CN115799608A - A method for improving the interface between inorganic phase filler and polymer in composite solid electrolyte and its application - Google Patents
A method for improving the interface between inorganic phase filler and polymer in composite solid electrolyte and its application Download PDFInfo
- Publication number
- CN115799608A CN115799608A CN202211660467.XA CN202211660467A CN115799608A CN 115799608 A CN115799608 A CN 115799608A CN 202211660467 A CN202211660467 A CN 202211660467A CN 115799608 A CN115799608 A CN 115799608A
- Authority
- CN
- China
- Prior art keywords
- inorganic phase
- polymer
- composite
- interface
- improving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 73
- 229920000642 polymer Polymers 0.000 title claims abstract description 56
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000945 filler Substances 0.000 title claims description 32
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000003792 electrolyte Substances 0.000 claims abstract description 42
- 238000003756 stirring Methods 0.000 claims abstract description 33
- 239000012528 membrane Substances 0.000 claims abstract description 28
- 239000007787 solid Substances 0.000 claims abstract description 19
- 239000002904 solvent Substances 0.000 claims abstract description 19
- 239000002243 precursor Substances 0.000 claims abstract description 18
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 12
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 11
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000002202 Polyethylene glycol Substances 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 11
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000007774 positive electrode material Substances 0.000 claims description 8
- 239000002033 PVDF binder Substances 0.000 claims description 7
- -1 Polytetrafluoroethylene Polymers 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- 239000006258 conductive agent Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 4
- 239000010416 ion conductor Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000006230 acetylene black Substances 0.000 claims description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 3
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- 239000006229 carbon black Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 238000010325 electrochemical charging Methods 0.000 claims description 2
- 238000010326 electrochemical discharging Methods 0.000 claims description 2
- 239000002223 garnet Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 claims description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims 2
- 229910010941 LiFSI Inorganic materials 0.000 claims 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical group FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 claims 1
- AEXDMFVPDVVSQJ-UHFFFAOYSA-N trifluoro(trifluoromethylsulfonyl)methane Chemical group FC(F)(F)S(=O)(=O)C(F)(F)F AEXDMFVPDVVSQJ-UHFFFAOYSA-N 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 12
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 12
- 230000004048 modification Effects 0.000 abstract description 8
- 238000012986 modification Methods 0.000 abstract description 8
- 239000011268 mixed slurry Substances 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 3
- 238000004080 punching Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 15
- 239000007822 coupling agent Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000011256 inorganic filler Substances 0.000 description 11
- 229910003475 inorganic filler Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000010954 inorganic particle Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- XYPTZZQGMHILPQ-UHFFFAOYSA-N 2-methyl-6-trimethoxysilylhex-1-en-3-one Chemical compound CO[Si](OC)(OC)CCCC(=O)C(C)=C XYPTZZQGMHILPQ-UHFFFAOYSA-N 0.000 description 1
- 229910019309 La0.56Li0.33TiO3 Inorganic materials 0.000 description 1
- 229910009511 Li1.5Al0.5Ge1.5(PO4)3 Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Conductive Materials (AREA)
Abstract
Description
技术领域technical field
本发明属于固态电解质技术领域,涉及一种改善复合固态电解质中无机相填料与聚合物界面的方法。The invention belongs to the technical field of solid electrolytes and relates to a method for improving the interface between an inorganic phase filler and a polymer in a composite solid electrolyte.
背景技术Background technique
过去几十年间,先进的锂电池装置已经广泛应用于便携式电子产品、电动汽车乃至大型电网,在现代社会中发挥着不可替代的作用。然而,随着能源储存需求的不断增加,传统的液体锂离子电池已经不能满足社会发展对能量密度、安全性、成本和寿命的需求。在传统电池体系中,对能量密度的追求已经到达了极限。同时液体电解液成分的复杂性和对锂负极的不稳定性使液态电池的安全问题尤为显著。本着对能量密度和安全两方面的诉求,固态电解质作为代替传统有机电解质的最佳候选人逐渐成为研究的热点。Over the past few decades, advanced lithium battery devices have been widely used in portable electronic products, electric vehicles and even large power grids, playing an irreplaceable role in modern society. However, with the increasing demand for energy storage, traditional liquid lithium-ion batteries can no longer meet the needs of social development for energy density, safety, cost, and lifespan. In traditional battery systems, the pursuit of energy density has reached its limit. At the same time, the complexity of the composition of the liquid electrolyte and the instability of the lithium anode make the safety of the liquid battery particularly significant. In line with the demands of both energy density and safety, solid-state electrolytes, as the best candidates to replace traditional organic electrolytes, have gradually become a research hotspot.
固态电解质大体分为无机固态电解质、聚合物电解质以及复合固态电解质三种。其中,无机固态电解质离子电导率高,机械强度大,但与电极界面的固固接触使其界面电阻大,装配难度高;聚合物电解质有较强的柔韧性,界面接触良好,但聚合物离子电导率低,无法满足电池的实际使用需求。复合固态电解质很好的综合了二者优势,在保留了聚合物膜灵活性的同时,提高了复合电解质的离子电导率和电化学窗口,是目前最有发展潜力的固态电解质。但引入聚合物基质的无机填料由于粒径较小,与聚合物的表面能有巨大差异,易自发团聚,不利于电解质内部锂离子的快速输运。Solid electrolytes are roughly divided into three types: inorganic solid electrolytes, polymer electrolytes, and composite solid electrolytes. Among them, the inorganic solid electrolyte has high ionic conductivity and high mechanical strength, but the solid contact with the electrode interface makes the interface resistance high and the assembly is difficult; the polymer electrolyte has strong flexibility and good interface contact, but the polymer ion The conductivity is low, which cannot meet the actual use requirements of the battery. Composite solid electrolytes combine the advantages of both. While retaining the flexibility of polymer membranes, they improve the ionic conductivity and electrochemical window of composite electrolytes. They are currently the most promising solid electrolytes. However, due to the small particle size of the inorganic filler introduced into the polymer matrix, there is a huge difference in the surface energy of the polymer, and it is easy to spontaneously agglomerate, which is not conducive to the rapid transport of lithium ions inside the electrolyte.
复合固态电解质内存在着大量无机填料与聚合物基质之间的界面,良好的界面对于锂离子在电解质内的运输和迁移十分重要。引入与无机填料和聚合物基质均具有良好界面的材料可以显著降低锂离子从无机填料迁移至聚合物所需的能量势垒,从而提高复合电解质膜的离子电导率和锂迁移数,相应地使最终装配的固态电池的电化学性能及稳定性也得到了大幅度的提升。目前,现有技术还有很大的提升空间,进一步改善了无机填料与聚合物基质的界面性能,才能适应更高质量和更高性能的锂电池装置的产业需要。There are a large number of interfaces between the inorganic filler and the polymer matrix in the composite solid electrolyte, and a good interface is very important for the transport and migration of lithium ions in the electrolyte. The introduction of materials with good interfaces with both the inorganic filler and the polymer matrix can significantly reduce the energy barrier required for lithium ions to migrate from the inorganic filler to the polymer, thereby improving the ionic conductivity and lithium transfer number of the composite electrolyte membrane, and correspondingly enabling The electrochemical performance and stability of the final assembled solid-state battery have also been greatly improved. At present, there is still a lot of room for improvement in the existing technology. Only by further improving the interface performance between the inorganic filler and the polymer matrix can it meet the industrial needs of higher quality and higher performance lithium battery devices.
发明内容Contents of the invention
本发明的目的在于改善复合固态电解质中无机相填料与聚合物之间的界面,以解决目前复合固态电解质中因无机填料表面能差异引起的颗粒团聚以及锂离子传输路径不连续的问题。本发明提供一种改善复合固态电解质中无机相填料与聚合物界面的方法及其应用,本发明的含有无机填料的复合固态电解质包含表面改性的无机填料、聚合物以及锂盐,本发明通过在无机相表面修饰硅烷偶联剂,有效改善了界面问题,降低了两相之间的迁移势垒,增加了电解质的电化学窗口,提高了固态电池的电化学性能。The purpose of the present invention is to improve the interface between the inorganic phase filler and the polymer in the composite solid electrolyte, so as to solve the problems of particle agglomeration and lithium ion transmission path discontinuity caused by the difference in the surface energy of the inorganic filler in the current composite solid electrolyte. The invention provides a method for improving the interface between inorganic phase fillers and polymers in a composite solid electrolyte and its application. The composite solid electrolyte containing inorganic fillers of the present invention includes surface-modified inorganic fillers, polymers and lithium salts. The present invention adopts Modification of the silane coupling agent on the surface of the inorganic phase effectively improves the interface problem, reduces the migration barrier between the two phases, increases the electrochemical window of the electrolyte, and improves the electrochemical performance of the solid-state battery.
为了实现上述发明目的,本发明采用如下技术方案:In order to realize the foregoing invention object, the present invention adopts following technical scheme:
一种改善复合固态电解质中无机相填料与聚合物界面的方法,包括以下步骤:A method for improving the interface between an inorganic phase filler and a polymer in a composite solid electrolyte, comprising the following steps:
(1)将含硅烷偶联剂的前驱体溶液水浴加热静置,得到均匀的前驱体溶液;(1) heating the precursor solution containing the silane coupling agent in a water bath to obtain a uniform precursor solution;
(2)将无机相分散于在所述步骤(1)中所得的前驱体溶液中,并搅拌处理,得到无机相填料分散液;(2) dispersing the inorganic phase in the precursor solution obtained in the step (1), and stirring to obtain the inorganic phase filler dispersion;
(3)将在所述步骤(2)中得到的无机相填料分散液中的无机相材料进行收集,并用乙醇溶液洗涤,并离心至少两次,得到无机相材料;(3) collecting the inorganic phase material in the inorganic phase filler dispersion obtained in the step (2), washing with ethanol solution, and centrifuging at least twice to obtain the inorganic phase material;
(4)将无机相材料进行洗涤、离心、烘干,得到无机相颗粒,并收集于离心管内;所述的收集产物无机相颗粒即为改性后的无机相填料;(4) Washing, centrifuging, and drying the inorganic phase material to obtain inorganic phase particles and collect them in a centrifuge tube; the collected product inorganic phase particles are modified inorganic phase fillers;
(5)将聚合物与锂盐在样品瓶A中混合,加入无水乙腈作为溶剂,于加热台上恒温搅拌至溶液完全均匀;(5) Mix the polymer and the lithium salt in sample bottle A, add anhydrous acetonitrile as a solvent, and stir at a constant temperature on a heating platform until the solution is completely uniform;
(6)将在所述步骤(4)中改性后的无机相填料与聚乙二醇(PEG)在样品瓶B中混合,加入无水乙腈作为溶剂,于加热台上恒温搅拌至溶液完全均匀;(6) Mix the inorganic phase filler modified in the step (4) with polyethylene glycol (PEG) in sample bottle B, add anhydrous acetonitrile as a solvent, and stir at a constant temperature on a heating platform until the solution is completely Uniform;
(7)将在所述步骤(6)中的样品瓶B中得到的溶液倒入在所述步骤(5)中的样品瓶A中,充分搅拌均匀,得到均匀浆料;(7) Pour the solution obtained in the sample bottle B in the step (6) into the sample bottle A in the step (5), fully stir to obtain a uniform slurry;
(8)将在所述步骤(7)中得到的均匀浆料滴涂到模具上,并进行干燥,充分除去有机溶剂,在模具上形成干膜,然后裁剪成所需尺寸的圆片,作为固态复合电解质薄膜;(8) drip-coat the homogeneous slurry obtained in the step (7) onto the mold, and dry, fully remove the organic solvent, form a dry film on the mold, and then cut it into discs of required size, as Solid composite electrolyte membrane;
(9)将正极材料制成电池正极极片,以锂金属为负极,以在所述步骤(8)中制得的固态复合电解质膜为隔膜,组装扣式电池,然后对组装好的固态电池进行电化学性能的测试,得到改善复合固态电解质中无机相填料与聚合物界面的固态电池。(9) Make the positive electrode material into the battery positive electrode sheet, use lithium metal as the negative electrode, use the solid composite electrolyte membrane prepared in the step (8) as the diaphragm, assemble the button battery, and then assemble the solid state battery The electrochemical performance was tested, and a solid-state battery with an improved interface between the inorganic phase filler and the polymer in the composite solid electrolyte was obtained.
优选地,在所述步骤(1)中,硅烷偶联剂采用甲基丙烯酰基丙基三甲氧基硅烷(KH570)、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)、3-氯丙基三甲氧硅烷中的至少一种;所述加热温度为50~80℃;所述静置时间为1.0~3.0h。Preferably, in the step (1), the silane coupling agent adopts methacrylpropyltrimethoxysilane (KH570), γ-(2,3-glycidyloxy)propyltrimethoxysilane ( KH560), at least one of 3-chloropropyltrimethoxysilane; the heating temperature is 50-80°C; the standing time is 1.0-3.0h.
优选地,在所述步骤(2)中,每次处理的无机相颗粒质量为1.0~5.0g;每次搅拌处理不同时间,搅拌处理总时间为3.0~12.0h;所述无机相为石榴石型、钙钛矿型、硫化物、钠快离子导体、锂快离子导体中的至少一种。进一步优选地,所述无机相为Li6.4La3Zr1.4Ta0.6O12,La0.56Li0.33TiO3,Li1.5Al0.5Ge1.5(PO4)3中的至少一种。Preferably, in the step (2), the mass of the inorganic phase particles treated each time is 1.0-5.0 g; each time the stirring treatment is different, and the total time of the stirring treatment is 3.0-12.0 h; the inorganic phase is garnet At least one of type, perovskite type, sulfide, sodium fast ion conductor, lithium fast ion conductor. Further preferably, the inorganic phase is at least one of Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , La 0.56 Li 0.33 TiO 3 , and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 .
优选地,在所述步骤(4)中,采用的烘干条件为80~180℃下,进行烘干0.5~5.0h。Preferably, in the step (4), the drying condition adopted is 80-180° C. for 0.5-5.0 hours.
优选地,在所述步骤(5)中,聚合物为聚环氧乙烷(PEO)、聚偏氟乙烯(PVDF)、聚丙烯腈(PAN)中的至少一种;锂盐为双三氟甲磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂盐(LiFSI)、高氯酸锂(LiClO4)中的至少一种;聚合物与锂盐的摩尔比例为15:1~5:1;控制加热温度为50~90℃,搅拌时间为0.5~5.0h。Preferably, in the step (5), the polymer is at least one of polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN); the lithium salt is bistrifluoro At least one of lithium methanesulfonimide (LiTFSI), lithium bisfluorosulfonimide (LiFSI), lithium perchlorate (LiClO 4 ); the molar ratio of polymer to lithium salt is 15:1~5 : 1; Control the heating temperature at 50-90°C and the stirring time at 0.5-5.0h.
优选地,在所述步骤(6)中,所述改性后的无机相的添加含量为聚合物与锂盐质量总和的5~30wt%;聚乙二醇(PEG)与聚合物的质量比为1:5~1:2;控制加热温度为60~80℃,搅拌时间为1.0~3.0h。Preferably, in the step (6), the added content of the modified inorganic phase is 5 to 30 wt% of the sum of the mass of the polymer and the lithium salt; the mass ratio of polyethylene glycol (PEG) to the polymer The ratio is 1:5~1:2; the heating temperature is controlled at 60~80°C, and the stirring time is 1.0~3.0h.
优选地,在所述步骤(7)中,控制搅拌时间为6.0~9.0h。Preferably, in the step (7), the stirring time is controlled to be 6.0-9.0 h.
优选地,在所述步骤(8)中,模具材质采用聚四氟乙烯(PTFE)、离型纸(PET)、玻璃板中的至少一种。Preferably, in the step (8), the mold material is at least one of polytetrafluoroethylene (PTFE), release paper (PET) and glass plate.
优选地,在所述步骤(9)中,正极极片包括正极活性材料、导电剂、粘结剂,在正极极片中的正极活性材料、导电剂、粘结剂的质量分数分别为70~85%、10~20%、5~15%;所述导电剂为乙炔黑、超级炭黑或碳纳米管中的至少一种;所述粘结剂为PVDF或PTFE;所述正极活性材料为磷酸铁锂(LFP)和NCM811中的至少一种。Preferably, in the step (9), the positive electrode sheet includes a positive electrode active material, a conductive agent, and a binder, and the mass fractions of the positive electrode active material, the conductive agent, and the binder in the positive electrode sheet are 70 to 70% respectively. 85%, 10-20%, 5-15%; the conductive agent is at least one of acetylene black, super carbon black or carbon nanotubes; the binder is PVDF or PTFE; the positive active material is At least one of lithium iron phosphate (LFP) and NCM811.
优选地,在所述步骤(9)中,固态电池的电化学充放电的电压截止上限为3.5~4.3V,下限为2.2~2.8V。Preferably, in the step (9), the upper limit of the cut-off voltage of the electrochemical charging and discharging of the solid-state battery is 3.5-4.3V, and the lower limit is 2.2-2.8V.
一种由本发明上述方法改善无机相与聚合物之间界面的复合电解质在固态锂电池中的应用,将改善复合固态电解质中无机相填料与聚合物界面的方法制备的固态复合电解质膜作为隔膜,制备固态电池。An application of a composite electrolyte that improves the interface between the inorganic phase and the polymer by the above-mentioned method of the present invention in a solid-state lithium battery, using the solid composite electrolyte membrane prepared by improving the interface between the inorganic phase filler and the polymer in the composite solid electrolyte as a diaphragm, Preparation of solid-state batteries.
本发明的机理为:Mechanism of the present invention is:
在复合固态电解质中,需要特别关注电解质内部存在的大量界面,降低界面处离子传输的能垒并提高锂离子的迁移数。利用偶联剂的水解反应对无机相颗粒的表面进行修饰,可以改善无机相填料与聚合物基质之间的界面接触,在电解质内部形成连续的锂离子迁移路径。改性后的无机相与聚合物制备出的复合薄膜具有较高的离子电导率,较大的电化学窗口。以锂金属为负极,以磷酸铁锂(LFP)及NCM811为正极组装成的固态电池有较小的界面电阻及优越的电化学性能。本发明在无机填料表面修饰了硅烷偶联剂,改善了其与聚合物基质的界面,提高了复合固态电解质的离子电导率,增大了电解质的电化学窗口,使其能与高压正极匹配并进行长循环测试。In composite solid-state electrolytes, special attention needs to be paid to the large number of interfaces existing inside the electrolyte to reduce the energy barrier for ion transport at the interface and increase the migration number of lithium ions. Using the hydrolysis reaction of the coupling agent to modify the surface of the inorganic phase particles can improve the interfacial contact between the inorganic phase filler and the polymer matrix and form a continuous lithium ion migration path inside the electrolyte. The composite film prepared by the modified inorganic phase and polymer has high ion conductivity and large electrochemical window. The solid-state battery assembled with lithium metal as the negative electrode and lithium iron phosphate (LFP) and NCM811 as the positive electrode has a small interface resistance and excellent electrochemical performance. The present invention modifies the silane coupling agent on the surface of the inorganic filler, improves the interface between it and the polymer matrix, improves the ionic conductivity of the composite solid electrolyte, increases the electrochemical window of the electrolyte, and enables it to be matched with a high-voltage positive electrode and Run a long loop test.
相对现有技术,本发明技术方案具有如下显而易见的突出的实质性特点和显著的优点:Compared with the prior art, the technical solution of the present invention has the following obvious outstanding substantive features and significant advantages:
1.本发明所述的含有无机填料的复合固态电解质的制备方法,采用硅烷偶联剂处理无机陶瓷粉体,有效降低了表面能,解决了小粒径颗粒因表面能差异引起的团聚问题;1. The preparation method of the composite solid electrolyte containing inorganic fillers of the present invention uses a silane coupling agent to treat the inorganic ceramic powder, which effectively reduces the surface energy and solves the problem of agglomeration of small particle size particles caused by surface energy differences;
2.本发明利用偶联剂与聚合物以及无机填料之间通过化学反应成键,构建了填料—偶联剂—聚合物的连续锂离子传输路径,组装的固态电池具有优异的循环性能以及倍率性能。2. The present invention utilizes coupling agents, polymers, and inorganic fillers to form bonds through chemical reactions, and constructs a continuous lithium ion transmission path of filler-coupling agent-polymer, and the assembled solid-state battery has excellent cycle performance and rate performance.
附图说明Description of drawings
图1为实施例1~4和对比例1中制备的LLZTO粉末的X射线衍射图谱。Fig. 1 is the X-ray diffraction pattern of the LLZTO powder prepared in Examples 1-4 and Comparative Example 1.
图2为实施例2与对比例1制备的复合固态电解质膜表面的扫描电子显微镜(SEM)图。2 is a scanning electron microscope (SEM) image of the surface of the composite solid electrolyte membrane prepared in Example 2 and Comparative Example 1.
图3为实施例2与对比例1制备的复合电解质膜的EIS阻抗测试图。3 is an EIS impedance test diagram of the composite electrolyte membranes prepared in Example 2 and Comparative Example 1.
图4为实施例2与对比例1制备的复合电解质膜的LSV电化学测试图。Fig. 4 is the LSV electrochemical test diagram of the composite electrolyte membrane prepared in Example 2 and Comparative Example 1.
图5为以实施例2与对比例1制备的复合膜为电解质,以磷酸铁锂(LFP)为正极组装的全电池的循环容量性能图。Fig. 5 is a cycle capacity performance diagram of a full battery assembled with the composite membrane prepared in Example 2 and Comparative Example 1 as the electrolyte and lithium iron phosphate (LFP) as the positive electrode.
图6为实施例2中制备的以磷酸铁锂(LFP)为正极的固态电池的倍率性能图。6 is a rate performance diagram of a solid-state battery prepared in Example 2 with lithium iron phosphate (LFP) as the positive electrode.
图7为以实施例2中制备的复合膜为电解质,以NCM811为正极组装的全电池的循环容量性能图。Fig. 7 is a cycle capacity performance diagram of a full battery assembled with the composite membrane prepared in Example 2 as the electrolyte and NCM811 as the positive electrode.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步详细描述,但本发明的实施方式不限于此。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动性前提下所获得的其他实施例,都属于本发明保护的范围。The present invention will be described in further detail below in conjunction with the examples and drawings, but the implementation of the present invention is not limited thereto. Based on the embodiments of the present invention, other embodiments obtained by persons of ordinary skill in the art without making creative efforts all belong to the protection scope of the present invention.
实施例1:Example 1:
一种改善固态复合电解质中无机相填料与聚合物界面的方法,包括以下步骤:A method for improving the interface between an inorganic phase filler and a polymer in a solid composite electrolyte, comprising the following steps:
(1)量取36mL无水乙醇、2mL水、1mL偶联剂于烧杯中,滴加醋酸调整前驱体溶液pH在3.5~5.0之间,在70℃水浴加热下静置1.0h;(1) Measure 36mL of absolute ethanol, 2mL of water, and 1mL of coupling agent in a beaker, add acetic acid dropwise to adjust the pH of the precursor solution between 3.5 and 5.0, and let it stand for 1.0h under heating in a water bath at 70°C;
(2)称取1.0g的LLZTO无机相分散在前驱体溶液中,处理3.0h,使偶联剂修饰于无机相陶瓷颗粒LLZTO的表面;(2) Weigh 1.0 g of LLZTO inorganic phase and disperse it in the precursor solution, and treat it for 3.0 h, so that the coupling agent is modified on the surface of the inorganic phase ceramic particle LLZTO;
(3)将处理后的无机颗粒用无水乙醇洗涤并离心5次,转移至80℃鼓风干燥箱干燥2h使剩余溶剂蒸干,将干燥后的无机颗粒收集至离心管中待用;(3) Wash the treated inorganic particles with absolute ethanol and centrifuge them for 5 times, transfer them to a blast drying oven at 80°C for 2 hours to evaporate the remaining solvent to dryness, and collect the dried inorganic particles into a centrifuge tube for use;
(4)称量0.44gPEO与0.36gLiTFSI于样品瓶A中并加入无水乙腈溶剂充分搅拌溶解;(4) Weigh 0.44gPEO and 0.36gLiTFSI into sample bottle A and add anhydrous acetonitrile solvent to fully stir to dissolve;
(5)称量0.22gPEG与0.08g修饰后的LLZTO于样品瓶B中并加入无水乙腈溶剂充分搅拌溶解;(5) Weigh 0.22g PEG and 0.08g modified LLZTO into sample bottle B and add anhydrous acetonitrile solvent to fully stir to dissolve;
(6)将样品瓶B中的溶液倒入样品瓶A中继续搅拌6.0h;(6) Pour the solution in sample bottle B into sample bottle A and continue to stir for 6.0h;
(7)取混合均匀的浆料滴涂于聚四氟乙烯模具中,然后将模具置于60℃加热台上烘48h。将干燥后的复合膜裁剪为直径为19mm的圆片以待使用。(7) Take the uniformly mixed slurry and drop-coat it on a polytetrafluoroethylene mold, then place the mold on a heating table at 60°C and bake for 48 hours. The dried composite film was cut into discs with a diameter of 19 mm for use.
实施例2:Example 2:
一种改善固态复合电解质中无机相填料与聚合物界面的方法,包括以下步骤:A method for improving the interface between an inorganic phase filler and a polymer in a solid composite electrolyte, comprising the following steps:
(1)量取36mL无水乙醇、2mL水、1mL偶联剂于烧杯中,滴加醋酸调整前驱体溶液pH在3.5~5.0之间,在70℃水浴加热下静置1.0h;(1) Measure 36mL of absolute ethanol, 2mL of water, and 1mL of coupling agent in a beaker, add acetic acid dropwise to adjust the pH of the precursor solution between 3.5 and 5.0, and let it stand for 1.0h under heating in a water bath at 70°C;
(2)称取1.0g的LLZTO无机相分散在前驱体溶液中,处理6.0h,使偶联剂修饰于无机相陶瓷颗粒LLZTO的表面;(2) Weigh 1.0 g of LLZTO inorganic phase and disperse it in the precursor solution, and treat it for 6.0 h, so that the coupling agent is modified on the surface of the inorganic phase ceramic particle LLZTO;
(3)将处理后的无机颗粒用无水乙醇洗涤并离心5次,转移至80℃鼓风干燥箱干燥2.0h使剩余溶剂蒸干,将干燥后的无机颗粒收集至离心管中待用;(3) Wash the treated inorganic particles with absolute ethanol and centrifuge them for 5 times, transfer them to a blast drying oven at 80°C for 2.0 hours to dry the remaining solvent, and collect the dried inorganic particles into a centrifuge tube for use;
(4)称量0.44gPEO与0.36gLiTFSI于样品瓶A中并加入无水乙腈溶剂充分搅拌溶解;(4) Weigh 0.44gPEO and 0.36gLiTFSI into sample bottle A and add anhydrous acetonitrile solvent to fully stir to dissolve;
(5)称量0.22gPEG与0.08g修饰后的LLZTO于样品瓶B中并加入无水乙腈溶剂充分搅拌溶解;(5) Weigh 0.22g PEG and 0.08g modified LLZTO into sample bottle B and add anhydrous acetonitrile solvent to fully stir to dissolve;
(6)将样品瓶B中的溶液倒入样品瓶A中继续搅拌6.0h;(6) Pour the solution in sample bottle B into sample bottle A and continue to stir for 6.0h;
(7)取混合均匀的浆料滴涂于聚四氟乙烯模具中,然后将模具置于60℃加热台上烘48h。(7) Take the uniformly mixed slurry and drop-coat it on a polytetrafluoroethylene mold, then place the mold on a heating table at 60°C and bake for 48 hours.
将干燥后的复合膜裁剪为直径为19mm的圆片以待使用。The dried composite film was cut into discs with a diameter of 19 mm for use.
实施例3:Example 3:
一种改善固态复合电解质中无机相填料与聚合物界面的方法,包括以下步骤:A method for improving the interface between an inorganic phase filler and a polymer in a solid composite electrolyte, comprising the following steps:
(1)量取36mL无水乙醇、2mL水、1mL偶联剂于烧杯中,滴加醋酸调整前驱体溶液pH在3.5~5.0之间,在70℃水浴加热下静置1.0h;(1) Measure 36mL of absolute ethanol, 2mL of water, and 1mL of coupling agent in a beaker, add acetic acid dropwise to adjust the pH of the precursor solution between 3.5 and 5.0, and let it stand for 1.0h under heating in a water bath at 70°C;
(2)称取1.0g的LLZTO无机相分散在前驱体溶液中,处理9.0h,使偶联剂修饰于无机相陶瓷颗粒LLZTO的表面;(2) Weigh 1.0 g of LLZTO inorganic phase and disperse it in the precursor solution, and treat it for 9.0 h, so that the coupling agent is modified on the surface of the inorganic phase ceramic particle LLZTO;
(3)将处理后的无机颗粒用无水乙醇洗涤并离心5次,转移至80℃鼓风干燥箱干燥2.0h使剩余溶剂蒸干,将干燥后的无机颗粒收集至离心管中待用;(3) Wash the treated inorganic particles with absolute ethanol and centrifuge them for 5 times, transfer them to a blast drying oven at 80°C for 2.0 hours to dry the remaining solvent, and collect the dried inorganic particles into a centrifuge tube for use;
(4)称量0.44gPEO与0.36gLiTFSI于样品瓶A中并加入无水乙腈溶剂充分搅拌溶解;(4) Weigh 0.44gPEO and 0.36gLiTFSI into sample bottle A and add anhydrous acetonitrile solvent to fully stir to dissolve;
(5)称量0.22gPEG与0.08g修饰后的LLZTO于样品瓶B中并加入无水乙腈溶剂充分搅拌溶解;(5) Weigh 0.22g PEG and 0.08g modified LLZTO into sample bottle B and add anhydrous acetonitrile solvent to fully stir to dissolve;
(6)将样品瓶B中的溶液倒入样品瓶A中继续搅拌6.0h;(6) Pour the solution in sample bottle B into sample bottle A and continue to stir for 6.0h;
(7)取混合均匀的浆料滴涂于聚四氟乙烯模具中,然后将模具置于60℃加热台上烘48h。(7) Take the uniformly mixed slurry and drop-coat it on a polytetrafluoroethylene mold, then place the mold on a heating table at 60°C and bake for 48 hours.
将干燥后的复合膜裁剪为直径为19mm的圆片以待使用。The dried composite film was cut into discs with a diameter of 19 mm for use.
实施例4:Example 4:
一种改善固态复合电解质中无机相填料与聚合物界面的方法,包括以下步骤:A method for improving the interface between an inorganic phase filler and a polymer in a solid composite electrolyte, comprising the following steps:
(1)量取36mL无水乙醇、2mL水、1mL偶联剂于烧杯中,滴加醋酸调整前驱体溶液pH在3.5~5.0之间,在70℃水浴加热下静置1.0h;(1) Measure 36mL of absolute ethanol, 2mL of water, and 1mL of coupling agent in a beaker, add acetic acid dropwise to adjust the pH of the precursor solution between 3.5 and 5.0, and let it stand for 1.0h under heating in a water bath at 70°C;
(2)称取1.0g的LLZTO无机相分散在前驱体溶液中,处理12h,使偶联剂修饰于无机相陶瓷颗粒LLZTO的表面;(2) Weigh 1.0 g of LLZTO inorganic phase and disperse it in the precursor solution, and treat it for 12 hours, so that the coupling agent is modified on the surface of the inorganic phase ceramic particle LLZTO;
(3)将处理后的无机颗粒用无水乙醇洗涤并离心5次,转移至80℃鼓风干燥箱干燥2.0h使剩余溶剂蒸干,将干燥后的无机颗粒收集至离心管中待用;(3) Wash the treated inorganic particles with absolute ethanol and centrifuge them for 5 times, transfer them to a blast drying oven at 80°C for 2.0 hours to dry the remaining solvent, and collect the dried inorganic particles into a centrifuge tube for use;
(4)称量0.44gPEO与0.36gLiTFSI于样品瓶A中并加入无水乙腈溶剂充分搅拌溶解;(4) Weigh 0.44gPEO and 0.36gLiTFSI into sample bottle A and add anhydrous acetonitrile solvent to fully stir to dissolve;
(5)称量0.22gPEG与0.08g修饰后的LLZTO于样品瓶B中并加入无水乙腈溶剂充分搅拌溶解;(5) Weigh 0.22g PEG and 0.08g modified LLZTO into sample bottle B and add anhydrous acetonitrile solvent to fully stir to dissolve;
(6)将样品瓶B中的溶液倒入样品瓶A中继续搅拌6.0h;(6) Pour the solution in sample bottle B into sample bottle A and continue to stir for 6.0h;
(7)取混合均匀的浆料滴涂于聚四氟乙烯模具中,然后将模具置于60℃加热台上烘48h。(7) Take the uniformly mixed slurry and drop-coat it on a polytetrafluoroethylene mold, then place the mold on a heating table at 60°C and bake for 48 hours.
将干燥后的复合膜裁剪为直径为19mm的圆片以待使用。The dried composite film was cut into discs with a diameter of 19 mm for use.
对比例1:Comparative example 1:
一种固态复合电解质的制备方法,包括以下步骤:A method for preparing a solid composite electrolyte, comprising the following steps:
(1)称量0.44gPEO、0.36gLiTFSI和0.08gLLZTO于样品瓶中并加入无水乙腈溶剂充分搅拌溶解;(1) Weigh 0.44gPEO, 0.36gLiTFSI and 0.08gLLZTO into a sample bottle and add anhydrous acetonitrile solvent to fully stir to dissolve;
(2)取混合均匀的浆料滴涂于聚四氟乙烯模具中,然后将模具置于60℃加热台上烘48h。(2) Take the uniformly mixed slurry and drop-coat it on a polytetrafluoroethylene mold, then place the mold on a heating table at 60°C and bake for 48 hours.
将干燥后的复合膜裁剪为直径为19mm的圆片以待使用。The dried composite film was cut into discs with a diameter of 19 mm for use.
试验测试分析:Experimental test analysis:
全电池组装:将磷酸铁锂(LFP)/NCM811分别与乙炔黑和PVDF按照质量比8:1:1进行制浆并涂布,烘干后用切片机裁剪为直径为12mm的极片,以金属锂为负极,将实施例1~4与对比例1制备的复合固态电解质膜作为电池的电解质,于氩气手套箱中组装成全电池。Full battery assembly: Slurry and coat lithium iron phosphate (LFP)/NCM811 with acetylene black and PVDF at a mass ratio of 8:1:1, and cut them into pole pieces with a diameter of 12mm with a slicer after drying. Metal lithium was used as the negative electrode, and the composite solid electrolyte membrane prepared in Examples 1-4 and Comparative Example 1 was used as the electrolyte of the battery, and a full battery was assembled in an argon glove box.
充放电测试:扣式电池充放电的电压范围是2.5~3.8V(正极为磷酸铁锂)及2.8~4.3V(正极为NCM811)。倍率测试范围为0.2~2C。所有的电化学性能测试均在60℃下进行。Charge and discharge test: the voltage range of charge and discharge of the button battery is 2.5~3.8V (the positive electrode is lithium iron phosphate) and 2.8~4.3V (the positive electrode is NCM811). The magnification test range is 0.2 ~ 2C. All electrochemical performance tests were performed at 60 °C.
图1为实施例1~4和对比例1中制备的LLZTO粉末的X射线衍射图谱。由图可知,在LLZTO表面进行修饰后不会改变其物相组成,无论处理时间长短,修饰后的LLZTO物相均与原始颗粒相同。Fig. 1 is the X-ray diffraction pattern of the LLZTO powder prepared in Examples 1-4 and Comparative Example 1. It can be seen from the figure that the phase composition of the LLZTO surface will not be changed after modification, and the modified LLZTO phase is the same as the original particle regardless of the treatment time.
图2为实施例2与对比例1制备的复合固态电解质膜表面的扫描电子显微镜(SEM)图。由图可知,在LLZTO颗粒表面进行修饰可以有效的改善纳米级颗粒在聚合物基质中的自发团聚的现象。经处理后的LLZTO均匀分散在PEO基质中,能提供快速的锂离子传输通道。2 is a scanning electron microscope (SEM) image of the surface of the composite solid electrolyte membrane prepared in Example 2 and Comparative Example 1. It can be seen from the figure that modification on the surface of LLZTO particles can effectively improve the phenomenon of spontaneous aggregation of nanoparticles in the polymer matrix. The treated LLZTO is uniformly dispersed in the PEO matrix, which can provide fast lithium ion transport channels.
图3为实施例2与对比例1制备的复合电解质膜的EIS阻抗测试图,由图可知,偶联剂对无机相与聚合物之间的界面起了有效地修饰作用,降低了锂离子的迁移势垒,从而提高了复合固态电解质膜的离子电导率。Fig. 3 is the EIS impedance test diagram of the composite electrolyte membrane prepared in Example 2 and Comparative Example 1, as can be seen from the figure, the coupling agent has effectively modified the interface between the inorganic phase and the polymer, reducing the lithium ion migration barrier, thereby improving the ionic conductivity of the composite solid electrolyte membrane.
图4为实施例2与对比例1制备的复合电解质膜的LSV电化学测试图。由图可知,修饰后的电解质膜展现出高达5.2V的电化学窗口,相较于原始电解质膜有了提升。Fig. 4 is the LSV electrochemical test diagram of the composite electrolyte membrane prepared in Example 2 and Comparative Example 1. It can be seen from the figure that the modified electrolyte membrane exhibits an electrochemical window as high as 5.2V, which is improved compared with the original electrolyte membrane.
图5为以实施例2与对比例1制备的复合膜为电解质,以磷酸铁锂(LFP)为正极组装的全电池的循环容量性能图。由图可知,经过对LLZTO无机粉末进行偶联剂的修饰改性后,成功改善了无机相与聚合物的接触界面,使得实施例2的循环性能相对于对比例1得到了较大的提升。实施例2的首圈放电容量为156.7mAh·g-1,对比例1的首圈放电容量为85mAh·g-1。循环100圈后实施例2的容量为153.3mAh·g-1,容量保持率为97.83%。相较而言,对比例1在循环至63圈后便严重过充,不再具有正常充放电的能力。由此可见,将偶联剂修饰于无机相LLZTO表面可以有效的解决电解质内部本身存在的界面问题,显著的提高了复合固态电解质膜的电化学性能。Fig. 5 is a cycle capacity performance diagram of a full battery assembled with the composite membrane prepared in Example 2 and Comparative Example 1 as the electrolyte and lithium iron phosphate (LFP) as the positive electrode. It can be seen from the figure that after modifying the LLZTO inorganic powder with a coupling agent, the contact interface between the inorganic phase and the polymer was successfully improved, and the cycle performance of Example 2 was greatly improved compared with Comparative Example 1. The first cycle discharge capacity of Example 2 was 156.7mAh·g -1 , and the first cycle discharge capacity of Comparative Example 1 was 85mAh·g -1 . After 100 cycles, the capacity of Example 2 is 153.3 mAh·g -1 , and the capacity retention rate is 97.83%. In comparison, Comparative Example 1 was severely overcharged after 63 cycles, and no longer had the ability to charge and discharge normally. It can be seen that the modification of the coupling agent on the surface of the inorganic phase LLZTO can effectively solve the interface problem existing in the electrolyte itself, and significantly improve the electrochemical performance of the composite solid electrolyte membrane.
图6为实施例2中制备的以磷酸铁锂(LFP)为正极的固态电池的倍率性能图。在0.2~2C的倍率变化中,改性后的固态电池均有良好的充放电性能。当倍率从2C重新回到0.2C时,放电容量仍能保持在最初水平,表明改性后的固态电池具有优异的倍率性能。6 is a rate performance diagram of a solid-state battery prepared in Example 2 with lithium iron phosphate (LFP) as the positive electrode. In the rate change of 0.2-2C, the modified solid-state batteries all have good charge-discharge performance. When the rate is returned from 2C to 0.2C, the discharge capacity can still be maintained at the initial level, indicating that the modified solid-state battery has excellent rate performance.
图7为以实施例2中制备的复合膜为电解质,以NCM811为正极组装的全电池的循环容量性能图。由图可知,其首圈容量为165.2mAh·g-1,循环100圈后,电池容量为91.8mAh·g-1。与高压正极的良好匹配印证了修饰后的复合电解质膜具有更宽的电化学窗口。Fig. 7 is a cycle capacity performance diagram of a full battery assembled with the composite membrane prepared in Example 2 as the electrolyte and NCM811 as the positive electrode. It can be seen from the figure that the capacity of the first cycle is 165.2mAh·g -1 , and after 100 cycles, the battery capacity is 91.8mAh·g -1 . The good match with the high-voltage cathode confirms that the modified composite electrolyte membrane has a wider electrochemical window.
本发明上述实施例改善复合固态电解质中无机相与聚合物之间界面的方法及其应用,本发明方法首先制备含有硅烷偶联剂的前驱体溶液并静置。随后将无机相分散于前驱体溶液中进行修饰改性。将改性后的无机相与聚合物、锂盐溶于无水乙腈并在样品瓶中充分搅拌均匀。将混合均匀的浆料滴涂到模具中烘干至溶剂完全挥发,然后用模具将其冲孔为圆片作为复合电解质膜。最后组装的扣式电池以磷酸铁锂或NCM811为正极,锂金属为负极,改性后的复合膜作为电解质。上述实施例方法在无机相表面形成了修饰层,有效地改善了复合固态电解质内部无机相与聚合物之间的界面,增加了锂离子的传输路径,拓宽了电解质膜的电化学窗口,提高了复合电解质组装成的固态电池的电化学性能,为复合固态电解质的研究提供了一种新的思路。The above-mentioned embodiments of the present invention improve the method and application of the interface between the inorganic phase and the polymer in the composite solid electrolyte. The method of the present invention first prepares a precursor solution containing a silane coupling agent and stands still. Then the inorganic phase is dispersed in the precursor solution for modification. Dissolve the modified inorganic phase, polymer, and lithium salt in anhydrous acetonitrile and stir well in a sample bottle. The uniformly mixed slurry is drip-coated into a mold and dried until the solvent is completely evaporated, and then punched into a disc with the mold as a composite electrolyte membrane. The final assembled button battery uses lithium iron phosphate or NCM811 as the positive electrode, lithium metal as the negative electrode, and the modified composite membrane as the electrolyte. The method of the above embodiment forms a modified layer on the surface of the inorganic phase, which effectively improves the interface between the inorganic phase and the polymer inside the composite solid electrolyte, increases the transmission path of lithium ions, widens the electrochemical window of the electrolyte membrane, and improves the The electrochemical performance of solid-state batteries assembled from composite electrolytes provides a new idea for the research of composite solid-state electrolytes.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述。然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily, and all possible combinations of the technical features of the above-mentioned embodiments are not described for concise description. However, as long as there is no contradiction in the combination of these technical features, it should be considered as within the scope of the description.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementations of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211660467.XA CN115799608A (en) | 2022-12-23 | 2022-12-23 | A method for improving the interface between inorganic phase filler and polymer in composite solid electrolyte and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211660467.XA CN115799608A (en) | 2022-12-23 | 2022-12-23 | A method for improving the interface between inorganic phase filler and polymer in composite solid electrolyte and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115799608A true CN115799608A (en) | 2023-03-14 |
Family
ID=85427741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211660467.XA Pending CN115799608A (en) | 2022-12-23 | 2022-12-23 | A method for improving the interface between inorganic phase filler and polymer in composite solid electrolyte and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115799608A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116178698A (en) * | 2023-04-27 | 2023-05-30 | 北京宇极科技发展有限公司 | Fluorinated modified polyether, solid electrolyte membrane, preparation method of solid electrolyte membrane and energy storage battery |
CN117976964A (en) * | 2024-03-28 | 2024-05-03 | 淄博火炬能源有限责任公司 | Preparation method of composite solid electrolyte membrane with transition layer for lithium-sulfur battery |
-
2022
- 2022-12-23 CN CN202211660467.XA patent/CN115799608A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116178698A (en) * | 2023-04-27 | 2023-05-30 | 北京宇极科技发展有限公司 | Fluorinated modified polyether, solid electrolyte membrane, preparation method of solid electrolyte membrane and energy storage battery |
CN116178698B (en) * | 2023-04-27 | 2024-03-08 | 北京宇极科技发展有限公司 | Fluorinated modified polyether, solid electrolyte membrane, preparation method of solid electrolyte membrane and energy storage battery |
CN117976964A (en) * | 2024-03-28 | 2024-05-03 | 淄博火炬能源有限责任公司 | Preparation method of composite solid electrolyte membrane with transition layer for lithium-sulfur battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106328992B (en) | A kind of preparation method of lithium ion battery and the lithium ion battery | |
CN108987798A (en) | A kind of integration all solid lithium metal battery | |
CN105470576B (en) | A kind of high pressure lithium battery electric core and preparation method thereof, lithium ion battery | |
CN108963327A (en) | A kind of compound PEO solid electrolyte material of inorganic filler and preparation method and all-solid-state battery | |
Luo et al. | PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries | |
CN102916195B (en) | Graphene-coated copper oxide composite cathode material and method for manufacturing same | |
CN105789596A (en) | Hypervolume lithium ion battery positive electrode material, and preparation method and application thereof | |
CN111653732A (en) | A positive electrode material, positive electrode sheet and lithium ion battery | |
CN106356555B (en) | The preparation method of the sulphur composite positive pole of the dual modification of carbon nano tube/conducting polymer | |
CN105932209A (en) | Ceramic coating diaphragm for lithium ion battery and preparation method thereof | |
CN115799608A (en) | A method for improving the interface between inorganic phase filler and polymer in composite solid electrolyte and its application | |
CN104157909A (en) | Preparation method of lithium sulfur battery membrane electrode | |
CN106129332A (en) | A kind of macroion conductance all solid state anode composite sheet, the battery comprising this positive plate and preparation method | |
CN108172893A (en) | A lithium ion battery | |
CN109980290A (en) | A kind of mixing solid-liquid electrolyte lithium battery | |
CN106410148A (en) | High-performance potassium ion battery cathode material and matching electrolyte | |
CN114447422A (en) | A high-power composite solid-state electrolyte based on polycaprolactone self-healing and preparation method thereof | |
CN106356513B (en) | A kind of preparation method of the conducting polymer with sandwich structure/sulphur composite positive pole | |
CN117691080A (en) | Positive electrode plate and application thereof | |
CN115000356B (en) | Silicon electrode and preparation method and application thereof | |
CN207909958U (en) | A kind of flexibility all-solid-state battery | |
CN113299984B (en) | Single-ion conductor polymer solid electrolyte membrane and preparation method and application thereof | |
CN113201861B (en) | Integrated anode-electrolyte and electrostatic spinning preparation method thereof | |
CN115133017A (en) | A carbon-supported niobium pentoxide microsphere and its preparation method and application | |
CN116979027A (en) | Polymer electrolyte-lithium boron alloy negative electrode integrated material, preparation method thereof and solid-state lithium metal battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |