CN115608803A - A kind of preparation method of tantalum or tantalum alloy fiber - Google Patents
A kind of preparation method of tantalum or tantalum alloy fiber Download PDFInfo
- Publication number
- CN115608803A CN115608803A CN202211233967.5A CN202211233967A CN115608803A CN 115608803 A CN115608803 A CN 115608803A CN 202211233967 A CN202211233967 A CN 202211233967A CN 115608803 A CN115608803 A CN 115608803A
- Authority
- CN
- China
- Prior art keywords
- tantalum
- wire
- tantalum alloy
- copper
- preheating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001362 Ta alloys Inorganic materials 0.000 title claims abstract description 95
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 239000000835 fiber Substances 0.000 title claims abstract description 55
- 229910052715 tantalum Inorganic materials 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 86
- 229910052802 copper Inorganic materials 0.000 claims abstract description 50
- 239000010949 copper Substances 0.000 claims abstract description 50
- 239000011889 copper foil Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000002131 composite material Substances 0.000 claims abstract description 26
- 238000004140 cleaning Methods 0.000 claims abstract description 23
- 239000003513 alkali Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000005554 pickling Methods 0.000 claims abstract description 20
- 239000002253 acid Substances 0.000 claims abstract description 17
- 238000000137 annealing Methods 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 8
- 238000007765 extrusion coating Methods 0.000 claims abstract description 8
- 230000009467 reduction Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 32
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- 238000005253 cladding Methods 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 10
- 238000005242 forging Methods 0.000 claims description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- 239000007790 solid phase Substances 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000601 superalloy Inorganic materials 0.000 claims description 2
- 238000002955 isolation Methods 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000004744 fabric Substances 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 238000001816 cooling Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000032798 delamination Effects 0.000 description 5
- 239000002585 base Substances 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- CIYRLONPFMPRLH-UHFFFAOYSA-N copper tantalum Chemical compound [Cu].[Ta] CIYRLONPFMPRLH-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
- B21C37/047—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/02—Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/103—Other heavy metals copper or alloys of copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/106—Other heavy metals refractory metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
- C23G1/20—Other heavy metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
- C23G1/20—Other heavy metals
- C23G1/205—Other heavy metals refractory metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
- C23G3/02—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
- C23G3/021—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by dipping
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Wire Processing (AREA)
Abstract
本发明公开了一种钽或钽合金纤维的制备方法,该方法包括:一、将钽丝或钽合金丝与铜箔材分别进行酸、碱清洗、烘干和预热;二、将经预热后的铜箔材对经预热后的钽丝或钽合金丝进行挤压包覆和卷绕,得到铜包覆钽丝或铜包覆钽合金丝;三、集束复合后进行锻造、拉拔的减径加工,经退火处理得到复合丝;四、酸洗后经水洗、烘干得到钽纤维或钽合金纤维。本发明通过预热和挤压包覆一次成型,使得铜隔离层与钽丝或钽合金丝的芯线之间实现冶金结合,提高了铜隔离层与芯丝之间的结合强度和结合均匀性,避免了芯丝之间的粘连、断丝,提高了钽纤维或钽合金纤维的质量,可作为可混纺型金属纤维纱线适用于辐射防护面料领域。
The invention discloses a method for preparing tantalum or tantalum alloy fibers. The method comprises: 1. cleaning tantalum wire or tantalum alloy wire and copper foil with acid and alkali, drying and preheating respectively; The heated copper foil extrudes and wraps the preheated tantalum wire or tantalum alloy wire to obtain copper-coated tantalum wire or copper-coated tantalum alloy wire; Pulled diameter reduction processing, after annealing to obtain composite wire; 4. After pickling, wash with water and dry to obtain tantalum fiber or tantalum alloy fiber. The invention realizes metallurgical bonding between the copper isolation layer and the core wire of the tantalum wire or tantalum alloy wire through preheating and extrusion coating, and improves the bonding strength and bonding uniformity between the copper isolation layer and the core wire , to avoid the adhesion and broken wires between the core wires, improve the quality of tantalum fiber or tantalum alloy fiber, and can be used as a blendable metal fiber yarn for the field of radiation protection fabrics.
Description
技术领域technical field
本发明属于金属加工技术领域,具体涉及一种钽或钽合金纤维的制备方法。The invention belongs to the technical field of metal processing, and in particular relates to a preparation method of tantalum or tantalum alloy fibers.
背景技术Background technique
钽具有密度高、抗辐照、延展性高、耐腐蚀强等物理特性及优异的生物相容性,具有广阔的应用前景。在化工、电子、电气等工业中,钽可用来替代不锈钢,寿命可比不锈钢提高几十倍,制造的电容装备取代了贵重金属铂,使所需费用大大降低。作为生物材料,钽与人体体液具有良好的生物相容性,有关文献表明:在胸外科使用钽U形钉用于闭合血管和动脉而不会发生过敏性反应,在开颅手术用于封闭头盖骨的孔洞等医学领域占钽用量大约1%。钽或钽合金丝(尤其是丝径为0.05mm以下)与植入材料杂合化后,还可提高细胞的高亲和性,进而提高骨与植入体的结合。另外,钽或钽合金对X、γ等射线具有优异的屏蔽性能,钽或钽合金纤维可与化纤混纺至面料,作为防护服使用,具有透气、透湿的特点。因此,钽金属已被广泛为生物医用、航空、航天、海洋、军工等领域。Tantalum has physical properties such as high density, radiation resistance, high ductility, strong corrosion resistance and excellent biocompatibility, and has broad application prospects. In chemical, electronic, electrical and other industries, tantalum can be used to replace stainless steel, and its service life can be increased by dozens of times compared with stainless steel. The capacitor equipment manufactured replaces the precious metal platinum, which greatly reduces the required cost. As a biological material, tantalum has good biocompatibility with human body fluids. The relevant literature shows that tantalum staples are used in thoracic surgery to close blood vessels and arteries without allergic reactions, and in craniotomy to seal the skull Medical fields such as porosity account for about 1% of tantalum usage. The hybridization of tantalum or tantalum alloy wire (especially with a wire diameter of less than 0.05mm) and implant material can also improve the high affinity of cells, thereby improving the combination of bone and implant. In addition, tantalum or tantalum alloys have excellent shielding properties against X, γ and other rays, and tantalum or tantalum alloy fibers can be blended with chemical fibers to fabrics, used as protective clothing, and have the characteristics of breathability and moisture permeability. Therefore, tantalum metal has been widely used in biomedicine, aviation, aerospace, marine, military and other fields.
采用集束拉拔工艺,可制备出微米级别的金属纤维,已广泛应用于不锈钢、镍基合金纤维等金属。该工艺首先要在金属丝材表面进行电镀铜,在拉拔过程中起到隔离作用。由于钽丝及钽合金丝耐腐蚀极好,电镀时易形成氧化膜,导致铜镀层的附着力很差,镀层不均匀,在后续拉拔过程中镀层易分层、脱落,易造成钽丝及钽合金丝之间发生粘连、断丝,后续纤维分散性差,影响使用。因此,解决隔离层的结合力和均匀性是制备集束拉拔法制备钽或钽合金纤维的关键。Micron-level metal fibers can be prepared by cluster drawing technology, which has been widely used in stainless steel, nickel-based alloy fibers and other metals. The process first requires electroplating copper on the surface of the wire, which plays an isolation role during the drawing process. Due to the excellent corrosion resistance of tantalum wire and tantalum alloy wire, it is easy to form an oxide film during electroplating, resulting in poor adhesion of the copper coating and uneven coating. Cohesion and broken wires between tantalum alloy wires will lead to poor dispersion of subsequent fibers, which will affect the use. Therefore, solving the binding force and uniformity of the isolation layer is the key to preparing tantalum or tantalum alloy fibers by the cluster drawing method.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种钽或钽合金纤维的制备方法。该方法通过预热和挤压包覆一次成型,使得铜隔离层与钽丝或钽合金丝的芯线之间实现冶金结合,提高了铜隔离层与芯丝之间的结合强度和结合均匀性,大大提高了钽纤维或钽合金纤维的质量,解决了传统电镀铜镀层不均匀、铜镀层与芯丝结合强度差、后续拉拔加工过程中易发生分层脱落现象的难题。The technical problem to be solved by the present invention is to provide a method for preparing tantalum or tantalum alloy fibers for the above-mentioned deficiencies in the prior art. This method realizes metallurgical bonding between the copper isolation layer and the core wire of the tantalum wire or tantalum alloy wire through preheating and extrusion coating, and improves the bonding strength and bonding uniformity between the copper isolation layer and the core wire , which greatly improves the quality of tantalum fiber or tantalum alloy fiber, and solves the problems of uneven copper plating, poor bonding strength between copper plating and core wire, and easy delamination and shedding in the subsequent drawing process.
为解决上述技术问题,本发明采用的技术方案为:一种钽或钽合金纤维的制备方法,其特征在于,该方法包括以下步骤:In order to solve the above technical problems, the technical solution adopted in the present invention is: a method for preparing tantalum or tantalum alloy fibers, characterized in that the method comprises the following steps:
步骤一、将钽丝或钽合金丝与铜箔材分别进行酸、碱清洗和烘干,然后分别进行预热;所述钽丝或钽合金丝的丝径为0.2mm~0.4mm,所述铜箔材的厚度为0.02mm~0.04mm;Step 1. Cleaning and drying the tantalum wire or tantalum alloy wire and the copper foil with acid and alkali respectively, and then preheating respectively; the diameter of the tantalum wire or tantalum alloy wire is 0.2mm~0.4mm, and the The thickness of the copper foil is 0.02mm~0.04mm;
步骤二、将步骤一中经预热后的铜箔材对经预热后的钽丝或钽合金丝进行挤压包覆和卷绕,得到铜包覆钽丝或铜包覆钽合金丝;
步骤三、将步骤二得到的铜包覆钽丝或铜包覆钽合金丝集束复合得到复合体,然后对复合体进行锻造、拉拔的减径加工,再经退火处理得到复合丝;Step 3, combining the copper-coated tantalum wire or copper-coated tantalum alloy wire obtained in
步骤四、将步骤三中得到的复合丝进行酸洗,经水洗、烘干后得到钽纤维或钽合金纤维。Step 4: Pickling the composite wire obtained in Step 3, washing with water and drying to obtain tantalum fibers or tantalum alloy fibers.
不同于现有包覆制备型材技术及装置主要采用较厚的金属带材(厚度0.2mm以上)对较粗棒材(直径2mm~10mm)进行包覆,且包覆完成后不再继续二次变形加工,本发明采用厚度为0.02mm~0.04mm的铜箔材对丝径0.2mm~0.4mm的钽丝或钽合金丝进行包覆,由于铜箔材与丝材的规格更小,其包覆难度更大。对此,本发明先将钽丝或钽合金丝与铜箔材分别进行酸、碱清洗和烘干、预热,然后以铜箔材作为包覆隔离层、钽丝或钽合金丝作为芯线,采用挤压包覆法使得预热后的铜箔材包覆在预热后的钽丝或钽合金丝的表面并形成牢固的原子间冶金固相结合,形成牢固不可分割的整体结构,得到铜包覆钽丝或铜包覆钽合金丝,再经集束拉拔、减径加工、退火得到多芯的复合丝,采用酸洗除去包覆的表面铜层和集束复合的包套材料,得到钽纤维或钽合金纤维,实现了铜包覆层、芯线、包套层三种材料的协同变形能力,提高了铜包覆层与丝材的结合力及包覆均匀性,避免拉拔、减径加工过程中铜包覆层的分层脱落,进而避免钽丝及钽合金丝之间发生粘连、断丝。Different from the existing cladding preparation technology and equipment, it mainly uses thicker metal strips (thickness above 0.2mm) to coat thicker rods (diameter 2mm~10mm), and does not continue the second time after cladding is completed. For deformation processing, the present invention uses copper foil with a thickness of 0.02mm~0.04mm to cover tantalum wire or tantalum alloy wire with a wire diameter of 0.2mm~0.4mm. Since the specifications of copper foil and wire are smaller, the wrapping It is more difficult to cover. In this regard, in the present invention, the tantalum wire or tantalum alloy wire and the copper foil material are respectively acid- and alkali-cleaned, dried, and preheated, and then the copper foil material is used as a coating isolation layer, and the tantalum wire or tantalum alloy wire is used as a core wire. , the extrusion coating method is used to make the preheated copper foil material coated on the surface of the preheated tantalum wire or tantalum alloy wire and form a firm interatomic metallurgical solid-phase combination, forming a firm and indivisible overall structure, and obtaining Copper-coated tantalum wire or copper-coated tantalum alloy wire, and then through cluster drawing, diameter reduction processing, and annealing to obtain multi-core composite wire, use pickling to remove the coated surface copper layer and cluster composite sheathing material to obtain Tantalum fiber or tantalum alloy fiber realizes the synergistic deformation ability of the three materials of copper cladding layer, core wire and cladding layer, improves the bonding force and coating uniformity of copper cladding layer and wire material, and avoids pulling, The delamination of the copper cladding layer during the diameter reduction process prevents adhesion and wire breakage between the tantalum wire and the tantalum alloy wire.
上述的一种钽或钽合金纤维的制备方法,其特征在于,步骤一中所述酸、碱清洗采用的酸洗液由质量含量5%~15%的草酸、质量含量3%~5%的硝酸和水组成,采用的碱洗液由质量含量5%~10%的氢氧化钠和水组成,所述酸、碱清洗的时间为20s~30s。上述酸洗液、碱洗液和酸、碱清洗时间有效去除了钽丝或钽合金丝基体与铜箔材包覆层表面的氧化层和油污,并在基体和包覆层上形成刻蚀坑,有利于增强两者的包覆结合力。The above-mentioned preparation method of tantalum or tantalum alloy fibers is characterized in that the pickling liquid used in the acid and alkali cleaning in step 1 consists of oxalic acid with a mass content of 5% to 15%, oxalic acid with a mass content of 3% to 5%. Composed of nitric acid and water, the alkali washing solution used is composed of sodium hydroxide and water with a mass content of 5% to 10%, and the acid and alkali cleaning time is 20s to 30s. The above pickling solution, alkaline cleaning solution and acid and alkali cleaning time effectively remove the oxide layer and oil stain on the surface of the tantalum wire or tantalum alloy wire substrate and the copper foil cladding layer, and form etching pits on the substrate and cladding layer , which is conducive to enhancing the coating binding force of the two.
上述的一种钽或钽合金纤维的制备方法,其特征在于,步骤一中所述钽丝或钽合金丝的预热采用保护气氛下的感应预热,且预热温度为800℃~1000℃,所述铜箔材的预热采用通电预热,且预热温度为500℃~800℃。由于钽或钽合金丝电阻率大、导电性能差,采用感应预热的升温速度快,且不会引起钽或钽合金组织性能的变化;由于铜的熔点低,高温力学性能差,过高的预热温度会导致铜箔发生变形、扭曲、断裂,同时过低的预热温度难以在包覆挤压过程实现铜、钽扩散发生冶金结合,因此两种材料选用上述两种不同的预热温度和预热方式。The above-mentioned method for preparing tantalum or tantalum alloy fibers is characterized in that the preheating of the tantalum wire or tantalum alloy wire in step 1 adopts induction preheating under a protective atmosphere, and the preheating temperature is 800°C~1000°C , the preheating of the copper foil material adopts electric preheating, and the preheating temperature is 500°C~800°C. Due to the high resistivity and poor electrical conductivity of tantalum or tantalum alloy wire, the heating speed of induction preheating is fast, and it will not cause changes in the structure and properties of tantalum or tantalum alloy; due to the low melting point of copper, poor high-temperature mechanical properties, too high The preheating temperature will lead to deformation, distortion, and fracture of the copper foil. At the same time, the preheating temperature is too low to realize the metallurgical bonding of copper and tantalum during the extrusion process. Therefore, the two materials use the above two different preheating temperatures. and preheating methods.
上述的一种钽或钽合金纤维的制备方法,其特征在于,步骤二中所述挤压包覆的过程为:将预热后的铜箔材分别设置在经预热后的钽丝或钽合金丝的上、下方,然后同时送入结合辊中在保护气氛下进行挤压,使得上、下方的铜箔材包覆在钽丝或钽合金丝的表面形成固相冶金结合;所述保护气氛为氮气、氩气或氦气。The above-mentioned method for preparing tantalum or tantalum alloy fibers is characterized in that the process of extrusion coating in
上述的一种钽或钽合金纤维的制备方法,其特征在于,所述上、下方的铜箔材中心对称地包覆在钽丝或钽合金丝的表面。通过采用对称包覆保证了铜箔材与钽丝或钽合金丝之间无间隙,且包覆层厚度均匀。The above-mentioned method for preparing tantalum or tantalum alloy fibers is characterized in that the upper and lower copper foils are center-symmetrically coated on the surface of the tantalum wire or tantalum alloy wire. By adopting symmetrical coating, it is ensured that there is no gap between the copper foil material and the tantalum wire or tantalum alloy wire, and the thickness of the coating layer is uniform.
上述的一种钽或钽合金纤维的制备方法,其特征在于,步骤三中所述复合体的芯数为1000~3000芯,复合体的包套材料为铜管、钢管或高温合金管。本发明通过控制复合体的芯数,以减少后续拉拔道次,缩短加工周期,降低生产成本,获得所需钽或钽合金纤维丝径,同时避免芯数过多造成复合体中的铜包覆钽丝或铜包覆钽合金丝发生缠绕,导致变形不一致的现象。通常,本发明中复合体的包套材料选择为耐高温、延伸率好的金属材料,且与钽、铜材料的延伸率相似,变形一致,以利于后续复合体减径加工过程的顺利进行。The above-mentioned method for preparing tantalum or tantalum alloy fibers is characterized in that the number of cores of the complex described in step 3 is 1000-3000 cores, and the cladding material of the complex is copper pipe, steel pipe or high-temperature alloy pipe. The invention controls the number of cores of the composite body to reduce subsequent drawing passes, shorten the processing cycle, reduce production costs, obtain the required tantalum or tantalum alloy fiber diameter, and avoid copper cladding in the composite body caused by too many cores Tantalum-coated wire or copper-coated tantalum alloy wire is entangled, resulting in inconsistent deformation. Usually, the cladding material of the complex in the present invention is selected to be a metal material with high temperature resistance and good elongation, which is similar to tantalum and copper materials in elongation and consistent deformation, so as to facilitate the smooth progress of the subsequent composite diameter reduction process.
上述的一种钽或钽合金纤维的制备方法,其特征在于,步骤三中所述拉拔为热拉拔,热拉拔的温度为500℃~700℃,道次加工率为30%~40%,总加工率为80%~90%,所述退火处理的温度为500℃~1000℃,保温时间为10min~30min。本发明采用热拉拔工艺,且热拉拔的温度根据包套材料的材质、复合体丝径的不同而调整,同时由于本发明的复合体中铜隔离层与芯丝实现牢固的冶金结合,克服了拉拔加工过程中的分层脱落现象,从而增大了热拉拔的道次加工率,并减少退火次数,减轻了铜钽扩散现象,进一步改善了钽或钽合金纤维的表面质量。The above method for preparing tantalum or tantalum alloy fibers is characterized in that the drawing in step 3 is hot drawing, the temperature of hot drawing is 500°C~700°C, and the pass processing rate is 30%~40 %, the total processing rate is 80%~90%, the temperature of the annealing treatment is 500°C~1000°C, and the holding time is 10min~30min. The present invention adopts a hot drawing process, and the temperature of hot drawing is adjusted according to the material of the sheath material and the wire diameter of the composite body. At the same time, because the copper isolation layer and the core wire in the composite body of the present invention realize a firm metallurgical bond, It overcomes the delamination and shedding phenomenon in the drawing process, thereby increasing the processing rate of hot drawing passes, reducing the number of annealing, reducing the diffusion of copper and tantalum, and further improving the surface quality of tantalum or tantalum alloy fibers.
上述的一种钽或钽合金纤维的制备方法,其特征在于,步骤四中所述酸洗采用的酸洗液由质量浓度25%~30%的硝酸溶液、质量浓度30%~35%的盐酸溶液和水按照1:4~5:5~8的体积比混合得到。上述组成的酸洗液有效去除了复合丝表面的集束复合包套材料以及铜包覆层,同时还腐蚀除去退火处理过程中形成的钽铜扩散层,提高了钽或钽合金纤维的质量。The above-mentioned preparation method of tantalum or tantalum alloy fibers is characterized in that the pickling solution used in the pickling in step 4 consists of nitric acid solution with a mass concentration of 25% to 30%, hydrochloric acid with a mass concentration of 30% to 35%, The solution and water are mixed according to the volume ratio of 1:4~5:5~8. The above-mentioned pickling solution effectively removes the bundled composite sheath material and the copper cladding layer on the surface of the composite wire, and also corrodes and removes the tantalum-copper diffusion layer formed during the annealing process, thereby improving the quality of the tantalum or tantalum alloy fiber.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、不同于传统的电镀铜工艺,本发明通过预热和挤压包覆一次成型,使得铜隔离层与钽丝或钽合金丝的芯线之间实现冶金结合,提高了铜隔离层与芯丝之间的结合强度和结合均匀性,克服了传统电镀铜镀层不均匀、铜镀层与芯丝结合强度差、后续拉拔加工过程中易发生分层脱落现象的难题,避免了芯丝之间的粘连、断丝,实现了钽纤维或钽合金纤维的顺利制备,大大提高了钽纤维或钽合金纤维的质量。1. Different from the traditional electroplating copper process, the present invention achieves metallurgical bonding between the copper isolation layer and the core wire of the tantalum wire or tantalum alloy wire through preheating and extrusion coating, and improves the copper isolation layer and the core wire. The bonding strength and bonding uniformity between the wires overcome the problems of uneven copper plating, poor bonding strength between the copper plating and the core wire, and easy delamination and shedding in the subsequent drawing process, and avoid the gap between the core wires. The adhesion and broken wires of the tantalum fiber or tantalum alloy fiber are realized smoothly, and the quality of the tantalum fiber or tantalum alloy fiber is greatly improved.
2、本发明通过预热和挤压包覆一次成型,克服了拉拔加工过程中的分层脱落现象,从而增大了热拉拔的道次加工率,并减少退火次数,减轻了铜钽扩散现象,进一步改善了钽或钽合金纤维的表面质量。2. The present invention overcomes the phenomenon of delamination and shedding during the drawing process by preheating and extrusion coating, thereby increasing the pass processing rate of hot drawing, reducing the number of annealing times, and reducing the copper tantalum Diffusion phenomenon further improves the surface quality of tantalum or tantalum alloy fibers.
3、本发明制备的钽纤维或钽合金纤维表面光滑,分散性好,保证了批量生产钽或钽合金纤维性能稳定性,提高了产品质量,扩大其使用范围。3. The surface of the tantalum fiber or tantalum alloy fiber prepared by the present invention is smooth and good in dispersibility, which ensures the performance stability of the mass-produced tantalum or tantalum alloy fiber, improves product quality, and expands its application range.
4、本发明制备的钽或钽合金纤维作为可混纺型金属纤维纱线,纺织具有透气、透湿性能的辐射防护面料, 对能量小于200keV的X或γ射线的防护效率大于50%,同时,本发明的制备方法比传统电镀丝集束拉拔方法工艺稳定、成本低廉,具有很好的应用价值和社会效益。4. The tantalum or tantalum alloy fiber prepared by the present invention is used as a blendable metal fiber yarn to weave a radiation protection fabric with air permeability and moisture permeability, and the protection efficiency to X or gamma rays with energy less than 200keV is greater than 50%. At the same time, Compared with the traditional electroplating wire bundle drawing method, the preparation method of the invention has stable process and low cost, and has good application value and social benefits.
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the drawings and embodiments.
附图说明Description of drawings
图1为本发明的挤压包覆和卷绕过程的工作示意图。Figure 1 is a schematic diagram of the operation of the extrusion coating and winding process of the present invention.
附图标记说明:Explanation of reference signs:
1—钽丝或钽合金丝;2—铜箔材;3—酸碱清洗槽;4—绝缘管;5—结合辊;6—铜包覆钽丝或铜包覆钽合金丝;7—冷却箱;8—收线机构。1—tantalum wire or tantalum alloy wire; 2—copper foil material; 3—acid-base cleaning tank; 4—insulation tube; 5—bonding roller; 6—copper-coated tantalum wire or copper-coated tantalum alloy wire; 7—cooling Box; 8—take-up mechanism.
具体实施方式detailed description
实施例1Example 1
如图1所示,本实施例包括以下步骤:As shown in Figure 1, this embodiment includes the following steps:
步骤一、采用自动喂料装置使得丝径为0.4mm的钽丝1和位于钽丝1上、下方且厚度为0.04mm的铜箔材2分别进入酸碱清洗槽3进行酸、碱清洗并烘干,其中,酸、碱清洗采用的酸洗液由质量含量15%的草酸、质量含量5%的硝酸和水组成,采用的碱洗液由质量含量10%的氢氧化钠和水组成,且酸、碱清洗的时间为30s,然后将烘干后的钽丝1送入加热线圈缠绕的绝缘管4中在保护气氛氮气下进行感应预热,且感应预热温度为800℃,将烘干后位于钽丝1上、下方的铜箔材2经过通电接触辊进行通电预热,且通电预热温度为500℃;Step 1. Use an automatic feeding device to make the tantalum wire 1 with a wire diameter of 0.4mm and the
步骤二、将步骤一中经预热后的铜箔材2保持设置在经预热后的钽丝1的上、下方,然后同时送入上下配合放置的结合辊5中在保护气氛氮气下进行挤压,使得上、下方的铜箔材2中心对称地包覆在钽丝1的表面形成固相冶金结合,并经收线机构8引出送入冷却箱7中进行冷却,再经卷绕机卷绕收线,得到铜包覆钽丝6;
步骤三、将3000根步骤二得到的铜包覆钽丝6集束复合在铁管中得到复合体,然后对复合体加热至500℃进行锻造,锻造的道次加工率为30%,当锻造的总加工率为80%时进行1000℃下保温30min的真空退火处理,得到直径8mm的锻坯,对锻坯加热至400℃时进行热拉拔,热拉拔的道次加工率为40%,当热拉拔的总加工率为90%时进行1000℃下保温30min的真空退火处理,得到丝径为0.6mm的复合丝;Step 3: Combine 3,000 copper-coated tantalum wires 6 obtained in
步骤四、采用由质量浓度25%的硝酸溶液、质量浓度30%的盐酸溶液和水按照1:5:8的体积比混合得到的酸洗液对步骤三中得到的复合丝进行酸洗去掉铁管和包覆铜层,然后经去离子水水洗、40℃~60℃烘干后得到3000芯、丝径为10μm的钽纤维。Step 4: pickling the composite wire obtained in step 3 to remove iron by using the pickling solution obtained by mixing nitric acid solution with a mass concentration of 25%, hydrochloric acid solution with a mass concentration of 30%, and water in a volume ratio of 1:5:8 The tube and the clad copper layer were then washed with deionized water and dried at 40°C to 60°C to obtain tantalum fibers with 3000 cores and a wire diameter of 10 μm.
本实施例的包套材料还可替换为除了铁管以外的铜管、钢管或高温合金管。The sheathing material in this embodiment can also be replaced by copper pipes, steel pipes or superalloy pipes other than iron pipes.
实施例2Example 2
如图1所示,本实施例包括以下步骤:As shown in Figure 1, this embodiment includes the following steps:
步骤一、采用自动喂料装置使得丝径为0.3mm的钽合金丝1和位于钽合金丝1上、下方且厚度为0.03mm的铜箔材2分别进入酸碱清洗槽3进行酸、碱清洗并烘干,其中,酸、碱清洗采用的酸洗液由质量含量10%的草酸、质量含量4%的硝酸和水组成,采用的碱洗液由质量含量8%的氢氧化钠和水组成,且酸、碱清洗的时间为15s,然后将烘干后的钽合金丝1送入加热线圈缠绕的绝缘管4中在保护气氛氮气下进行感应预热,且感应预热温度为900℃,将烘干后位于钽合金丝1上、下方的铜箔材2经过通电接触辊进行通电预热,且通电预热温度为900℃;Step 1. Use an automatic feeding device to make the tantalum alloy wire 1 with a wire diameter of 0.3mm and the
步骤二、将步骤一中经预热后的铜箔材2保持设置在经预热后的钽合金丝1的上、下方,然后同时送入上下配合放置的结合辊5中在保护气氛氮气下进行挤压,使得上、下方的铜箔材2中心对称地包覆在钽合金丝1的表面形成固相冶金结合,并经收线机构8引出送入冷却箱7中进行冷却,再经卷绕机卷绕收线,得到铜包覆钽合金丝6;
步骤三、将2000根步骤二得到的铜包覆钽合金丝6集束复合在铁管中得到复合体,然后对复合体加热至600℃进行锻造,锻造的道次加工率为35%,当锻造的总加工率为80%时进行600℃下保温50min的真空退火处理,得到直径10mm的锻坯,对锻坯加热至500℃时进行热拉拔,热拉拔的道次加工率为35%,当热拉拔的总加工率为90%时进行900℃下保温30min的真空退火处理,得到丝径为0.8mm的复合丝;Step 3: Combine 2,000 copper-coated tantalum alloy wires 6 obtained in
步骤四、采用由质量浓度28%的硝酸溶液、质量浓度32%的盐酸溶液和水按照1:4:6的体积比混合得到的酸洗液对步骤三中得到的复合丝进行酸洗去掉铁管和包覆铜层,然后经去离子水水洗、40℃~60℃烘干后得到2000芯、丝径为10μm的钽合金纤维。Step 4: Use the pickling solution obtained by mixing nitric acid solution with a mass concentration of 28%, hydrochloric acid solution with a mass concentration of 32%, and water in a volume ratio of 1:4:6 to pickle the composite wire obtained in step 3 to remove iron The tube and the clad copper layer were then washed with deionized water and dried at 40°C to 60°C to obtain tantalum alloy fibers with 2000 cores and a wire diameter of 10 μm.
实施例3Example 3
如图1所示,本实施例包括以下步骤:As shown in Figure 1, this embodiment includes the following steps:
步骤一、采用自动喂料装置使得丝径为0.2mm的钽合金丝1和位于钽合金丝1上、下方且厚度为0.02mm的铜箔材2分别进入酸碱清洗槽3进行酸、碱清洗并烘干,其中,酸、碱清洗采用的酸洗液由质量含量5%的草酸、质量含量3%的硝酸和水组成,采用的碱洗液由质量含量5%的氢氧化钠和水组成,且酸、碱清洗的时间为20s,然后将烘干后的钽合金丝1送入加热线圈缠绕的绝缘管4中在保护气氛氮气下进行感应预热,且感应预热温度为1000℃,将烘干后位于钽合金丝1上、下方的铜箔材2经过通电接触辊进行通电预热,且通电预热温度为800℃;Step 1. Using an automatic feeding device, the tantalum alloy wire 1 with a wire diameter of 0.2mm and the
步骤二、将步骤一中经预热后的铜箔材2保持设置在经预热后的钽合金丝1的上、下方,然后同时送入上下配合放置的结合辊5中在保护气氛氮气下进行挤压,使得上、下方的铜箔材2中心对称地包覆在钽合金丝1的表面形成固相冶金结合,并经收线机构8引出送入冷却箱7中进行冷却,再经卷绕机卷绕收线,得到铜包覆钽合金丝6;
步骤三、将1000根步骤二得到的铜包覆钽合金丝6集束复合在铁管中得到复合体,然后对复合体加热至700℃进行锻造,锻造的道次加工率为35%,当锻造的总加工率为80%时进行1000℃下保温60min的真空退火处理,得到直径10mm的锻坯,对锻坯加热至700℃时进行热拉拔,热拉拔的道次加工率为35%,当热拉拔的总加工率为90%时进行950℃下保温30min的真空退火处理,得到丝径为0.7mm的复合丝;Step 3: Combine 1,000 copper-clad tantalum alloy wires 6 obtained in
步骤四、采用由质量浓度30%的硝酸溶液、质量浓度35%的盐酸溶液和水按照1:4:5的体积比混合得到的酸洗液对步骤三中得到的复合丝进行酸洗去掉铁管和包覆铜层,然后经去离子水水洗、40℃~60℃烘干后得到1000芯、丝径为25μm的钽合金纤维。Step 4: pickling the composite wire obtained in step 3 to remove iron by using the pickling solution obtained by mixing nitric acid solution with a mass concentration of 30%, hydrochloric acid solution with a mass concentration of 35%, and water in a volume ratio of 1:4:5 The tube and the clad copper layer were then washed with deionized water and dried at 40°C to 60°C to obtain tantalum alloy fibers with 1000 cores and a wire diameter of 25 μm.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent changes made to the above embodiments according to the technical essence of the invention still belong to the protection scope of the technical solution of the invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211233967.5A CN115608803A (en) | 2022-10-10 | 2022-10-10 | A kind of preparation method of tantalum or tantalum alloy fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211233967.5A CN115608803A (en) | 2022-10-10 | 2022-10-10 | A kind of preparation method of tantalum or tantalum alloy fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115608803A true CN115608803A (en) | 2023-01-17 |
Family
ID=84863150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211233967.5A Pending CN115608803A (en) | 2022-10-10 | 2022-10-10 | A kind of preparation method of tantalum or tantalum alloy fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115608803A (en) |
-
2022
- 2022-10-10 CN CN202211233967.5A patent/CN115608803A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100508078C (en) | A production method for copper-coated aluminum material | |
CN110181138B (en) | Welding process of superconducting cables and box-type copper joints in large high-temperature superconducting current leads | |
CN111952008B (en) | Method for preparing NbTi/Cu superconducting wire by powder metallurgy method | |
CN101358351A (en) | Preparation method of nano-platinum-aluminum anti-oxidation coating for superalloy | |
CN101518872B (en) | Method for preparing Cu-Nb monofilamentary composite wire | |
CN106548831B (en) | A kind of preparation method of graphene copper composite wire material | |
CN108320834B (en) | A kind of preparation method of Cu/C composite wire | |
CN110315083A (en) | A method of quickly preparing fibre reinforced titanium alloy laminar composite | |
CN105598199B (en) | A kind of preparation method of titanium fiber | |
CN102699099B (en) | Preparation method of Cu-Nb-Ag ternary multi-core composite wire | |
CN104200926B (en) | A kind of km level MgB2The preparation method of superconducting wire | |
CN115608803A (en) | A kind of preparation method of tantalum or tantalum alloy fiber | |
CN115116673A (en) | Preparation method of copper/carbon nanotube composite wire | |
CN113571254B (en) | A kind of preparation method of ultra-fine core wire multi-core MgB2 superconducting wire tape | |
TW201350595A (en) | Bonding wire and method for manufacturing same | |
CN104299719A (en) | Single crystal copper-silver composite conductor and preparation method thereof | |
WO2024239671A1 (en) | Low-cost and high-strength bi-series superconductive wire and tape and manufacturing method therefor | |
CN113695571B (en) | Electric arc additive manufacturing method of continuous carbon fiber reinforced magnesium-based composite material | |
CN115440434A (en) | Rapid heating and rapid cooling heat treatment Nb 3 Method for coating copper on surface of Al superconducting wire | |
JPH05177243A (en) | Metallic fiber | |
CN108213108A (en) | A kind of preparation method of the high conductance copper tantalum composite wire of high intensity | |
CN101976599A (en) | Composite reinforced Bi-based high-temperature superconductive strip and preparation method thereof | |
CN108878052A (en) | A kind of preparation method of superconducting wires/strips | |
CN113089349A (en) | Production process of copper-plated steel strand | |
CN118155913B (en) | Stranded conductor with high strength and high conductivity maintained in high-temperature environment and stranded wire manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |