CN115430454A - Porous flaky carbon nitride photocatalytic material and preparation method thereof - Google Patents
Porous flaky carbon nitride photocatalytic material and preparation method thereof Download PDFInfo
- Publication number
- CN115430454A CN115430454A CN202211198103.4A CN202211198103A CN115430454A CN 115430454 A CN115430454 A CN 115430454A CN 202211198103 A CN202211198103 A CN 202211198103A CN 115430454 A CN115430454 A CN 115430454A
- Authority
- CN
- China
- Prior art keywords
- carbon nitride
- porous sheet
- carbon
- photocatalytic material
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 52
- 239000000463 material Substances 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 38
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 19
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 19
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 17
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 16
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 239000002135 nanosheet Substances 0.000 claims abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 56
- 239000000725 suspension Substances 0.000 claims description 19
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 3
- 239000002244 precipitate Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000000969 carrier Substances 0.000 abstract description 10
- 125000004433 nitrogen atom Chemical group N* 0.000 abstract description 8
- 230000009467 reduction Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 238000005232 molecular self-assembly Methods 0.000 abstract description 5
- 238000007146 photocatalysis Methods 0.000 abstract description 5
- 230000006798 recombination Effects 0.000 abstract description 5
- 238000005215 recombination Methods 0.000 abstract description 5
- 239000011941 photocatalyst Substances 0.000 abstract description 4
- 238000013032 photocatalytic reaction Methods 0.000 abstract description 4
- 230000002776 aggregation Effects 0.000 abstract description 3
- 239000000376 reactant Substances 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 238000005054 agglomeration Methods 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract 1
- 239000000370 acceptor Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 238000006722 reduction reaction Methods 0.000 description 7
- 238000010571 fourier transform-infrared absorption spectrum Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000010757 Reduction Activity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical group CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- KWVPZTJLHQKCKD-UHFFFAOYSA-N 2,3-dibromoquinoline Chemical compound C1=CC=C2N=C(Br)C(Br)=CC2=C1 KWVPZTJLHQKCKD-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000007540 photo-reduction reaction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于光催化技术领域,涉及半导体光催化剂,具体提供一种可见光光催化还原二氧化碳活性增强的含有电子供体-受体系统的多孔片状氮化碳光催化材料及其制备方法。The invention belongs to the technical field of photocatalysis, relates to a semiconductor photocatalyst, and specifically provides a porous sheet carbon nitride photocatalytic material containing an electron donor-acceptor system with enhanced activity of visible light photocatalytic reduction of carbon dioxide and a preparation method thereof.
背景技术Background technique
传统能源的大量消耗和过度的尾气排放导致的能源危机及环境问题威胁着人类生活环境,其中,二氧化碳是导致温室效应的主要气体之一;因此,如何减少大气中的CO2浓度并且有效地利用二氧化碳成为研究的热点,光催化技术将二氧化碳还原为一氧化碳和碳氢燃料,能够同时解决能源短缺与环境污染问题,引起了广泛关注。The energy crisis and environmental problems caused by the massive consumption of traditional energy and excessive exhaust emissions threaten the human living environment, among which carbon dioxide is one of the main gases that cause the greenhouse effect; therefore, how to reduce the concentration of CO 2 in the atmosphere and effectively use Carbon dioxide has become a research hotspot. Photocatalytic technology can reduce carbon dioxide to carbon monoxide and hydrocarbon fuels, which can simultaneously solve the problems of energy shortage and environmental pollution, and has attracted widespread attention.
光催化技术领域的核心是开发高活性的半导体光催化剂,近年来,氮化碳(g~C3N4)因其无金属、能带结构适中等优点在光催化领域应用广泛;但是,体相氮化碳由于光生载流子容易复合、活性位点暴露不足等缺点,仅仅表现出较弱的光催化活性。针对该问题,设计多孔片状氮化碳是提高光催化活性的有效措施之一,其中,电子供体-受体系统能有效促进分子内载流子迁移并有效抑制载流子复合,进一步提高氮化碳的光催化活性;氮化碳中七嗪环上的氮原子常被当作电子供体,为了构建高效的电子供体-受体传输系统,电子受体的选择至关重要。目前,已有一些研究报道了以硒、二溴喹啉作为电子受体,如文献“Ou.H.H,Chen.X.R,Lin.L.H,Fang.Y.X,Wang.X.C,Biomimetic donor-acceptor motifsin conjugated polymers for promoting exciton splitting and charge separation,Angew.Chem.Int.Ed.,2018,57,8729-8733.”、“Fan.X,Zhang.L,Cheng.R,Wang.M,Li.M,Zhou.Y,Shi.J,Construction of graphitic C3N4-based intramolecular Donor-Acceptor conjugated copolymers for photocatalytic hydrogen evolution,ACSCatal.,2015,5,5008-5015.”;但是,这些方法均存在不环保、成本高等问题、不利于大规模工业生产。The core of the field of photocatalysis technology is to develop highly active semiconductor photocatalysts. In recent years, carbon nitride (g~C 3 N 4 ) has been widely used in the field of photocatalysis due to its metal-free and moderate energy band structure; however, bulk Due to the disadvantages of easy recombination of photogenerated carriers and insufficient exposure of active sites, phase carbon nitride only shows weak photocatalytic activity. To solve this problem, designing porous sheet-like carbon nitride is one of the effective measures to improve photocatalytic activity. Among them, the electron donor-acceptor system can effectively promote intramolecular carrier migration and effectively inhibit carrier recombination, further improving photocatalytic activity. The photocatalytic activity of carbon nitride; the nitrogen atom on the heptazine ring in carbon nitride is often used as an electron donor. In order to construct an efficient electron donor-acceptor transport system, the choice of electron acceptor is very important. At present, some studies have reported using selenium and dibromoquinoline as electron acceptors, such as the literature "Ou.HH, Chen.XR, Lin.LH, Fang.YX, Wang.XC, Biomimetic donor-acceptor motifsin conjugated polymers for promoting exciton splitting and charge separation, Angew. Chem. Int. Ed., 2018, 57, 8729-8733.", "Fan.X, Zhang.L, Cheng.R, Wang.M, Li.M, Zhou. Y, Shi.J, Construction of graphitic C 3 N 4 -based intramolecular Donor-Acceptor conjugated copolymers for photocatalytic hydrogen evolution, ACSCatal., 2015, 5, 5008-5015.”; however, these methods are not environmentally friendly and costly Problems, not conducive to large-scale industrial production.
发明内容Contents of the invention
本发明的目的在于针对氮化碳材料自身缺陷及现有技术中存在的不足,提供一种多孔片状氮化碳光催化材料及其制备方法;本发明基于氮碳-氰基良好的吸电子特性,首次提出提出以七嗪环中氮原子作为电子供体、以氮碳-氰基为电子受体,在多孔片状氮化碳中原位构建电子供体-受体系统,使得多孔片状氮化碳光催化材料在可见光下表现出优异的光催化还原二氧化碳活性。The purpose of the present invention is to provide a porous sheet-like carbon nitride photocatalytic material and its preparation method in view of the defects of the carbon nitride material itself and the deficiencies in the prior art; characteristics, it was proposed for the first time to use the nitrogen atom in the heptazine ring as the electron donor and the nitrogen-carbon-cyano group as the electron acceptor to construct an electron donor-acceptor system in situ in the porous carbon nitride, so that the porous sheet Carbon nitride photocatalytic materials exhibit excellent photocatalytic carbon dioxide reduction activity under visible light.
为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:
一种多孔片状氮化碳光催化材料,其特征在于,所述氮化碳为多孔片状结构,其中,多孔片状氮化碳纳米片的厚度为10~60nm、孔径为0.1~0.4μm;所述氮化碳具有氮碳-氰基官能团,且氮碳-氰基官能团作为电子受体。A porous sheet-like carbon nitride photocatalytic material, characterized in that the carbon nitride has a porous sheet-like structure, wherein the porous sheet-like carbon nitride nanosheet has a thickness of 10-60 nm and a pore diameter of 0.1-0.4 μm ; The carbon nitride has a nitrogen carbon-cyano functional group, and the nitrogen carbon-cyano functional group serves as an electron acceptor.
进一步的,所述多孔片状氮化碳光催化材料在可见光下光催化还原二氧化碳为甲烷与一氧化碳。Further, the porous sheet carbon nitride photocatalytic material photocatalytically reduces carbon dioxide into methane and carbon monoxide under visible light.
上述多孔片状氮化碳光催化材料的制备方法,其特征在于,包括以下步骤:The preparation method of the above-mentioned porous sheet carbon nitride photocatalytic material is characterized in that it comprises the following steps:
步骤1、多孔片状氮化碳前驱体的制备;
步骤1.1、将三聚氰胺分散于乙醇中,得到三聚氰胺的乙醇悬浊液;将氰尿酸分散于乙醇中,得到氰尿酸的乙醇悬浊液;Step 1.1, dispersing melamine in ethanol to obtain an ethanol suspension of melamine; dispersing cyanuric acid in ethanol to obtain an ethanol suspension of cyanuric acid;
步骤1.2、将三聚氰胺的乙醇悬浊液与氰尿酸的乙醇悬浊液混合,搅拌直至形成沉淀,得到混合悬浮液;Step 1.2, mixing the ethanol suspension of melamine and the ethanol suspension of cyanuric acid, and stirring until a precipitate is formed to obtain a mixed suspension;
步骤1.3、将混合悬浮液依次进行离心、洗涤、干燥,得到多孔片状氮化碳的前驱体;Step 1.3, centrifuging, washing, and drying the mixed suspension in sequence to obtain a porous carbon nitride precursor;
步骤2、多孔片状氮化碳光催化材料的制备;
步骤2.1、将KOH溶解于乙醇与吡啶的混合溶液中,得到分散液;Step 2.1, dissolving KOH in a mixed solution of ethanol and pyridine to obtain a dispersion;
步骤2.2、将多孔片状氮化碳前驱体分散到分散液中,然后干燥蒸干,得到粉末样品;Step 2.2, dispersing the porous flaky carbon nitride precursor into the dispersion liquid, then drying and evaporating to dryness to obtain a powder sample;
步骤2.3、将粉末样品置于马弗炉内,烧结得到多孔片状氮化碳光催化材料。Step 2.3, placing the powder sample in a muffle furnace, and sintering to obtain a porous sheet carbon nitride photocatalytic material.
进一步的,步骤1.2中,所述三聚氰胺与氰尿酸的摩尔比为:(0.1~2):(0.1~2)。Further, in step 1.2, the molar ratio of melamine to cyanuric acid is: (0.1-2):(0.1-2).
进一步的,步骤1.3中,所述干燥的温度为50~70℃。Further, in step 1.3, the drying temperature is 50-70°C.
进一步的,步骤2.1中,所述KOH的质量为0.1~1g,分散液的质量浓度为1×104~5×104mg/L;所述乙醇与吡啶的混合溶液中吡啶与乙醇的体积比为1:10。Further, in step 2.1, the mass of the KOH is 0.1-1 g, the mass concentration of the dispersion is 1×10 4 to 5×10 4 mg/L; the volume of pyridine and ethanol in the mixed solution of ethanol and pyridine The ratio is 1:10.
进一步的,步骤2.2中,所述多孔片状氮化碳前驱体的质量为2~10g,干燥蒸干的温度为20~80℃。Further, in step 2.2, the mass of the porous sheet-like carbon nitride precursor is 2-10 g, and the temperature for drying and evaporating to dryness is 20-80°C.
进一步的,步骤2.3中,烧结的具体过程为:以1~5℃/min的升温速率由室温升至550℃,并在550℃下保温2~8h,然后自然冷却至室温。Further, in step 2.3, the specific process of sintering is: heating from room temperature to 550° C. at a rate of 1-5° C./min, keeping the temperature at 550° C. for 2-8 hours, and then naturally cooling to room temperature.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
1)本发明提供的含有电子供体-系统的多孔片状氮化碳光催化材料能够从三个方面显著增强光催化活性:首先,氮碳-氰基作为电子受体与氮化碳七嗪环上的氮原子之间形成独特的电子供体-受体系统,促进了光生载流子在分子内高效传输,解决了氮化碳中光生载流子复合严重的问题;其次,引入的氮碳-氰基具有独特的吸电子特性,在光催化反应中充当活性位点,促进了光催化反应高效进行;最后,由于吡啶环上氮原子的吸电子作用,环上碳原子的电子云密度降低,尤其在2位和4位上的电子云密度更低,因而环上的亲核取代反应容易发生,导致氮化碳产物呈多孔片状结构,这种多孔片状结构改善了纳米片团聚,增大了反应物与活性位点的接触机会;1) The porous sheet-like carbon nitride photocatalytic material containing the electron donor-system provided by the present invention can significantly enhance the photocatalytic activity from three aspects: first, nitrogen carbon-cyano group is used as electron acceptor and carbaheptazine nitride The nitrogen atoms on the ring form a unique electron donor-acceptor system, which promotes the efficient transport of photogenerated carriers in the molecule and solves the serious problem of recombination of photogenerated carriers in carbon nitride; secondly, the introduced nitrogen The carbon-cyano group has a unique electron-withdrawing property, which acts as an active site in the photocatalytic reaction and promotes the efficient photocatalytic reaction; finally, due to the electron-withdrawing effect of the nitrogen atom on the pyridine ring, the electron cloud density of the carbon atom on the ring Reduced, especially in the 2-position and 4-position, the electron cloud density is lower, so the nucleophilic substitution reaction on the ring is easy to occur, resulting in a porous sheet structure of the carbon nitride product, which improves the agglomeration of nanosheets , increasing the chance of contact between the reactant and the active site;
2)本发明提供的含有电子供体-系统的多孔片状氮化碳光催化材料的制备方法具有工艺简单、绿色环保并且成本低等优点;2) The preparation method of the porous carbon nitride photocatalytic material containing the electron donor-system provided by the present invention has the advantages of simple process, environmental protection and low cost;
3)本发明使用分子自组装结合碱辅助的方法制备出含有电子供体-系统的多孔片状氮化碳从而提高光催化还原二氧化碳活性的思路可在光催化领域推广。3) The present invention uses molecular self-assembly combined with alkali-assisted methods to prepare porous sheet-like carbon nitride containing electron donor-systems to improve the activity of photocatalytic reduction of carbon dioxide, which can be promoted in the field of photocatalysis.
附图说明Description of drawings
图1为实施例1中多孔片状氮化碳光催化材料的合成机理图。Fig. 1 is the synthesizing mechanism diagram of porous sheet carbon nitride photocatalyst material in
图2为实施例1与对比例1~2所制备材料的傅立叶变换红外吸收光谱(FTIR)。Fig. 2 is the Fourier transform infrared absorption spectrum (FTIR) of the materials prepared in Example 1 and Comparative Examples 1-2.
图3为实施例1与对比例1~2所制备材料的扫描电镜图(SEM);其中,(a)为实施例1,(b)为对比例1,(c)为对比例2。3 is a scanning electron microscope image (SEM) of the materials prepared in Example 1 and Comparative Examples 1-2; wherein, (a) is Example 1, (b) is Comparative Example 1, and (c) is Comparative Example 2.
图4为实施例1与对比例1~2所制备材料的电化学阻抗图(EIS)与瞬态光电流响应图;其中,(a)为为瞬态光电流响应图,(b)电化学阻抗图。Fig. 4 is the electrochemical impedance diagram (EIS) and transient photocurrent response diagram of the material prepared in
图5为实施例1与对比例1~2所制备材料在可见光辐射下的光催化二氧化碳还原性能图;其中,(a)为光催化还原二氧化碳所产生的一氧化碳性能图,(b)为光催化还原二氧化碳所产生的甲烷性能图,(c)为光催化还原二氧化碳所产生的甲烷与一氧化碳的产率图。Figure 5 is a photocatalytic carbon dioxide reduction performance diagram of the materials prepared in Example 1 and Comparative Examples 1 to 2 under visible light radiation; wherein, (a) is a carbon monoxide performance diagram produced by photocatalytic reduction of carbon dioxide, and (b) is a photocatalytic The performance diagram of methane produced by reducing carbon dioxide, (c) is the yield diagram of methane and carbon monoxide produced by photocatalytic reduction of carbon dioxide.
具体实施方式detailed description
下面将结合实施例和附图对本发明目的、技术方案与有益效果做进一步的详细说明,应理解,所举实施例的目的在于进一步阐述本发明的内容,而不能在任何意义上解释为对本发明保护范围的限制。The purpose of the present invention, technical solutions and beneficial effects will be further described in detail below in conjunction with the embodiments and accompanying drawings. Limitation of Scope of Protection.
实施例1Example 1
本实施例提供一种多孔片状氮化碳光催化材料,所述氮化碳为多孔片状结构,多孔片状氮化碳纳米片的厚度为10~60nm、孔径为0.1~0.4μm;所述氮化碳具有氮碳-氰基官能团,且氮碳-氰基官能团作为电子受体;所述多孔片状氮化碳光催化材料由分子自组装与碱辅助策略得到,其多孔片状结构与氮碳-氰基官能团的形成机理如图1所示,首先由三聚氰胺和氰尿酸通过分子自组装合成了多孔片状氮化碳前驱体,然后加入的KOH在热聚合过程中融化,释放的OH-和氮化碳边缘的氨基反应形成吸电子基团(氮碳-氰基)。This embodiment provides a porous sheet-like carbon nitride photocatalytic material, the carbon nitride is a porous sheet-like structure, the thickness of the porous sheet-like carbon nitride nanosheet is 10-60 nm, and the pore diameter is 0.1-0.4 μm; The carbon nitride has nitrogen-carbon-cyano functional groups, and the nitrogen-carbon-cyano functional groups are used as electron acceptors; the porous sheet carbon nitride photocatalytic material is obtained by molecular self-assembly and alkali-assisted strategies, and its porous sheet structure The formation mechanism of carbon-nitrogen-cyano functional groups is shown in Figure 1. First, a porous sheet-like carbon nitride precursor is synthesized by molecular self-assembly from melamine and cyanuric acid, and then the added KOH melts during thermal polymerization, and the released OH - reacts with the amino group at the edge of the carbon nitride to form an electron-withdrawing group (nitrogen-carbon-cyano).
更为具体的讲,上述多孔片状氮化碳光催化材料的制备过程包括以下步骤:More specifically, the preparation process of the above-mentioned porous sheet carbon nitride photocatalytic material includes the following steps:
步骤1、多孔片状氮化碳前驱体的制备;
步骤1.1、将5g三聚氰胺溶解于200mL乙醇中,搅拌4h直至三聚氰胺分散均匀,得到三聚氰胺的乙醇悬浊液;将5.1g氰尿酸分散于200mL乙醇中,搅拌4h直至氰尿酸分散均匀,得到氰尿酸的乙醇悬浊液;Step 1.1, dissolve 5 g of melamine in 200 mL of ethanol, stir for 4 hours until the melamine is evenly dispersed, and obtain an ethanol suspension of melamine; disperse 5.1 g of cyanuric acid in 200 mL of ethanol, stir for 4 h until the cyanuric acid is evenly dispersed, and obtain a cyanuric acid suspension ethanol suspension;
步骤1.2、将步骤1.1配制的三聚氰胺的乙醇悬浊液与氰尿酸的乙醇悬浊液混合,搅拌15min形成白色沉淀,得到混合悬浮液;其中,三聚氰胺与氰尿酸的摩尔比为1:1;Step 1.2, mix the ethanol suspension of melamine prepared in step 1.1 with the ethanol suspension of cyanuric acid, stir for 15min to form a white precipitate, and obtain a mixed suspension; wherein the molar ratio of melamine to cyanuric acid is 1:1;
步骤1.3、将步骤1.2得到的混合悬浮液离心,并用去离子水与乙醇洗涤数次,再于50℃烘箱中干燥,得到白色产物,即为多孔片状氮化碳前驱体(cyanuric acid~melamine、简记为CM);Step 1.3. Centrifuge the mixed suspension obtained in step 1.2, wash it several times with deionized water and ethanol, and then dry it in an oven at 50°C to obtain a white product, which is a porous sheet carbon nitride precursor (cyanuric acid-melamine , abbreviated as CM);
步骤2、含有电子供体-系统的多孔片状氮化碳的制备:
步骤2.1、将0.5g KOH加入到20ml乙醇与吡啶混合溶液中,其中,吡啶与乙醇的体积比为1:10;溶解后加入8g步骤1得到的多孔片状氮化碳前驱体(CM),搅拌均匀,得到分散液;Step 2.1, adding 0.5g KOH to 20ml of ethanol and pyridine mixed solution, wherein the volume ratio of pyridine and ethanol is 1:10; after dissolving, add 8g of the porous sheet carbon nitride precursor (CM) obtained in
步骤2.2、将步骤2.1得到的分散液在50℃烘箱中干燥,得到白色粉末样品;Step 2.2, drying the dispersion obtained in step 2.1 in an oven at 50°C to obtain a white powder sample;
步骤2.3、将步骤2.2得到的白色粉末样品置于马弗炉内,以2.5℃/min的升温速率由室温升至550℃,并在550℃下保温4h;完成后,自然冷却至室温,得到黄色粉末,即为含有电子供体-受体系统的多孔片状氮化碳(简记为MCN-0.5)。Step 2.3, put the white powder sample obtained in step 2.2 in a muffle furnace, raise the temperature from room temperature to 550 °C at a rate of 2.5 °C/min, and keep it at 550 °C for 4 hours; after completion, naturally cool to room temperature, A yellow powder is obtained, which is a porous carbon nitride sheet containing an electron donor-acceptor system (abbreviated as MCN-0.5).
同时,本实施例还提供对比例1与对比例2;其中,对比例1与实施例1的区别在于:步骤1中制备得前驱体直接以2.5℃/min的升温速率由室温升至550℃,并在550℃下保温4h,制得多孔片状氮化碳材料;对比例2为体相氮化碳,其制备过程为:5g三聚氰胺在研钵中研磨10分钟,放入坩埚中,在550℃煅烧4h,升温速率设置为5℃/min,烧结后得到的淡黄色粉末即为体相氮化碳。At the same time, this example also provides Comparative Example 1 and Comparative Example 2; wherein, the difference between Comparative Example 1 and Example 1 is that the precursor prepared in
对上述实施例1与对比例1~2中所得材料进行光催化还原二氧化碳活性实验,具体步骤为:首先,取30mg样品置于坩埚盖中,加入3ml乙醇超声分散5min;The photocatalytic carbon dioxide reduction activity experiment was carried out on the materials obtained in the above-mentioned Example 1 and Comparative Examples 1-2. The specific steps were as follows: first, take 30 mg of the sample and place it in the crucible lid, add 3 ml of ethanol and ultrasonically disperse it for 5 minutes;
然后,将超声分散后的样品烘干至成膜状,滴加0.5ml去离子水;Then, the sample after ultrasonic dispersion was dried to form a film, and 0.5ml deionized water was added dropwise;
最后,检查反应的气密性并将反应器抽真空,通入二氧化碳并且保持系统压力为70~80Kpa左右,开启水循环装置确保反应器温度维持在室温,设置光催化在线分析系统(Perfect Light Labsolar 6A)的反应时长和周期,打开300W的氙灯开始光催化还原二氧化碳还原实验,通过气相色谱检测二氧化碳光还原的产物。Finally, check the airtightness of the reaction and evacuate the reactor, feed carbon dioxide and keep the system pressure at about 70-80Kpa, turn on the water circulation device to ensure that the reactor temperature is maintained at room temperature, and set up a photocatalytic online analysis system (Perfect Light Labsolar 6A ) of the reaction time and cycle, turn on the 300W xenon lamp to start the photocatalytic carbon dioxide reduction experiment, and detect the carbon dioxide photoreduction product by gas chromatography.
如图2所示为实施例1与对比例1~2所制备材料的傅立叶变换红外吸收光谱(FTIR);由图可见,实施例1和对比例1~2都表现出和氮化碳相似的化学结构,但实施例1在2173cm-1出现了氮碳-氰基的特征峰,表明氰基被成功引入到氮化碳中。As shown in Figure 2, it is the Fourier transform infrared absorption spectrum (FTIR) of the prepared material of
如图3所示为实施例1与对比例1~2所制备材料的扫描电镜图(SEM);由图可见,对比例2制备的体相氮化碳的形貌是团聚的纳米片,而经过通过分子自组装的制备方法,利用吡啶环上氮原子的吸电子作用,由于环上碳原子的电子云密度降低,尤其在2位和4位上的电子云密度更低,因而环上的亲核取代反应容易发生,导致氮化碳产物呈多孔片状结构,即得到如实施例1与对比例1制备的多孔片状氮化碳,大大有利于暴露活性位点。As shown in Figure 3, it is the scanning electron microscope figure (SEM) of the prepared material of
如图4所示为实施例1与对比例1~2所制备材料的电化学阻抗图(EIS)与瞬态光电流响应图;其中,从图(a)可见,实施例1所制备材料表现出最高的光电流密度,表明电子供体-受体系统抑制了载流子复合,电子供体-受体系统促进载流子在分子内迁移,增加了光生载流子的有效利用率;从图(b)可见,实施例1所制备材料的等效阻抗最小,说明由于引入氮碳-氰基作为电子受体并和氮化碳七嗪环中的氮原子间形成电子供体-受体系统,有效促进了载流子迁移。As shown in Figure 4, it is the electrochemical impedance diagram (EIS) and the transient photocurrent response diagram of the material prepared in
如图5所示为实施例1与对比例1~2所制备材料在可见光辐射下的光催化二氧化碳还原性能图;由图可见,与对比例2制备的体相氮化碳相比,实施例1制备的含有电子供体-受体系统的多孔片状氮化碳表现出显著增强的光催化还原二氧化碳活性,并且在所有样品中甲烷和一氧化碳的产率最高;光催化活性增强表明由氮碳-氰基作为电子受体和氮化碳七嗪环上的氮原子之间形成的电子供体-受体系统促进了光生载流子在分子内高效传输,解决了氮化碳中光生载流子复合严重的问题;同时,多孔片状结构改善了纳米片团聚,增大了反应物与活性位点的接触机会。As shown in Figure 5, it is the photocatalytic carbon dioxide reduction performance diagram of the materials prepared in Example 1 and Comparative Examples 1 to 2 under visible light radiation; As can be seen from the figure, compared with the bulk phase carbon nitride prepared in Comparative Example 2, the 1 The prepared porous sheet-like carbon nitride containing electron donor-acceptor system exhibited significantly enhanced photocatalytic carbon dioxide reduction activity, and the yield of methane and carbon monoxide was the highest among all samples; the enhanced photocatalytic activity indicated that the nitrogen-carbon The electron donor-acceptor system formed between the -cyano group as the electron acceptor and the nitrogen atom on the carboheptazine ring promotes the efficient transport of photogenerated carriers in the molecule, and solves the problem of photogenerated carriers in carbon nitride At the same time, the porous sheet structure improves the aggregation of nanosheets and increases the contact opportunities between reactants and active sites.
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。The above is only a specific embodiment of the present invention. Any feature disclosed in this specification, unless specifically stated, can be replaced by other equivalent or alternative features with similar purposes; all the disclosed features, or All method or process steps may be combined in any way, except for mutually exclusive features and/or steps.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211198103.4A CN115430454A (en) | 2022-09-29 | 2022-09-29 | Porous flaky carbon nitride photocatalytic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211198103.4A CN115430454A (en) | 2022-09-29 | 2022-09-29 | Porous flaky carbon nitride photocatalytic material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115430454A true CN115430454A (en) | 2022-12-06 |
Family
ID=84250750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211198103.4A Pending CN115430454A (en) | 2022-09-29 | 2022-09-29 | Porous flaky carbon nitride photocatalytic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115430454A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111085231A (en) * | 2019-12-11 | 2020-05-01 | 电子科技大学 | Hierarchical porous flower-like carbon nitride assembled by nanosheets and its preparation method and application |
-
2022
- 2022-09-29 CN CN202211198103.4A patent/CN115430454A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111085231A (en) * | 2019-12-11 | 2020-05-01 | 电子科技大学 | Hierarchical porous flower-like carbon nitride assembled by nanosheets and its preparation method and application |
Non-Patent Citations (1)
Title |
---|
FANG LI ET AL: ""Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction"", 《CHINESE JOURNAL OF CATALYSIS》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | High-yield lactic acid-mediated route for a gC 3 N 4 nanosheet photocatalyst with enhanced H 2-evolution performance | |
CN109876841B (en) | A method for preparing graphitic carbon nitride visible light catalyst by copolymerization of 2-aminoterephthalic acid and amine compound | |
CN107876087B (en) | Preparation of methylamine lead iodine-reduced graphene oxide composite photocatalytic material and its application in photocatalytic hydrogen production | |
CN103920520B (en) | A kind of ultrasonic assistant sedimentation synthesis of nano SnO 2/ g-C 3n 4the preparation method of composite visible light catalyst | |
CN113856730B (en) | A copper single-atom material, its preparation method and its application in photocatalytic CO2 reduction | |
CN111215118B (en) | Sodium-boron double-doped nano-layered graphite-like phase carbon nitride and preparation method and application thereof | |
CN106732796B (en) | A covalent organic polymer visible-light photocatalyst for efficient CO reduction | |
CN113649045B (en) | Modified titanium nitride nanotube with Ni-MOF as precursor and preparation method and application thereof | |
CN110404567A (en) | Photocatalytic energy conversion material and its preparation method and application | |
CN110013880A (en) | A kind of MIL-101 composite photocatalytic material, preparation method and application | |
CN113289689B (en) | Z-type heterojunction Co9S8/NH2Preparation method of (E) -UiO-66 composite material and application thereof in photocatalysis | |
CN114618537A (en) | Red phosphorus/strontium titanate heterojunction photocatalyst and preparation method and application thereof | |
CN111085231B (en) | Nano-sheet assembled hierarchical porous flower-shaped carbon nitride and preparation method and application thereof | |
CN112354559B (en) | Two-dimensional receptor molecule/hierarchical pore TiO 2 Composite photocatalyst, preparation method and photocatalytic application thereof | |
CN114805830A (en) | A kind of two-dimensional sheet UiO-66 material and preparation method thereof | |
CN114425375A (en) | Ni12P5/TpPa-1-COF photocatalyst, its preparation method and its application in photocatalytic water splitting | |
Chu et al. | Band structure engineering of a polyimide photocatalyst towards enhanced water splitting | |
CN115430454A (en) | Porous flaky carbon nitride photocatalytic material and preparation method thereof | |
CN115090318B (en) | Preparation method and application of a high specific surface area intermolecular heterojunction carbon nitride photocatalyst | |
CN110841688A (en) | Preparation method of cocatalyst based on self-assembled carbon nitride sphere/sheet isomeric junction | |
CN112007683B (en) | Carbon nitride-based ternary composite photocatalyst with full visible spectrum response and preparation method thereof | |
CN110227490B (en) | Carbon-coated and carbon-sulfur co-doped SnO2Photocatalyst and preparation method thereof | |
CN115155657A (en) | Photocatalytic material and preparation method and application thereof | |
CN104248977B (en) | Method and the purposes of composite photo-catalyst prepared by a kind of photosensitizer | |
CN115025795B (en) | Preparation method of bismuth-oxygen double-doped tubular graphite phase carbon nitride photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221206 |