Nothing Special   »   [go: up one dir, main page]

CN115745987A - Luciferase substrate and preparation method and application thereof - Google Patents

Luciferase substrate and preparation method and application thereof Download PDF

Info

Publication number
CN115745987A
CN115745987A CN202210938451.4A CN202210938451A CN115745987A CN 115745987 A CN115745987 A CN 115745987A CN 202210938451 A CN202210938451 A CN 202210938451A CN 115745987 A CN115745987 A CN 115745987A
Authority
CN
China
Prior art keywords
ring
substrate
compound
luciferase substrate
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210938451.4A
Other languages
Chinese (zh)
Inventor
朱麟勇
杨弋
杨立朋
陈政达
陈显军
周人杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202210938451.4A priority Critical patent/CN115745987A/en
Publication of CN115745987A publication Critical patent/CN115745987A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

After the luciferase substrate and firefly luciferase react, the luciferase substrate has the advantages of long emission wavelength, high luminous intensity, high detection sensitivity and the like, has better performance in live cell and living animal imaging, and can be used as an important analysis tool in the fields of living bioluminescence imaging, protein quantitative detection and the like.

Description

一种萤光素酶底物及其制备方法和用途A kind of luciferase substrate and its preparation method and application

技术领域technical field

本发明属于萤光素酶底物制备技术领域,具体涉及一种萤光素酶底物及其制备方法和用途。The invention belongs to the technical field of luciferase substrate preparation, and in particular relates to a luciferase substrate and its preparation method and application.

背景技术Background technique

光学成像对于观察细胞结构、实时监控细胞行为以及监测各种生物学事件具有重要的作用。生物光学成像技术主要可分为荧光成像和发光成像两大类。目前多数荧光成像工具由于生物相容性以及灵敏度的限制,难以实现在体生物过程的原位实时动态监测。Optical imaging plays an important role in observing cell structure, monitoring cell behavior in real time, and monitoring various biological events. Bio-optical imaging technology can be mainly divided into two categories: fluorescence imaging and luminescence imaging. Due to the limitations of biocompatibility and sensitivity, most current fluorescence imaging tools are difficult to realize in situ real-time dynamic monitoring of biological processes in vivo.

生物发光是利用萤光素酶催化底物小分子氧化,将化学能转化为光能释放的现象,通过对所释放光子的监测即可实现对蛋白质的监测。在具体实践过程中,研究人员可通过分子生物学技术将萤光素酶基因与特定目标蛋白基因融合,利用不同的技术手段可实现相应融合基因在不同模式生物中的表达,在给予底物后便可实现对细胞或活体动物内目标蛋白的动态追踪。与荧光成像相比,生物发光成像不需要外部的激发光源,避免了因外部激发光源诱导生物体组织产生的内源性荧光带来的干扰,极大地降低了背景信号,能够显著提高所获得图像的信噪比。但在实际应用中,生物发光成像技术在深层组织成像中仍然面临巨大挑战。首先,生物发光信号相对较弱;其次,传统的生物发光体系的波长在460-620nm,而体内的血红蛋白(λ=~415-577nm)、黑色素(λ<600nm) 等物质会对发光信号产生吸收干扰,阻碍对光信号的检测,降低了成像的深度以及清晰度。目前,科研人员普遍认为活体成像理想的光学窗口在650-900nm 波长范围内。Bioluminescence is a phenomenon in which luciferase catalyzes the oxidation of small molecules of the substrate to convert chemical energy into light energy and release it. By monitoring the released photons, the monitoring of proteins can be realized. In the specific practice process, researchers can fuse the luciferase gene with the specific target protein gene through molecular biology techniques, and use different technical means to realize the expression of the corresponding fusion gene in different model organisms. After giving the substrate The dynamic tracking of target proteins in cells or living animals can be realized. Compared with fluorescence imaging, bioluminescence imaging does not require an external excitation light source, avoids the interference caused by the endogenous fluorescence of biological tissues induced by an external excitation light source, greatly reduces the background signal, and can significantly improve the obtained image. signal-to-noise ratio. However, in practical applications, bioluminescent imaging technology still faces great challenges in deep tissue imaging. First, the bioluminescent signal is relatively weak; secondly, the wavelength of the traditional bioluminescent system is 460-620nm, and substances such as hemoglobin (λ=~415-577nm) and melanin (λ<600nm) in the body will absorb the luminescent signal Interference hinders the detection of optical signals and reduces the depth and clarity of imaging. At present, researchers generally believe that the ideal optical window for in vivo imaging is in the wavelength range of 650-900nm.

因此,为了提高生物发光体系对生物组织穿透能力以及成像深度和清晰度,发展发光亮度高、发射波长长的生物发光体系成为研究的重点。目前,基于萤光素酶蛋白质突变以及萤光素酶底物化学改造的方式为实现以上目标具有重要的推进作用。近年来发展了几种生物发光体系(S.C.Miller.et.al.J.Am.Chem. Soc.2014,136,13277-13282;M.A.Pule.et.al.Angew.Chem.Int.Ed.2014,53, 13059–13063;L.Mezzanotte.et.al.NatCommun.2018,9,1-12;A.Miyawaki.et. al.Science.2018,359,935–939),使发射波长红移,但发光强度相对天然萤光素对仍有差距,因此,现有生物发光体系的仍有较大的提升空间。Therefore, in order to improve the penetrating ability of bioluminescent systems to biological tissues, as well as the imaging depth and clarity, the development of bioluminescent systems with high luminescence brightness and long emission wavelength has become the focus of research. At present, methods based on luciferase protein mutation and luciferase substrate chemical modification play an important role in promoting the above goals. In recent years, several bioluminescent systems have been developed (S.C.Miller.et.al.J.Am.Chem.Soc.2014,136,13277-13282; M.A.Pule.et.al.Angew.Chem.Int.Ed.2014, 53, 13059–13063; L.Mezzanotte.et.al.NatCommun.2018,9,1-12; A.Miyawaki.et. al.Science.2018,359,935–939), which makes the emission wavelength red-shifted, but the luminous intensity Compared with natural luciferin, there is still a gap. Therefore, there is still a lot of room for improvement in the existing bioluminescence system.

发明内容Contents of the invention

针对现有生物发光体系存在的不足,本发明构建了一类新的萤光素酶底物,与萤火虫萤光素酶反应具有发射波长红移以及发光强度高的特点,具有良好的活体组织应用前景。Aiming at the shortcomings of existing bioluminescent systems, the present invention constructs a new class of luciferase substrates, which react with firefly luciferase and have the characteristics of red-shifted emission wavelength and high luminous intensity, and have good application in living tissues prospect.

为了实现上述技术内容,本发明提供一种萤光素酶底物,其结构如式(I) 所示,In order to achieve the above technical content, the present invention provides a luciferase substrate, the structure of which is shown in formula (I),

Figure BDA0003784463820000021
Figure BDA0003784463820000021

其式(I)中,In its formula (I),

R与R1一起和/或R与R2一起形成取代或未取代的脂环、取代或未取代的脂杂环、取代或未取代的芳香环、或取代或未取代的芳香杂环;R together with R and / or R and R together form a substituted or unsubstituted alicyclic ring, a substituted or unsubstituted alicyclic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted aromatic heterocyclic ring;

或者,R与R1或R与R2不形成取代或未取代的脂环、取代或未取代的脂杂环、取代或未取代的芳香环、取代或未取代的芳香杂环时,R为:羟基、或- NRaRb,Ra、Rb各自独立地选自氢、或烷基,R1、R2相同或不同,且各自独立地为-H、羟基、烷基、卤素基团;Alternatively, when R and R1 or R and R2 do not form a substituted or unsubstituted alicyclic ring, a substituted or unsubstituted alicyclic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted aromatic heterocyclic ring, R is : Hydroxy, or -NR a R b , R a , R b are each independently selected from hydrogen, or alkyl, R 1 , R 2 are the same or different, and each independently is -H, hydroxyl, alkyl, halo group;

所述“取代或未取代的脂环”、“取代或未取代的脂杂环”、“取代或未取代的芳香环”、“取代或未取代的芳香杂环”中的取代基相同或不同,各自独立地选自羟基、氨基、烷基、烷基氨基、卤素基团、氰基:The substituents in the "substituted or unsubstituted alicyclic ring", "substituted or unsubstituted aliphatic heterocyclic ring", "substituted or unsubstituted aromatic ring" and "substituted or unsubstituted aromatic heterocyclic ring" are the same or different , each independently selected from hydroxyl, amino, alkyl, alkylamino, halogen, cyano:

n为0,1、2、或3;n is 0, 1, 2, or 3;

其中,in,

所述“烷基”或“烷基氨基”中的烷基为C1-C10直链烷基或C3-C10支链烷基;优选地,为C1-C7直链烷基或C3-C7支链烷基;优选地,为C1-C5直链烷基或C1-C5支链烷基;优选地,选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、正戊基,1-甲基丁基、2-甲基丁基、3-甲基丁基、异戊基、1-乙基丙基、新戊基、正己基、1-甲基戊基、2-甲基戊基、3-甲基戊基、异己基、1,1-二甲基丁基、2,2-二甲基丁基、3,3-二甲基丁基、1,2-二甲基丁基、 1,3-二甲基丁基、2,3-二甲基丁基、2-乙基丁基、正庚基、2-甲基己基、3-甲基己基、2,2-二甲基戊基、3,3-二甲基戊基、2,3-二甲基戊基、2,4-二甲基戊基、3- 乙基戊基或2,2,3-三甲基丁基;The alkyl in the "alkyl" or "alkylamino" is C 1 -C 10 straight chain alkyl or C 3 -C 10 branched chain alkyl; preferably, it is C 1 -C 7 straight chain alkyl Or C 3 -C 7 branched chain alkyl; preferably, C 1 -C 5 straight chain alkyl or C 1 -C 5 branched chain alkyl; preferably, selected from methyl, ethyl, n-propyl, Isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, isopentyl, 1 -Ethylpropyl, neopentyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, isohexyl, 1,1-dimethylbutyl, 2,2 -Dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 2-ethyl butylbutyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 3-ethylpentyl or 2,2,3-trimethylbutyl;

所述“脂环”为饱和或不饱和的4~10元单环或多环脂环;可选地,所述“脂环”为饱和或不饱和的4、5、6、7、8、9、10元单环或多环脂环;The "alicyclic ring" is a saturated or unsaturated 4-10 membered monocyclic or polycyclic alicyclic ring; alternatively, the "alicyclic ring" is a saturated or unsaturated 4, 5, 6, 7, 8, 9. 10-membered monocyclic or polycyclic alicyclic rings;

所述“脂杂环”为环上含有选自N、O、或S中的至少一种杂原子的饱和或不饱和的4~10元单环或多环脂杂环;可选地,所述“脂杂环”为环上含有选自N、O、或S中的至少一种杂原子的饱和或不饱和的4、5、6、7、8、9、10 元单环或多环脂杂环;The "aliphatic heterocyclic ring" is a saturated or unsaturated 4-10 membered monocyclic or polycyclic aliphatic heterocyclic ring containing at least one heteroatom selected from N, O, or S on the ring; alternatively, the The "aliphatic heterocyclic ring" is a saturated or unsaturated 4, 5, 6, 7, 8, 9, 10 membered monocyclic or polycyclic ring containing at least one heteroatom selected from N, O, or S. Aliphatic ring;

所述“芳香环”为5~10元单环或稠合双环芳香基团;可选地,所述“芳香环”为5、6、7、8、9、10元单环或稠合双环芳香基团;可选地,所述“芳香环”选自苯环、萘环、芴环、蒽环、菲环、联苯环;The "aromatic ring" is a 5-10-membered monocyclic or fused bicyclic aromatic group; optionally, the "aromatic ring" is a 5, 6, 7, 8, 9, 10-membered monocyclic or fused bicyclic Aromatic group; Optionally, the "aromatic ring" is selected from benzene ring, naphthalene ring, fluorene ring, anthracene ring, phenanthrene ring, biphenyl ring;

所述“芳香杂环”为环上含有选自N、O、或S中的至少一种杂原子的 5~10元单环或稠合双环杂芳香基团;可选地,所述“芳香杂环”为环上含有选自N、O、或S中的至少一种杂原子的5、6、7、8、9、10元单环或稠合双环杂芳香基团;可选地,所述芳香杂环选自噻吩环、呋喃环、吡咯环、咪唑环、噻唑环、噁唑环;The "aromatic heterocycle" is a 5-10 membered monocyclic or fused bicyclic heteroaromatic group containing at least one heteroatom selected from N, O, or S on the ring; alternatively, the "aromatic "Heterocycle" is a 5, 6, 7, 8, 9, 10 membered monocyclic or fused bicyclic heteroaromatic group containing at least one heteroatom selected from N, O, or S on the ring; alternatively, The aromatic heterocycle is selected from thiophene ring, furan ring, pyrrole ring, imidazole ring, thiazole ring, oxazole ring;

所述“卤素基团”为选自F、Cl、Br、I。The "halogen group" is selected from F, Cl, Br, I.

可选地,所述R与R1一起形成下式(I-2-1)~(I-2-6)中结构:

Figure BDA0003784463820000031
Figure BDA0003784463820000032
Optionally, the R and R together form the structures in the following formulas (I-2-1) to (I-2-6):
Figure BDA0003784463820000031
Figure BDA0003784463820000032

或者,R与R2一起形成下式(I-2-7)~(I-2-8)中结构:

Figure BDA0003784463820000033
Figure BDA0003784463820000034
Alternatively, R and R together form the structure in the following formulas (I-2-7) to (I-2-8):
Figure BDA0003784463820000033
Figure BDA0003784463820000034

或者,R与R1一起和R与R2一起形成

Figure BDA0003784463820000035
Alternatively, R together with R1 and R together with R2 form
Figure BDA0003784463820000035

其中,各个R′各自独立地选自氢、或烷基;R″选自氢、或烷基。Wherein, each R' is independently selected from hydrogen or alkyl; R" is selected from hydrogen or alkyl.

可选地,式(I)中,n取自0时,R为

Figure BDA0003784463820000036
或者R 与R1一起和/或R与R2一起形成以下式(I-2-1)~(I-2-11)中结构:
Figure BDA0003784463820000037
Figure BDA0003784463820000041
R′选自-H或-Me;Optionally, in formula (I), when n is taken from 0, R is
Figure BDA0003784463820000036
Or R together with R1 and/or R and R2 together form the structures in the following formulas (I-2-1) to (I-2-11):
Figure BDA0003784463820000037
Figure BDA0003784463820000041
R' is selected from -H or -Me;

式(I)中,R取自

Figure BDA0003784463820000043
时,n可取0,1或2;In formula (I), R is taken from
Figure BDA0003784463820000043
, n can be 0, 1 or 2;

可选地,所述萤光素酶底物选自下式化合物:Optionally, the luciferase substrate is selected from compounds of the following formula:

Figure BDA0003784463820000044
Figure BDA0003784463820000044

Figure BDA0003784463820000051
Figure BDA0003784463820000051

另一方面,还提供制备上述底物的制备方法,包括将式(II)化合物与式 (III)化合物发生反应获得式(I)所示萤光素酶底物的步骤,On the other hand, there is also provided a preparation method for preparing the above-mentioned substrate, including the step of reacting the compound of formula (II) with the compound of formula (III) to obtain the luciferase substrate shown in formula (I),

Figure BDA0003784463820000052
Figure BDA0003784463820000052

其中,R、R1、R2定义如权利要求1-3任一项所述,n=0;Wherein, R, R 1 , R 2 are as defined in any one of claims 1-3, n=0;

或者,还包括式(IV)化合物与式(V)化合物发生反应得到的产物,经酯键水解与式(VI)缩合反应得到的产物脱去巯基保护基,即得到式(VII)化合物,最后,经酯键的酶解得到式(I)所示萤光素酶底物;Alternatively, it also includes the product obtained by reacting the compound of formula (IV) with the compound of formula (V), and the product obtained by the condensation reaction of ester bond hydrolysis and formula (VI) removes the sulfhydryl protecting group to obtain the compound of formula (VII), and finally , obtain the luciferase substrate shown in formula (I) through the enzymolysis of ester bond;

Figure BDA0003784463820000053
Figure BDA0003784463820000053

其中,R、R1、R2定义如权利要求1-3任一项所述,n=1、2、3,m=0、1、 2。Wherein, R, R 1 , R 2 are as defined in any one of claims 1-3, n=1, 2, 3, m=0, 1, 2.

另一方面,提供上述萤光素酶底物在制备光学检测产品中的用途,所述光学检测产品包括但不仅限于光学探针和发光检测试剂盒。In another aspect, the use of the luciferase substrate above in the preparation of optical detection products is provided, and the optical detection products include but not limited to optical probes and luminescent detection kits.

另一方面,提供一种生物发光探针,所述生物发光探针包含上述萤光素酶底物。In another aspect, there is provided a bioluminescent probe comprising the luciferase substrate described above.

另一方面,提供一种发光检测试剂盒,所述发光检测试剂盒包含上述萤光素酶底物或上述生物发光探针。In another aspect, a luminescence detection kit is provided, the luminescence detection kit comprises the above-mentioned luciferase substrate or the above-mentioned bioluminescence probe.

另一方面,提供上述萤光素酶底物、上述生物发光探针或上述发光检测试剂盒在环境检测中的用途。In another aspect, the application of the above-mentioned luciferase substrate, the above-mentioned bioluminescence probe or the above-mentioned luminescence detection kit in environmental detection is provided.

另一方面,上述萤光素酶底物、上述生物发光探针或上述发光检测试剂盒在分析化学中的用途。In another aspect, the use of the above-mentioned luciferase substrate, the above-mentioned bioluminescence probe or the above-mentioned luminescence detection kit in analytical chemistry.

另一方面,上述萤光素酶底物、上述生物发光探针或上述发光检测试剂盒在生物分析和检测中的用途;In another aspect, the use of the above-mentioned luciferase substrate, the above-mentioned bioluminescence probe or the above-mentioned luminescence detection kit in biological analysis and detection;

优选的,所述生物分析和检测包括对生物体细胞水平、组织水平、器官水平和生物个体水平的分析与检测;Preferably, the biological analysis and detection include the analysis and detection of the biological cell level, tissue level, organ level and biological individual level;

优选的,所述生物包括细菌、哺乳动物细胞、小鼠、大鼠或猴。Preferably, said organisms include bacteria, mammalian cells, mice, rats or monkeys.

本发明的有益效果:Beneficial effects of the present invention:

本发明的萤光素酶底物与萤火虫萤光素酶作用后,具有发射波长长、发光强度高、检测灵敏度高等优点,其在活细胞和活体动物成像中均具有较好的表现,可作为活体生物发光成像、蛋白质定量检测等领域的重要分析工具。After the luciferase substrate of the present invention reacts with firefly luciferase, it has the advantages of long emission wavelength, high luminous intensity, and high detection sensitivity. It has good performance in imaging of living cells and living animals, and can be used as An important analytical tool in the fields of in vivo bioluminescent imaging, protein quantitative detection, etc.

附图说明Description of drawings

图1.显示了不同来源萤光素酶及其突变体的氨基酸序列,均为实施例16中所涉及萤光素酶。Figure 1 shows the amino acid sequences of luciferases from different sources and their mutants, all of which are luciferases involved in Example 16.

图2.不同来源萤光素酶及其突变体纯化蛋白电泳结果。Figure 2. Electrophoresis results of purified proteins from different sources of luciferase and its mutants.

图3.底物1、底物3、底物5以及底物19与不同萤光素酶反应所测得相对发光强度。Figure 3. The relative luminescence intensities measured by the reactions of substrate 1, substrate 3, substrate 5 and substrate 19 with different luciferases.

图4.底物1、底物3、底物5以及底物19与萤火虫萤光素酶反应所测得相对发光强度在30min内随时间变化曲线。Fig. 4. Curves of the relative luminous intensity versus time within 30 minutes obtained from the reaction of substrate 1, substrate 3, substrate 5 and substrate 19 with firefly luciferase.

图5.底物1、底物3、底物5、底物16以及底物19与萤火虫萤光素酶反应所对应发光光谱,其中萤火虫萤光素酶突变体x5g和x5r对应光谱为与萤光素反应所得。Figure 5. The luminescence spectra corresponding to the reaction of substrate 1, substrate 3, substrate 5, substrate 16 and substrate 19 with firefly luciferase, wherein the corresponding spectra of firefly luciferase mutants x5g and x5r are the same as those of firefly luciferase Obtained by photoreaction.

图6.底物1、底物3、底物5以及底物19在表达萤火虫萤光素酶的HeLa细胞系中的活细胞成像结果。Figure 6. Live cell imaging results of Substrate 1, Substrate 3, Substrate 5, and Substrate 19 in a HeLa cell line expressing firefly luciferase.

图7.不同浓度底物1、底物3、底物5以及底物19在HEK293T细胞系中的测试结果。Figure 7. Test results of different concentrations of substrate 1, substrate 3, substrate 5 and substrate 19 in HEK293T cell line.

图8.底物3和底物5在小鼠中的测试结果。(A)底物3和底物5在ICR小鼠中的发光图像;(B)底物3和底物5小鼠腿部发光信号定量结果(3个生物重复)。Figure 8. Test results of substrate 3 and substrate 5 in mice. (A) Luminescence images of substrate 3 and substrate 5 in ICR mice; (B) Quantitative results of luminescence signals in the legs of substrate 3 and substrate 5 mice (3 biological replicates).

具体实施方式Detailed ways

下面对本发明的实施例作详细说明,这些实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。下述实施例中涉及常规分子生物学克隆方法和细胞培养以及小鼠测试方法,这些方法是本领域普通技术人员所熟知的,本领域普通技术人员按照以下实施例,不难根据具体情况略作修改或变换成功实施本发明。The embodiments of the present invention are described in detail below. These embodiments are implemented under the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example. The following examples relate to conventional molecular biology cloning methods and cell culture and mouse testing methods. These methods are well known to those of ordinary skill in the art. Those of ordinary skill in the art are not difficult to make according to the specific circumstances according to the following examples. Modifications or transformations successfully carry out the invention.

实施例中所用的pEGFP-C1质粒载体购自Invitrogen公司,pCDFDuet-1质粒载体购自Novagen公司。所有用于PCR的引物均由上海杰瑞生物工程技术有限公司合成、纯化和经质谱法鉴定正确。实施例中构建的表达质粒都经过序列测定,序列测定由杰李测序公司完成。各实施例中PCR反应所用的PrimeSTAR DNA聚合酶购自TaKaRa公司。NheI、BamHI、NotI、Acc65I等限制性内切酶购自Fermentas公司。无机盐类化学试剂均购自国药集团上海化学试剂公司。卡那霉素(Kanamycin)和链霉素(Streptomycin)均购自Ameresco公司。D-luciferin购自Sigma公司。384孔和96孔白板购自Grenier公司。The pEGFP-C1 plasmid vector used in the examples was purchased from Invitrogen, and the pCDFDuet-1 plasmid vector was purchased from Novagen. All primers used for PCR were synthesized, purified and identified by mass spectrometry by Shanghai Jereh Bioengineering Technology Co., Ltd. The expression plasmids constructed in the examples have all been sequenced, and the sequence determination was completed by Jerry Sequencing Company. The PrimeSTAR DNA polymerase used in the PCR reaction in each example was purchased from TaKaRa Company. NheI, BamHI, NotI, Acc65I and other restriction endonucleases were purchased from Fermentas Company. Inorganic salt chemical reagents were purchased from Sinopharm Shanghai Chemical Reagent Company. Both Kanamycin and Streptomycin were purchased from Ameresco. D-luciferin was purchased from Sigma Company. 384-well and 96-well white plates were purchased from Grenier.

实施例中所用BL21(DE3)菌株购自Invitrogen公司。HeLa细胞、 HEK293T细胞购自中国科学院典型培养物保藏委员会细胞库。ICR小鼠购自上海杰思捷实验动物有限公司。实施例中所用无内毒素质粒大抽试剂盒购自天根生化科技(北京)有限公司。实施例中用到的主要仪器:Synergy Neo2多功能酶标仪(美国Bio-Tek公司),X-15R高速冷冻离心机(美国Beckman公司), PCR扩增仪(德国Biometra公司),IVIS Spectrum CT活体成像系统(美国PerkinElmer公司),核酸电泳仪(申能博彩公司)。The BL21(DE3) strain used in the examples was purchased from Invitrogen. HeLa cells and HEK293T cells were purchased from the Cell Bank of the Type Culture Collection Committee of the Chinese Academy of Sciences. ICR mice were purchased from Shanghai Jiesijie Experimental Animal Co., Ltd. The endotoxin-free plasmid large-scale extraction kit used in the examples was purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd. The main instrument used in the embodiment: Synergy Neo2 multifunctional microplate reader (U.S. Bio-Tek company), X-15R high-speed refrigerated centrifuge (U.S. Beckman company), PCR amplification instrument (Germany Biometra company), IVIS Spectrum CT In vivo imaging system (PerkinElmer, USA), nucleic acid electrophoresis instrument (Shenergy Gaming Company).

缩写词意义如下:“h”指小时,“min”指分钟,“s”指秒,“d”指天,“μL”指微升,“mL”指毫升,“L”指升,“mM”指毫摩尔,“μM”指微摩尔。The meanings of the abbreviations are as follows: "h" means hour, "min" means minute, "s" means second, "d" means day, "μL" means microliter, "mL" means milliliter, "L" means liter, "mM " means millimole, and "μM" means micromole.

实施例1Example 1

底物1的合成:Synthesis of Substrate 1:

Figure BDA0003784463820000071
Figure BDA0003784463820000071

化合物2:取化合物1(10g,80mmol)溶于200ml乙醇中,加入甲基异丙基酮(8.3g,96mmol),再加入3ml浓硫酸,加热回流,搅拌过夜。次日,将反应恢复至室温,加水,乙酸乙酯萃取3次(100ml),合并有机相,无水硫酸钠干燥,减压除去有机相,经柱色谱分离得到化合物2(13.0g,产率 86%)。1H-NMR(400MHz,CDCl3):δ=7.70(d,J=8.7,1H),6.72(t,J=16.7,1H),6.67(s,1H),3.80(s,3H),2.29(s,3H),1.46(s,6H).Compound 2: Dissolve compound 1 (10 g, 80 mmol) in 200 ml of ethanol, add methyl isopropyl ketone (8.3 g, 96 mmol), then add 3 ml of concentrated sulfuric acid, heat to reflux, and stir overnight. The next day, the reaction was returned to room temperature, added water, and extracted 3 times with ethyl acetate (100ml), the organic phases were combined, dried over anhydrous sodium sulfate, the organic phase was removed under reduced pressure, and the compound 2 (13.0g, yield 86%). 1 H-NMR (400MHz, CDCl 3 ): δ=7.70(d,J=8.7,1H),6.72(t,J=16.7,1H),6.67(s,1H),3.80(s,3H),2.29 (s,3H),1.46(s,6H).

化合物3:将化合物2(10g,53mmol)溶于100ml 1,4-二氧六环中,加入二氧化硒(11.7g,106mmol),将反应体系加热到80℃,搅拌2h。将反应恢复室温,过滤除去二氧化硒,减压除去有机溶剂,经柱色谱分离得到化合物 3(8.0g,产率为75%)。1H-NMR(400MHz,CDCl3):δ=9.90(s,1H),7.72 (d,J=8.6,1H),6.70(t,J=16.6,1H),6.68(s,1H),3.80(s,3H),1.46(s,6H).Compound 3: Dissolve compound 2 (10g, 53mmol) in 100ml 1,4-dioxane, add selenium dioxide (11.7g, 106mmol), heat the reaction system to 80°C, and stir for 2h. The reaction was returned to room temperature, selenium dioxide was removed by filtration, the organic solvent was removed under reduced pressure, and compound 3 (8.0 g, yield 75%) was obtained by column chromatography. 1 H-NMR (400MHz, CDCl 3 ): δ=9.90(s,1H),7.72 (d,J=8.6,1H),6.70(t,J=16.6,1H),6.68(s,1H),3.80 (s,3H),1.46(s,6H).

化合物4:将化合物3(5.0g,24.6mmol)溶于15ml四氢呋喃中,加入 25ml氨水,然后加入碘单质(9.4g,36.9mmol),室温搅拌6h。向反应体系中加入30ml饱和硫代硫酸钠,乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,减压除去有机相,经柱色谱分离得到化合物4(2.2g,产率为46%)。1H-NMR (400MHz,CDCl3):7.72(d,J=8.9,1H),6.70(t,J=16.8,1H),6.68(s,1H),3.80 (s,3H),1.46(s,6H).Compound 4: Dissolve compound 3 (5.0 g, 24.6 mmol) in 15 ml of tetrahydrofuran, add 25 ml of ammonia water, then add iodine (9.4 g, 36.9 mmol), and stir at room temperature for 6 h. Add 30ml of saturated sodium thiosulfate to the reaction system, extract with ethyl acetate, combine the organic phases, dry over anhydrous sodium sulfate, remove the organic phase under reduced pressure, and separate by column chromatography to obtain compound 4 (2.2g, yield 46%) . 1 H-NMR (400MHz, CDCl3): 7.72 (d, J = 8.9, 1H), 6.70 (t, J = 16.8, 1H), 6.68 (s, 1H), 3.80 (s, 3H), 1.46 (s, 6H).

化合物5:将化合物4(3.0g,15mmol)溶于50ml干燥的四氢呋喃中,将反应体系置于0℃中,向反应体系中滴加BBr3(1.7ml,18mmol),搅拌半小时后,加水淬灭。DCM萃取3次,合并有机相,无水硫酸钠干燥,减压除去有机相,经柱色谱分离得到化合物5(2.57g,产率92%)。1H-NMR(400MHz, CDCl3):δ=9.30(s,1H),7.70(d,J=8.6,1H),6.70(t,J=16.6,1H),6.68(s,1H), 1.46(s,6H).Compound 5: Dissolve compound 4 (3.0g, 15mmol) in 50ml of dry tetrahydrofuran, place the reaction system at 0°C, add BBr 3 (1.7ml, 18mmol) dropwise to the reaction system, stir for half an hour, then add water Quenched. DCM was extracted 3 times, the organic phases were combined, dried over anhydrous sodium sulfate, the organic phase was removed under reduced pressure, and compound 5 (2.57 g, yield 92%) was obtained by column chromatography. 1 H-NMR (400MHz, CDCl 3 ): δ=9.30(s, 1H), 7.70(d, J=8.6, 1H), 6.70(t, J=16.6, 1H), 6.68(s, 1H), 1.46 (s,6H).

底物1:化合物5(1g,5mmol)溶于10ml甲醇中,将D-半胱氨酸 (0.65g,5mmol)溶于10ml pH=8缓冲液,加入反应体系中,室温搅拌1h。反应完全后,DCM萃取3次,合并有机相,无水硫酸钠干燥,减压除去有机相,经柱色谱分离得到底物1(0.98g,产率63%)。1H NMR(600MHz,D2O):δ= 7.50(d,J=8.7,1H),6.97(d,J=2.4,1H),6.87(dd,J=8.7,2.4,1H),5.23(dd,J=9.7,7.9, 1H),3.57(dd,J=10.9,10.0,1H),3.39(dd,J=11.1,7.8,1H),1.45(s,3H),1.39(s,3H).Substrate 1: Compound 5 (1 g, 5 mmol) was dissolved in 10 ml of methanol, D-cysteine (0.65 g, 5 mmol) was dissolved in 10 ml of pH=8 buffer, added to the reaction system, and stirred at room temperature for 1 h. After the reaction was complete, DCM was extracted three times, the organic phases were combined, dried over anhydrous sodium sulfate, the organic phase was removed under reduced pressure, and the substrate 1 (0.98 g, yield 63%) was obtained by column chromatography. 1 H NMR (600MHz, D 2 O): δ = 7.50 (d, J = 8.7, 1H), 6.97 (d, J = 2.4, 1H), 6.87 (dd, J = 8.7, 2.4, 1H), 5.23 ( dd,J=9.7,7.9,1H),3.57(dd,J=10.9,10.0,1H),3.39(dd,J=11.1,7.8,1H),1.45(s,3H),1.39(s,3H) .

实施例2Example 2

底物2的合成:Synthesis of Substrate 2:

Figure BDA0003784463820000081
Figure BDA0003784463820000081

化合物7:参考化合物2的合成,产率85%。1H-NMR(400MHz, CDCl3):δ=7.80(d,J=8.7,1H),6.76(t,J=16.7,1H),6.72(s,1H),1.49(s,9H), 2.28(s,3H),1.46(s,6H).Compound 7: the synthesis of reference compound 2, the yield is 85%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.80(d, J=8.7,1H), 6.76(t, J=16.7,1H), 6.72(s,1H), 1.49(s,9H), 2.28 (s,3H),1.46(s,6H).

化合物8:参考化合物3的合成,产率71%。1H-NMR(400MHz, CDCl3):δ=9.90(s,1H),7.78(d,J=8.6,1H),6.72(t,J=16.6,1H),6.68(s,1H), 1.50(s,9H),1.47(s,6H).Compound 8: the synthesis of reference compound 3, the yield is 71%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.90(s,1H), 7.78(d,J=8.6,1H), 6.72(t,J=16.6,1H), 6.68(s,1H), 1.50 (s,9H),1.47(s,6H).

化合物9:参考化合物4的合成,产率43%。1H-NMR(400MHz, CDCl3):7.78(d,J=8.8,1H),6.70(t,J=16.3,1H),6.68(s,1H),1.51(s,9H),1.46 (s,6H).Compound 9: the synthesis of reference compound 4, the yield is 43%. 1 H-NMR (400MHz, CDCl 3 ): 7.78 (d, J = 8.8, 1H), 6.70 (t, J = 16.3, 1H), 6.68 (s, 1H), 1.51 (s, 9H), 1.46 (s ,6H).

化合物10:取化合物9(0.3g,0.7mmol)溶于10ml DCM中,加入2.5 ml三氟乙酸中,室温下搅拌1h。反应完全后,减压除去溶剂,并多次加入DCM,除去三氟乙酸,得到化合物10(0.13g,产率为96%)。1H-NMR(400 MHz,CDCl3):7.78(d,J=8.8,1H),6.70(s,1H),6.68(s,1H),1.45(s,6H).Compound 10: Compound 9 (0.3 g, 0.7 mmol) was dissolved in 10 ml of DCM, added to 2.5 ml of trifluoroacetic acid, and stirred at room temperature for 1 h. After the reaction was complete, the solvent was removed under reduced pressure, and DCM was added several times to remove trifluoroacetic acid to obtain compound 10 (0.13 g, yield 96%). 1 H-NMR (400 MHz, CDCl 3 ): 7.78(d, J=8.8,1H), 6.70(s,1H), 6.68(s,1H), 1.45(s,6H).

底物2:参考底物1的合成,产率59%。1H-NMR(400MHz,D2O):δ= 7.51(d,J=8.6,1H),6.96(d,J=2.3,1H),6.86(dd,J=8.6,2.4,1H),5.21(dd,J=9.6, 7.8,1H),3.56(m,1H),3.39(m,1H),1.46(s,3H),1.38(s,3H).Substrate 2: Refer to the synthesis of substrate 1 with a yield of 59%. 1 H-NMR (400MHz, D 2 O): δ = 7.51 (d, J = 8.6, 1H), 6.96 (d, J = 2.3, 1H), 6.86 (dd, J = 8.6, 2.4, 1H), 5.21 (dd,J=9.6,7.8,1H),3.56(m,1H),3.39(m,1H),1.46(s,3H),1.38(s,3H).

实施例3Example 3

底物3的合成:Synthesis of Substrate 3:

Figure BDA0003784463820000091
Figure BDA0003784463820000091

化合物12:参考化合物2的合成,产率87%。1H-NMR(400MHz, CDCl3):δ=7.71(d,J=8.7,1H),6.75(d,J=8.0,1H),6.65(s,1H),2.28(s,3H), 1.46(s,6H).Compound 12: the synthesis of reference compound 2, the yield is 87%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.71(d, J=8.7, 1H), 6.75(d, J=8.0, 1H), 6.65(s, 1H), 2.28(s, 3H), 1.46 (s,6H).

化合物13:分别称取化合物12(1.0g,4.2mmol),磷酸钾(1.8g,8.4 mmol)于耐压瓶中,然后加入7ml二甲胺水溶液和3ml二甲氨基乙醇以及催化量的铜粉以及碘化亚铜。加热到80℃,搅拌过夜。次日,冷却至室温,加入水,乙酸乙酯萃取3次,合并有机相,无水硫酸钠干燥,减压除去溶剂,经柱色谱分离得到化合物13(0.53g,产率63%)。1H-NMR(400MHz,CDCl3):δ=7.72(d,J=8.7,1H),6.77(d,J=8.0,1H),6.65(s,1H),3.08(s,6H),2.30(s,3H), 1.46(s,6H).Compound 13: Weigh compound 12 (1.0g, 4.2mmol) and potassium phosphate (1.8g, 8.4 mmol) respectively in a pressure bottle, then add 7ml of dimethylamine aqueous solution and 3ml of dimethylaminoethanol and a catalytic amount of copper powder and cuprous iodide. Heat to 80°C and stir overnight. The next day, cooled to room temperature, added water, extracted three times with ethyl acetate, combined the organic phases, dried over anhydrous sodium sulfate, removed the solvent under reduced pressure, and separated by column chromatography to obtain compound 13 (0.53 g, yield 63%). 1 H-NMR (400MHz, CDCl 3 ): δ=7.72(d,J=8.7,1H),6.77(d,J=8.0,1H),6.65(s,1H),3.08(s,6H),2.30 (s,3H), 1.46(s,6H).

化合物14:参考化合物3的合成,产率69%。1H-NMR(400MHz, CDCl3):δ=9.91(s,1H),7.70(d,J=8.7,1H),6.75(d,J=8.0,1H),6.65(s,1H), 3.08(s,6H),1.46(s,6H).Compound 14: the synthesis of reference compound 3, the yield is 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.91(s, 1H), 7.70(d, J=8.7, 1H), 6.75(d, J=8.0, 1H), 6.65(s, 1H), 3.08 (s,6H),1.46(s,6H).

化合物15:参考化合物4的合成,产率42%。1H-NMR(400MHz, CDCl3):1H NMR(400MHz,CDCl3)δ=7.62(d,J=8.7,1H),6.83–6.74(m,2H), 3.08(s,6H),1.44(s,6H).Compound 15: the synthesis of reference compound 4, the yield is 42%. 1 H-NMR (400MHz, CDCl 3 ): 1 H NMR (400MHz, CDCl 3 ) δ=7.62(d,J=8.7,1H),6.83–6.74(m,2H), 3.08(s,6H),1.44 (s,6H).

底物3:参考底物1的合成,产率59%。1H-NMR(400MHz,CDCl3):δ=7.50(d,J=8.7,1H),6.97(d,J=2.4,1H),6.87(dd,J=8.7,2.4,1H),5.23(dd,J=9.7, 7.9,1H),3.57(dd,J=10.9,10.0,1H),3.39(dd,J=11.1,7.8,1H),2.88(s,6H),1.45(s, 3H),1.39(s,3H).Substrate 3: refer to the synthesis of substrate 1, with a yield of 59%. 1 H-NMR (400MHz, CDCl 3 ): δ = 7.50 (d, J = 8.7, 1H), 6.97 (d, J = 2.4, 1H), 6.87 (dd, J = 8.7, 2.4, 1H), 5.23 ( dd,J=9.7,7.9,1H),3.57(dd,J=10.9,10.0,1H),3.39(dd,J=11.1,7.8,1H),2.88(s,6H),1.45(s,3H) ,1.39(s,3H).

实施例4Example 4

底物4、5的合成:Synthesis of substrates 4 and 5:

Figure BDA0003784463820000101
Figure BDA0003784463820000101

化合物17:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率56%。Compound 17: The method disclosed in the literature S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 56%.

化合物18:称取化合物17(3.0g,13mmol)用30ml浓盐酸溶解于250 ml茄型中,置于冰浴条件下;将亚硝酸钠(1.2g,17mmol)用12ml水溶解加入到反应体系,然后将SnCl·2H2O(7.6g,34mmol)用9ml浓盐酸溶解,加入到反应体系中,恢复室温搅拌1h,过滤得到化合物18(2.4g,产率76%)。1H NMR(400MHz,DMSO):δ=7.75(d,J=8.6,1H),6.53(s,1H),6.42(d,J=8.5, 1H),4.18(t,J=7.9,2H),3.10(t,J=8.0,2H).Compound 18: Weigh compound 17 (3.0g, 13mmol) and dissolve it in 250ml eggplant with 30ml of concentrated hydrochloric acid, and place it in an ice bath; dissolve sodium nitrite (1.2g, 17mmol) with 12ml of water and add to the reaction system , and then SnCl·2H 2 O (7.6g, 34mmol) was dissolved in 9ml concentrated hydrochloric acid, added to the reaction system, returned to room temperature and stirred for 1h, and filtered to obtain compound 18 (2.4g, yield 76%). 1 H NMR (400MHz, DMSO): δ = 7.75 (d, J = 8.6, 1H), 6.53 (s, 1H), 6.42 (d, J = 8.5, 1H), 4.18 (t, J = 7.9, 2H) ,3.10(t,J=8.0,2H).

化合物19:参考化合物2的合成,产率79%。1H-NMR(400MHz, CDCl3):δ=7.76(d,J=8.6,1H),7.15(s,1H),4.20(t,J=7.9,2H),3.12(t,J=8.0, 2H),2.30(s,3H),1.44(s,6H).Compound 19: the synthesis of reference compound 2, the yield is 79%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.76(d, J=8.6, 1H), 7.15(s, 1H), 4.20(t, J=7.9, 2H), 3.12(t, J=8.0, 2H), 2.30(s,3H), 1.44(s,6H).

化合物20:参考化合物3的合成,产率69%。1H-NMR(400MHz, CDCl3):δ=9.6(s,1H),7.76(d,J=8.6,1H),7.16(s,1H),4.22(t,J=7.9,2H),3.12 (t,J=8.1,2H),1.39(s,6H).Compound 20: the synthesis of reference compound 3, the yield is 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.6(s, 1H), 7.76(d, J=8.6, 1H), 7.16(s, 1H), 4.22(t, J=7.9, 2H), 3.12 (t,J=8.1,2H),1.39(s,6H).

化合物21:参考化合物4的合成,产率42%。1H-NMR(400MHz, CDCl3):δ=7.76(d,J=8.6,1H),7.16(s,1H),4.20(t,J=7.6,2H),3.12(t,J=8.1, 2H),1.44(s,6H).Compound 21: the synthesis of reference compound 4, the yield is 42%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.76(d, J=8.6, 1H), 7.16(s, 1H), 4.20(t, J=7.6, 2H), 3.12(t, J=8.1, 2H), 1.44(s, 6H).

化合物22:参考文献公开方法(S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282),产率86%。1H-NMR(400MHz,CDCl3):δ=7.66(d,J=8.6, 1H),7.20(s,1H),3.60(t,J=7.6,2H),3.12(t,J=8.0,2H),1.44(s,6H).Compound 22: The method disclosed in the reference (SC Miller, J. Am. Chem. Soc. 2014, 136, 13277-13282), the yield was 86%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.66(d, J=8.6, 1H), 7.20(s, 1H), 3.60(t, J=7.6, 2H), 3.12(t, J=8.0, 2H), 1.44(s, 6H).

底物4:参考底物1的合成,产率59%。1H-NMR(400MHz,D2O):δ= 7.32(s,1H),6.75(s,1H),5.18(dd,J=9.7,7.9,1H),3.53(dd,J=13.9,7.0,1H),3.41– 3.31(m,3H),2.91(t,J=8.3,2H),1.34(s,3H),1.26(s,3H).Substrate 4: refer to the synthesis of substrate 1, with a yield of 59%. 1 H-NMR (400MHz, D 2 O): δ = 7.32 (s, 1H), 6.75 (s, 1H), 5.18 (dd, J = 9.7, 7.9, 1H), 3.53 (dd, J = 13.9, 7.0 ,1H), 3.41– 3.31(m,3H), 2.91(t,J=8.3,2H), 1.34(s,3H), 1.26(s,3H).

化合物23:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率69%。1H-NMR(400MHz,CDCl3):δ=7.66(d,J=8.6, 1H),7.20(s,1H),3.60(t,J=7.6,2H),3.12(t,J=8.2,2H),2.75(s,3H),1.44(s,6H).Compound 23: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.66(d, J=8.6, 1H), 7.20(s, 1H), 3.60(t, J=7.6, 2H), 3.12(t, J=8.2, 2H), 2.75(s,3H), 1.44(s,6H).

底物5:参考底物1的合成,产率61%。1H-NMR(400MHz,CDCl3):δ=7.32(s,1H),6.75(s,1H),5.20(dd,J=9.7,7.9,1H),3.53(dd,J=13.9,7.0,1H),3.42 –3.32(m,3H),2.91(t,J=8.3,2H),2.75(s,3H),1.34(s,3H),1.26(s,3H).Substrate 5: refer to the synthesis of substrate 1, with a yield of 61%. 1 H-NMR (400MHz, CDCl3): δ=7.32(s,1H),6.75(s,1H),5.20(dd,J=9.7,7.9,1H),3.53(dd,J=13.9,7.0,1H ),3.42-3.32(m,3H),2.91(t,J=8.3,2H),2.75(s,3H),1.34(s,3H),1.26(s,3H).

实施例5Example 5

底物6、7的合成:Synthesis of substrates 6 and 7:

Figure BDA0003784463820000111
Figure BDA0003784463820000111

化合物25:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率56%。Compound 25: The method disclosed in the literature S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 56%.

化合物26:参考化合物18合成,产率70%。1H-NMR(400MHz, CDCl3):δ=7.76(d,J=8.7,1H),6.53(s,1H),6.40(d,J=8.6,1H),4.09(t,J=7.9, 2H),2.90(t,J=8.0,2H),1.60(m,2H).Compound 26: Synthesized with reference to Compound 18, with a yield of 70%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.76(d, J=8.7,1H),6.53(s,1H),6.40(d,J=8.6,1H),4.09(t,J=7.9, 2H), 2.90(t, J=8.0, 2H), 1.60(m, 2H).

化合物27:参考化合物2的合成,产率76%。1H-NMR(400MHz, CDCl3):δ=7.66(s,1H),7.15(s,1H),4.10(t,J=7.8,2H),3.10(t,J=8.2,2H),2.19 (s,3H),1.56(m,2H),1.46(s,6H).Compound 27: the synthesis of reference compound 2, the yield is 76%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.66(s,1H),7.15(s,1H),4.10(t,J=7.8,2H),3.10(t,J=8.2,2H),2.19 (s,3H),1.56(m,2H),1.46(s,6H).

化合物28:参考化合物3的合成,产率69%。1H-NMR(400MHz, CDCl3):δ=10.00(s,1H),7.60(s,1H),7.16(s,1H),4.10(t,J=7.8,2H),3.12(t, J=8.2,2H),1.51(m,2H),1.40(s,6H).Compound 28: the synthesis of reference compound 3, the yield is 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=10.00(s,1H),7.60(s,1H),7.16(s,1H),4.10(t,J=7.8,2H),3.12(t,J =8.2,2H),1.51(m,2H),1.40(s,6H).

化合物29:参考化合物4的合成,产率41%。1H-NMR(400MHz, CDCl3):δ=7.60(s,1H),7.16(s,1H),4.12(t,J=7.9,2H),3.12(t,J=8.2,2H),1.50 (m,2H),1.41(s,6H).Compound 29: the synthesis of reference compound 4, the yield is 41%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.60(s,1H),7.16(s,1H),4.12(t,J=7.9,2H),3.12(t,J=8.2,2H),1.50 (m,2H),1.41(s,6H).

化合物30:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率86%。1H-NMR(400MHz,CDCl3):δ=7.40(s,1H),6.70 (s,1H),3.42(t,J=7.9,2H),2.79(t,J=8.2,2H),1.96(m,2H),1.41(s,6H).Compound 30: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 86%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.40(s,1H),6.70(s,1H),3.42(t,J=7.9,2H),2.79(t,J=8.2,2H),1.96 (m,2H),1.41(s,6H).

底物6:参考底物1的合成,产率60%。1H-NMR(400MHz,D2O):δ= 7.50(s,1H),6.90(s,1H),5.20(dd,J=9.7,7.9,1H),3.56(dd,J=10.9,10.0,1H),3.39 (dd,J=11.1,7.8,1H),3.22(t,J=7.9,2H),2.80(t,J=8.2,2H),1.96(m,2H),1.45(s, 3H),1.39(s,3H).Substrate 6: refer to the synthesis of substrate 1, with a yield of 60%. 1 H-NMR (400MHz, D 2 O): δ = 7.50 (s, 1H), 6.90 (s, 1H), 5.20 (dd, J = 9.7, 7.9, 1H), 3.56 (dd, J = 10.9, 10.0 ,1H),3.39 (dd,J=11.1,7.8,1H),3.22(t,J=7.9,2H),2.80(t,J=8.2,2H),1.96(m,2H),1.45(s, 3H), 1.39(s, 3H).

化合物31:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率69%。1H-NMR(400MHz,CDCl3):δ=7.20(s,1H),6.72 (s,1H),3.40(t,J=7.8,2H),2.79(t,J=8.0,2H),2.75(s,3H),2.00(m,2H),1.44(s, 6H).Compound 31: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.20(s,1H),6.72(s,1H),3.40(t,J=7.8,2H),2.79(t,J=8.0,2H),2.75 (s,3H),2.00(m,2H),1.44(s,6H).

底物7:参考底物1的合成,产率59%。1H-NMR(400MHz,D2O):δ= 7.56(s,1H),6.96(s,1H),5.22(dd,J=9.7,7.9,1H),3.56(dd,J=10.9,10.0,1H),3.40 (dd,J=10.1,7.9,1H),3.20(t,J=7.9,2H),2.82(m,5H),1.98(m,2H),1.45(s,3H), 1.39(s,3H).Substrate 7: the synthesis of the reference substrate 1, the yield is 59%. 1 H-NMR (400MHz, D 2 O): δ = 7.56 (s, 1H), 6.96 (s, 1H), 5.22 (dd, J = 9.7, 7.9, 1H), 3.56 (dd, J = 10.9, 10.0 ,1H),3.40 (dd,J=10.1,7.9,1H),3.20(t,J=7.9,2H),2.82(m,5H),1.98(m,2H),1.45(s,3H), 1.39 (s,3H).

实施例6Example 6

底物8、9的合成:Synthesis of substrates 8 and 9:

Figure BDA0003784463820000121
Figure BDA0003784463820000121

化合物33:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率53%。Compound 33: The method disclosed in the literature S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 53%.

化合物34:参考化合物18合成,产率69%。1H-NMR(400MHz, CDCl3):δ=7.68(d,J=8.2,1H),7.28(d,J=8.2,1H),6.32(d,J=2.4,1H),4.30(t, J=4.8,2H),3.82(t,J=4.8,2H).Compound 34: Synthesized with reference to Compound 18, with a yield of 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.68(d, J=8.2,1H), 7.28(d, J=8.2,1H), 6.32(d, J=2.4,1H), 4.30(t, J=4.8,2H),3.82(t,J=4.8,2H).

化合物35:参考化合物2的合成,产率76%。1H-NMR(400MHz, CDCl3):δ=7.66(s,1H),7.16(s,1H),4.30(t,J=4.8,2H),3.86(t,J=4.8,2H),2.29 (s,3H),1.44(s,6H).Compound 35: the synthesis of reference compound 2, the yield is 76%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.66(s,1H),7.16(s,1H),4.30(t,J=4.8,2H),3.86(t,J=4.8,2H),2.29 (s,3H),1.44(s,6H).

化合物36:参考化合物3的合成,产率72%。1H-NMR(400MHz,CDCl3):δ=9.6(s,1H),7.76(d,J=8.6,1H),7.16(s,1H),4.32(t,J=4.8,2H),3.82 (t,J=4.8,2H),1.42(s,6H).Compound 36: the synthesis of reference compound 3, the yield is 72%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.6(s, 1H), 7.76(d, J=8.6, 1H), 7.16(s, 1H), 4.32(t, J=4.8, 2H), 3.82 (t,J=4.8,2H),1.42(s,6H).

化合物37:参考化合物4的合成,产率43%。1H-NMR(400MHz, CDCl3):δ=7.78(d,J=8.8,1H),7.18(s,1H),4.30(t,J=7.9,2H),3.80(t,J=8.1, 2H),1.44(s,6H).Compound 37: the synthesis of reference compound 4, the yield was 43%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.78(d, J=8.8, 1H), 7.18(s, 1H), 4.30(t, J=7.9, 2H), 3.80(t, J=8.1, 2H), 1.44(s, 6H).

化合物38:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率87%。1H-NMR(400MHz,CDCl3):δ=7.30(s,1H),6.83 (s,1H),4.30(t,J=4.8,2H),3.46(t,J=4.2,2H),1.44(s,6H).Compound 38: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 87%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.30(s,1H),6.83(s,1H),4.30(t,J=4.8,2H),3.46(t,J=4.2,2H),1.44 (s,6H).

底物8:参考底物1的合成,产率59%。1H-NMR(400MHz,D2O):δ= 7.30(s,1H),6.75(s,1H),5.20(dd,J=9.7,7.9,1H),4.26(t,J=4.6,2H),3.58(dd, J=10.8,10.0,1H),3.44(m,3H),1.34(s,3H),1.30(s,3H).Substrate 8: refer to the synthesis of substrate 1, with a yield of 59%. 1 H-NMR (400MHz, D 2 O): δ=7.30(s,1H),6.75(s,1H),5.20(dd,J=9.7,7.9,1H),4.26(t,J=4.6,2H ),3.58(dd, J=10.8,10.0,1H),3.44(m,3H),1.34(s,3H),1.30(s,3H).

化合物39:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率72%。1H-NMR(400MHz,CDCl3):δ=7.29(s,1H),6.80 (s,1H),4.27(t,J=4.8,2H),3.44(t,J=4.0,2H),2.96(s,3H),1.44(s,6H).Compound 39: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 72%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.29(s,1H),6.80 (s,1H),4.27(t,J=4.8,2H),3.44(t,J=4.0,2H),2.96 (s,3H),1.44(s,6H).

底物9:参考底物1的合成,产率57%。1H-NMR(400MHz,D2O):δ= 7.30(s,1H),6.77(s,1H),5.23(dd,J=9.8,8.0,1H),4.32(t,J=4.8,2H),3.56(dd, J=13.9,7.0,1H),3.46(m,3H),2.94(s,3H),1.36(s,3H),1.29(s,3H).Substrate 9: refer to the synthesis of substrate 1, with a yield of 57%. 1 H-NMR (400MHz, D 2 O): δ=7.30(s,1H),6.77(s,1H),5.23(dd,J=9.8,8.0,1H),4.32(t,J=4.8,2H ), 3.56(dd, J=13.9,7.0,1H), 3.46(m,3H), 2.94(s,3H), 1.36(s,3H), 1.29(s,3H).

实施例7Example 7

底物10、11的合成:Synthesis of substrates 10, 11:

Figure BDA0003784463820000131
Figure BDA0003784463820000131

化合物41:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率52%。Compound 41: The method disclosed in the reference S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, the yield was 52%.

化合物42:参考化合物18合成,产率72%。1H-NMR(400MHz, CDCl3):δ=7.68(d,J=8.0,1H),7.28(d,J=8.2,1H),6.40(d,J=3.4,1H),3.86(t, J=4.8,2H),3.02(t,J=4.8,2H).Compound 42: Synthesized with reference to Compound 18, with a yield of 72%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.68(d, J=8.0,1H),7.28(d,J=8.2,1H),6.40(d,J=3.4,1H),3.86(t, J=4.8,2H),3.02(t,J=4.8,2H).

化合物43:参考化合物2的合成,产率73%。1H-NMR(400MHz, CDCl3):δ=7.66(s,1H),7.18(s,1H),3.80(t,J=5.0,2H),3.02(t,J=5.0,2H),2.30 (s,3H),1.44(s,6H).Compound 43: the synthesis of reference compound 2, the yield was 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.66(s,1H),7.18(s,1H),3.80(t,J=5.0,2H),3.02(t,J=5.0,2H),2.30 (s,3H),1.44(s,6H).

化合物44:参考化合物3的合成,产率70%。1H-NMR(400MHz, CDCl3):δ=9.69(s,1H),7.78(s,1H),7.18(s,1H),3.82(t,J=4.8,2H),3.03(t, J=4.8,2H),1.40(s,6H).Compound 44: the synthesis of reference compound 3, the yield is 70%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.69(s,1H),7.78(s,1H),7.18(s,1H),3.82(t,J=4.8,2H),3.03(t,J =4.8,2H),1.40(s,6H).

化合物45:参考化合物4的合成,产率42%。1H-NMR(400MHz, CDCl3):δ=7.79(s,1H),7.18(s,1H),3.80(t,J=7.9,2H),3.06(t,J=8.1,2H),1.44 (s,6H).Compound 45: the synthesis of reference compound 4, the yield is 42%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.79(s,1H),7.18(s,1H),3.80(t,J=7.9,2H),3.06(t,J=8.1,2H),1.44 (s,6H).

化合物46:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率86%。1H-NMR(400MHz,CDCl3):δ=7.30(s,1H),6.68 (s,1H),3.60(t,J=5.8,2H),3.08(t,J=5.2,2H),1.42(s,6H).Compound 46: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 86%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.30(s,1H),6.68(s,1H),3.60(t,J=5.8,2H),3.08(t,J=5.2,2H),1.42 (s,6H).

底物10:参考底物1的合成,产率57%。1H-NMR(400MHz,D2O):δ=7.30(s,1H),6.76(s,1H),5.22(dd,J=9.9,7.9,1H),3.80(t,J=4.6,2H),3.58(dd, J=10.8,10.2,1H),3.40(m,3H),1.34(s,3H),1.26(s,3H).Substrate 10: Refer to the synthesis of substrate 1 with a yield of 57%. 1 H-NMR (400MHz, D 2 O): δ=7.30(s,1H),6.76(s,1H),5.22(dd,J=9.9,7.9,1H),3.80(t,J=4.6,2H ),3.58(dd, J=10.8,10.2,1H),3.40(m,3H),1.34(s,3H),1.26(s,3H).

化合物47:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率73%。1H-NMR(400MHz,CDCl3):δ=7.29(s,1H),6.80 (s,1H),3.80(t,J=4.8,2H),3.04(t,J=4.4,2H),3.00(s,3H),1.46(s,6H).Compound 47: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.29(s,1H),6.80(s,1H),3.80(t,J=4.8,2H),3.04(t,J=4.4,2H),3.00 (s,3H),1.46(s,6H).

底物11:参考底物1的合成,产率59%。1H-NMR(400MHz,D2O):δ=7.30(s,1H),6.77(s,1H),5.23(dd,J=9.8,8.0,1H),3.80(t,J=4.8,2H),3.56(dd, J=13.7,9.0,1H),3.39(m,3H),2.96(s,3H),1.36(s,3H),1.29(s,3H).Substrate 11: the synthesis of the reference substrate 1, the yield is 59%. 1 H-NMR (400MHz, D 2 O): δ=7.30(s,1H),6.77(s,1H),5.23(dd,J=9.8,8.0,1H),3.80(t,J=4.8,2H ),3.56(dd, J=13.7,9.0,1H),3.39(m,3H),2.96(s,3H),1.36(s,3H),1.29(s,3H).

实施例8Example 8

底物12、13的合成:Synthesis of substrates 12, 13:

Figure BDA0003784463820000141
Figure BDA0003784463820000141

化合物49:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率56%。Compound 49: The method disclosed in the literature S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 56%.

化合物50:参考化合物18合成,产率72%。1H-NMR(400MHz, CDCl3):δ=7.30(s,1H),7.12(s,1H),6.42(s,1H),3.53(t,J=6.9,2H),3.15(t, J=6.8,2H).Compound 50: Synthesized with reference to Compound 18, with a yield of 72%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.30(s,1H),7.12(s,1H),6.42(s,1H),3.53(t,J=6.9,2H),3.15(t,J =6.8,2H).

化合物51:参考化合物2的合成,产率73%。1H-NMR(400MHz, CDCl3):δ=7.86(s,1H),7.26(s,1H),3.56(t,J=6.0,2H),3.18(t,J=6.0,2H),2.30 (s,3H),1.46(s,6H).Compound 51: the synthesis of reference compound 2, the yield is 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.86(s,1H),7.26(s,1H),3.56(t,J=6.0,2H),3.18(t,J=6.0,2H),2.30 (s,3H),1.46(s,6H).

化合物52:参考化合物3的合成,产率70%。1H-NMR(400MHz, CDCl3):δ=9.60(s,1H),7.79(s,1H),7.22(s,1H),3.56(t,J=6.8,2H),3.20(t, J=6.8,2H),1.39(s,6H).Compound 52: the synthesis of reference compound 3, the yield is 70%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.60(s,1H),7.79(s,1H),7.22(s,1H),3.56(t,J=6.8,2H),3.20(t,J =6.8,2H),1.39(s,6H).

化合物53:参考化合物4的合成,产率41%。1H-NMR(400MHz, CDCl3):δ=7.76(s,1H),7.18(s,1H),3.56(t,J=6.9,2H),3.18(t,J=6.1,2H),1.40 (s,6H).Compound 53: the synthesis of reference compound 4, the yield is 41%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.76(s,1H),7.18(s,1H),3.56(t,J=6.9,2H),3.18(t,J=6.1,2H),1.40 (s,6H).

化合物54:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率86%。1H-NMR(400MHz,CDCl3):δ=7.20(s,1H),6.69 (s,1H),3.36(t,J=5.8,2H),3.08(t,J=6.2,2H),1.44(s,6H).Compound 54: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 86%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.20(s,1H),6.69(s,1H),3.36(t,J=5.8,2H),3.08(t,J=6.2,2H),1.44 (s,6H).

底物12:参考底物1的合成,产率61%。1H-NMR(400MHz,D2O):δ=7.20(s,1H),6.78(s,1H),5.20(dd,J=9.7,7.7,1H),3.58(dd,J=10.8,10.2,1H), 3.30(m,5H),1.32(s,3H),1.24(s,3H).Substrate 12: Refer to the synthesis of substrate 1, with a yield of 61%. 1 H-NMR (400MHz, D 2 O): δ=7.20(s,1H),6.78(s,1H),5.20(dd,J=9.7,7.7,1H),3.58(dd,J=10.8,10.2 ,1H), 3.30(m,5H),1.32(s,3H),1.24(s,3H).

化合物55:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率73%。1H-NMR(400MHz,CDCl3):δ=7.29(s,1H),6.68 (s,1H),3.59(t,J=5.8,2H),3.02(t,J=5.6,2H),3.02(s,6H),1.46(s,6H).Compound 55: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.29(s,1H),6.68(s,1H),3.59(t,J=5.8,2H),3.02(t,J=5.6,2H),3.02 (s,6H),1.46(s,6H).

底物13:参考底物1的合成,产率56%。1H-NMR(400MHz,D2O):δ=7.29(s,1H),6.77(s,1H),5.33(dd,J=9.8,8.0,1H),3.56(m,5H),3.36(dd,J=11.0, 7.9,1H),2.96(s,6H),1.39(s,3H),1.31(s,3H).Substrate 13: refer to the synthesis of substrate 1, with a yield of 56%. 1 H-NMR (400MHz, D 2 O): δ = 7.29 (s, 1H), 6.77 (s, 1H), 5.33 (dd, J = 9.8, 8.0, 1H), 3.56 (m, 5H), 3.36 ( dd,J=11.0, 7.9,1H), 2.96(s,6H), 1.39(s,3H), 1.31(s,3H).

实施例9Example 9

底物14的合成:Synthesis of Substrate 14:

Figure BDA0003784463820000161
Figure BDA0003784463820000161

化合物57:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率51%。Compound 57: The method disclosed in the literature S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 51%.

化合物58:参考化合物18合成,产率72%。1H-NMR(400MHz, CDCl3):δ=7.30(s,2H),3.30(t,J=6.9,4H),2.79(t,J=6.9,4H),1.99(m,4H).Compound 58: Synthesized with reference to Compound 18, with a yield of 72%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.30(s,2H), 3.30(t,J=6.9,4H), 2.79(t,J=6.9,4H), 1.99(m,4H).

化合物59:参考化合物2的合成,产率73%。1H-NMR(400MHz, CDCl3):δ=7.06(s,1H),3.25(t,J=3.6,4H),2.86(t,J=6.5Hz,2H),2.80(t,J= 6.5Hz,2H),2.30(s,3H),1.96(m,4H),1.44(s,6H).Compound 59: the synthesis of reference compound 2, the yield was 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.06(s, 1H), 3.25(t, J=3.6, 4H), 2.86(t, J=6.5Hz, 2H), 2.80(t, J= 6.5 Hz,2H),2.30(s,3H),1.96(m,4H),1.44(s,6H).

化合物60:参考化合物3的合成,产率70%。1H-NMR(400MHz, CDCl3):δ=9.69(s,1H),7.09(s,1H),3.26(t,J=6.8,4H),2.89(t,J=6.6Hz,2H), 2.82(t,J=6.5Hz,2H),1.96(m,4H),1.39(s,6H).Compound 60: the synthesis of reference compound 3, the yield is 70%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.69(s,1H),7.09(s,1H),3.26(t,J=6.8,4H),2.89(t,J=6.6Hz,2H), 2.82(t, J=6.5Hz, 2H), 1.96(m, 4H), 1.39(s, 6H).

化合物61:参考化合物4的合成,产率41%。1H-NMR(400MHz, CDCl3):δ=7.06(s,1H),3.30(t,J=6.9,4H),2.86(t,J=6.3Hz,2H),2.80(t,J= 5.5Hz,2H),1.96(m,4H),1.44(s,6H).Compound 61: the synthesis of reference compound 4, the yield was 41%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.06(s, 1H), 3.30(t, J=6.9, 4H), 2.86(t, J=6.3Hz, 2H), 2.80(t, J= 5.5 Hz,2H),1.96(m,4H),1.44(s,6H).

底物14:参考底物1的合成,产率59%。1H-NMR(400MHz,D2O):δ=6.90(s,1H),5.22(dd,J=9.6,7.6,1H),3.60(dd,J=9.8,9.2,1H),3.30(m,5H),2.83 (t,J=6.6Hz,2H),2.80(t,J=5.6Hz,2H),1.99(m,4H),1.32(s,3H),1.24(s,3H).Substrate 14: the synthesis of the reference substrate 1, the yield is 59%. 1 H-NMR (400MHz, D 2 O): δ=6.90(s, 1H), 5.22(dd, J=9.6, 7.6, 1H), 3.60(dd, J=9.8, 9.2, 1H), 3.30(m ,5H),2.83 (t,J=6.6Hz,2H),2.80(t,J=5.6Hz,2H),1.99(m,4H),1.32(s,3H),1.24(s,3H).

实施例10Example 10

底物15、16的合成:Synthesis of substrates 15, 16:

Figure BDA0003784463820000171
Figure BDA0003784463820000171

化合物62:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率53%。Compound 62: The method disclosed in the literature S.C.Miller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 53%.

化合物63:参考化合物2的合成,产率73%。1H-NMR(400MHz, CDCl3):δ=7.80(s,1H),7.16(s,1H),5.66(s,1H),2.30(s,3H),2.13(s,3H),1.54 (s,6H),1.44(s,6H).Compound 63: the synthesis of reference compound 2, the yield is 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.80(s,1H),7.16(s,1H),5.66(s,1H),2.30(s,3H),2.13(s,3H),1.54( s,6H),1.44(s,6H).

化合物64:参考化合物3的合成,产率70%。1H-NMR(400MHz, CDCl3):δ=9.66(s,1H),7.79(s,1H),7.20(s,1H),5.60(s,1H),2.03(s,3H),1.50 (s,6H),1.39(s,6H).Compound 64: the synthesis of reference compound 3, the yield is 70%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.66(s,1H),7.79(s,1H),7.20(s,1H),5.60(s,1H),2.03(s,3H),1.50( s,6H),1.39(s,6H).

化合物65:参考化合物4的合成,产率43%。1H-NMR(400MHz, CDCl3):δ=7.76(s,1H),7.18(s,1H),5.63(s,1H),2.06(s,3H),1.52(s,6H),1.44 (s,6H).Compound 65: the synthesis of reference compound 4, the yield is 43%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.76(s,1H), 7.18(s,1H), 5.63(s,1H), 2.06(s,3H), 1.52(s,6H), 1.44 ( s,6H).

化合物66:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率86%。1H-NMR(400MHz,CDCl3):δ=7.56(s,1H),6.78 (s,1H),5.53(s.1H),2.03(s,3H),1.42(s,6H),1.30(s,6H).Compound 66: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 86%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.56(s,1H),6.78(s,1H),5.53(s.1H),2.03(s,3H),1.42(s,6H),1.30( s,6H).

底物15:参考底物1的合成,产率55%。1H-NMR(400MHz,D2O):δ=7.78(s,1H),6.86(s,1H),5.47(s,1H),5.26(dd,J=8.7,6.7,1H),3.58(dd,J=10.8, 10.2,1H),3.36(dd,J=10.1,7.8,1H),2.05(s,3H),1.36(s,3H),1.30(s,6H),1.24(s, 3H).Substrate 15: refer to the synthesis of substrate 1, with a yield of 55%. 1 H-NMR (400MHz, D 2 O): δ=7.78(s, 1H), 6.86(s, 1H), 5.47(s, 1H), 5.26(dd, J=8.7, 6.7, 1H), 3.58( dd,J=10.8,10.2,1H),3.36(dd,J=10.1,7.8,1H),2.05(s,3H),1.36(s,3H),1.30(s,6H),1.24(s,3H ).

化合物67:参考文献公开方法S.C.Miller,J.Am.Chem.Soc.2014,136, 13277-13282,产率73%。1H-NMR(400MHz,CDCl3):δ=7.76(s,1H),6.79 (s,1H),5.50(s.1H),3.01(s,3H),2.06(s,3H),1.44(s,6H),1.39(s,6H).Compound 67: The method published in references SCMiller, J.Am.Chem.Soc.2014, 136, 13277-13282, yield 73%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.76(s,1H),6.79(s,1H),5.50(s.1H),3.01(s,3H),2.06(s,3H),1.44( s,6H),1.39(s,6H).

底物16:参考底物1的合成,产率56%。1H-NMR(400MHz,D2O):δ=7.76(s,1H),6.80(s,1H),5.46(s,1H),5.36(dd,J=8.6,6.6,1H),3.56(dd,J=9.8, 9.2,1H),3.36(dd,J=10.0,6.9,1H),3.02(s,3H),2.06(s,3H),1.39(m,9H),1.31(s, 3H).Substrate 16: refer to the synthesis of substrate 1, with a yield of 56%. 1 H-NMR (400MHz, D 2 O): δ=7.76(s, 1H), 6.80(s, 1H), 5.46(s, 1H), 5.36(dd, J=8.6, 6.6, 1H), 3.56( dd,J=9.8,9.2,1H),3.36(dd,J=10.0,6.9,1H),3.02(s,3H),2.06(s,3H),1.39(m,9H),1.31(s,3H ).

实施例11Example 11

底物17的合成:Synthesis of Substrate 17:

Figure BDA0003784463820000181
Figure BDA0003784463820000181

化合物69:参考化合物2的合成,产率86%。1H-NMR(400MHz, CDCl3):δ=8.30(d,J=2.0,1H),8.09(d,J=9.1,1H),7.92(d,J=8.6,1H),7.76(d, J=8.6,1H),7.66(s,1H),3.81(s,3H),2.31(s,3H),1.49(s,6H).Compound 69: the synthesis of reference compound 2, the yield is 86%. 1 H-NMR (400MHz, CDCl 3 ): δ=8.30(d, J=2.0,1H), 8.09(d, J=9.1,1H), 7.92(d, J=8.6,1H), 7.76(d, J=8.6,1H),7.66(s,1H),3.81(s,3H),2.31(s,3H),1.49(s,6H).

化合物70:参考化合物3的合成,产率72%。1H-NMR(400MHz, CDCl3):δ=9.90(s,1H),8.00(d,J=9.3,1H),7.86(d,J=8.6,1H),7.76(d,J=8.7, 1H),7.30(d,J=6.8,1H),7.09(s,1H),3.80(s,3H),1.63(s,6H).Compound 70: the synthesis of reference compound 3, the yield was 72%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.90(s, 1H), 8.00(d, J=9.3, 1H), 7.86(d, J=8.6, 1H), 7.76(d, J=8.7, 1H), 7.30(d, J=6.8, 1H), 7.09(s, 1H), 3.80(s, 3H), 1.63(s, 6H).

化合物71:参考化合物4的合成,产率42%。1H-NMR(400MHz, CDCl3):7.90(d,J=9.3,1H),7.76(m,2H),7.30(d,J=9.3,1H),7.07(s,1H),3.81 (s,3H),1.59(s,6H).Compound 71: the synthesis of reference compound 4, the yield is 42%. 1 H-NMR (400MHz, CDCl 3 ): 7.90(d, J=9.3,1H), 7.76(m,2H), 7.30(d,J=9.3,1H), 7.07(s,1H), 3.81 (s ,3H),1.59(s,6H).

化合物72:参考化合物5的合成,产率93%。1H-NMR(400MHz, CDCl3):7.96(d,J=9.3,1H),7.77(m,2H),7.32(d,J=9.4,1H),7.07(s,1H),1.60 (s,6H).Compound 72: the synthesis of reference compound 5, the yield is 93%. 1 H-NMR (400MHz, CDCl 3 ): 7.96 (d, J = 9.3, 1H), 7.77 (m, 2H), 7.32 (d, J = 9.4, 1H), 7.07 (s, 1H), 1.60 (s ,6H).

底物17:参考底物1的合成,产率60%。1H-NMR(400MHz,D2O):δ=7.86(d,J=9.2,1H),7.56(m,2H),7.22(d,J=8.3,1H),7.06(s,1H),5.20(t,J=8.9, 1H),3.60(t,J=10.0,1H),3.37(t,J=10.6,1H),1.46(s,3H),1.26(s,3H).Substrate 17: refer to the synthesis of substrate 1, with a yield of 60%. 1 H-NMR (400MHz, D 2 O): δ=7.86(d, J=9.2,1H), 7.56(m,2H), 7.22(d,J=8.3,1H), 7.06(s,1H), 5.20(t, J=8.9, 1H), 3.60(t, J=10.0, 1H), 3.37(t, J=10.6, 1H), 1.46(s, 3H), 1.26(s, 3H).

实施例12Example 12

底物18的合成:Synthesis of Substrate 18:

Figure BDA0003784463820000191
Figure BDA0003784463820000191

化合物74:参考化合物2的合成,产率89%。1H-NMR(400MHz, CDCl3):δ=8.19(d,J=2.0,1H),8.08(d,J=9.0,1H),7.89(d,J=8.6,1H),7.76(d, J=8.6,1H),7.60(dd,J=9.2,2.2,1H),2.30(s,3H),1.51(s,9H),1.44(s,6H).Compound 74: the synthesis of reference compound 2, the yield is 89%. 1 H-NMR (400MHz, CDCl 3 ): δ=8.19(d, J=2.0,1H), 8.08(d, J=9.0,1H), 7.89(d, J=8.6,1H), 7.76(d, J=8.6,1H),7.60(dd,J=9.2,2.2,1H),2.30(s,3H),1.51(s,9H),1.44(s,6H).

化合物75:参考化合物3的合成,产率69%。1H-NMR(400MHz, CDCl3):δ=9.96(s,1H),8.09(d,J=2.3,1H),7.93(d,J=9.3,1H),7.79(d,J=8.6, 1H),7.66(d,J=8.6,1H),7.30(d,J=9.2,1H),1.56(s,6H),1.50(s,9H).Compound 75: the synthesis of reference compound 3, the yield was 69%. 1 H-NMR (400MHz, CDCl 3 ): δ=9.96(s, 1H), 8.09(d, J=2.3, 1H), 7.93(d, J=9.3, 1H), 7.79(d, J=8.6, 1H), 7.66(d, J=8.6, 1H), 7.30(d, J=9.2, 1H), 1.56(s, 6H), 1.50(s, 9H).

化合物76:参考化合物4的合成,产率43%。1H-NMR(400MHz, CDCl3):δ=7.89(d,J=9.0,1H),7.76(m,2H),7.30(d,J=9.2,1H),7.06(s,1H), 1.59(s,6H),1.50(s,9H).Compound 76: the synthesis of reference compound 4, the yield is 43%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.89(d, J=9.0,1H), 7.76(m,2H), 7.30(d,J=9.2,1H), 7.06(s,1H), 1.59 (s,6H),1.50(s,9H).

化合物77:参考化合物10的合成,产率为96%。1H-NMR(400MHz, CDCl3):7.86(d,J=9.2,1H),7.76(m,2H),7.30(d,J=9.2,1H),7.06(s,1H),1.60 (s,6H).Compound 77: the synthesis of reference compound 10, the yield was 96%. 1 H-NMR (400 MHz, CDCl 3 ): 7.86 (d, J=9.2,1H), 7.76 (m, 2H), 7.30 (d, J=9.2, 1H), 7.06 (s, 1H), 1.60 (s ,6H).

底物18:参考底物1的合成,产率60%。1H-NMR(400MHz,D2O):δ=7.83(d,J=9.2,1H),7.56(m,2H),7.22(d,J=8.0,1H),7.06(s,1H),5.20(t,J=8.9, 1H),3.56(t,J=9.2,1H),3.36(t,J=10.2,1H),1.50(s,3H),1.29(s,3H).Substrate 18: refer to the synthesis of substrate 1, with a yield of 60%. 1 H-NMR (400MHz, D 2 O): δ=7.83(d, J=9.2,1H), 7.56(m,2H), 7.22(d,J=8.0,1H), 7.06(s,1H), 5.20(t, J=8.9, 1H), 3.56(t, J=9.2, 1H), 3.36(t, J=10.2, 1H), 1.50(s, 3H), 1.29(s, 3H).

实施例13Example 13

底物19的合成:Synthesis of Substrate 19:

Figure BDA0003784463820000192
Figure BDA0003784463820000192

化合物79:参考化合物2的合成,产率83%。1H-NMR(400MHz, CDCl3):δ=8.29(d,J=1.9,1H),8.08(d,J=9.0,1H),7.91(d,J=8.5,1H),7.75(d, J=8.5,1H),7.66(dd,J=9.0,2.0,1H),2.30(s,3H),1.44(s,6H).Compound 79: the synthesis of reference compound 2, the yield is 83%. 1 H-NMR (400MHz, CDCl 3 ): δ=8.29(d, J=1.9,1H), 8.08(d, J=9.0,1H), 7.91(d, J=8.5,1H), 7.75(d, J=8.5,1H),7.66(dd,J=9.0,2.0,1H),2.30(s,3H),1.44(s,6H).

化合物80:参考化合物13的合成,产率43%。1H-NMR(400MHz, CDCl3):δ=7.90(d,J=9.3,1H),7.69(m,2H),7.28(m,1H),7.09(s,1H),3.06(s, 6H),2.42(s,3H),1.54(s,6H).Compound 80: the synthesis of reference compound 13, the yield was 43%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.90(d,J=9.3,1H),7.69(m,2H),7.28(m,1H),7.09(s,1H),3.06(s,6H ),2.42(s,3H),1.54(s,6H).

化合物81:参考化合物3的合成,产率66%。1H-NMR(400MHz, CDCl3):δ=10.00(s,1H),7.98(d,J=9.3,1H),7.84(d,J=8.6,1H),7.72(d,J=8.7, 1H),7.27(d,J=6.8,1H),7.06(s,1H),3.11(s,6H),1.69(s,6H).Compound 81: the synthesis of reference compound 3, the yield is 66%. 1 H-NMR (400MHz, CDCl 3 ): δ=10.00(s, 1H), 7.98(d, J=9.3, 1H), 7.84(d, J=8.6, 1H), 7.72(d, J=8.7, 1H), 7.27(d, J=6.8, 1H), 7.06(s, 1H), 3.11(s, 6H), 1.69(s, 6H).

化合物82:参考化合物4的合成,产率49%。1H-NMR(400MHz, CDCl3):δ=7.88(d,J=9.3,1H),7.74(m,2H),7.29(d,J=9.2,1H),7.05(s,1H), 3.11(s,6H),1.65(s,6H).Compound 82: the synthesis of reference compound 4, the yield was 49%. 1 H-NMR (400MHz, CDCl 3 ): δ=7.88(d, J=9.3,1H), 7.74(m,2H), 7.29(d,J=9.2,1H), 7.05(s,1H), 3.11 (s,6H),1.65(s,6H).

底物19:参考底物1的合成,产率56%。1H-NMR(400MHz,D2O):δ=7.83(d,J=9.0,1H),7.53(m,2H),7.19(d,J=8.2,1H),7.04(s,1H),5.23(t,J=8.8, 1H),3.57(t,J=10.2,1H),3.39(t,J=10.4,1H),2.78(s,6H),1.49(s,3H),1.26(s,3H). 实施例14Substrate 19: refer to the synthesis of substrate 1, with a yield of 56%. 1 H-NMR (400MHz, D 2 O): δ=7.83(d, J=9.0,1H), 7.53(m,2H), 7.19(d,J=8.2,1H), 7.04(s,1H), 5.23(t, J=8.8, 1H), 3.57(t, J=10.2, 1H), 3.39(t, J=10.4, 1H), 2.78(s, 6H), 1.49(s, 3H), 1.26(s ,3H). Example 14

底物20的合成:Synthesis of Substrate 20:

Figure BDA0003784463820000201
Figure BDA0003784463820000201

化合物83:在氩气保护下,将NaH(0.13g,3.2mmol)称入干燥的三口的烧瓶中,将其溶解在20ml THF中。在冰浴条件下,将膦酰乙酸三乙酯(0.73ml, 3.6mmol)溶于5ml THF中,逐滴加入反应瓶中,0℃下搅拌30min,然后将化合物14(0.4g,1.8mmol)溶于10ml THF中,逐滴加入反应瓶中。反应逐渐恢复室温,带反应完全后,加水淬灭反应,EA萃取(100ml×3),合并有机相,无水硫酸钠干燥。减压除去溶剂,经柱色谱分离得到化合物83(0.46g,产率90%)。1H NMR(400MHz,CDCl3):δ=7.57(m,2H),6.68(m,3H),4.28(q, J=7.1,2H),3.04(s,6H),1.41(s,6H),1.34(t,J=7.1,3H).Compound 83: under argon protection, NaH (0.13 g, 3.2 mmol) was weighed into a dry three-necked flask, and dissolved in 20 ml of THF. Under ice bath conditions, triethyl phosphonoacetate (0.73ml, 3.6mmol) was dissolved in 5ml THF, added dropwise to the reaction flask, stirred at 0°C for 30min, and compound 14 (0.4g, 1.8mmol) Dissolve in 10ml THF and add dropwise to the reaction flask. The reaction gradually returned to room temperature. After the reaction was complete, the reaction was quenched by adding water, extracted with EA (100ml×3), and the organic phases were combined and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure, and compound 83 (0.46 g, yield 90%) was obtained by column chromatography. 1 H NMR (400MHz, CDCl 3 ): δ=7.57(m,2H),6.68(m,3H),4.28(q, J=7.1,2H),3.04(s,6H),1.41(s,6H) ,1.34(t,J=7.1,3H).

化合物84:将化合物83(1.0g,3.5mmol)溶解于30ml异丙醇中,加入10ml NaOH溶液(1M),室温搅拌1h。带反应完全后,调节pH=7,减压除去溶剂,DCM萃取(100ml×3),合并有机相,无水硫酸钠干燥,减压除去溶剂,经柱色谱分离得到化合物84(0.87g,产率为96%)。1H NMR(400MHz,CDCl3):δ=7.56(m,2H),6.63(m,3H),3.02(s,6H),1.39(s,6H).Compound 84: Dissolve compound 83 (1.0 g, 3.5 mmol) in 30 ml of isopropanol, add 10 ml of NaOH solution (1 M), and stir at room temperature for 1 h. After the reaction was complete, adjust the pH to 7, remove the solvent under reduced pressure, extract with DCM (100ml×3), combine the organic phases, dry over anhydrous sodium sulfate, remove the solvent under reduced pressure, and separate by column chromatography to obtain compound 84 (0.87g, yield The rate is 96%). 1 H NMR (400MHz, CDCl 3 ): δ=7.56(m,2H), 6.63(m,3H), 3.02(s,6H), 1.39(s,6H).

化合物85:将化合物84(0.15g,0.58mmol)和S-(三苯甲基)-D-半胱氨酸甲酯(0.24g,0.64mmol)溶于20ml DMF中,分别加入EDC(0.36g,1.9mmol) 和DMAP(0.18g,1.5mmol),在氩气保护下,反应3h。待反应完全后,减压除去有机溶剂,经柱色谱分离得到化合物85(0.32g,89%)。1H NMR(400 MHz,CDCl3):δ=7.53(d,J=8.5,1H),7.44(d,J=15.6,1H),7.39(m,6H),7.28(m, 8H),7.21(m,4H),6.80(d,J=15.6,1H),6.67(m,2H),6.22(d,J=7.8,1H),4.72 (m,1H),3.73(s,3H),3.03(s,6H),1.39(d,J=4.3,6H).Compound 85: Dissolve compound 84 (0.15g, 0.58mmol) and S-(trityl)-D-cysteine methyl ester (0.24g, 0.64mmol) in 20ml DMF, add EDC (0.36g , 1.9mmol) and DMAP (0.18g, 1.5mmol), under the protection of argon, reacted for 3h. After the reaction was complete, the organic solvent was removed under reduced pressure, and compound 85 (0.32 g, 89%) was obtained by column chromatography. 1 H NMR (400 MHz, CDCl 3 ): δ=7.53(d, J=8.5,1H),7.44(d,J=15.6,1H),7.39(m,6H),7.28(m,8H),7.21 (m,4H),6.80(d,J=15.6,1H),6.67(m,2H),6.22(d,J=7.8,1H),4.72 (m,1H),3.73(s,3H),3.03 (s,6H),1.39(d,J=4.3,6H).

化合物86:将化合物85(0.13g,0.21mmol)溶于10ml DCM中,冰浴条件下,分别加入Ph3PO(0.12g,0.42mmol),Tf2O(360ul,2.1mmol),搅拌 1h后,减压除去有机溶剂,经柱色谱分离得到化合物85(46mg,61%)。1H- NMR(400MHz,CDCl3):δ=7.52(d,J=8.7,1H),7.39(d,J=13.9,1H),7.30(d, J=13.9,1H),6.96(d,J=2.4,1H),6.87(dd,J=8.7,2.4,1H),5.20(dd,J=9.6,7.7,1H), 3.70(s,3H),3.56(dd,J=9.9,9.0,1H),3.36(dd,J=11.0,7.8,1H),2.98(s,6H),1.45(s, 3H),1.39(s,3H).Compound 86: Dissolve compound 85 (0.13g, 0.21mmol) in 10ml of DCM, add Ph 3 PO (0.12g, 0.42mmol) and Tf 2 O (360ul, 2.1mmol) respectively under ice-bath conditions, and stir for 1h , the organic solvent was removed under reduced pressure, and compound 85 (46 mg, 61%) was obtained by column chromatography. 1 H-NMR (400MHz, CDCl 3 ): δ=7.52(d, J=8.7,1H), 7.39(d, J=13.9,1H), 7.30(d, J=13.9,1H), 6.96(d, J=2.4,1H),6.87(dd,J=8.7,2.4,1H),5.20(dd,J=9.6,7.7,1H), 3.70(s,3H),3.56(dd,J=9.9,9.0, 1H), 3.36(dd, J=11.0, 7.8, 1H), 2.98(s, 6H), 1.45(s, 3H), 1.39(s, 3H).

底物20:将50mg化合物86溶于2ml乙醇中,加入6ml 10mM NH4HCO3溶液,加入25mg酯酶,37℃搅拌19h,反应完全后,减压除去溶剂,经柱色谱分离得到底物(46mg,96%)。1H-NMR(400MHz,D2O):δ=7.50(d, J=8.6,1H),7.36(d,J=11.9,1H),7.29(d,J=11.9,1H),6.93(d,J=2.6,1H),6.85(dd, J=8.6,2.2,1H),5.22(dd,J=9.2,7.6,1H),3.56(dd,J=10.9,10.0,1H),3.36(dd, J=10.9,8.8,1H),3.02(s,6H),1.46(s,3H),1.40(s,3H).Substrate 20: Dissolve 50mg of compound 86 in 2ml of ethanol, add 6ml of 10mM NH 4 HCO 3 solution, add 25mg of esterase, stir at 37°C for 19h, after the reaction is complete, remove the solvent under reduced pressure, and separate by column chromatography to obtain the substrate ( 46 mg, 96%). 1 H-NMR (400MHz, D 2 O): δ=7.50(d, J=8.6,1H), 7.36(d, J=11.9,1H), 7.29(d, J=11.9,1H), 6.93(d ,J=2.6,1H),6.85(dd, J=8.6,2.2,1H),5.22(dd,J=9.2,7.6,1H),3.56(dd,J=10.9,10.0,1H),3.36(dd , J=10.9,8.8,1H),3.02(s,6H),1.46(s,3H),1.40(s,3H).

实施例15Example 15

底物21的合成:Synthesis of Substrate 21:

Figure BDA0003784463820000211
Figure BDA0003784463820000211

底物21:参考底物20的合成路线,其中,仅将原料膦酰乙酸三乙酯替换为反式-乙基-4-(二乙基膦酰)巴豆酸酯,其他操作方法和原料相同。1H-NMR(400 MHz,D2O):δ=7.60(d,J=9.6,1H),7.33(d,J=10.9,1H),7.29(m,1H),7.12(m, 2H),6.93(d,J=8.6,1H),6.85(d,J=8.6,1H),5.26(d,J=7.6,1H),3.66(dd,J=8.8,8.0, 1H),3.39(dd,J=9.6,8.6,1H),3.03(s,6H),1.44(s,3H),1.39(s,3H).Substrate 21: Refer to the synthetic route of substrate 20, wherein only the raw material triethyl phosphonoacetate is replaced by trans-ethyl-4-(diethylphosphono)crotonate, and other operating methods are the same as the raw materials . 1 H-NMR (400 MHz, D 2 O): δ = 7.60 (d, J = 9.6, 1H), 7.33 (d, J = 10.9, 1H), 7.29 (m, 1H), 7.12 (m, 2H) ,6.93(d,J=8.6,1H),6.85(d,J=8.6,1H),5.26(d,J=7.6,1H),3.66(dd,J=8.8,8.0,1H),3.39(dd ,J=9.6,8.6,1H), 3.03(s,6H),1.44(s,3H),1.39(s,3H).

实施例16Example 16

不同萤光素酶蛋白质的表达与纯化Expression and purification of different luciferase proteins

为测定所合成新型萤光素酶底物的效用,将编码不同萤光素酶(氨基酸序列如图1所示,依次为:Fluc、x5g、x5r、Eluc以及CBR2)的基因序列通过酶切连接的方法克隆至pCDFDuet1载体,所选择酶切位点为BamHI和Acc65I。构建所得不同萤光素酶表达载体经DNA测序正确后的质粒转化至BL21(DE3) 进行蛋白质的表达:挑取转化所得菌落至试管过夜培养,按照1%的比例接1 mL菌液至100mL LB培养基,37℃、220rpm摇床培养,当菌液OD600值到达 0.6时,加入IPTG(终浓度为1mM)诱导蛋白质表达,18℃诱导24~48h。表达结束后离心收集菌体,将菌体重悬至适量His Buffer A,超声波裂解菌体, 12000rpm 4℃离心20min,将蛋白上清液分批次加到亲和柱中;加入5倍柱体积含有50mM咪唑的洗杂缓冲液去除绝大多数杂蛋白;接着用含300mM咪唑的洗脱缓冲液洗脱目的蛋白质,根据Bradford显色过程收取目的蛋白,标记后置于冰上备用;利用BCA法测定纯化所得蛋白质浓度待用。在纯化蛋白浓度确定之后,通过SDS-PAGE的方式验证纯化所得蛋白的大小和纯度。图2为纯化所得不同萤光素酶蛋白质电泳图,电泳结果显示存在略小于66.2kDa的蛋白质,这与萤光素酶62kDa的大小一致,符合预期;另一方面,图2显示不同萤光素酶的纯度理想,基本不存在杂蛋白。In order to determine the effectiveness of the new luciferase substrates synthesized, the gene sequences encoding different luciferases (the amino acid sequence is shown in Figure 1, followed by: Fluc, x5g, x5r, Eluc and CBR2) were connected by enzyme digestion Cloned into the pCDFDuet1 vector by the method, and the selected enzyme cutting sites were BamHI and Acc65I. The constructed different luciferase expression vectors were transformed into BL21(DE3) with correct DNA sequencing plasmids for protein expression: Pick the transformed colonies and culture them overnight in test tubes, and add 1 mL of bacterial liquid to 100 mL of LB at a ratio of 1%. The culture medium was cultured on a shaker at 37°C and 220 rpm. When the OD 600 value of the bacterial solution reached 0.6, IPTG (final concentration: 1 mM) was added to induce protein expression, and induced at 18°C for 24-48 hours. After the expression, the bacteria were collected by centrifugation, resuspended to an appropriate amount of His Buffer A, ultrasonically lysed, centrifuged at 12000rpm at 4°C for 20min, and the protein supernatant was added to the affinity column in batches; add 5 times the column volume containing 50mM imidazole wash buffer to remove most of the impurity proteins; then the target protein was eluted with 300mM imidazole elution buffer, and the target protein was collected according to the Bradford chromogenic process, labeled and placed on ice for later use; determined by BCA method Purify the resulting protein concentration for use. After the concentration of the purified protein was determined, the size and purity of the purified protein were verified by SDS-PAGE. Figure 2 is the electrophoresis diagram of different purified luciferase proteins. The electrophoresis results show that there is a protein slightly smaller than 66.2kDa, which is consistent with the size of luciferase 62kDa, as expected; on the other hand, Figure 2 shows that different luciferases The purity of the enzyme is ideal, and there is basically no foreign protein.

实施例17Example 17

底物1、底物3、底物5以及底物19分别与不同萤光素酶的反应Reaction of substrate 1, substrate 3, substrate 5 and substrate 19 with different luciferases

将不同萤光素酶蛋白稀释至0.2mM,在黑色96孔板中加入不同萤光素酶 (0.2mM,40mL),再加入ATP(8mM,10mL)和MgSO4(32mM,10 mL),最后加入终浓度为100μM的底物立即使用BioTek Neo2酶标仪进行测试,测定相对发光强度。测试结果如图3所示,测试结果显示:底物1、底物3 底物5、底物19与萤火虫萤光素酶(Fluc)反应,均获得较高的发光强度。Dilute different luciferase proteins to 0.2mM, add different luciferases (0.2mM, 40mL) to black 96-well plates, then add ATP (8mM, 10mL) and MgSO 4 (32mM, 10mL), and finally After adding the substrate with a final concentration of 100 μM, it was immediately tested using a BioTek Neo2 microplate reader to determine the relative luminescence intensity. The test results are shown in FIG. 3 , and the test results show that: Substrate 1, Substrate 3, Substrate 5, and Substrate 19 react with firefly luciferase (Fluc), all of which obtain higher luminous intensities.

实施例18Example 18

底物1、底物3、底物5以及底物19分别与Fluc反应在30min内随时间的变化Substrate 1, Substrate 3, Substrate 5, and Substrate 19 reacted with Fluc in 30 min over time

将纯化所得Fluc蛋白稀释至0.5mM,在白色96孔板中加入Fluc(0.5mM, 40mL),再加入ATP(8mM,10mL)和MgSO4(32mM,10mL),最后用BioTek Neo2酶标仪的灌注系统加入终浓度为100μM的不同底物后立即进行发光强度测试,间隔20秒测定一次,连续测试30min,测试结果如图4所示:相同测试条件下,发光强度由强到弱顺序为底物3>底物5>底物1>底物19 (不考虑PMT检测器不同波段量子产率差异);底物3加入反应体系后发光强度在第一分钟内稍有下降,之后基本保持稳定;底物5反应过程与底物3基本一致;底物1与Fluc反应发光强度起初稍有下降,之后基本保持稳定;底物19 与Fluc反应发光强度基本保持稳定。Dilute the purified Fluc protein to 0.5mM, add Fluc (0.5mM, 40mL) to a white 96-well plate, then add ATP (8mM, 10mL) and MgSO 4 (32mM, 10mL), and finally use the BioTek Neo2 microplate reader to After adding different substrates with a final concentration of 100 μM to the perfusion system, the luminous intensity test was carried out immediately, and the measurement was performed at intervals of 20 seconds, and the test was continued for 30 minutes. Substance 3 > Substrate 5 > Substrate 1 > Substrate 19 (without considering the difference in quantum yield of different bands of PMT detectors); after substrate 3 was added to the reaction system, the luminous intensity decreased slightly in the first minute, and then remained basically stable ; The reaction process of substrate 5 is basically the same as that of substrate 3; the luminescence intensity of the reaction between substrate 1 and Fluc decreased slightly at first, and then basically remained stable; the luminescence intensity of substrate 19 and Fluc remained basically stable.

实施例19Example 19

底物1、底物3、底物5、底物7、底物16、底物19以及底物20分别与Fluc反应发射光谱Substrate 1, Substrate 3, Substrate 5, Substrate 7, Substrate 16, Substrate 19 and Substrate 20 respectively react with Fluc emission spectra

将纯化所得Fluc蛋白稀释至2mM,在白色96孔板中加入Fluc(2mM,40 mL),再加入ATP(8mM,10mL)和MgSO4(32mM,10mL),最后加入终浓度为100μM的不同底物进行发射光谱光谱扫描,测试过程用BioTek Neo2 酶标仪进行。Dilute the purified Fluc protein to 2mM, add Fluc (2mM, 40 mL) to a white 96-well plate, then add ATP (8mM, 10mL) and MgSO 4 (32mM, 10mL), and finally add different bases with a final concentration of 100μM The substances were scanned by emission spectrum, and the test process was carried out with BioTek Neo2 microplate reader.

测试结果如图5所示,所得发射光谱显示:底物1与Fluc反应发射峰最大值对应波长为650nm;底物3与Fluc反应发射峰最大值对应波长为660nm;底物5与Fluc反应发射峰最大值对应波长为655nm;底物7与Fluc反应发射峰最大值对应波长为670nm;底物16与Fluc反应发射峰最大值对应波长为680 nm;底物19与Fluc反应发射峰最大值对应波长为750nm;底物20与Fluc反应发射峰最大值对应波长为745nm。The test results are shown in Figure 5, and the obtained emission spectrum shows: the wavelength corresponding to the maximum emission peak of the reaction between substrate 1 and Fluc is 650nm; the maximum wavelength of the emission peak corresponding to the reaction between substrate 3 and Fluc is 660nm; The wavelength corresponding to the peak maximum value is 655nm; the corresponding wavelength of the maximum emission peak of the reaction between substrate 7 and Fluc is 670nm; the corresponding wavelength of the maximum emission peak of the reaction between substrate 16 and Fluc is 680 nm; the maximum emission peak of the reaction between substrate 19 and Fluc corresponds to The wavelength is 750nm; the wavelength corresponding to the maximum emission peak of the reaction between substrate 20 and Fluc is 745nm.

上述相同条件下,测试了萤光素(

Figure BDA0003784463820000231
购自于毕得医药) 与x5g和x5r反应的发射峰,测试结果显示萤光素与x5g反应发射峰最大值对应波长为560nm,萤光素与x5r反应发射峰最大值对应波长为610nm,与文献 (Branchini,Ablamsky et al.2007)报道结果一致。Under the same conditions as above, luciferin (
Figure BDA0003784463820000231
(purchased from Beide Pharmaceuticals) and x5g and x5r reaction emission peaks, the test results show that the maximum emission peak corresponding to the wavelength of 560nm for the reaction between luciferin and x5g, and the corresponding wavelength for the maximum emission peak of the reaction between luciferin and x5r is 610nm, and The literature (Branchini, Ablamsky et al.2007) reported the same results.

综上所述,本发明的一系列新型萤光素酶底物波长达到了远红或近红外波段,该波段光子组织穿透能力强,在活体成像中具有很大的应用价值。To sum up, the wavelength of a series of novel luciferase substrates of the present invention reaches the far-red or near-infrared band, which has strong photon tissue penetration ability and has great application value in in vivo imaging.

实施例20Example 20

底物1、底物3、底物5以及底物19在HeLa细胞系中的显微成像测试Microscopic imaging test of substrate 1, substrate 3, substrate 5 and substrate 19 in HeLa cell line

将Fluc基因序列通过酶切的方法克隆至pEGFP-C1载体,所选择酶切位点为NheI和NotI。构建所得质粒pEGFP-Fluc经DNA测序正确后的质粒转化至 DH5a,利用无内毒素质粒大提试剂盒(天根生化科技有限公司)进行质粒抽提,抽屉所得所得质粒利用酶标仪(BioTek Neo2)测定浓度,-20℃冰箱冻存备用。将HeLa细胞系(购自中国科学院典型培养物保藏委员会细胞库)传代至玻璃底96孔板,在CO2培养箱中用含10%胎牛血清(FBS)及链霉素和青霉素高糖培养基(DMEM)培养,生长达到50-60%汇合度时进行质粒转染,转染使用Hieff TransTM(购自Yensen)进行,操作过程按照标准操作规程执行。转染后 48h进行显微镜成像:所使用显微镜为Nikon Ti2,镜头为Nikon 100倍油镜 (NA=1.40),相机使用Prime95B sCMOS相机(TELEDYNE PHOTOMETRICS)。测试开始时用HBSS buffer将不同底物溶解至200μM,并将DMEM培养基更换为60μL HBSS buffer(含10mM葡萄糖),测试开始后先用明场寻找合适的视野并进行拍摄,之后分别加入60μL配制好的底物溶液,随即开始收集发光信号。底物3和底物5对应样品的曝光时间为1min,,底物1对应样品曝光时间为2min,底物19对应样品曝光时间为5min,至此便可获得图6所示图像,需要注意的是,发光信号的收集必须在严格的避光环境中进行。The Fluc gene sequence was cloned into the pEGFP-C1 vector by restriction digestion, and the restriction restriction sites selected were NheI and NotI. The constructed plasmid pEGFP-Fluc was transformed into DH5a after the correct DNA sequencing, and the plasmid was extracted using the endotoxin-free plasmid extraction kit (Tiangen Biochemical Technology Co., Ltd.). ) to determine the concentration, and store in a -20°C refrigerator for later use. Passage the HeLa cell line (purchased from the cell bank of the Type Culture Collection Committee of the Chinese Academy of Sciences) to a glass-bottomed 96-well plate in a CO2 incubator with a high-glucose medium containing 10% fetal bovine serum (FBS) and streptomycin and penicillin (DMEM) culture, plasmid transfection was carried out when the growth reached 50-60% confluence, transfection was carried out using Hieff Trans TM (purchased from Yensen), and the operation process was performed according to standard operating procedures. Microscope imaging was carried out 48 hours after transfection: the microscope used was Nikon Ti2, the lens was Nikon 100 times oil lens (NA=1.40), and the camera used Prime95B sCMOS camera (TELEDYNE PHOTOMETRICS). At the beginning of the test, dissolve the different substrates to 200 μM with HBSS buffer, and replace the DMEM medium with 60 μL of HBSS buffer (containing 10 mM glucose). A good substrate solution, then began to collect luminescent signals. The exposure time for the samples corresponding to substrate 3 and substrate 5 is 1 min, the exposure time for the sample corresponding to substrate 1 is 2 min, and the exposure time for the sample corresponding to substrate 19 is 5 min. At this point, the image shown in Figure 6 can be obtained. It should be noted that , the collection of luminescent signals must be carried out in a strict light-proof environment.

图6显示,HeLa细胞系在转染pEGFP-Fluc质粒后48小时便会有较高水平的Fluc表达,底物1、底物3、底物5和底物19在活细胞中的发光信号强度 (不考虑相机在该波段的量子产率较低)与蛋白质水平的测试结果一致。综上所述,本发明的不同底物均具有良好的细胞渗透性,均可用于活细胞中的测试。Figure 6 shows that the HeLa cell line will have a higher level of Fluc expression 48 hours after transfection with the pEGFP-Fluc plasmid, and the luminescent signal intensity of substrate 1, substrate 3, substrate 5 and substrate 19 in living cells (regardless of the low quantum yield of the camera in this band) is consistent with the test results at the protein level. In summary, the different substrates of the present invention have good cell permeability and can be used for testing in living cells.

实施例21Example 21

不同浓度底物1、底物3、底物5以及底物19在HEK293T细胞系中的测试结果Test results of different concentrations of substrate 1, substrate 3, substrate 5 and substrate 19 in HEK293T cell line

参考实施例19中的细胞培养方法,在HEK293T细胞系中进行不同浓度底物的测试。将HEK293T细胞传代至24孔板,细胞生长达到汇合度为50-60%时进行质粒转染,转染后36h进行测试,测试开始时弃去培养基,用PBS对细胞进行1次清洗,然后加入细胞裂解液(70μL裂解液/cm2细胞)置于冰上裂解5 min(期间可轻轻拍打震荡),4℃12000rpm离心5min取上清液进行测试。在 384孔白色发光板中每孔加入10μL裂解上清液和15μL活性分析缓冲液混匀,各孔加入15μL底物溶液后立即测试发光强度,测试结果见图7。Referring to the cell culture method in Example 19, different concentrations of substrates were tested in the HEK293T cell line. Passage HEK293T cells to a 24-well plate, transfect the plasmid when the cells grow to a confluence of 50-60%, and test 36 hours after transfection, discard the medium at the beginning of the test, wash the cells once with PBS, and then Add cell lysate (70 μL lysate/cm2 cells) and place on ice to lyse for 5 min (during this period, gently tap and shake), centrifuge at 12,000 rpm at 4°C for 5 min to take the supernatant for testing. Add 10 μL of lysed supernatant and 15 μL of activity assay buffer to each well of a 384-well white luminescent plate and mix well. After adding 15 μL of substrate solution to each well, test the luminescence intensity immediately. The test results are shown in Figure 7.

测试结果显示:HEK293T细胞中的底物1、底物3、底物5、和底物19的发光信号强度,与蛋白质水平的测试结果一致;不同浓度底物测试结果显示,当底物浓度小于1μM时亦可以检测到发光信号,也即,本发明不同底物在细胞中均具有很好的应用前景。The test results show that: the luminescent signal intensity of substrate 1, substrate 3, substrate 5, and substrate 19 in HEK293T cells is consistent with the test results at the protein level; the test results of different concentrations of substrates show that when the substrate concentration is less than Luminescent signals can also be detected at 1 μM, that is, the different substrates of the present invention all have good application prospects in cells.

该实施例中所涉及不同溶液对应成分为:The corresponding components of different solutions involved in this embodiment are:

活性分析缓冲液:15mM磷酸钾(pH 7.8)、25mM双甘氨肽、15mM MgSO4、 4mM EGTA、2mM ATP;Activity assay buffer: 15mM potassium phosphate (pH 7.8), 25mM glycylglycine, 15mM MgSO 4 , 4mM EGTA, 2mM ATP;

细胞裂解液:25mM双甘氨肽(pH 7.8)、15mM MgSO4、4mM EGTA、1% Triton X-100;Cell lysate: 25mM glycylglycine (pH 7.8), 15mM MgSO 4 , 4mM EGTA, 1% Triton X-100;

底物溶液:25mM双甘氨肽(pH 7.8)、15mM MgSO4、4mM EGTA、0.1 mM底物X。Substrate solution: 25 mM glycylglycine (pH 7.8), 15 mM MgSO 4 , 4 mM EGTA, 0.1 mM substrate X.

实施例22Example 22

底物X在小鼠中的测试结果Substrate X test results in mice

将实施例20中所得无内毒素质粒pEGFP-Fluc通过肌肉电转的方式递送到 ICR小鼠腿部,每条腿外侧分别电转12μg质粒,电转过程使用活体基因导入仪(上海塔瑞莎健康科技有限公司)按照标准操作流程进行,电转完成后待小鼠从麻醉状态苏醒后送回动物房饲养,2天后使用IVIS Spectrum CT活体成像系统进行测试。测试过程如下:使用戊巴比妥钠对小鼠进行麻醉,待小鼠麻醉后腹腔注射100μL 10mM不同底物(PBS溶解,0.22μm滤膜进行过滤),注射5min后使用活体成像仪进行测试。测试结果如图8所示:图B中统计了注射底物3或5后,不同样本的发光强度,结果表明注射底物3的小鼠双腿部均检测到较强的发光信号,注射底物5的小鼠亦检测到发光信号,并且注射底物 3的小鼠双腿发光强度高于注射底物5的小鼠双腿发光强度。The endotoxin-free plasmid pEGFP-Fluc obtained in Example 20 was delivered to the legs of ICR mice by means of muscle electroporation, and 12 μg of the plasmid was electroporated on the outer side of each leg. The electroporation process used a living gene transfer instrument (Shanghai Tarisa Health Technology Co., Ltd. Company) followed the standard operating procedures. After the electroporation was completed, the mice were recovered from anesthesia and returned to the animal room for feeding. Two days later, the IVIS Spectrum CT in vivo imaging system was used for testing. The test process is as follows: the mice were anesthetized with pentobarbital sodium, and after the mice were anesthetized, 100 μL of 10 mM different substrates (dissolved in PBS, filtered with a 0.22 μm filter membrane) were injected intraperitoneally, and the in vivo imager was used for testing after 5 minutes of injection. The test results are shown in Figure 8: in Figure B, the luminescence intensities of different samples were counted after injection of substrate 3 or 5, and the results showed that strong luminescence signals were detected in both legs of mice injected with substrate 3, and the injected bottom The luminescent signal was also detected in the mice injected with Substance 5, and the luminous intensity of the legs of the mice injected with Substrate 3 was higher than that of the mice injected with Substrate 5.

综上所述,本发明所介绍不同底物具有良好的组织渗透性,在活体小动物成像中具有很好的应用前景。In summary, the different substrates introduced in the present invention have good tissue permeability and have good application prospects in live small animal imaging.

Claims (10)

1. A luciferase substrate having a structure represented by the following formula (I):
Figure FDA0003784463810000011
in the formula,
r and R 1 Together and/or R and R 2 Together form a substituted or unsubstituted alicyclic ring, a substituted or unsubstituted alicyclic heterocyclic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted aromatic heterocyclic ring;
or R and R 1 Or R and R 2 When a substituted or unsubstituted alicyclic ring, a substituted or unsubstituted alicyclic heterocyclic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted aromatic heterocyclic ring is not formed, R is: hydroxy, or-NR a R b ,R a 、R b Each independently selected from hydrogen, or alkyl, R 1 、R 2 Are the same or different and are each independently-H, hydroxy, alkyl, halo;
the substituents in the "substituted or unsubstituted alicyclic ring", "substituted or unsubstituted aromatic ring" are the same or different and are each independently selected from the group consisting of a hydroxyl group, an amino group, an alkyl group, an alkylamino group, a halogen group, a cyano group:
n is 0,1, 2, or 3;
wherein,
the alkyl group in the "alkyl group" or "alkylamino group" is C 1 -C 10 Straight chain alkyl or C 3 -C 10 A branched alkyl group; preferably, is C 1 -C 7 Straight chain alkyl or C 3 -C 7 A branched alkyl group; preferably, is C 1 -C 5 Straight chain alkyl or C 1 -C 5 A branched alkyl group; preferably selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1-methylbutyl,2-methylbutyl, 3-methylbutyl, isopentyl, 1-ethylpropyl, neopentyl, n-hexyl, 1-methylpentyl, 2-methylpentyl 3-methylpentyl, isohexyl, 1-dimethylbutyl, 2-dimethylbutyl, 3-dimethylbutyl, 1, 2-dimethylbutyl 1, 3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 2-dimethylpentyl, 3-dimethylpentyl, 2, 4-dimethylpentyl, 3-ethylpentyl or 2, 3-trimethylbutyl;
the alicyclic ring is a saturated or unsaturated 4-to 10-membered monocyclic or polycyclic alicyclic ring;
the "aliphatic heterocyclic ring" is a saturated or unsaturated 4-to 10-membered (optionally 4-, 5-or 6-membered) monocyclic or polycyclic aliphatic heterocyclic ring containing at least one heteroatom selected from N, O or S on the ring;
the aromatic ring is a 5-to 10-membered monocyclic or fused bicyclic aromatic group; alternatively, the "aromatic ring" is selected from a benzene ring, a naphthalene ring, a fluorene ring, an anthracene ring, a phenanthrene ring, a biphenyl ring;
the aromatic heterocyclic ring is a 5-to 10-membered monocyclic or fused bicyclic heteroaromatic group containing at least one heteroatom selected from N, O or S on the ring; optionally, the aromatic heterocycle is selected from thiophene ring, furan ring, pyrrole ring, imidazole ring, thiazole ring, oxazole ring;
the halogen group is selected from F, cl, br and I.
2. The luciferase substrate according to claim 1, which is characterized in that;
r and R 1 Together form structures of the following formulae (I-2-1) to (I-2-6):
Figure FDA0003784463810000021
Figure FDA0003784463810000022
or R and R 2 Together form structures of the following formulae (I-2-7) to (I-2-8):
Figure FDA0003784463810000023
Figure FDA0003784463810000024
or, R and R 1 Together with R and R 2 Are formed together
Figure FDA0003784463810000025
Wherein each R' is independently selected from hydrogen, or alkyl; r' is selected from hydrogen, or alkyl.
3. The luciferase substrate of claim 1 or 2, wherein the luciferase substrate is selected from a compound of the formula:
Figure FDA0003784463810000026
Figure FDA0003784463810000031
4. a method of producing a luciferase substrate as claimed in any one of claims 1 to 3, wherein: comprising the step of reacting a compound of formula (II) with a compound of formula (III) to obtain a luciferase substrate of formula (I),
Figure FDA0003784463810000032
wherein R and R 1 、R 2 As defined in any one of claims 1 to 3, n =0;
or, the luciferase substrate comprises a product obtained by the reaction of the compound of the formula (IV) and the compound of the formula (V), and the product obtained by the hydrolysis of an ester bond and the condensation reaction of the formula (VI) is subjected to thiol protecting group removal to obtain a compound of the formula (VII), and finally, the luciferase substrate shown in the formula (I) is obtained by the enzymolysis of the ester bond;
Figure FDA0003784463810000033
wherein R and R 1 、R 2 Defined as in any one of claims 1 to 3, n =1, 2,3,m =0, 1, 2.
5. Use of the luciferase substrate as claimed in any one of claims 1 to 3 in the manufacture of an optical detection product including, but not limited to, optical probes and luminescent detection kits.
6. A bioluminescent probe comprising the luciferase substrate of any one of claims 1 to 3.
7. A luminescent detection kit comprising a luciferase substrate as claimed in any one of claims 1 to 3 or a bioluminescent probe as claimed in claim 6.
8. Use of the luciferase substrate of claim 1, the bioluminescent probe of claim 6 or the luminescent detection kit of claim 7 in an environmental assay.
9. Use of the luciferase substrate of claim 1, the bioluminescent probe of claim 6 or the luminescence detection kit of claim 7 in analytical chemistry.
10. Use of the luciferase substrate of claim 1, the bioluminescent probe of claim 6 or the luminescence detection kit of claim 7 in bioassays and assays;
preferably, the biological analysis and detection comprises the analysis and detection of cell level, tissue level, organ level and individual level of organism;
preferably, the organism comprises a bacterium, a mammalian cell, a mouse, a rat or a monkey.
CN202210938451.4A 2022-08-05 2022-08-05 Luciferase substrate and preparation method and application thereof Pending CN115745987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210938451.4A CN115745987A (en) 2022-08-05 2022-08-05 Luciferase substrate and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210938451.4A CN115745987A (en) 2022-08-05 2022-08-05 Luciferase substrate and preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN115745987A true CN115745987A (en) 2023-03-07

Family

ID=85349215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210938451.4A Pending CN115745987A (en) 2022-08-05 2022-08-05 Luciferase substrate and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN115745987A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109459A1 (en) * 2007-03-02 2008-09-12 University Of Massachusetts Luciferins
WO2012109470A2 (en) * 2011-02-09 2012-08-16 University Of Massachusetts Mutant luciferases
WO2014162157A1 (en) * 2013-04-05 2014-10-09 Ucl Business Plc Derivatives of luciferin
US20180155762A1 (en) * 2016-12-01 2018-06-07 Promega Corporation 5,5-disubstituted luciferins and their use in luciferase-based assays
CN111675724A (en) * 2020-07-21 2020-09-18 山东大学 A kind of luciferase substrate and its preparation method and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109459A1 (en) * 2007-03-02 2008-09-12 University Of Massachusetts Luciferins
WO2012109470A2 (en) * 2011-02-09 2012-08-16 University Of Massachusetts Mutant luciferases
WO2014162157A1 (en) * 2013-04-05 2014-10-09 Ucl Business Plc Derivatives of luciferin
US20180155762A1 (en) * 2016-12-01 2018-06-07 Promega Corporation 5,5-disubstituted luciferins and their use in luciferase-based assays
CN111675724A (en) * 2020-07-21 2020-09-18 山东大学 A kind of luciferase substrate and its preparation method and application

Similar Documents

Publication Publication Date Title
CN109574880B (en) Fluorescent probe and preparation method and application thereof
CN113444046B (en) Fluorescent probe and preparation method and application thereof
WO2021103700A1 (en) Nitroreductase responsive hypoxia probe compound, and preparation and application thereof
CN110498799B (en) Fluorescent probe and preparation method and application thereof
CN108219780B (en) Near-infrared fluorescent probe and preparation method and application thereof
CN110283583A (en) Gamma glutamyl transpeptidase response type molecular probe and its application
CN108504349A (en) A kind of preparation method of rhodamine hydridization carbon dots and the application in mitochondria targets identification
CN112745303A (en) Hypoxic fluorescent probe and application thereof
CN110092773A (en) A kind of oxa anthracenes derivative and its preparation method and application
Kaur et al. Indole-BODIPY: a “turn-on” chemosensor for Hg 2+ with application in live cell imaging
CN104861039A (en) Phthalocyanine compound, preparation method and application as single/two-photon fluorescent probe in cancer targeting and mitochondria labeling
JP5550035B2 (en) Luminescent substrate for luciferase with controlled wavelength and method for producing the same
Sun et al. Near-infrared dual-functional AIEgens for lipid droplets imaging in multispecies and photodynamic therapy
CN115636817B (en) Isatin derivative containing triazole ring, and preparation method and application thereof
CN109369636A (en) A two-photon fluorescent probe for distinguishing different viscosities and its preparation method and application
CN106432312A (en) Mitochondria target fluorescence probe, as well as preparation method and application thereof
CN115124557B (en) FRET hypoxia enzyme fluorescent probe based on perylene imide, preparation method and application thereof
JP2010215795A5 (en)
CN108752275B (en) pH fluorescent probe and preparation method and application thereof
CN115745987A (en) Luciferase substrate and preparation method and application thereof
CN114835737B (en) Fluorescent molecular probe for detecting nitroreductase and hydrogen peroxide in near-infrared dynamic linkage manner and preparation method and application thereof
CN114470244B (en) Preparation and use method of targeted lipid drop wash-free fluorescence imaging nano probe
CN114106027B (en) A fluoroboron fluorescent dye-tetrazine fluorescent probe and its preparation method and use
CN110724523B (en) Water-soluble fluorescent probe with tumor targeting function, synthetic method and application thereof
CN111138337B (en) Bicyclo[4.1.0]heptane nitrosourea derivatives for bioorthogonal reaction, and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination