CN115773864A - 一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法 - Google Patents
一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法 Download PDFInfo
- Publication number
- CN115773864A CN115773864A CN202211569422.1A CN202211569422A CN115773864A CN 115773864 A CN115773864 A CN 115773864A CN 202211569422 A CN202211569422 A CN 202211569422A CN 115773864 A CN115773864 A CN 115773864A
- Authority
- CN
- China
- Prior art keywords
- cavity
- reflection
- scattering
- optical element
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种基于光腔衰荡技术测量高反射光学元件总积分散射的方法,通过采用双通道光腔衰荡技术同步测量从高反射输出腔镜透射的和从被测高反射光学元件在一定立体角内散射的光腔衰荡信号,在两路光腔衰荡信号的衰荡时间一致时通过两路信号幅值的比值和高反射输出腔镜透过率计算得到被测高反射光学元件在该收集立体角时的散射值;改变收集立体角大小测量不同收集立体角时的散射值,获得散射值与收集立体角的关系曲线,然后将测量的关系曲线与描述高反射光学元件散射特性的散射理论进行拟合,获得被测高反射光学元件的总积分散射。该测量方法具有测量灵敏度高、测量精度高、测量结果不受环境杂散光影响等优点。
Description
技术领域
本发明涉及用于测量高反射光学元件的光学特性的技术领域,特别涉及一种基于光腔衰荡技术测量高反射光学元件的总积分散射损耗的方法。
背景技术
高反射光学元件广泛使用于高能激光、引力波探测、激光陀螺等技术领域中。高反射光学元件的散射特性是重要的特性参数,对光学系统的总体性能具有重要影响,例如在激光陀螺惯导系统中光学元件的散射特性直接影响了导航精度,空间引力波探测中星载望远镜光学元件的后向散射必须控制在低于10-10量级,而在强光系统中,高能/高功率激光束的散射可能对环境或操作人员安全造成威胁,必须准确测量和严格控制。在这些光学系统的性能优化中,精确测量高反射光学元件的散射特性,特别是总积分散射特性,变得尤为重要。
光学元件总积分散射的测量一般采用分光光度方法,即通过采用积分球收集前向或后向散射光,用光电探测器探测散射光强度并与入射光强度比值获得前向或后向总积分散射。常用的收集散射光的积分球有Ulbricht全球和Coblentz半球。传统总积分散射测试方法中存在以下四个问题:1)散射值的准确标定问题。一般采用已知Lambertian散射特性的漫反射标准样品(漫反射率接近100%)对散射信号进行标定,因此需要使用的光电探测器有大的动态线性测量范围,至少5~6个数量级;2)环境杂散光的影响。特别是当被测光学元件总散射较弱(例如低于10ppm)测试时,环境杂散光的影响变得不可忽略;3)光源杂散光的影响。对于低于100ppm散射的测量,激光光源的杂散光对测量结果存在较大影响;4)当采用Coblentz半球收集散射光时,成像视场角接近180°,存在非常大的像差,该像差可对散射测量结果产生实质影响。对高反射光学元件,其散射一般较弱(低于100ppm,甚至低于10ppm),这些问题导致如此低的散射测量结果存在非常大的测量误差,无法准确评估高反射光学元件的散射特性。
发明内容
本发明要解决的技术问题是:克服基于传统分光光度方法测量高反射光学元件总积分散射的不足,采用双通道光腔衰荡技术测量高反射光学元件的总积分散射,通过光腔衰荡技术在腔内激光能量积累实现散射探测灵敏度增强,通过高反射输出腔镜低的透过率标定散射值提高散射测量精度,通过利用光腔衰荡信号的时间衰减特性消除环境和光源杂散光的影响,实现高反射光学元件总积分散射的高灵敏、高精度测量。
其具体实现步骤如下:
步骤(1)、建立双通道光腔衰荡测量装置:光源1选用连续半导体激光器,采用函数发生卡15方波调制激光器输出;根据光反馈光腔衰荡技术,将激光注入到稳定光学谐振腔;由平面高反射腔镜2和两块相同的平凹高反射腔镜3、7构成稳定初始光学谐振腔,其中腔镜3为输出腔镜,并在初始光学谐振腔中按使用角度插入被测高反射光学元件9构成测试光学谐振腔。入射激光束通过平面高反射腔镜2注入到光学谐振腔,并在谐振腔内震荡;采用两种方式同步探测光腔衰荡信号:(1)从高反射输出腔镜3透射的光信号经聚焦透镜4聚焦到第一光电探测器6探测;(2)从被测高反射光学元件9散射的光信号经离轴抛物镜对10和12聚焦到第二光电探测器14探测,离轴抛物镜10中心带小孔让腔内激光束穿过,散射光收集立体角大小通过放置于离轴抛物镜对10和12之间的可调光阑11调节;放置于第一光电探测器6前的第一光学衰减片5和第二光电探测器14前的第二光学衰减片13用于调节光电探测器6和14的输出信号(电压)值;小孔光阑8用于遮挡平凹高反射腔镜7的散射光进入光电探测器14;
步骤(2)、调节高反射腔镜3或者7的俯仰角使腔内实现振荡;在调制方波下降沿,激光被关断,产生衰荡信号,第一光电探测器6和第二光电探测器14同步分别记录从高反射输出腔镜3透射的和从被测高反射光学元件14散射的光腔衰荡信号,探测的光腔衰荡信号由数据采集卡16采集,并送入计算机17进行数据处理;分别按单指数衰减函数(A11为光腔衰荡信号幅值,A12为直流偏置,t为时间)拟合输出腔镜3透射的光腔衰荡信号,得到透射衰荡信号幅值A11和衰荡时间τ1;按单指数衰减函数(A21为光腔衰荡信号幅值,A22为直流偏置)拟合被测高反射光学元件9散射的光腔衰荡信号,得到散射衰荡信号幅值A21和衰荡时间τ2;
步骤(3)、计算(τ2-τ1)/(τ2+τ1)的绝对值,当绝对值大于5%时降低光电探测器14前光学衰减片的光学密度OD,直至(τ2-τ1)/(τ2+τ1)的绝对值降低至5%以下;
步骤(4)、通过下述公式计算得到待测高反射光学元件9在一定收集立体角的散射值:S=M×(A21/A11)×10(OD2-OD1)×T,其中M为第一与第二光电探测器放大倍数的比值,OD1和OD2分别为第一光学衰减片5和第二光学衰减片13的光学密度,T为高反射输出腔镜3的透过率。
步骤(5)、调节可调光阑11的口径改变对应的散射收集立体角,测量不同收集立体角时的散射值,得到在一定收集立体角范围内散射值与收集立体角的关系曲线;
步骤(6)、用描述高反射光学元件散射特性的理论公式拟合测量的散射值与收集立体角光学曲线,得到被测高反射光学元件9的积分散射值。
其中,所述的光腔衰荡装置可以采用光反馈光腔衰荡技术、基于窄线宽连续激光的调制光腔衰荡技术或脉冲光腔衰荡技术建立。
其中,所述的中心带孔的离轴抛物镜的小孔直径大于腔内激光束直径的5倍但不大于离轴抛物镜10的焦距的0.035倍。
其中,所述的测量光腔衰荡信号的单指数衰减函数拟合值A12和A22应不大于对应光电探测器的输出信号(电压)饱和值的0.5倍,(A11+A12)和(A21+A22)的值应不大于对应光电探测器的输出信号(电压)饱和值的0.8倍,A11、A12、A21和A22的值通过改变光电探测器前的光学衰减片的光学密度调节。
其中,所述的第一光学衰减片和第二光学衰减片采用中性密度滤光片,其光学密度已知或者通过分光光度方法准确测量。
其中,所述的高反射输出腔镜的透过率T采用楔形高透射光学元件和变角度光腔衰荡方法准确测量。
其中,所述的第一与第二光电探测器放大倍数的比值M(即M=M1/M2,M1和M2分别为第一光电探测器6和第二光电探测器14的信号放大倍数)通过下面方法求得:用第一光电探测器6和第二光电探测器14分别对同一稳定光信号进行测量,其测量结果的比值为M。
其中,所述的描述高反射光学元件散射特性的理论公式为描述光滑表面散射特性的Rayleigh-Rice矢量散射理论公式或者改进的Beckmann-Kirchhoff标量散射理论公式。
其中,所述的总积分散射为收集立体角从2°到85°范围的总散射,对应收集立体角5.73sr。
本发明与现有技术相比具有如下技术优点:本发明基于双通道光腔衰荡技术,利用衰荡光腔的光能量积累效应、光腔衰荡信号的幅值特性和时间特性,提高了散射测量的灵敏度和精度,并同时大幅降低了对环境杂散光抑制的要求。
附图说明
图1为本发明基于光反馈光腔衰荡技术的高反射光学元件积分散射测量装置的总体结构示意图;
图2为本发明同时测量的腔镜透射的和被测高反射光学元件在一定立体角内散射的光腔衰荡信号;
图3为本发明测量的被测高反射光学元件散射值与收集立体角的关系曲线及理论拟合曲线。
图1中:1为激光光源;2为平面高反射腔镜;3和7为平凹高反射腔镜;4为聚焦透镜,5为第一光学衰减片,6为第一光电探测器,8为小孔光阑,9为待测高反射光学元件;10为中心带孔的离轴抛物镜,11为可调光阑,12为离轴抛物镜,13为第二光学衰减片,14为第二光电探测器,15为函数发生卡;16为计算机;17为数据采集卡;其中平凹高反射腔镜3为高反射输出腔镜。
图2中:1为第一光电探测器6探测的从高反射输出腔镜透射的光腔衰荡信号,2为第二光电探测器14探测的从被测高反射光学元件9散射的光腔衰荡信号。
具体实施方式
下面结合图1所述的测量装置构型描述本发明的一种高反射光学元件积分散射的测量方法。然而应当理解,附图的提供仅为了更好地理解本发明,不应该理解成对本发明的限制。
建立双通道光腔衰荡测量装置:如图1所示,光源1选用连续半导体激光器,采用函数发生卡15方波调制激光器输出;根据光反馈光腔衰荡技术,将激光注入到稳定光学谐振腔;由平面高反射腔镜2和两块相同的平凹高反射腔镜3、7构成稳定初始光学谐振腔,其中高反射腔镜3为输出腔镜,并在初始光学谐振腔中按使用角度插入被测高反射光学元件9构成测试光学谐振腔。入射激光束通过平面高反射腔镜2注入到光学谐振腔,并在谐振腔内震荡;采用两种方式同步探测光腔衰荡信号:(1)从高反射输出腔镜3透射的光信号经聚焦透镜4聚焦到第一光电探测器6探测;(2)从被测高反射光学元件9散射的光信号经离轴抛物镜对10和12聚焦到第二光电探测器14探测,离轴抛物镜10中心带小孔让腔内激光束穿过,其小孔直径大于腔内激光束直径的5倍但不大于离轴抛物镜10的焦距的0.035倍;散射光收集立体角大小通过放置于离轴抛物镜对10和12之间的可调光阑11调节;放置于第一光电探测器6前的第一光学衰减片5和第二光电探测器14前的第二光学衰减片13用于调节光电探测器6和14的输出信号(电压)值;小孔光阑8用于遮挡平凹高反射腔镜7的散射光进入光电探测器14。
调节高反射腔镜3或者7的俯仰角使腔内实现振荡;在调制方波下降沿,激光被关断,产生衰荡信号,第一光电探测器6和第二光电探测器14同步分别记录从高反射输出腔镜3透射的和从被测高反射光学元件14散射的光腔衰荡信号,如图2所示。探测的光腔衰荡信号由数据采集卡16采集,并送入计算机17进行数据处理;分别按单指数衰减函数(A11为光腔衰荡信号幅值,A12为直流偏置,t为时间)拟合输出腔镜3透射的光腔衰荡信号,得到透射衰荡信号幅值A11和衰荡时间τ1;按单指数衰减函数(A21为光腔衰荡信号幅值,A22为直流偏置)拟合被测元件9散射的光腔衰荡信号,得到散射衰荡信号幅值A21和衰荡时间τ2;拟合值A12和A22不大于对应光电探测器的输出信号(电压)饱和值的0.5倍,(A11+A12)和(A21+A22)的值不大于对应光电探测器的输出信号(电压)饱和值的0.8倍,A11、A12、A21和A22的值通过改变光电探测器前的光学衰减片的光学密度调节,光学衰减片的光学密度已知或者采用分光光度方法准确测量。
计算(τ2-τ1)/(τ2+τ1)的绝对值,当绝对值大于5%时降低光电探测器14前光学衰减片的光学密度OD,直至(τ2-τ1)/(τ2+τ1)的绝对值降低至5%以下。当(τ2-τ1)/(τ2+τ1)的绝对值小于5%时通过下述公式计算得到待测高反射光学元件9在一定收集立体角的散射值:S=M×(A21/A11)×10(OD2-OD1)×T,其中M为第一与第二光电探测器放大倍数的比值(即M=M1/M2,M1和M2分别为第一光电探测器6和第二光电探测器14的信号放大倍数),通过采用两光电探测器分别对同一稳定光信号进行测量获得,OD1和OD2分别为第一光学衰减片5和第二光学衰减片13的光学密度,T为高反射输出腔镜3的透过率,通过采用楔形高透射光学元件和变角度光腔衰荡方法准确测量。
调节可调光阑11的口径改变对应的散射收集立体角,测量不同收集立体角时的散射值,得到在一定收集立体角范围内散射值与收集立体角的关系曲线,如图3所示。用描述高反射光学元件散射特性的理论公式(描述光滑表面散射特性的Rayleigh-Rice矢量散射理论公式或者改进的Beckmann-Kirchhoff标量散射理论公式)拟合测量的散射值与收集立体角光学曲线,得到被测高反射光学元件9的总积分散射值,即2°~85°收集立体角内的散射值,对应收集立体角5.73sr。
总之,本发明提出了一种基于光腔衰荡技术测量高反射光学元件积分散射的方法。不仅利用衰荡光腔的光能量积累效应提高了散射测量的灵敏度,利用光腔衰荡信号的时间特性消除了环境杂散光对散射测量的影响,而且采用高反射光学元件极低的透过率对散射值进行标定,有效提高了高性能反射光学元件极弱散射损耗的高灵敏、高精度测量。
Claims (9)
1.一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其实现步骤如下:
步骤(1)、建立双通道光腔衰荡测量装置:光源1选用连续半导体激光器,采用函数发生卡15方波调制激光器输出;根据光反馈光腔衰荡技术,将激光注入到稳定光学谐振腔;由平面高反射腔镜2和两块相同的平凹高反射腔镜3、7构成稳定初始光学谐振腔,其中腔镜3为输出腔镜,并在初始光学谐振腔中按使用角度插入被测高反射光学元件9构成测试光学谐振腔。入射激光束通过平面高反射腔镜2注入到光学谐振腔,并在谐振腔内震荡;采用两种方式同步探测光腔衰荡信号:(1)从高反射输出腔镜3透射的光信号经聚焦透镜4聚焦到第一光电探测器6探测;(2)从被测高反射光学元件9散射的光信号经离轴抛物镜对10和12聚焦到第二光电探测器14探测,离轴抛物镜10中心带小孔让腔内激光束穿过,散射光收集立体角大小通过放置于离轴抛物镜对10和12之间的可调光阑11调节;放置于第一光电探测器6前的第一光学衰减片5和第二光电探测器14前的第二光学衰减片13用于调节光电探测器6和14的输出信号(电压)值;小孔光阑8用于遮挡平凹高反射腔镜7的散射光进入光电探测器14;
步骤(2)、调节高反射腔镜3或者7的俯仰角使腔内实现振荡;在调制方波下降沿,激光被关断,产生衰荡信号,第一光电探测器6和第二光电探测器14同步分别记录从高反射输出腔镜3透射的和从被测高反射光学元件14散射的光腔衰荡信号,探测的光腔衰荡信号由数据采集卡16采集,并送入计算机17进行数据处理;分别按单指数衰减函数(A11为光腔衰荡信号幅值,A12为直流偏置,t为时间)拟合输出腔镜3透射的光腔衰荡信号,得到透射衰荡信号幅值A11和衰荡时间τ1;按单指数衰减函数(A21为光腔衰荡信号幅值,A22为直流偏置)拟合被测高反射光学元件9散射的光腔衰荡信号,得到散射衰荡信号幅值A21和衰荡时间τ2;
步骤(3)、计算(τ2-τ1)/(τ2+τ1)的绝对值,当绝对值大于5%时降低光电探测器14前光学衰减片的光学密度OD,直至(τ2-τ1)/(τ2+τ1)的绝对值降低至5%以下;
步骤(4)、通过下述公式计算得到待测高反射光学元件9在一定收集立体角的散射值:S=M×(A21/A11)×10(OD2-OD1)×T,其中M为第一与第二光电探测器放大倍数的比值,OD1和OD2分别为第一光学衰减片5和第二光学衰减片13的光学密度,T为高反射输出腔镜3的透过率。
步骤(5)、调节可调光阑11的口径改变对应的散射收集立体角,测量不同收集立体角时的散射值,得到在一定收集立体角范围内散射值与收集立体角的关系曲线;
步骤(6)、用描述高反射光学元件散射特性的理论公式拟合测量的散射值与收集立体角光学曲线,得到被测高反射光学元件9的总积分散射值。
2.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的光腔衰荡装置可以采用光反馈光腔衰荡技术、基于窄线宽连续激光的调制光腔衰荡技术或脉冲光腔衰荡技术建立。
3.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的中心带孔的离轴抛物镜的小孔直径大于腔内激光束直径的5倍但不大于离轴抛物镜10的焦距的0.035倍。
4.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的测量光腔衰荡信号的单指数衰减函数拟合值A12和A22应不大于对应光电探测器的输出信号(电压)饱和值的0.5倍,(A11+A12)和(A21+A22)的值应不大于对应光电探测器的输出信号(电压)饱和值的0.8倍,A11、A12、A21和A22的值通过改变光电探测器前的光学衰减片的光学密度调节。
5.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的第一光学衰减片和第二光学衰减片采用中性密度滤光片,其光学密度已知或者通过分光光度方法准确测量。
6.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的高反射输出腔镜的透过率T采用楔形高透射光学元件和变角度光腔衰荡方法准确测量。
7.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的第一与第二光电探测器放大倍数的比值M(即M=M1/M2,M1和M2分别为第一光电探测器6和第二光电探测器14的信号放大倍数)通过下面方法求得:用第一光电探测器6和第二光电探测器14分别对同一稳定光信号进行测量,其测量结果的比值为M。
8.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的描述高反射光学元件散射特性的理论公式为描述光滑表面散射特性的Rayleigh-Rice矢量散射理论公式或者改进的Beckmann-Kirchhoff标量散射理论公式。
9.根据权利要求1所述的一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法,其特征在于:所述的总积分散射为收集立体角从2°到85°范围的总散射,对应收集立体角5.73sr。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211569422.1A CN115773864A (zh) | 2022-12-08 | 2022-12-08 | 一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211569422.1A CN115773864A (zh) | 2022-12-08 | 2022-12-08 | 一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115773864A true CN115773864A (zh) | 2023-03-10 |
Family
ID=85391979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211569422.1A Pending CN115773864A (zh) | 2022-12-08 | 2022-12-08 | 一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115773864A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117906923A (zh) * | 2024-03-19 | 2024-04-19 | 国科大杭州高等研究院 | 一种基于环形腔系统的光学粘接技术稳定性测量方法 |
-
2022
- 2022-12-08 CN CN202211569422.1A patent/CN115773864A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117906923A (zh) * | 2024-03-19 | 2024-04-19 | 国科大杭州高等研究院 | 一种基于环形腔系统的光学粘接技术稳定性测量方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102169050B (zh) | 一种反射率综合测量方法 | |
CN103616164B (zh) | 一种基于脉冲激光光源的反射率/透过率综合测量方法 | |
CN107132029B (zh) | 一种同时测量高反射/高透射光学元件的反射率、透过率、散射损耗和吸收损耗的方法 | |
CN101464256B (zh) | 偏振光谱仪的偏振精度定标系统 | |
CN107462900B (zh) | 基于波长可调谐激光源的气体成分探测激光雷达 | |
CN107727008B (zh) | 一种测量主动光电系统收发同轴的装置及方法 | |
CN104391291B (zh) | 一种焦点位置可调细粒子激光雷达系统及自标定方法 | |
CN106597414A (zh) | 一种定标偏振激光雷达增益比的方法 | |
US20190107496A1 (en) | Apparatus and method for increasing dynamic range of a particle sensor | |
CN105444882B (zh) | 实现自定标功能的八通道辐射计 | |
CN211741577U (zh) | 一种自校准的偏振大气激光雷达装置 | |
CN115773864A (zh) | 一种基于光腔衰荡技术的高反射光学元件总积分散射的测量方法 | |
CN109297685A (zh) | 一种用于大口径平行光管的光谱透过率测试装置及方法 | |
US20100067007A1 (en) | Systems for measuring backscattered light using finite speed of light | |
CN111123293A (zh) | 一种自校准的偏振大气激光雷达装置和方法 | |
CN112857752A (zh) | 一种光学元件角分辨散射的绝对测量系统及方法 | |
CN201277938Y (zh) | 一种单光束双镜头激光粒度仪 | |
CN110231307A (zh) | 基于tdlas技术的开放式光程气体浓度检测装置与方法 | |
US9097647B2 (en) | Method for using polarization gating to measure a scattering sample | |
US9952150B2 (en) | Device for measuring the scattering of a sample | |
CN201903495U (zh) | 一种多样品池激光粒度仪 | |
CN105547970A (zh) | 一种流式细胞仪激发光源系统及校正方法 | |
CN116379914A (zh) | 一种二维再聚焦激光差分干涉仪及其测量方法 | |
CN103954390A (zh) | 采用线性调频双光束激光外差法及扭摆法测量微冲量的装置及该装置的测量方法 | |
CN107607194B (zh) | 高动态、多点连续的光电探测器能量响应特性标定系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |