable storage medium | |
JP2017525047A (en) | Low power computer imaging | |
WO2022222721A1 (en) | Computational resource scheduling method and apparatus | |
CN112882826B (en) | Resource cooperative scheduling method and device | |
CN111274044B (en) | GPU virtualization resource limitation processing method and device | |
CN111338745A (en) | Deployment method and device of virtual machine and intelligent equipment | |
CN115942105A (en) | Method, device and camera for scheduling and running AI model in camera | |
CN107203394B (en) | High-safety docker container batch deployment method and device | |
US20210209471A1 (en) | Processor memory optimization method and apparatus for deep learning training tasks | |
CN116048742B (en) | Data processing method and electronic equipment | |
CN106201712A (en) | Method, device and mobile terminal for adjusting target recognition frequency in augmented reality | |
WO2022257829A1 (en) | Data network uplink scheduling method and apparatus, and electronic device | |
CN117130772A (en) | Resource scheduling method, electronic equipment and storage medium | |
CN118819267A (en) | Power consumption adjustment method and electronic device | |
JP3987032B2 (en) | A processor with the ability to slow down during a programmed stall cycle | |
CN111708614A (en) | A method, system and related equipment for dynamic adjustment of virtual machine resource parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |