CN115330607B - Saturation enhancement method for color image - Google Patents
Saturation enhancement method for color image Download PDFInfo
- Publication number
- CN115330607B CN115330607B CN202210810323.1A CN202210810323A CN115330607B CN 115330607 B CN115330607 B CN 115330607B CN 202210810323 A CN202210810323 A CN 202210810323A CN 115330607 B CN115330607 B CN 115330607B
- Authority
- CN
- China
- Prior art keywords
- color space
- saturation
- brightness
- image
- original
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000000694 effects Effects 0.000 claims abstract description 13
- 230000002708 enhancing effect Effects 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 claims description 10
- 239000003086 colorant Substances 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 2
- 240000008384 Capsicum annuum var. annuum Species 0.000 description 2
- 206010021403 Illusion Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Facsimile Image Signal Circuits (AREA)
- Color Image Communication Systems (AREA)
Abstract
彩色图像的饱和度增强方法,将图像从RGB色彩空间分别转换至HSL色彩空间和L*a*b*色彩空间;对L*a*b*色彩空间的图像计算其感知亮度L**;对HSL色彩空间的图像进行饱和度增强,得到增强后的饱和度基于Helmholtz‑Kohlrausch效应,对饱和度增强后的图像进行亮度修正;对亮度修正后图像,计算其感知亮度当记录相应的修正亮度在HSL色彩空间,以增强后的饱和度替代原始饱和度S,以记录的修正亮度取代原始亮度L,将得到的图像转换至RGB色彩空间。本发明在增强饱和度后,能够保持感知亮度不变。
The saturation enhancement method of color images converts the image from RGB color space to HSL color space and L*a*b* color space respectively; calculates the perceived brightness L ** of the image in L*a*b* color space; The image in the HSL color space is saturated to obtain the enhanced saturation Based on the Helmholtz‑Kohlrausch effect, perform brightness correction on the saturation-enhanced image; calculate the perceived brightness of the brightness-corrected image. when Record the corresponding corrected brightness In HSL color space, with enhanced saturation Replaces the original saturation S with the recorded corrected brightness Instead of the original brightness L, the resulting image is converted to RGB color space. After enhancing the saturation, the present invention can keep the perceived brightness unchanged.
Description
技术领域Technical field
本发明属于图像处理技术领域,特别涉及一种彩色图像的饱和度增强方法。The invention belongs to the technical field of image processing, and particularly relates to a saturation enhancement method for color images.
背景技术Background technique
对于饱和度不足的图像,需要通过图像处理的方法对其进行饱和度增强。颜色由色相、色度和亮度组成,在CIE 1976L*a*b*及HSL等色彩空间中,可以定义亮度、色度和色调。现有的饱和度增强方法是在色彩空间中保持亮度和色调的前提下对饱和度进行增强。然而,根据Helmholtz-Kohlrausch(H-K)效应,当对图像饱的和度进行增强时,虽然色彩空间中的亮度和色调保持不变,但所感知的亮度会增加。因此现有方法无法做到在保持感知亮度不变的前提下对饱和度进行增强。For images with insufficient saturation, it is necessary to enhance the saturation through image processing. Color consists of hue, chroma and brightness. In color spaces such as CIE 1976L*a*b* and HSL, brightness, chroma and hue can be defined. Existing saturation enhancement methods enhance saturation while maintaining brightness and hue in the color space. However, according to the Helmholtz-Kohlrausch (H-K) effect, when the saturation of an image is enhanced, the perceived brightness increases although the brightness and hue in the color space remain unchanged. Therefore, existing methods cannot enhance saturation while keeping perceived brightness unchanged.
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种彩色图像的饱和度增强方法,基于Helmholtz-Kohlrausch效应,在增强饱和度后,保持感知亮度不变。In order to overcome the above shortcomings of the prior art, the purpose of the present invention is to provide a saturation enhancement method for color images based on the Helmholtz-Kohlrausch effect, which keeps the perceived brightness unchanged after enhancing the saturation.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above objects, the technical solution adopted by the present invention is:
彩色图像的饱和度增强方法,其特征在于,包括如下步骤:The saturation enhancement method of color images is characterized by including the following steps:
步骤1,将图像从RGB色彩空间分别转换至HSL色彩空间和L*a*b*色彩空间;Step 1, convert the image from RGB color space to HSL color space and L*a*b* color space respectively;
步骤2,对L*a*b*色彩空间的图像计算其感知亮度L**;Step 2: Calculate the perceived brightness L ** of the image in the L*a*b* color space;
步骤3,对HSL色彩空间的图像进行饱和度增强,得到增强后的饱和度 Step 3: Perform saturation enhancement on the image in the HSL color space to obtain the enhanced saturation
步骤4,基于Helmholtz-Kohlrausch效应,对饱和度增强后的图像进行亮度修正;Step 4: Based on the Helmholtz-Kohlrausch effect, perform brightness correction on the saturation-enhanced image;
步骤5,对亮度修正后图像,计算其感知亮度当/>记录相应的修正亮度 Step 5: Calculate the perceived brightness of the brightness-corrected image When/> Record the corresponding corrected brightness
步骤6,在HSL色彩空间,以增强后的饱和度替代原始饱和度S,以记录的修正亮度取代原始亮度L,将得到的图像转换至RGB色彩空间。Step 6, in HSL color space to enhance the saturation Replaces the original saturation S with the recorded corrected brightness Instead of the original brightness L, the resulting image is converted to RGB color space.
在一个实施例中,所述步骤2,L**的计算公式为:In one embodiment, in step 2, the calculation formula of L ** is:
L**=L*+(2.5-0.025L*)q(h)C* L ** =L * +(2.5-0.025L * )q(h)C *
其中,L*、C*、h分别表示L*a*b*色彩空间中的亮度(lightness)、色度(chroma)和色相(hue),q(h)表示不同色调的颜色对感知亮度的影响值:Among them, L * , C * , h respectively represent the brightness (lightness), chroma (chroma) and hue (hue) in the L*a*b* color space, and q (h) represents the effect of colors of different hues on perceived brightness. Impact value:
a*和b*为色度坐标,表示颜色在L*a*b*色彩空间中的位置。a* and b* are chromaticity coordinates, indicating the position of the color in the L*a*b* color space.
在一个实施例中,所述步骤3,增强后的饱和度的计算公式为:In one embodiment, step 3, enhanced saturation The calculation formula is:
式中,f(S,C*)为饱和度增强函数,S是HSL色彩空间中的饱和度,γ(C*)为sigmoid函数,C*表示L*a*b*色彩空间中的色度。In the formula, f(S,C * ) is the saturation enhancement function, S is the saturation in the HSL color space, γ(C * ) is the sigmoid function, and C * represents the chromaticity in the L*a*b* color space .
在一个实施例中,所述γ(C*)的取值范围是[1,γ0],其计算公式为:In one embodiment, the value range of γ(C * ) is [1, γ 0 ], and its calculation formula is:
α、β、γ0是控制γ(C*)的参数,参数β决定sigmoid函数的斜率,它是一个正实数,参数α与色度C*有关,当C*比α足够小时,γ(C*)近似等于1,γ0的取值为常数。α, β, γ 0 are the parameters that control γ(C * ). The parameter β determines the slope of the sigmoid function. It is a positive real number. The parameter α is related to the chromaticity C * . When C * is smaller than α enough, γ (C * ) is approximately equal to 1, and the value of γ 0 is a constant.
在一个实施例中,所述步骤4,亮度修正步骤如下:In one embodiment, the step 4, the brightness correction step is as follows:
步骤(1)将亮度的最大值Ltop和亮度的最小值Lbottom分别设置为1和0,并转至步骤(2);Step (1) Set the maximum value of brightness L top and the minimum value of brightness L bottom to 1 and 0 respectively, and go to step (2);
步骤(2)计算平均亮度值Lmiddle=(Ltop+Lbottom)/2,并转至步骤(3);Step (2) Calculate the average brightness value L middle = (L top + L bottom )/2, and go to step (3);
步骤(3)当满足条件时,将Lmiddle设置为修正亮度并结束;否则,转至(4);其中,ε为设置的精度,L**(H,S,L)为HSL色彩空间的图像的原始感知亮度,/>为以/>取代原始饱和度S,以Lmiddle取代原始亮度L时的感知亮度;Step (3) When the conditions are met When, set L middle to correct the brightness and end; otherwise, go to (4); where ε is the precision of the setting, L ** (H, S, L) is the original perceived brightness of the image in the HSL color space, /> Think/> The perceived brightness when replacing the original saturation S and replacing the original brightness L with L middle ;
步骤(4)当满足条件时,将Lmiddle设置为Ltop;否则,将Lmiddle设置为Lbottom,并转至步骤(2)。Step (4) When the conditions are met When, set L middle to L top ; otherwise, set L middle to L bottom , and go to step (2).
在一个实施例中,所述和L**(H,S,L)是分别将HSL色彩空间中的值和(H,S,L)转换至RGB色彩空间,再从RGB色彩空间转换至L*a*b*色彩空间,在L*a*b*色彩空间进行计算。In one embodiment, the and L ** (H,S,L) are the values in the HSL color space respectively and (H, S, L) are converted to RGB color space, then converted from RGB color space to L*a*b* color space, and calculated in L*a*b* color space.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
现有技术对图像饱和度进行增强时增强饱和度的同时,人类感知的亮度也会得到增强。本发明的饱和度增强方法能够在增强饱和度的同时,确保感知的亮度保持不变。When the existing technology enhances image saturation, while enhancing the saturation, the brightness perceived by humans will also be enhanced. The saturation enhancement method of the present invention can ensure that the perceived brightness remains unchanged while enhancing saturation.
附图说明Description of drawings
图1是色相h和q(h)的关系图。Figure 1 is a relationship diagram between hue h and q(h).
图2本发明方法流程图。Figure 2 is a flow chart of the method of the present invention.
图3是本发明的一个试验结果示意图;其中(a)为原始图像,(b)为现有方法饱和度增强后图像,(c)为本发明饱和度增强后图像。Figure 3 is a schematic diagram of a test result of the present invention; (a) is the original image, (b) is the image after saturation enhancement by the existing method, and (c) is the image after saturation enhancement of the present invention.
图4是本发明的另一个试验结果示意图;其中(a)为原始图像,(b)为现有方法饱和度增强后图像,(c)为本发明饱和度增强后图像。Figure 4 is a schematic diagram of another test result of the present invention; (a) is the original image, (b) is the saturation-enhanced image using the existing method, and (c) is the saturation-enhanced image of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例详细说明本发明的实施方式。The embodiments of the present invention will be described in detail below with reference to the drawings and examples.
在本发明中,提出了一种基于Helmholtz-Kohlrausch效应的彩色图像饱和度增强方法。In the present invention, a color image saturation enhancement method based on the Helmholtz-Kohlrausch effect is proposed.
Helmholtz-Kohlrausch(H-K)效应是人类视觉错觉的一种。当某一个颜色的亮度和色相保持不变,只对该颜色的饱和度进行调整时,人们所感知到的感知亮度也会产生变化,这就是H-K效应。具体而言,即使只增加了某个颜色的色度,该颜色的感知亮度也会随之增加。为了确保转换后的颜色不产生超出色域,本发明的颜色转换在HSL色彩空间中进行。The Helmholtz-Kohlrausch (H-K) effect is a type of human visual illusion. When the brightness and hue of a certain color remain unchanged and only the saturation of the color is adjusted, the perceived brightness perceived by people will also change. This is the H-K effect. Specifically, even if you only increase the chroma of a color, the perceived brightness of that color will increase. In order to ensure that the converted color does not exceed the color gamut, the color conversion of the present invention is performed in the HSL color space.
Helmholtz-Kohlrausch(H-K)效应模型中,感知亮度L**被定义为:In the Helmholtz-Kohlrausch (HK) effect model, the perceived brightness L ** is defined as:
L**(L*,C*,h)=L*+(2.5-0.025L*)q(h)C* (1)L ** (L * ,C * ,h)=L * +(2.5-0.025L * )q(h)C * (1)
其中,q(h)表示不同色调的颜色对感知亮度的影响值。Among them, q(h) represents the impact of colors of different hues on perceived brightness.
a*和b*为色度坐标,表示颜色在L*a*b*色彩空间中的位置。a* and b* are chromaticity coordinates, indicating the position of the color in the L*a*b* color space.
公式(1)的第二项,即(2.5-0.025L*)q(h)C*,为H-K效应的修正量。公式(1)中的L*、C*、h分别表示L*a*b*色彩空间中的亮度(lightness)、色度(chroma)和色相(hue)。对于非彩色颜色,因为没有定义h,因此无法计算q(h)。h和q(h)的关系图如图1所示。The second term of formula (1), namely (2.5-0.025L * )q(h)C * , is the correction amount of HK effect. L * , C * , and h in formula (1) respectively represent the brightness (lightness), chroma (chroma), and hue (hue) in the L*a*b* color space. For achromatic colors, q(h) cannot be calculated because h is not defined. The relationship diagram between h and q(h) is shown in Figure 1.
本发明的过程如图2所示。本发明的目标是对彩色图像的饱和度进行增强后的感知亮度与原始感知亮度L**相同。因为相比较1976L*a*b*色彩空间,HSL色彩空间是规则的色彩空间,并且饱和度S的取值范围为[0,1],因此对饱和度进行增强时不会超出色域。The process of the present invention is shown in Figure 2. The goal of this invention is to enhance the perceived brightness of color images by enhancing their saturation. Same as original perceived brightness L ** . Because compared to the 1976L*a*b* color space, the HSL color space is a regular color space, and the value range of the saturation S is [0,1], so the color gamut will not be exceeded when the saturation is enhanced.
本发明的完整步骤可以描述为:The complete steps of the present invention can be described as:
步骤1,将图像从RGB色彩空间分别转换至HSL色彩空间和L*a*b*色彩空间。图中,以RGB表示图像在RGB色彩空间,以HSL表示图像在HSL色彩空间,以L*a*b*表示图像在L*a*b*色彩空间。Step 1. Convert the image from RGB color space to HSL color space and L*a*b* color space respectively. In the figure, RGB represents the image in the RGB color space, HSL represents the image in the HSL color space, and L*a*b* represents the image in the L*a*b* color space.
步骤2,对L*a*b*色彩空间的图像计算其感知亮度L**。计算公式为前述的公式(1),即L**=L*+(2.5-0.025L*)q(h)C*。Step 2: Calculate the perceived brightness L ** of the image in the L*a*b* color space. The calculation formula is the aforementioned formula (1), that is, L ** =L * + (2.5-0.025L * )q(h)C * .
步骤3,对HSL色彩空间的图像进行饱和度增强,得到增强后的饱和度以/>替代原始的饱和度,得到的图像表示为/> Step 3: Perform saturation enhancement on the image in the HSL color space to obtain the enhanced saturation with/> Substituting the original saturation, the resulting image is expressed as/>
饱和度增强函数被定义为:The saturation enhancement function is defined as:
其中in
公式(5)中的S是HSL色彩空间中的饱和度。γ(C*)为sigmoid函数,由参数α、β、γ0控制。γ(C*)的取值范围是[1,γ0]。参数β决定sigmoid函数的斜率,它是一个正实数。参数α与色度C*有关。当C*比α足够小时,γ(C*)近似等于1。γ0的取值为常数,本实施例中,设置其值为3。S in formula (5) is the saturation in the HSL color space. γ(C * ) is a sigmoid function, controlled by parameters α, β, and γ 0 . The value range of γ(C * ) is [1, γ 0 ]. The parameter β determines the slope of the sigmoid function, which is a positive real number. The parameter α is related to the chromaticity C * . When C * is sufficiently smaller than α, γ(C * ) is approximately equal to 1. The value of γ 0 is a constant, and in this embodiment, its value is set to 3.
在本发明中,增强后的饱和度被定义为:In the present invention, enhanced saturation is defined as:
步骤4,为了使转换过程中感知的亮度不变,基于Helmholtz-Kohlrausch效应,对饱和度增强后的图像进行亮度修正。具体过程可描述如下:Step 4, in order to keep the perceived brightness unchanged during the conversion process, perform brightness correction on the saturation-enhanced image based on the Helmholtz-Kohlrausch effect. The specific process can be described as follows:
步骤(1)将亮度的最大值Ltop和亮度的最小值Lbottom分别设置为1和0,并转至步骤(2)。Step (1) Set the maximum value of brightness L top and the minimum value of brightness L bottom to 1 and 0 respectively, and go to step (2).
步骤(2)计算平均亮度值Lmiddle=(Ltop+Lbottom)/2,并转至步骤(3)。Step (2) Calculate the average brightness value L middle = (L top + L bottom )/2, and go to step (3).
步骤(3)当满足条件时,将Lmiddle设置为修正亮度并结束;否则,转至步骤(4);其中,ε为设置的精度,本实施例中,ε=0.1。Step (3) When the conditions are met When, set L middle to correct the brightness and ends; otherwise, go to step (4); where ε is the setting accuracy, and in this embodiment, ε=0.1.
步骤(4)当满足条件时,将Lmiddle设置为Ltop;否则,将Lmiddle设置为Lbottom,并转至步骤(2)。Step (4) When the conditions are met When, set L middle to L top ; otherwise, set L middle to L bottom , and go to step (2).
其中,L**(H,S,L)为HSL色彩空间的图像的原始感知亮度,为以/>取代原始饱和度S,以Lmiddle取代原始亮度L时的感知亮度。二者计算方法,分别将HSL色彩空间中的值/>和(H,S,L)转换至RGB色彩空间,再从RGB色彩空间转换至L*a*b*色彩空间,在L*a*b*色彩空间利用前述的公式(1)进行计算。Among them, L ** (H,S,L) is the original perceived brightness of the image in HSL color space, Think/> The perceived brightness when replacing the original saturation S and the original brightness L with L middle . The two calculation methods are to divide the values in the HSL color space/> and (H, S, L) are converted to RGB color space, then converted from RGB color space to L*a*b* color space, and calculated using the aforementioned formula (1) in L*a*b* color space.
具体地:specifically:
(1)HSL色彩空间到RGB色彩空间的变换公式为:(1) The conversion formula from HSL color space to RGB color space is:
如果S=0,R,G,B被定义为If S=0, R, G, B are defined as
R=G=B=LR=G=B=L
如果S≠0,M1和M2分别被定义为If S≠0, M 1 and M 2 are respectively defined as
M1=2L-M2 M 1 =2L-M 2
处理1:Process 1:
对于R,将h′的值设置为(H+2π/3),并转到[处理2]。然后,将计算得的X变为R。For R, set the value of h' to (H+2π/3), and go to [Processing 2]. Then, change the calculated X to R.
对于G,将h′的值设置为H,并转到[处理2]。然后,将计算得的X变为G。For G, set the value of h′ to H, and go to [Processing 2]. Then, change the calculated X to G.
对于B,h′设置为(H-2π/3),然后转到[处理2]。然后将计算得的X变成B。For B, h′ is set to (H-2π/3), and then goes to [Processing 2]. Then turn the calculated X into B.
h′是用于计算RGB值时的临时色相值。h′ is the temporary hue value used when calculating RGB values.
处理2:Process 2:
h″的计算公式为The calculation formula of h″ is
X被定义为X is defined as
h″是将h′的范围正规化到[0,2π)后的临时值。h″ is a temporary value after normalizing the range of h′ to [0,2π).
(2)RGB色彩空间到XYZ色彩空间的变换公式为:(2) The conversion formula from RGB color space to XYZ color space is:
(3)XYZ色彩空间到L*a*b*色彩空间的变换公式为:(3) The conversion formula from XYZ color space to L*a*b* color space is:
其中Xn、Yn、Zn为标准白色的三刺激值。Among them, X n , Y n and Z n are the tristimulus values of standard white.
(4)基于H-K效应的感知亮度(4) Perceived brightness based on H-K effect
感知亮度由前述的公式(1)获得。The perceived brightness is obtained by the aforementioned formula (1).
步骤5,对亮度修正后图像,计算其感知亮度当/>记录相应的修正亮度感知亮度/>的计算过程参考步骤4中的/> Step 5: Calculate the perceived brightness of the brightness-corrected image When/> Record the corresponding corrected brightness Perceived brightness/> For the calculation process, refer to /> in step 4
步骤6,在HSL色彩空间,以增强后的饱和度替代原始饱和度S,以记录的修正亮度取代原始亮度L,将得到的图像表示为/>将/>转换至RGB色彩空间,得到的图像表示为/>即所得的完成饱和度增强的图像。Step 6, in HSL color space to enhance the saturation Replaces the original saturation S with the recorded corrected brightness Replacing the original brightness L, the resulting image is expressed as/> Will/> Convert to RGB color space, and the resulting image is expressed as/> That is, the resulting image with complete saturation enhancement.
为了便于观察感知亮度的变化,将原始图像与各方法的输出图像之间感知亮度的变化量定义为:In order to facilitate the observation of changes in perceived brightness, the change in perceived brightness between the original image and the output image of each method is defined as:
其中,为原始图像中第i个像素的感知亮度。/>是通过饱和度增强后得到的图像中第i各像素的感知亮度。n为原始图像中像素的总数。in, is the perceived brightness of the i-th pixel in the original image. /> is the perceived brightness of each pixel in the image obtained by saturation enhancement. n is the total number of pixels in the original image.
从表1能过够看出本发明中的方法的感知亮度变化量比现有技术小很多。从图3中(a)、(b)、(c)所示黄色气球和图4中(a)、(b)、(c)所示青椒能够看出,现有方法对饱和度增强后黄色气球、青椒的感知亮度有明显的变化;而本发明的方法对饱和度进行增强后感知亮度变化很小。It can be seen from Table 1 that the perceived brightness change of the method in the present invention Much smaller than existing technology. It can be seen from the yellow balloons shown in (a), (b), and (c) in Figure 3 and the green peppers shown in (a), (b), and (c) in Figure 4 that the existing method can There are obvious changes in the perceived brightness of balloons and green peppers; however, after the method of the present invention enhances saturation, the perceived brightness changes very little.
表1各方法的 Table 1 for each method
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210810323.1A CN115330607B (en) | 2022-07-11 | 2022-07-11 | Saturation enhancement method for color image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210810323.1A CN115330607B (en) | 2022-07-11 | 2022-07-11 | Saturation enhancement method for color image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115330607A CN115330607A (en) | 2022-11-11 |
CN115330607B true CN115330607B (en) | 2024-03-01 |
Family
ID=83917734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210810323.1A Active CN115330607B (en) | 2022-07-11 | 2022-07-11 | Saturation enhancement method for color image |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115330607B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1731451A (en) * | 2005-08-22 | 2006-02-08 | 上海广电(集团)有限公司中央研究院 | Method of image color enhancement |
CN102779330A (en) * | 2012-06-13 | 2012-11-14 | 京东方科技集团股份有限公司 | Image reinforcement method, image reinforcement device and display device |
JP2014033272A (en) * | 2012-08-01 | 2014-02-20 | Nikon Corp | Image processing apparatus, digital camera, image processing program, and image processing method |
CN103780797A (en) * | 2014-01-23 | 2014-05-07 | 北京京东方光电科技有限公司 | Image color enhancement method and device |
CN105069756A (en) * | 2015-08-10 | 2015-11-18 | 深圳市华星光电技术有限公司 | Image enhancing method |
CN109348202A (en) * | 2018-08-01 | 2019-02-15 | 深圳朗田亩半导体科技有限公司 | A kind of image saturation method of adjustment and device |
CN110047051A (en) * | 2019-04-24 | 2019-07-23 | 郑州轻工业学院 | A kind of non-uniform lighting colour-image reinforcing method |
CN111527748A (en) * | 2017-12-28 | 2020-08-11 | 三星电子株式会社 | Image processing apparatus, image processing method, and multi-screen display |
KR20200138972A (en) * | 2019-06-03 | 2020-12-11 | 창원대학교 산학협력단 | The apparatus and method of HDR imaging generation |
-
2022
- 2022-07-11 CN CN202210810323.1A patent/CN115330607B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1731451A (en) * | 2005-08-22 | 2006-02-08 | 上海广电(集团)有限公司中央研究院 | Method of image color enhancement |
CN102779330A (en) * | 2012-06-13 | 2012-11-14 | 京东方科技集团股份有限公司 | Image reinforcement method, image reinforcement device and display device |
JP2014033272A (en) * | 2012-08-01 | 2014-02-20 | Nikon Corp | Image processing apparatus, digital camera, image processing program, and image processing method |
CN103780797A (en) * | 2014-01-23 | 2014-05-07 | 北京京东方光电科技有限公司 | Image color enhancement method and device |
CN105069756A (en) * | 2015-08-10 | 2015-11-18 | 深圳市华星光电技术有限公司 | Image enhancing method |
CN111527748A (en) * | 2017-12-28 | 2020-08-11 | 三星电子株式会社 | Image processing apparatus, image processing method, and multi-screen display |
CN109348202A (en) * | 2018-08-01 | 2019-02-15 | 深圳朗田亩半导体科技有限公司 | A kind of image saturation method of adjustment and device |
CN110047051A (en) * | 2019-04-24 | 2019-07-23 | 郑州轻工业学院 | A kind of non-uniform lighting colour-image reinforcing method |
KR20200138972A (en) * | 2019-06-03 | 2020-12-11 | 창원대학교 산학협력단 | The apparatus and method of HDR imaging generation |
Non-Patent Citations (3)
Title |
---|
Po-Wen Hsieh,et al..Variational contrast-saturation enhancement model for effective single image dehazing.《Signal Processing》.2021,第192卷全文. * |
一种考虑多方向线性结构的灰度图像椒盐脉冲噪声滤波方法;石宝;《科技风》(第18期);全文 * |
轮廓波域内局部对比度增强的彩色图像灰度化算法;王冰雪;刘广文;刘美;陈广秋;;《液晶与显示》(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115330607A (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5481021B2 (en) | Heterogeneous color gamut mapping method and apparatus | |
CN102611897B (en) | Method and system for carrying out vision perception high-fidelity transformation on color digital image | |
KR100881028B1 (en) | Gray data correction device and method | |
WO2017045218A1 (en) | Adaptive conversion method for image | |
CN103974053B (en) | A kind of Automatic white balance antidote extracted based on ash point | |
CN104581105B (en) | Based on the auto white balance method of colour temperature range conversion weight map and the correction of block reliability | |
JP2009055465A (en) | Image processing device and method | |
TWI533661B (en) | Method and device of skin tone optimization in color gamut mapping system | |
CN105184757B (en) | Food image color enhancement method based on color space feature | |
US8064693B2 (en) | Methods of and apparatus for adjusting colour saturation in an input image | |
CN103618886A (en) | Shooting method for intelligently decoloring according to main color tone | |
CN111107330A (en) | Color cast correction method for Lab space | |
CN109035175A (en) | Facial image Enhancement Method based on color correction and Pulse Coupled Neural Network | |
CN104978945B (en) | The enhanced method of image saturation and its device | |
CN113824945A (en) | Rapid automatic white balance and color correction method based on deep learning | |
CN104112259A (en) | Rain removing method and system for single image | |
WO2023241339A1 (en) | Color cast correction method and apparatus, device, storage medium and program product | |
CN102542526A (en) | Image decolorizing method | |
CN115330607B (en) | Saturation enhancement method for color image | |
Biswas | Novel gray scale conversion techniques based on pixel depth | |
CN107358592B (en) | An Iterative Global Adaptive Image Enhancement Method | |
WO2022120799A1 (en) | Image processing method and apparatus, electronic device, and storage medium | |
US7224833B2 (en) | Method for fast color saturation control | |
CN105208362B (en) | Image colour cast auto-correction method based on gray balance principle | |
CN105184746B (en) | Color image enhancement processing method based on histogram equalization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |