CN115291216B - Satellite-borne SAR image acquisition method and device, electronic equipment and medium - Google Patents
Satellite-borne SAR image acquisition method and device, electronic equipment and medium Download PDFInfo
- Publication number
- CN115291216B CN115291216B CN202211219052.9A CN202211219052A CN115291216B CN 115291216 B CN115291216 B CN 115291216B CN 202211219052 A CN202211219052 A CN 202211219052A CN 115291216 B CN115291216 B CN 115291216B
- Authority
- CN
- China
- Prior art keywords
- target
- track
- trajectory
- region
- target area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 89
- 238000013507 mapping Methods 0.000 claims abstract description 328
- 238000003384 imaging method Methods 0.000 claims description 135
- 238000005457 optimization Methods 0.000 claims description 53
- 238000012545 processing Methods 0.000 claims description 17
- 230000015654 memory Effects 0.000 claims description 13
- 230000006870 function Effects 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 2
- 229910052739 hydrogen Inorganic materials 0.000 claims 2
- 239000001257 hydrogen Substances 0.000 claims 2
- 238000004590 computer program Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 238000005070 sampling Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明提供了一种星载SAR图像获取方法、装置、电子设备及介质,涉及合成孔径雷达技术领域。具体实现方式包括:获取针对目标区域的星载SAR回波数据,目标区域包括Ntarget个目标子区域;针对每个目标子区域,分别根据星载SAR回波数据和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系;根据星载SAR回波数据和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系;根据Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系;以及根据第二目标区域轨迹映射关系与针对目标区域的星载SAR回波数据,确定针对目标区域的星载SAR图像。
The invention provides a spaceborne SAR image acquisition method, device, electronic equipment and medium, and relates to the technical field of synthetic aperture radar. The specific implementation method includes: obtaining the spaceborne SAR echo data for the target area, the target area includes N target target sub-areas; for each target sub-area, according to the spaceborne SAR echo data and the satellite trajectory model, determine The trajectory mapping relationship of the first target sub-region corresponding to the sub-region; according to the spaceborne SAR echo data and the satellite trajectory model, determine the trajectory mapping relationship of multiple first target regions corresponding to the target region; according to the N target first target sub-region The trajectory mapping relationship and the plurality of first target area trajectory mapping relationships determine a second target area trajectory mapping relationship corresponding to the target area; and according to the second target area trajectory mapping relationship and the spaceborne SAR echo data for the target area, determine Spaceborne SAR imagery for the target area.
Description
技术领域technical field
本发明涉及合成孔径雷达技术领域,尤指一种星载SAR图像获取方法、装置、电子设备、存储介质及计算机程序产品。The invention relates to the technical field of synthetic aperture radar, in particular to a spaceborne SAR image acquisition method, device, electronic equipment, storage medium and computer program product.
背景技术Background technique
在星载合成孔径雷达(Synthetic Aperture Radar,SAR)成像技术领域,卫星轨迹误差是影响星载SAR图像质量的主要因素之一。In the field of spaceborne synthetic aperture radar (SAR) imaging technology, satellite trajectory error is one of the main factors affecting the image quality of spaceborne SAR.
卫星轨迹误差主要是指卫星平台位置测量值和实际值之间的偏差,该偏差会造成瞬时斜距的误差。瞬时斜距为构造方位向匹配滤波器的重要参数,所以它的偏差会使方位向匹配滤波失配,导致分辨率损失、信噪比下降等。此外,瞬时斜距还与目标的位置计算相关,其误差也会影响目标定位精度。因此,在星载SAR轨迹误差较大时,通常会出现SAR图像散焦的问题,从而降低了SAR图像的质量。The satellite trajectory error mainly refers to the deviation between the measured value of the satellite platform position and the actual value, which will cause the error of the instantaneous slant distance. The instantaneous slant distance is an important parameter for constructing the azimuth matched filter, so its deviation will make the azimuth matched filter mismatch, resulting in loss of resolution and decrease of signal-to-noise ratio. In addition, the instantaneous slant distance is also related to the calculation of the target's position, and its error will also affect the target positioning accuracy. Therefore, when the spaceborne SAR trajectory error is large, the problem of defocusing of the SAR image usually occurs, thereby reducing the quality of the SAR image.
发明内容Contents of the invention
本发明提供了一种星载SAR图像获取方法、装置、电子设备、存储介质及计算机程序产品,以期至少部分解决上述存在的技术问题。The present invention provides a spaceborne SAR image acquisition method, device, electronic equipment, storage medium and computer program product, in order to at least partly solve the above existing technical problems.
根据本发明的一个方面,提供了一种星载SAR图像获取方法,包括:获取针对目标区域的星载SAR回波数据,其中,目标区域包括Ntarget个目标子区域,Ntarget为大于等于3的整数;针对Ntarget个目标子区域中的每个目标子区域,分别根据星载SAR回波数据,在该目标子区域的成像时间内确定与N1个方位时刻对应的卫星的轨迹点,并根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系,N1为大于等于3的整数;根据星载SAR回波数据,在目标区域的成像时间内确定与N2个方位时刻对应的卫星的轨迹点,并根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系,N2为大于等于5的整数;根据Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系;以及根据第二目标区域轨迹映射关系以及针对目标区域的星载SAR回波数据,确定针对目标区域的星载SAR图像。According to one aspect of the present invention, a method for acquiring a spaceborne SAR image is provided, including: acquiring spaceborne SAR echo data for a target area, wherein the target area includes N target target sub-areas, and N target is greater than or equal to 3 Integer of ; for each target sub-area in the N target target sub-areas, according to the spaceborne SAR echo data, determine the track point of the satellite corresponding to the N 1 azimuth moments within the imaging time of the target sub-area, And according to N 1 trajectory points and the satellite trajectory model, determine the trajectory mapping relationship of the first target sub-region corresponding to the target sub-region, N 1 is an integer greater than or equal to 3; according to the spaceborne SAR echo data, the imaging in the target region Determine the trajectory points of the satellites corresponding to the N 2 azimuth moments in time, and determine the trajectory mapping relationship of a plurality of first target areas corresponding to the target area according to the N 2 trajectory points and the satellite trajectory model, where N 2 is greater than or equal to 5 Integer; according to the N target first target sub-area track mapping relationship and a plurality of first target area track mapping relationships, determine the second target area track mapping relationship corresponding to the target area; and according to the second target area track mapping relationship and Based on the spaceborne SAR echo data of the target area, the spaceborne SAR image of the target area is determined.
根据本发明的实施例,根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系包括:针对N1个轨迹点中的每个轨迹点,根据轨迹点和第一步长,确定与轨迹点相关联的多个第一参考轨迹点;根据N1个轨迹点以及与N1个轨迹点分别相关联的多个第一参考轨迹点,得到多个第一轨迹点组合;根据多个第一轨迹点组合和卫星轨迹模型,确定与目标子区域对应的多个第二目标子区域轨迹映射关系;以及从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系。According to an embodiment of the present invention, according to the N 1 track points and the satellite track model, determining the first target sub-area track mapping relationship corresponding to the target sub-area includes: for each track point in the N 1 track points, according to the track point and the length of the first step, determine a plurality of first reference trajectory points associated with the trajectory point; according to N 1 trajectory points and a plurality of first reference trajectory points associated with N 1 trajectory points, multiple The first trajectory point combination; according to multiple first trajectory point combinations and satellite trajectory models, determine a plurality of second target sub-region trajectory mapping relationships corresponding to the target sub-region; and from multiple second target sub-region trajectory mapping relationships Determine the target sub-area track optimization mapping relationship as the first target sub-area track mapping relationship.
根据本发明的实施例,根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系还包括:响应于从多个第二目标子区域轨迹映射关系中未匹配到目标子区域轨迹优化映射关系,更新第一步长为第二步长;以及基于第二步长,重复执行从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系的操作。According to an embodiment of the present invention, according to the N 1 trajectory points and the satellite trajectory model, determining the first target sub-region trajectory mapping relationship corresponding to the target sub-region further includes: responding to the trajectory mapping relationship from multiple second target sub-regions If the target sub-area trajectory optimization mapping relationship is not matched, update the first step size to the second step size; and based on the second step size, repeatedly perform the determination of the target sub-region trajectory optimization mapping relationship from multiple second target sub-region trajectory mapping relationships relation as an operation of the first target subregion trajectory mapping relation.
根据本发明的实施例,从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系包括:分别使用多个第二目标子区域轨迹映射关系以及与目标子区域对应的星载SAR回波数据对目标子区域进行成像处理,得到多个复图像数据;根据多个复图像数据,得到多个成像对比度;以及响应于预设条件的触发,将多个成像对比度中最大成像对比度所对应的第二目标子区域轨迹映射关系,作为目标子区域轨迹优化映射关系。According to an embodiment of the present invention, determining the optimal mapping relationship of the trajectory of the target sub-area from the multiple second target sub-area trajectory mapping relationships includes: respectively using the multiple second target sub-area trajectory mapping relationships and the onboard corresponding to the target sub-area The SAR echo data performs imaging processing on the target sub-region to obtain multiple complex image data; according to the multiple complex image data, multiple imaging contrasts are obtained; and in response to triggering of preset conditions, the maximum imaging contrast among the multiple imaging contrasts is obtained The corresponding second target sub-area trajectory mapping relationship is used as the target sub-region trajectory optimization mapping relationship.
根据本发明的实施例,预设条件包括以下之中的至少之一:本次寻优得到的最大成像对比度相对于前次寻优得到的最大成像对比度的增加量小于等于第一阈值;以及本次寻优对应的步长小于等于第二阈值。According to an embodiment of the present invention, the preset condition includes at least one of the following: the increase of the maximum imaging contrast obtained in this optimization compared with the maximum imaging contrast obtained in the previous optimization is less than or equal to the first threshold; and The step size corresponding to the sub-optimization is less than or equal to the second threshold.
根据本发明的实施例,Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系包括:针对Ntarget个第一目标子区域轨迹映射关系中的每一个,在目标子区域的成像时间内确定与Norb个方位时刻对应的卫星的轨迹点,并基于第一目标子区域轨迹映射关系,分别确定Norb个轨迹点与该目标子区域的中心目标点之间的斜距,得到Norb个第一斜距;Norb为大于等于3的整数;针对多个第一目标区域轨迹映射关系中的每一个,基于第一目标区域轨迹映射关系,确定Ntarget个目标子区域中的每个目标子区域所对应的Norb个方位时刻下的斜距,得到Ntarget*Norb个第二斜距,针对多个第一目标区域轨迹映射关系中的每一个,确定Ntarget*Norb个第二斜距与Ntarget个第一目标子区域轨迹映射关系的Norb个第一斜距之间的偏差度;以及基于偏差度,从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系。According to an embodiment of the present invention, for N target first target sub-area track mapping relationships and multiple first target area track mapping relationships, determining the second target area track mapping relationship corresponding to the target area includes: for the N target first For each of the target sub-area trajectory mapping relationships, determine the trajectory points of the satellites corresponding to N orb azimuth moments within the imaging time of the target sub-region, and determine N orb trajectories based on the first target sub-region trajectory mapping relationship Point and the slant distance between the central target point of this target sub-area, obtain the first slant distance of N orb ; N orb is the integer greater than or equal to 3; For each in a plurality of first target area trajectory mapping relations, based on The first target area trajectory mapping relationship determines the slant distances under N orb azimuth moments corresponding to each target sub-area in N target target sub-areas, and obtains N target * N orb second slant distances, for multiple For each of the first target area trajectory mapping relations, determine the degree of deviation between the N target *N orb second slant distances and the N orb first slant distances of the N target first target sub-region trajectory mapping relations; and Based on the degree of deviation, the optimized mapping relationship of the trajectory of the target area is determined as the second mapping relationship of the trajectory of the target area from the plurality of mapping relationships of the trajectory of the first target area.
根据本发明的实施例,根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系包括:针对N2个轨迹点中的每个轨迹点,根据轨迹点和第三步长,确定与轨迹点相关联的多个第二参考轨迹点;根据N2个轨迹点以及与N2个轨迹点分别相关联的多个第二参考轨迹点,得到多个第二轨迹点组合;以及根据多个第二轨迹点组合和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系。According to an embodiment of the present invention, according to the N 2 track points and the satellite track model, determining a plurality of first target area track mapping relationships corresponding to the target area includes: for each track point in the N 2 track points, according to the track point and the third step length, determine a plurality of second reference trajectory points associated with the trajectory point; according to N 2 trajectory points and a plurality of second reference trajectory points associated with N 2 trajectory points, a plurality of a second track point combination; and determining multiple first target area track mapping relationships corresponding to the target area according to the multiple second track point combinations and the satellite track model.
根据本发明的实施例,Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系还包括:响应于基于偏差度,从多个第一目标区域轨迹映射关系中未匹配到目标区域轨迹优化映射关系,更新第三步长为第四步长;以及基于第四步长,重复执行从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系的操作。According to an embodiment of the present invention, for N target first target sub-area track mapping relationships and multiple first target area track mapping relationships, determining the second target area track mapping relationship corresponding to the target area further includes: responding to , from the multiple first target area trajectory mapping relationships that do not match the target area trajectory optimization mapping relationship, update the third step size to the fourth step size; and based on the fourth step size, repeatedly execute In the mapping relationship, the optimal mapping relationship of the target area trajectory is determined as the operation of the second target area trajectory mapping relationship.
根据本发明的实施例,基于偏差度,从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系包括:从多个偏差度中确定最小偏差度;以及响应于最小偏差度小于等于第三阈值,将最小偏差度所对应的第一目标区域轨迹映射关系确定为目标区域轨迹优化映射关系。According to an embodiment of the present invention, based on the degree of deviation, determining the optimal mapping relationship of the trajectory of the target area from the plurality of first target area trajectory mapping relationships as the second target area trajectory mapping relationship includes: determining the minimum deviation degree from the plurality of deviation degrees; And in response to the minimum degree of deviation being less than or equal to the third threshold, the first target area trajectory mapping relationship corresponding to the minimum deviation degree is determined as the target area trajectory optimization mapping relationship.
根据本发明的实施例,基于偏差度,从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系包括:从多个偏差度中确定最小偏差度;以及响应于本次寻优对应的步长小于等于第四阈值,将最小偏差度所对应的第一目标区域轨迹映射关系确定为目标区域轨迹优化映射关系。According to an embodiment of the present invention, based on the degree of deviation, determining the optimal mapping relationship of the trajectory of the target area from the plurality of first target area trajectory mapping relationships as the second target area trajectory mapping relationship includes: determining the minimum deviation degree from the plurality of deviation degrees; And in response to the fact that the step size corresponding to this optimization is less than or equal to the fourth threshold, the first target area trajectory mapping relationship corresponding to the minimum deviation degree is determined as the target area trajectory optimization mapping relationship.
根据本发明的另一方面,提供了一种星载SAR图像获取装置,包括:获取模块,用于获取针对目标区域的星载SAR回波数据,其中,目标区域包括Ntarget个目标子区域,Ntarget为大于等于3的整数;第一映射模块,用于针对Ntarget个目标子区域中的每个目标子区域,分别根据星载SAR回波数据,在该目标子区域的成像时间内确定与N1个方位时刻对应的卫星的轨迹点,并根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系,N1为大于等于3的整数;第二映射模块,用于根据星载SAR回波数据,在目标区域的成像时间内确定与N2个方位时刻对应的卫星的轨迹点,并根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系,N2为大于等于5的整数;确定模块,用于根据Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系;以及成像模块,用于根据第二目标区域轨迹映射关系以及针对目标区域的星载SAR回波数据,确定针对目标区域的星载SAR图像。According to another aspect of the present invention, a space-borne SAR image acquisition device is provided, including: an acquisition module for acquiring space-borne SAR echo data for a target area, wherein the target area includes N target target sub-areas, N target is an integer greater than or equal to 3; the first mapping module is used to determine each target sub-region in the N target target sub-regions according to the satellite-borne SAR echo data within the imaging time of the target sub-region The trajectory point of the satellite corresponding to N 1 azimuth moments, and according to N 1 trajectory points and the satellite trajectory model, determine the first target sub-region trajectory mapping relationship corresponding to the target sub-region, N 1 is an integer greater than or equal to 3; The second mapping module is used to determine the trajectory points of the satellites corresponding to the N 2 azimuth moments within the imaging time of the target area according to the spaceborne SAR echo data, and determine the corresponding satellite trajectory points according to the N 2 trajectory points and the satellite trajectory model. A plurality of first target area track mapping relationships corresponding to the target area, N 2 is an integer greater than or equal to 5; a determination module is used to track mapping relationships according to N target first target sub-areas and a plurality of first target area track mapping relationships , determining a second target area trajectory mapping relationship corresponding to the target area; and an imaging module, configured to determine a spaceborne SAR image for the target area according to the second target area trajectory mapping relationship and the spaceborne SAR echo data for the target area .
根据本发明的另一方面,提供了一种电子设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序,其中,当所述一个或多个程序被所述一个或多个处理器执行时,使得一个或多个处理器执行实现如上所述的方法。According to another aspect of the present invention, an electronic device is provided, including: one or more processors; a memory for storing one or more programs, wherein, when the one or more programs are executed by the one or When multiple processors are executed, one or more processors are executed to implement the above-mentioned method.
根据本发明的另一方面,提供了一种计算机可读存储介质,其上存储有可执行指令,该指令被处理器执行时使处理器执行实现如上所述的方法。According to another aspect of the present invention, there is provided a computer-readable storage medium, on which executable instructions are stored, and when the instructions are executed by a processor, the processor is executed to implement the method as described above.
根据本发明的另一方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现如上所述的方法。According to another aspect of the present invention there is provided a computer program product comprising a computer program which, when executed by a processor, implements the method as described above.
附图说明Description of drawings
为进一步说明本发明的技术内容,以下将结合实例及附图来详细说明,其中:In order to further illustrate the technical content of the present invention, it will be described in detail below in conjunction with examples and accompanying drawings, wherein:
图1是根据本发明实施例的星载SAR图像获取方法的流程图;Fig. 1 is the flow chart of the spaceborne SAR image acquisition method according to the embodiment of the present invention;
图2是根据本发明实施例的确定与每个轨迹点相关联的多个第一参考轨迹点的方法的示意图;2 is a schematic diagram of a method for determining a plurality of first reference track points associated with each track point according to an embodiment of the present invention;
图3是根据本发明实施例的确定目标子区域轨迹优化映射关系过程中的成像模型;Fig. 3 is an imaging model in the process of determining the optimal mapping relationship of the trajectory of the target sub-region according to an embodiment of the present invention;
图4是根据本发明实施例的寻找目标子区域轨迹优化映射关系的方法的示意图;FIG. 4 is a schematic diagram of a method for finding an optimal mapping relationship for a target sub-region trajectory according to an embodiment of the present invention;
图5是根据本发明实施例的确定第二目标区域轨迹映射关系的方法的流程图;FIG. 5 is a flowchart of a method for determining the trajectory mapping relationship of the second target area according to an embodiment of the present invention;
图6A和图6B是采用本发明的方法对目标子区域成像图像质量进行改善之前的仿真实验结果;FIG. 6A and FIG. 6B are simulation experiment results before the method of the present invention is used to improve the imaging image quality of the target sub-region;
图7、图8A至图8D分别是利用本发明的方法对点目标成像图像质量进行改善处理的仿真实验结果;Fig. 7, Fig. 8A to Fig. 8D are respectively the simulation experiment results of improving the image quality of point target imaging by using the method of the present invention;
图9是采用本发明的方法处理之前在目标区域内的点目标的成像结果;Fig. 9 is the imaging result of the point target in the target area before adopting the method of the present invention to process;
图10A至图10E是利用目标区域的最优轨迹估计对各点目标进行成像质量改善的结果;Figures 10A to 10E are the results of improving the imaging quality of each point target by using the optimal trajectory estimation of the target area;
图11是根据本发明实施例的星载SAR图像获取装置的框图;以及11 is a block diagram of a spaceborne SAR image acquisition device according to an embodiment of the present invention; and
图12是用来实现本发明实施例的星载SAR图像获取方法的电子设备的框图。Fig. 12 is a block diagram of electronic equipment used to implement the method for acquiring a spaceborne SAR image according to an embodiment of the present invention.
具体实施方式detailed description
下面将结合实施例和实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments and the drawings in the embodiments. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
需要说明的是,以下方法中各个操作的序号仅作为该操作的表示以便描述,而不应被看作表示该各个操作的执行顺序。除非明确指出,否则该方法不需要完全按照所示顺序来执行。It should be noted that the sequence number of each operation in the following methods is only used as a representation of the operation for description, and should not be regarded as representing the execution sequence of the respective operations. The methods do not need to be performed in the exact order presented, unless explicitly stated otherwise.
图1是根据本发明实施例的星载SAR图像获取方法的流程图。Fig. 1 is a flowchart of a method for acquiring a spaceborne SAR image according to an embodiment of the present invention.
如图1所示,星载SAR图像获取方法包括操作S110~S150。As shown in FIG. 1 , the method for acquiring a spaceborne SAR image includes operations S110 to S150.
在操作S110,获取针对目标区域的星载SAR回波数据,其中,目标区域包括Ntarget个目标子区域。In operation S110, spaceborne SAR echo data for a target area is acquired, wherein the target area includes N target sub-areas.
在操作S120,针对Ntarget个目标子区域中的每个目标子区域,分别根据星载SAR回波数据,在该目标子区域的成像时间内确定与N1个方位时刻对应的卫星的轨迹点,并根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系。In operation S120, for each target sub-region in the N target target sub-regions, according to the satellite-borne SAR echo data, determine the trajectory points of the satellites corresponding to the N 1 azimuth moments within the imaging time of the target sub-region , and according to the N 1 trajectory points and the satellite trajectory model, determine the trajectory mapping relationship of the first target sub-region corresponding to the target sub-region.
在操作S130,根据星载SAR回波数据,在目标区域的成像时间内确定与N2个方位时刻对应的卫星的轨迹点,并根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系。In operation S130, according to the satellite-borne SAR echo data, within the imaging time of the target area, determine the track points of the satellites corresponding to the N 2 azimuth moments, and determine the points corresponding to the target area according to the N 2 track points and the satellite track model. Multiple first target area trajectory mapping relationships.
在操作S140,根据Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系。In operation S140, a second target area trajectory mapping relationship corresponding to the target area is determined according to the N target first target sub-area trajectory mapping relationships and the plurality of first target area trajectory mapping relationships.
在操作S150,根据第二目标区域轨迹映射关系以及针对目标区域的星载SAR回波数据,确定针对目标区域的星载SAR图像。In operation S150, a spaceborne SAR image for the target area is determined according to the trajectory mapping relationship of the second target area and the spaceborne SAR echo data for the target area.
根据本发明的实施例,目标区域例如可以包括Ntarget个目标子区域,Ntarget为大于等于3的整数。针对目标区域的星载SAR回波数据包括针对Ntarget个目标子区域的星载SAR回波数据。其中,针对每个目标子区域的星载SAR回波数据可以用于对该目标子区域进行成像处理,而针对每个目标区域的星载SAR回波数据可以用于对该目标区域进行成像处理。According to an embodiment of the present invention, the target area may include, for example, N target target sub-areas, where N target is an integer greater than or equal to 3. The spaceborne SAR echo data for the target area includes spaceborne SAR echo data for N target target subareas. Wherein, the spaceborne SAR echo data for each target subregion can be used for imaging processing of the target subregion, and the spaceborne SAR echo data for each target region can be used for imaging processing of the target region .
根据本发明的实施例,由于星载SAR卫星的运动轨迹为平滑的曲线,根据这一特点,可以使用卫星轨迹模型来描述卫星在目标区域(或目标子区域)的成像时间内的轨迹历程。考虑到星载SAR轨迹误差具有低阶误差特点,可以使用卫星轨迹模型中的多项式系数来对卫星的运动轨迹误差进行校正,从而改善星载SAR回波数据成像质量。According to the embodiment of the present invention, since the trajectory of the spaceborne SAR satellite is a smooth curve, according to this feature, the satellite trajectory model can be used to describe the trajectory history of the satellite within the imaging time of the target area (or target sub-area). Considering that the spaceborne SAR trajectory error has low-order error characteristics, the polynomial coefficients in the satellite trajectory model can be used to correct the satellite trajectory error, thereby improving the imaging quality of the spaceborne SAR echo data.
由于星载SAR卫星的运动轨迹为平滑的曲线,因此卫星在目标区域(或目标子区域)的成像时间内的运动轨迹可以看作是由一系列的轨迹点构成,每个轨迹点用于表征卫星在相应方位时刻时的瞬时位置。后续可以从这些轨迹点中选取多个轨迹点来拟合得到最优的卫星轨迹模型的多项式系数,并将该多项式系数应用于卫星轨迹模型,从而得到目标区域(或目标子区域)的轨迹映射关系,进而使用目标区域(或目标子区域)的轨迹映射关系进行成像处理,得到针对目标区域(或目标子区域)的星载SAR图像。这里所谓最优的卫星轨迹模型的多项式系数是指在满足一定条件的情况下,基于该多项式系数得到的卫星轨迹模型具有最小的轨迹误差。Since the trajectory of the spaceborne SAR satellite is a smooth curve, the trajectory of the satellite in the imaging time of the target area (or target sub-area) can be regarded as composed of a series of trajectory points, each trajectory point is used to represent The instantaneous position of the satellite at the corresponding azimuth instant. Subsequently, multiple trajectory points can be selected from these trajectory points to fit the polynomial coefficients of the optimal satellite trajectory model, and the polynomial coefficients can be applied to the satellite trajectory model to obtain the trajectory mapping of the target area (or target sub-area) relationship, and then use the trajectory mapping relationship of the target area (or target sub-area) for imaging processing to obtain the spaceborne SAR image for the target area (or target sub-area). The so-called optimal polynomial coefficients of the satellite trajectory model here means that the satellite trajectory model obtained based on the polynomial coefficients has the smallest trajectory error under certain conditions.
基于上述机制,针对每个目标子区域,可以在该目标子区域的成像时间内从针对该目标子区域的星载回波数据中确定与N1个方位时刻对应的卫星的轨迹点,N1为大于等于3的整数。接下来,可以根据N1个轨迹点和卫星轨迹模型,确定与该目标子区域对应的第一目标子区域轨迹映射关系。其中,第一目标子区域轨迹映射关系是针对目标子区域的最优轨迹估计,其描述了卫星在目标子区域的成像时间内的具有最小卫星轨迹误差的轨迹历程。利用第一目标子区域轨迹映射关系可以对目标子区域进行成像误差的校正。Based on the above mechanism, for each target sub-region, the track points of satellites corresponding to N 1 azimuth moments can be determined from the satellite-borne echo data for the target sub-region within the imaging time of the target sub-region, N 1 is an integer greater than or equal to 3. Next, the trajectory mapping relationship of the first target sub-area corresponding to the target sub-area may be determined according to the N 1 track points and the satellite track model. Wherein, the trajectory mapping relationship of the first target sub-region is the optimal trajectory estimation for the target sub-region, which describes the trajectory history of the satellite with the minimum satellite trajectory error within the imaging time of the target sub-region. The imaging error of the target sub-region can be corrected by using the trajectory mapping relationship of the first target sub-region.
根据本发明的实施例,针对目标区域,在该目标区域的成像时间内从针对目标区域的星载SAR回波数据中确定与N2个方位时刻对应的卫星的轨迹点,N2为大于等于5的整数。然后,根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系。其中,第一目标区域轨迹映射关系是针对目标区域的潜在最优轨迹估计,其描述了卫星在目标区域的成像时间内的潜在具有最小卫星轨迹误差的轨迹历程。According to an embodiment of the present invention, for the target area, within the imaging time of the target area, the trajectory points of the satellites corresponding to N 2 azimuth moments are determined from the spaceborne SAR echo data for the target area, and N 2 is greater than or equal to Integer of 5. Then, according to the N 2 track points and the satellite track model, a plurality of first target area track mapping relationships corresponding to the target area are determined. Wherein, the first target area trajectory mapping relationship is a potential optimal trajectory estimation for the target area, which describes the potential trajectory history of the satellite with the minimum satellite trajectory error within the imaging time of the target area.
可以理解,第一目标子区域轨迹映射关系是针对目标子区域的最优轨迹估计,其实际上体现的是目标子区域成像时间内最接近真实情况的斜距历程。在获取Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系之后,可以利用Ntarget个第一目标子区域轨迹映射关系从多个第一目标区域轨迹映射关系中确定与目标区域对应的第二目标区域轨迹映射关系。其中,第二目标区域轨迹映射关系是针对目标区域的最优轨迹估计,其描述了卫星在目标区域的成像时间内的具有最小卫星轨迹误差的轨迹历程。利用第二目标区域轨迹映射关系可以对目标区域进行成像误差的校正,从而实现针对目标区域的星载SAR图像的质量改善。It can be understood that the trajectory mapping relationship of the first target sub-region is the optimal trajectory estimation for the target sub-region, which actually reflects the slant distance history closest to the real situation within the imaging time of the target sub-region. After acquiring the N target first target sub-area track mapping relationships and multiple first target area track mapping relationships, N target first target sub-area track mapping relationships can be used to determine from the multiple first target area track mapping relationships The trajectory mapping relationship of the second target area corresponding to the target area. Wherein, the second target area trajectory mapping relationship is an optimal trajectory estimation for the target area, which describes the trajectory history of the satellite with the minimum satellite trajectory error within the imaging time of the target area. The imaging error of the target area can be corrected by using the trajectory mapping relationship of the second target area, so as to improve the quality of the spaceborne SAR image for the target area.
接下来,可以根据第二目标区域轨迹映射关系以及针对目标区域的星载SAR回波数据进行成像处理,从而确定针对目标区域的星载SAR图像。可以理解,在本发明的实施例中,可以采取任意一种或多种合适的方式来进行星载SAR成像处理(包括针对目标区域和目标子区域进行成像处理),具体可以根据实际需要选择,本发明对此不做限定。Next, imaging processing may be performed according to the trajectory mapping relationship of the second target area and the space-borne SAR echo data of the target area, so as to determine the space-borne SAR image of the target area. It can be understood that in the embodiments of the present invention, any one or more suitable methods can be adopted to perform spaceborne SAR imaging processing (including imaging processing for the target area and target sub-area), which can be selected according to actual needs, The present invention is not limited thereto.
在本发明实施例的方案中,基于卫星轨道平滑的特点,利用卫星轨道模型和多个轨迹点,分别确定与多个目标子区域对应的第一目标子区域轨迹映射关系,并基于多个第一目标子区域轨迹映射关系从多个第一目标区域轨迹映射关系中确定与目标区域对应的第二目标区域轨迹映射关系,从而得到针对局部区域和整体区域的最优轨迹估计,能够保证区域对应成像时间内斜距误差的精确估计和补偿,提高了星载SAR图像的质量。In the solution of the embodiment of the present invention, based on the characteristics of satellite orbit smoothness, using the satellite orbit model and multiple trajectory points, respectively determine the trajectory mapping relationship of the first target sub-region corresponding to multiple target sub-regions, and based on the multiple A target sub-area trajectory mapping relationship determines the second target area trajectory mapping relationship corresponding to the target area from multiple first target area trajectory mapping relationships, so as to obtain the optimal trajectory estimation for the local area and the overall area, which can ensure that the area corresponds Accurate estimation and compensation of slant range errors within imaging time improves the quality of spaceborne SAR images.
根据本发明的实施例,在上述操作S120中,根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系可以包括以下操作。According to an embodiment of the present invention, in the above operation S120, according to the N 1 trajectory points and the satellite trajectory model, determining the trajectory mapping relationship of the first target sub-region corresponding to the target sub-region may include the following operations.
针对N1个轨迹点中的每个轨迹点,根据轨迹点和第一步长,确定与轨迹点相关联的多个第一参考轨迹点;根据N1个轨迹点以及与N1个轨迹点分别相关联的多个第一参考轨迹点,得到多个第一轨迹点组合;根据多个第一轨迹点组合和卫星轨迹模型,确定与目标子区域对应的多个第二目标子区域轨迹映射关系;以及从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系。For each track point in the N 1 track points, according to the track point and the first step length, determine a plurality of first reference track points associated with the track point; according to the N 1 track points and the N 1 track points A plurality of first reference track points associated with each other obtain a plurality of first track point combinations; according to a plurality of first track point combinations and a satellite track model, determine a plurality of second target sub-area track maps corresponding to the target sub-area relationship; and determine the optimal mapping relationship of the trajectory of the target sub-area from the plurality of second target sub-area trajectory mapping relationships as the first target sub-area trajectory mapping relationship.
图2是根据本发明实施例的确定与每个轨迹点相关联的多个第一参考轨迹点的方法的示意图。以下将以轨迹点P为例来说明确定与该轨迹点P相关联的多个第一参考轨迹点的示例过程。Fig. 2 is a schematic diagram of a method for determining a plurality of first reference track points associated with each track point according to an embodiment of the present invention. The following will take the track point P as an example to illustrate an example process of determining a plurality of first reference track points associated with the track point P. FIG.
如图2所示,在空间三维坐标系xyz中,y方向表示卫星运行轨迹的方位向,即航迹方向。(x-z)平面表示垂直于航迹方向的平面。As shown in Figure 2, in the space three-dimensional coordinate system xyz, the y direction represents the azimuth direction of the satellite trajectory, that is, the track direction. The (x-z) plane represents the plane perpendicular to the track direction.
例如,对于轨迹点P,其在(x-z)平面上对应的坐标为(x,z)。以该轨迹点P为中心且以第一步长η为步长,建立如图2所示的网格并取值,可以得到与轨迹点P相关联的多个第一参考轨迹点,例如第一参考轨迹点P1、第一参考轨迹点P2、第一参考轨迹点P3和第一参考轨迹点P4。第一参考轨迹点P1至P4在(x-z)平面上对应的坐标分别为(x,z+η)、(x+η,z)、(x,z-η)、(x-η,z)。For example, for the trajectory point P, its corresponding coordinates on the (x-z) plane are (x, z). Take this track point P as the center and take the first step length n as the step size, set up the grid as shown in Figure 2 and take the value, a plurality of first reference track points associated with the track point P can be obtained, for example the first A reference track point P1, a first reference track point P2, a first reference track point P3 and a first reference track point P4. The corresponding coordinates of the first reference trajectory points P1 to P4 on the (x-z) plane are (x, z+η), (x+η, z), (x, z-η), (x-η, z) .
类似地,针对N1个轨迹点中的其他任意一个轨迹点,可以采用上述方法,确定与这些轨迹点相关联的多个第一参考轨迹点。后续N1个轨迹点及其对应的第一参考轨迹点可以用于形成多个第一轨迹点组合。Similarly, for any other track point among the N1 track points, the above method may be used to determine multiple first reference track points associated with these track points. The subsequent N 1 track points and their corresponding first reference track points may be used to form multiple first track point combinations.
根据本发明的实施例,第一轨迹点组合是由N1个方位时刻对应的轨迹点或者第一参考轨迹点构成的轨迹点集合。第一轨迹点组合的数量由轨迹点的数量以及与轨迹点关联的多个第一参考轨迹点的数量来确定。According to an embodiment of the present invention, the first track point combination is a track point set composed of track points corresponding to N 1 azimuth moments or first reference track points. The number of first track point combinations is determined by the number of track points and the number of first reference track points associated with the track points.
例如,假设N1个方位时刻对应的轨迹点包括轨迹点P、轨迹点G和轨迹点M,其中与每个轨迹点相关联的多个第一参考轨迹点为4个,则第一轨迹点组合的数量为53。在一个示例中,第一轨迹点组合例如可以表示为(P,G,M)、(P,G1,M1)、或者(P2,G,M1)等等,其中P2、G1和M1分别为轨迹点P、轨迹点G和轨迹点M的第一参考轨迹点。For example, assuming that the track points corresponding to N1 azimuth moments include track point P, track point G, and track point M, where there are four first reference track points associated with each track point, then the first track point The number of combinations is 5 3 . In one example, the first track point combination can be expressed as (P, G, M), (P, G1, M1), or (P2, G, M1), etc., where P2, G1 and M1 are track The first reference track point of point P, track point G and track point M.
根据本发明的实施例,根据第一轨迹点组合,可以拟合得到一组卫星轨迹模型的多项式系数,将该多项式系数应用于卫星轨迹模型,可以得到与目标子区域对应的第二目标子区域轨迹映射关系。其中第一轨迹点组合与第二目标子区域轨迹映射关系具有一一对应关系。According to the embodiment of the present invention, according to the combination of the first trajectory points, a group of polynomial coefficients of the satellite trajectory model can be obtained by fitting, and the polynomial coefficients can be applied to the satellite trajectory model to obtain the second target sub-region corresponding to the target sub-region Track mapping relationship. There is a one-to-one correspondence between the first track point combination and the second target sub-area track mapping relationship.
在一个示例中,卫星轨迹模型可以采用以下公式(1)来表示。In one example, the satellite trajectory model can be represented by the following formula (1).
(1) (1)
在公式(1)中,(Xs, Ys, Zs)表示卫星的瞬时位置,N-1表示卫星轨迹模型的多项式的阶数,t表示方位向采样时刻,(an,bn,cn)(n=0,…,N-1)表示卫星轨迹模型中的多项式系数。其中,N可以根据第一轨迹点组合中轨迹点的数量来确定。In formula (1), (X s , Y s , Z s ) represents the instantaneous position of the satellite, N-1 represents the polynomial order of the satellite trajectory model, t represents the azimuth sampling time, (a n , b n , c n ) (n=0,…,N-1) represent the polynomial coefficients in the satellite trajectory model. Wherein, N may be determined according to the number of track points in the first track point combination.
根据第一轨迹点组合以及上述公式(1)所示的卫星轨迹模型,可以求解得到卫星轨迹模型的多项式系数的表达式。需要说明的是,多项式系数an、bn和cn的求解过程类似,为了节省篇幅,这里以求解多项式系数an为例说明多项式系数的求解过程。According to the first trajectory point combination and the satellite trajectory model shown in the above formula (1), the expression of the polynomial coefficient of the satellite trajectory model can be obtained. It should be noted that the solving process of the polynomial coefficients a n , b n and c n is similar. In order to save space, the polynomial coefficient a n is taken as an example to illustrate the solving process of the polynomial coefficients.
在本发明实施例中,可以根据第一轨迹点组合以及上述公式(1)所示的卫星轨迹模型,求解得到如公式(2)所示的卫星轨迹模型的多项式系数an的表达式。In the embodiment of the present invention, the expression of the polynomial coefficient a n of the satellite trajectory model shown in the formula (2) can be obtained by solving the first track point combination and the satellite track model shown in the above formula (1).
(2) (2)
其中,、A和La分别可以采用以下公式(3)~(5)来表示。in, , A and L a can be represented by the following formulas (3)~(5) respectively.
(3) (3)
(4) (4)
(5) (5)
在公式(2)~(5)中,表示多项式系数在x方向上的分量的矩阵表达,A表示根据 选取的方位时刻所生成的大小为N*N的系数矩阵,La表示N个方位时刻时卫星的瞬时位置在 x方向上的分量,T表示矩阵转置,ti(i=1,…,N)表示第i个方位向采样时刻,XSi(i=1,…,N) 表示第i个方位时刻卫星的瞬时位置在x方向上的位置坐标,an(n=0,…,N-1)表示卫星在x 方向上的位置坐标随方位时刻变化的多项式各阶系数。 In formulas (2)~(5), Represents the matrix expression of the components of polynomial coefficients in the x direction, A represents the coefficient matrix of size N*N generated according to the selected azimuth time, L a represents the component of the satellite's instantaneous position in the x direction at N azimuth times , T represents the matrix transpose, t i (i=1,…,N) represents the i-th azimuth sampling moment, X Si (i=1,…,N) represents the instantaneous position of the satellite at the i-th azimuth moment at x The position coordinates in the direction, a n (n=0,…,N-1) represent the polynomial coefficients of each order of the position coordinates of the satellite in the x direction that change with the azimuth moment.
类似地,可以根据多项式系数an的求解方式,得到多项式系数bn和cn,多项式系数bn和cn分别与多项式系数an具有类似的表达形式,这里不再赘述。Similarly, the polynomial coefficients b n and c n can be obtained according to the solution method of the polynomial coefficient a n , and the polynomial coefficients b n and c n respectively have similar expressions to the polynomial coefficient a n , and will not be repeated here.
接下来,在获取多项式系数an、bn和cn之后,可以将多项式系数an、bn和cn应用于上述公式(1),得到与目标子区域对应的第二目标子区域轨迹映射关系。类似地,采用以上所述的方法,根据多个第一轨迹点组合和卫星轨迹模型,可以确定与目标子区域对应的多个第二目标子区域轨迹映射关系。Next, after obtaining the polynomial coefficients a n , b n and c n , the polynomial coefficients a n , b n and c n can be applied to the above formula (1) to obtain the second target sub-region trajectory corresponding to the target sub-region Mapping relations. Similarly, using the method described above, multiple second target sub-area track mapping relationships corresponding to the target sub-area can be determined according to the combination of multiple first track points and the satellite track model.
根据本发明的实施例,从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系可以包括以下操作。According to an embodiment of the present invention, determining the optimal mapping relationship of the trajectory of the target sub-region from the plurality of mapping relationships of the trajectory of the second target sub-region may include the following operations.
分别使用多个第二目标子区域轨迹映射关系以及与目标子区域对应的星载SAR回波数据对目标子区域进行成像处理,得到多个复图像数据;根据多个复图像数据,得到多个成像对比度;以及响应于预设条件的触发,将多个成像对比度中最大成像对比度所对应的第二目标子区域轨迹映射关系,作为目标子区域轨迹优化映射关系。Using multiple second target sub-area trajectory mapping relationships and spaceborne SAR echo data corresponding to the target sub-area to perform imaging processing on the target sub-area to obtain multiple complex image data; according to the multiple complex image data, multiple Imaging contrast; and in response to the triggering of preset conditions, using the second target sub-region track mapping relationship corresponding to the maximum imaging contrast among the multiple imaging contrasts as the target sub-region track optimization mapping relationship.
根据本发明的实施例,不同的第一轨迹点组合可以拟合得到各自对应的第二目标子区域轨迹映射关系。各个第二目标子区域轨迹映射关系是针对目标子区域的初步轨迹估计,其描述了卫星在目标子区域的成像时间内的潜在具有最小卫星轨迹误差的轨迹历程。各个轨迹历程对于同一目标子区域可能会产生不同的斜距历程,由此产生不同的瞬时斜距的误差,最终表现为成像质量上的差异。According to an embodiment of the present invention, different first trajectory point combinations can be fitted to obtain respective corresponding second target sub-region trajectory mapping relationships. The trajectory mapping relationship of each second target sub-region is a preliminary trajectory estimate for the target sub-region, which describes the potential trajectory history of the satellite with the minimum satellite trajectory error within the imaging time of the target sub-region. Each trajectory history may produce different slant range histories for the same target sub-area, resulting in different instantaneous slant range errors, which ultimately manifest as differences in imaging quality.
为了降低针对目标子区域成像处理中的卫星轨迹误差,以使针对目标子区域成像处理中斜距误差最小,从而使得成像结果聚焦效果最优,可以基于最大对比度的准则从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系,并将目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系。In order to reduce the satellite trajectory error in the imaging process of the target sub-area, minimize the slant distance error in the imaging process of the target sub-area, and optimize the focusing effect of the imaging results, multiple second target sub-areas can be selected based on the maximum contrast criterion. The optimal mapping relationship of the target sub-area trajectory is determined in the regional trajectory mapping relationship, and the optimal mapping relationship of the target sub-region trajectory is used as the first target sub-region trajectory mapping relationship.
根据本发明的实施例,分别利用多个第二目标子区域轨迹映射关系以及与目标子区域对应的星载SAR回波数据对目标子区域进行成像处理,可以得到多个复图像数据。根据多个复图像数据,可以得到多个成像对比度。According to the embodiment of the present invention, multiple complex image data can be obtained by performing imaging processing on the target sub-regions by utilizing trajectory mapping relationships of multiple second target sub-regions and spaceborne SAR echo data corresponding to the target sub-regions. From multiple complex image data, multiple imaging contrasts can be obtained.
在一个示例中,可以使用以下公式(6)来确定成像对比度。In one example, the imaging contrast can be determined using equation (6) below.
(6) (6)
在公式(6)中,表示成像对比度,表示复图像幅值的方差,表示复图像幅值的均值,表示复图像数据。 In formula (6), Indicates the imaging contrast, Indicates the variance of the complex image magnitude, Indicates the mean value of the complex image amplitude, Represents complex image data.
根据本发明的实施例,复图像幅值的方差和复图像幅值的均值可以根据复图像数据来确定。在一个示例中,复图像幅值的方差和复图像幅值的均值可以分别使用以下公式(7)和公式(8)来确定。According to an embodiment of the present invention, the variance of the complex image magnitude and the mean of the complex image magnitude may be determined from the complex image data. In one example, the variance of the complex image magnitude and the mean of the complex image magnitude may be determined using the following equations (7) and (8), respectively.
(7) (7)
(8) (8)
在公式(7)和公式(8)中,k表示距离向采样时刻,t表示方位向采样时刻,M表示复图像的像素大小。In formulas (7) and (8), k represents the sampling time in the range direction, t represents the sampling time in the azimuth direction, and M represents the pixel size of the complex image.
基于上述公式(6)~(8),可以根据多个复图像数据,得到与多个复图像数据分别对应的多个成像对比度。在满足预设条件的情况下,可以基于最大对比度的准则,从多个成像对比度中确定最大成像对比度所对应的第二目标子区域轨迹映射关系,作为目标子区域轨迹优化映射关系。Based on the above formulas (6)-(8), multiple imaging contrasts respectively corresponding to the multiple complex image data can be obtained according to the multiple complex image data. If the preset condition is met, the second target sub-region trajectory mapping relationship corresponding to the maximum imaging contrast can be determined from multiple imaging contrasts based on the maximum contrast criterion, and used as the target sub-region trajectory optimization mapping relationship.
在一些实施例中,如果不满足预设条件,将无法从多个第二目标子区域轨迹映射关系中匹配到目标子区域轨迹优化映射关系,即无法寻找到与目标子区域对应的最优目标子区域轨迹映射关系。在此情况下,可以将第一步长更新为第二步长,并基于第二步长,重复执行从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系的操作。如果基于第二步长从多个第二目标子区域轨迹映射关系中可以确定目标子区域轨迹优化映射关系,则将该目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系。需要说明的是,基于第二步长从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系的过程,与基于第一步长从多个第二目标子区域轨迹映射关系中确定目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系的过程类似,这里不再赘述。In some embodiments, if the preset condition is not satisfied, the optimal target sub-area track mapping relationship cannot be matched from multiple second target sub-area trajectory mapping relationships, that is, the optimal target corresponding to the target sub-area cannot be found. Sub-area trajectory mapping relationship. In this case, the first step size can be updated to the second step size, and based on the second step size, repeatedly determine the target sub-region trajectory optimization mapping relationship from multiple second target sub-region trajectory mapping relationships as the first Operations on the trajectory mapping relationship of the target subregion. If the target sub-area track optimal mapping relationship can be determined from multiple second target sub-area track mapping relationships based on the second step size, the target sub-area track optimal mapping relationship is used as the first target sub-area track mapping relationship. It should be noted that, based on the second step length, the process of determining the optimal mapping relationship of the trajectory of the target sub-region as the first target sub-region trajectory mapping relationship from multiple second target sub-region trajectory mapping relationships is different from that based on the first step length from multiple The process of determining the optimal trajectory mapping relationship of the target sub-region in the second target sub-region trajectory mapping relationship as the first target sub-region trajectory mapping relationship is similar, and will not be repeated here.
根据本发明的实施例,可以设置多个第二步长以进行多轮寻优。例如,在利用一个第二步长未匹配到目标子区域轨迹优化映射关系的情况下,还可以利用另一个第二步长来进行寻优;如此重复操作,直至确定一个目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系,或者确定不存在目标子区域轨迹优化映射关系。According to an embodiment of the present invention, multiple second step sizes may be set to perform multiple rounds of optimization. For example, in the case that a second step size does not match the optimal mapping relationship of the target sub-area trajectory, another second step size can also be used for optimization; the operation is repeated until a target sub-region trajectory optimization mapping is determined The relationship is used as the first target sub-region trajectory mapping relationship, or it is determined that there is no target sub-region trajectory optimization mapping relationship.
根据本发明的实施例,以上所述的预设条件包括以下之中的至少之一:本次寻优得到的最大成像对比度相对于前次寻优得到的最大成像对比度的增加量小于等于第一阈值,以及本次寻优对应的步长小于等于第二阈值。可以理解,第一阈值和第二阈值以及第一步长和第二步长可以根据实际情况来设定,本发明对此不做限定。According to an embodiment of the present invention, the above-mentioned preset conditions include at least one of the following: the increase of the maximum imaging contrast obtained by this optimization compared with the maximum imaging contrast obtained by the previous optimization is less than or equal to the first threshold, and the step size corresponding to this optimization is less than or equal to the second threshold. It can be understood that the first threshold and the second threshold and the first step size and the second step size may be set according to actual conditions, which is not limited in the present invention.
下面将结合图3和图4来说明寻找目标子区域轨迹优化映射关系的示例过程。An example process of finding the optimal mapping relationship of the trajectory of the target sub-region will be described below with reference to FIG. 3 and FIG. 4 .
图3是根据本发明实施例的确定目标子区域轨迹优化映射关系过程中的成像模型。Fig. 3 is an imaging model in the process of determining the optimal mapping relationship of the trajectory of the target sub-region according to an embodiment of the present invention.
如图3所示,y方向表示卫星运行轨迹的方位向,即航迹方向。(x-z)平面表示垂直于航迹方向的平面。Q点表示目标子区域的中心目标点。卫星沿着y方向飞行,可以确定一条卫星飞行的实际轨迹(如图3中虚线所示)。在目标子区域的成像时间范围内,从实际轨迹上确定多个轨迹点。根据该多个轨迹点可以拟合得到一条理想轨迹(如图3中实线所示)。As shown in FIG. 3 , the y direction represents the azimuth direction of the satellite trajectory, that is, the track direction. The (x-z) plane represents the plane perpendicular to the track direction. Point Q represents the central target point of the target sub-area. The satellite flies along the y direction, and the actual flight trajectory of a satellite can be determined (as shown by the dotted line in Figure 3). A number of trajectory points are determined from the actual trajectory within the imaging time frame of the target sub-region. According to the plurality of trajectory points, an ideal trajectory can be obtained by fitting (as shown by the solid line in FIG. 3 ).
在图3中,Re、Rs分别表示中心目标点Q处含误差的斜距和实际斜距。通过比较Re和Rs可知,由于卫星轨迹误差的存在,会导致瞬时斜距的误差。而瞬时斜距的误差会影响目标定位精度,进而降低SAR图像的质量。In Fig. 3, Re and R s represent the error-containing slant distance and the actual slant distance at the central target point Q, respectively. By comparing R e and R s , it can be seen that due to the existence of satellite trajectory error, the error of instantaneous slant distance will be caused. The error of the instantaneous slant distance will affect the target positioning accuracy, and then reduce the quality of SAR image.
如前文所介绍的,星载SAR卫星的运动轨迹可以视为一条平滑的曲线。基于这一特点,可以使用卫星轨迹模型来对卫星轨道位置进行描述。另外,考虑到星载SAR轨迹误差具有低阶误差特点,可以使用卫星轨迹模型中的多项式系数来对卫星的运动轨迹误差进行校正,从而改善星载SAR回波数据成像质量。由此,可以将求解最小卫星轨迹误差的轨迹历程问题转换为寻找一组最优的卫星轨迹模型的多项式系数。但是,卫星轨迹模型中多项式各阶系数数量级差别很大,且线性项、常数项无法搜索,因此,无法直接对多项式系数进行搜索优化。在本发明实施例中,可以采用搜索迭代轨迹点位置的方法,对多项式系数进行寻优,以便得到目标子区域轨迹优化映射关系,进而利用目标子区域轨迹优化映射关系来改善星载SAR回波数据成像质量。As mentioned above, the trajectory of the spaceborne SAR satellite can be regarded as a smooth curve. Based on this feature, the satellite trajectory model can be used to describe the satellite orbit position. In addition, considering the low-order error characteristics of the spaceborne SAR trajectory error, the polynomial coefficients in the satellite trajectory model can be used to correct the satellite trajectory error, thereby improving the imaging quality of the spaceborne SAR echo data. Therefore, the trajectory history problem of solving the minimum satellite trajectory error can be transformed into finding a set of optimal polynomial coefficients of the satellite trajectory model. However, the order of coefficients of polynomials in the satellite trajectory model differs greatly, and the linear and constant terms cannot be searched. Therefore, it is impossible to search and optimize the polynomial coefficients directly. In the embodiment of the present invention, the polynomial coefficients can be optimized by using the method of searching for the position of the iterative trajectory point, so as to obtain the optimal mapping relationship of the target sub-region trajectory, and then use the optimal mapping relationship of the target sub-region trajectory to improve the spaceborne SAR echo Data imaging quality.
图4是根据本发明实施例的寻找目标子区域轨迹优化映射关系的方法的示意图。Fig. 4 is a schematic diagram of a method for finding an optimal mapping relationship of a trajectory of a target sub-region according to an embodiment of the present invention.
如图4所示,寻找目标子区域轨迹优化映射关系的方法包括操作S401~S409。As shown in FIG. 4 , the method for finding the optimal mapping relationship of the trajectory of the target sub-region includes operations S401-S409.
在操作S401,获取N1个轨迹点。根据本发明的实施例,在目标子区域成像时间内,从星载SAR回波数据中确定与N1个方位时刻对应的卫星的轨迹点,N1为大于等于3的整数,得到N1个轨迹点。In operation S401, N 1 trajectory points are acquired. According to an embodiment of the present invention, within the imaging time of the target sub-area, the track points of the satellites corresponding to N 1 azimuth moments are determined from the spaceborne SAR echo data, N 1 is an integer greater than or equal to 3, and N 1 are obtained track point.
在操作S402,获取第一步长。根据本发明的实施例,第一步长可以根据实际情况设定,本发明对此不做限定。In operation S402, the first step length is obtained. According to an embodiment of the present invention, the length of the first step may be set according to actual conditions, which is not limited in the present invention.
在操作S403,确定多个第一轨迹点组合。In operation S403, a plurality of first trajectory point combinations are determined.
根据本发明的实施例,针对N1个轨迹点中的每个轨迹点,可以根据该轨迹点以及第一步长,确定与该轨迹点相关联的多个第一参考轨迹点,并根据N1个轨迹点以及与N1个轨迹点分别相关联的多个第一参考轨迹点,得到多个第一轨迹点组合。其中确定第一参考轨迹点和第一轨迹点组合的方式与以上描述的过程类似,这里不做赘述。According to an embodiment of the present invention, for each of the N 1 track points, a plurality of first reference track points associated with the track point can be determined according to the track point and the length of the first step, and according to N 1 track point and a plurality of first reference track points respectively associated with the N 1 track points to obtain a plurality of first track point combinations. The manner of determining the combination of the first reference track point and the first track point is similar to the process described above, and will not be repeated here.
在操作S404,确定多个第二目标子区域轨迹映射关系。根据本发明的实施例,基于以上公式(1)~(5),可以根据多个第一轨迹点组合,拟合得到多个第二目标子区域轨迹映射关系。In operation S404, a plurality of second target sub-region trajectory mapping relationships are determined. According to an embodiment of the present invention, based on the above formulas (1) to (5), multiple second target sub-region trajectory mapping relationships can be obtained by fitting according to the combination of multiple first trajectory points.
在操作S405,确定多个复图像数据。In operation S405, a plurality of complex image data is determined.
例如,分别利用多个第二目标子区域轨迹映射关系以及与目标子区域对应的星载SAR回波数据对目标子区域进行成像处理,可以得到多个复图像数据。For example, multiple complex image data can be obtained by performing imaging processing on the target sub-region by using the trajectory mapping relationships of the plurality of second target sub-regions and the spaceborne SAR echo data corresponding to the target sub-region.
在操作S406,确定多个成像对比度。根据本发明的实施例,基于以上公式(6)~(8),可以根据多个复图像数据,确定多个成像对比度。In operation S406, a plurality of imaging contrasts are determined. According to an embodiment of the present invention, based on the above formulas (6) to (8), multiple imaging contrasts can be determined according to multiple complex image data.
在操作S407,判断是否满足预设条件,若是,执行操作S408,否则,执行操作S409。In operation S407, it is judged whether the preset condition is satisfied, if yes, perform operation S408, otherwise, perform operation S409.
预设条件可以包括以下之中的至少之一:确定本次寻优得到的最大成像对比度相对于前次寻优得到的最大成像对比度的增加量小于等于第一阈值,以及本次寻优对应的步长小于等于第二阈值。如果满足预设条件,则执行操作S408,否则,执行操作S409。The preset conditions may include at least one of the following: it is determined that the increase of the maximum imaging contrast obtained by this optimization compared to the maximum imaging contrast obtained by the previous optimization is less than or equal to the first threshold, and the corresponding The step size is less than or equal to the second threshold. If the preset condition is met, perform operation S408, otherwise, perform operation S409.
在操作S408,将多个成像对比度中最大成像对比度所对应的第二目标子区域轨迹映射关系,作为目标子区域轨迹优化映射关系。In operation S408, the trajectory mapping relationship of the second target sub-region corresponding to the maximum imaging contrast among the plurality of imaging contrasts is used as the optimized mapping relationship of the trajectory of the target sub-region.
在操作S409,更新第一步长为第二步长,重复执行操作S403~S407,直至确定目标子区域轨迹优化映射关系。In operation S409, the first step size is updated to the second step size, and operations S403-S407 are repeatedly performed until the optimal mapping relationship of the trajectory of the target sub-area is determined.
根据本发明的实施例,如果不满足预设条件,说明没有寻找到匹配的目标子区域轨迹优化映射关系。此时可以将第一步长更新为第二步长,并重复执行操作S403~407,直至确定目标子区域轨迹优化映射关系。然后,将该目标子区域轨迹优化映射关系作为第一目标子区域轨迹映射关系,以便后续利用第一目标子区域轨迹映射关系对目标子区域的星载SAR回波数据成像进行校正,从而提高目标子区域成像时间范围内的星载SAR图像质量。According to an embodiment of the present invention, if the preset condition is not satisfied, it means that no matching optimal mapping relationship of the trajectory of the target sub-region has been found. At this point, the first step size can be updated to the second step size, and operations S403-407 are repeated until the optimal mapping relationship of the trajectory of the target sub-area is determined. Then, the trajectory optimization mapping relationship of the target sub-region is used as the first target sub-region trajectory mapping relationship, so that the satellite-borne SAR echo data imaging of the target sub-region can be corrected by using the first target sub-region trajectory mapping relationship, thereby improving the target Spaceborne SAR image quality in the sub-regional imaging time range.
根据本发明的实施例,在上述操作S130中,根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系可以包括以下操作。According to an embodiment of the present invention, in the above operation S130, according to the N 2 trajectory points and the satellite trajectory model, determining multiple first target area trajectory mapping relationships corresponding to the target area may include the following operations.
针对N2个轨迹点中的每个轨迹点,根据轨迹点和第三步长,确定与轨迹点相关联的多个第二参考轨迹点;根据N2个轨迹点以及与N2个轨迹点分别相关联的多个第二参考轨迹点,得到多个第二轨迹点组合;以及根据多个第二轨迹点组合和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系。For each track point in the N 2 track points, according to the track point and the third step, determine a plurality of second reference track points associated with the track point; according to the N 2 track points and the N 2 track points A plurality of second reference track points associated respectively, to obtain a plurality of second track point combinations; and according to a plurality of second track point combinations and the satellite track model, determining a plurality of first target area track mapping relationships corresponding to the target area .
在本发明实施例中,确定第二参考轨迹点、第二轨迹点组合以及多个第一目标区域轨迹映射关系的过程分别与确定第一参考轨迹点、第一轨迹点组合以及多个第二目标子区域轨迹映射关系的过程相同或者类似,为节省篇幅,这里不做赘述。In the embodiment of the present invention, the process of determining the second reference track point, the second track point combination, and the multiple first target area track mapping relationships is respectively the same as determining the first reference track point, the first track point combination, and the multiple second track point combinations. The process of the trajectory mapping relationship of the target sub-area is the same or similar, and will not be described here in order to save space.
根据本发明的实施例,第一目标子区域轨迹映射关系是针对目标子区域的最优轨迹估计,其实际上体现的是目标子区域成像时间内最接近真实情况的斜距历程。但是,在针对目标区域的成像时间范围内,不同成像几何下对卫星轨迹误差的敏感度各不相同。为了能够获得针对目标区域的最优轨迹估计,实现针对目标区域的星载SAR图像的质量改善,可以在获取与Ntarget个目标子区域分别对应的第一目标子区域轨迹映射关系之后,利用Ntarget个第一目标子区域轨迹映射关系来确定针对目标区域的第二目标区域轨迹映射关系,以便利用第二目标区域轨迹映射关系来改善目标区域成像时间范围内的图像质量。According to the embodiment of the present invention, the trajectory mapping relationship of the first target sub-region is the optimal trajectory estimation for the target sub-region, which actually reflects the slope distance history closest to the real situation within the imaging time of the target sub-region. However, within the imaging time range for the target area, the sensitivity to satellite trajectory errors varies with different imaging geometries. In order to obtain the optimal trajectory estimation for the target area and improve the quality of the spaceborne SAR image for the target area, after obtaining the trajectory mapping relationship of the first target sub-area respectively corresponding to the N target sub-areas, use N The target first target sub-area track mapping relationship is used to determine a second target area track mapping relationship for the target area, so as to use the second target area track mapping relationship to improve image quality within the imaging time range of the target area.
图5是根据本发明实施例的确定第二目标区域轨迹映射关系的方法的流程图。Fig. 5 is a flowchart of a method for determining a trajectory mapping relationship of a second target area according to an embodiment of the present invention.
如图5所示,确定第二目标区域轨迹映射关系的方法包括操作S541~S544。As shown in FIG. 5 , the method for determining the trajectory mapping relationship of the second target area includes operations S541 to S544.
在操作S541,针对Ntarget个第一目标子区域轨迹映射关系中的每一个,在目标子区域的成像时间内确定与Norb个方位时刻对应的卫星的轨迹点,并基于第一目标子区域轨迹映射关系,分别确定Norb个轨迹点与该目标子区域的中心目标点之间的斜距,得到Norb个第一斜距。In operation S541, for each of the N target first target sub-area trajectory mapping relationships, determine the track points of the satellites corresponding to the N orb azimuth moments within the imaging time of the target sub-area, and based on the first target sub-area The trajectory mapping relationship is to determine the slant distances between the N orb trajectory points and the central target point of the target sub-area respectively, and obtain the N orb first slant distances.
在操作S542,针对多个第一目标区域轨迹映射关系中的每一个,基于第一目标区域轨迹映射关系,确定Ntarget个目标子区域中的每个目标子区域所对应的Norb个方位时刻下的斜距,得到Ntarget*Norb个第二斜距。In operation S542, for each of the plurality of first target area trajectory mapping relationships, N orb azimuth moments corresponding to each target subregion in the N target target subregions are determined based on the first target region trajectory mapping relationship The next slant distance, get N target *N orb second slant distances.
在操作S543,针对多个第一目标区域轨迹映射关系中的每一个,确定Ntarget*Norb个第二斜距与Ntarget个第一目标子区域轨迹映射关系的Norb个第一斜距之间的偏差度。In operation S543, for each of the plurality of first target area trajectory mapping relationships, N orb first slant distances of N target *N orb second slant distances and N target first target sub-region trajectory mapping relationships are determined deviation between.
在操作S544,基于偏差度,从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系。In operation S544, based on the degree of deviation, an optimized target area trajectory mapping relationship is determined as a second target area trajectory mapping relationship from the plurality of first target area trajectory mapping relationships.
根据本发明的实施例,目标区域包括Ntarget个目标子区域,Ntarget个目标子区域中的每一个分别对应一个第一目标子区域轨迹映射关系。对于每个第一目标子区域轨迹映射关系,在目标子区域的成像时间内确定与Norb个方位时刻对应的卫星的轨迹点,Norb为大于等于3的整数。然后,基于该第一目标子区域轨迹映射关系,分别确定Norb个轨迹点与该目标子区域的中心目标点之间的斜距,得到Norb个第一斜距。采用上述方法,基于Ntarget个第一目标子区域轨迹映射关系,可以得到Ntarget*Norb个第一斜距。According to an embodiment of the present invention, the target area includes N target target sub-areas, and each of the N target target sub-areas corresponds to a trajectory mapping relationship of the first target sub-area. For each first target sub-region trajectory mapping relationship, determine the satellite trajectory points corresponding to N orb azimuth moments within the imaging time of the target sub-region, N orb is an integer greater than or equal to 3. Then, based on the trajectory mapping relationship of the first target sub-area, the slope distances between the N orb track points and the central target point of the target sub-area are respectively determined to obtain N orb first slope distances. Using the above method, N target *N orb first slant distances can be obtained based on the trajectory mapping relationship of the N target first target sub-areas.
根据本发明的实施例,针对每个第一目标区域轨迹映射关系,根据该第一目标区域轨迹映射关系,可以确定Ntarget个目标子区域中的每个目标子区域所对应的Norb个方位时刻下的斜距,得到Ntarget*Norb个第二斜距。According to an embodiment of the present invention, for each first target area trajectory mapping relationship, according to the first target area trajectory mapping relationship, N orb orientations corresponding to each target sub-region in the N target target sub-regions can be determined The slant distance at the moment, and N target *N orb second slant distances are obtained.
可以理解,第一目标区域轨迹映射关系是针对目标区域的潜在最优轨迹估计,其描述了卫星在目标区域的成像时间内的潜在具有最小卫星轨迹误差的轨迹历程。而第一目标子区域轨迹映射关系是针对目标子区域的最优轨迹估计。如果第一目标区域轨迹映射关系所表征的在目标区域成像时间内的整体轨迹与Ntarget个第一目标子区域轨迹映射关系所表征的在目标子区域成像时间内的局部轨迹能够很好的贴合,使得各个目标子区域内的目标在整体轨迹估计下的斜距历程与目标子区域的最优轨迹估计下的斜距历程之间的偏差尽可能的小,则说明该第一目标区域轨迹映射关系有较大可能是针对目标区域的最优轨迹估计。It can be understood that the first target area trajectory mapping relationship is a potential optimal trajectory estimation for the target area, which describes the potential trajectory history of the satellite with the minimum satellite trajectory error within the imaging time of the target area. The trajectory mapping relationship of the first target sub-region is the optimal trajectory estimation for the target sub-region. If the overall trajectory represented by the first target region trajectory mapping relationship within the target region imaging time and the local trajectory within the target subregion imaging time represented by the N target first target subregion trajectory mapping relationship can be well matched combined, so that the deviation between the slant distance history of the target under the overall trajectory estimation and the slant distance history under the optimal trajectory estimation of the target subregion in each target subregion is as small as possible, then the trajectory of the first target region The mapping relationship is more likely to be the optimal trajectory estimation for the target area.
基于这一机制,可以基于Ntarget个第一目标子区域轨迹映射关系得到的Ntarget*Norb个第一斜距与基于第一目标区域轨迹映射关系得到的Ntarget*Norb个第二斜距之间的偏差度,从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系。Based on this mechanism, the N target *N orb first oblique distances obtained based on the N target first target sub-area trajectory mapping relationship and the N target *N orb second oblique distances obtained based on the first target area trajectory mapping relationship The degree of deviation between distances is determined from multiple first target area trajectory mapping relationships to determine the target area trajectory optimization mapping relationship as the second target area trajectory mapping relationship.
可以理解,基于每个第一目标区域轨迹映射关系,可以确定一个偏差度。因此,根据多个第一目标区域轨迹映射关系,可以确定多个偏差度。It can be understood that, based on the trajectory mapping relationship of each first target area, a degree of deviation can be determined. Therefore, multiple degrees of deviation can be determined according to multiple first target area trajectory mapping relationships.
根据本发明的实施例,基于偏差度从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系可以包括如下操作:从多个偏差度中确定最小偏差度,以及在最小偏差度小于等于第三阈值的情况下,将最小偏差度所对应的第一目标区域轨迹映射关系确定为目标区域轨迹优化映射关系。由此,实现从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系。According to an embodiment of the present invention, determining the target area trajectory optimization mapping relationship as the second target area trajectory mapping relationship from multiple first target area trajectory mapping relationships based on the degree of deviation may include the following operations: determining the minimum deviation from the multiple deviation degrees degree, and in the case that the minimum degree of deviation is less than or equal to the third threshold, the first target area trajectory mapping relationship corresponding to the minimum deviation degree is determined as the target area trajectory optimization mapping relationship. In this way, it is realized that the optimal mapping relationship of the trajectory of the target area is determined from the plurality of mapping relationships of the trajectory of the first target area as the second mapping relationship of the trajectory of the target area.
在一些实施例中,基于偏差度从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系还可以包括如下操作:从多个偏差度中确定最小偏差度,在本次寻优对应的步长小于等于第四阈值的情况下,将最小偏差度所对应的第一目标区域轨迹映射关系确定为目标区域轨迹优化映射关系。由此,实现从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系。In some embodiments, determining the target area trajectory optimization mapping relationship as the second target area trajectory mapping relationship from multiple first target area trajectory mapping relationships based on the degree of deviation may also include the following operations: determining the minimum deviation from the multiple deviation degrees Degree, in the case that the step size corresponding to this optimization is less than or equal to the fourth threshold, the first target area trajectory mapping relationship corresponding to the minimum deviation degree is determined as the target area trajectory optimization mapping relationship. In this way, it is realized that the optimal mapping relationship of the trajectory of the target area is determined from the plurality of mapping relationships of the trajectory of the first target area as the second mapping relationship of the trajectory of the target area.
根据本发明的实施例,如果基于偏差度未匹配到目标区域轨迹优化映射关系,可以在确定多个第一目标区域轨迹映射关系的过程中,将第三步长更新为第四步长,并基于第四步长,重复执行从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为所述第二目标区域轨迹映射关系的操作。如果基于第四步长,从多个第一目标区域轨迹映射关系中可以确定目标区域轨迹优化映射关系,则将该目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系。需要说明的是,基于第四步长从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系的过程,与基于第三步长从多个第一目标区域轨迹映射关系中确定目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系的过程类似,这里不再赘述。According to an embodiment of the present invention, if the target area trajectory optimization mapping relationship is not matched based on the degree of deviation, the third step size can be updated to the fourth step size during the process of determining multiple first target area trajectory mapping relationships, and Based on the fourth step, the operation of determining the optimal trajectory mapping relationship of the target area from the plurality of first target area trajectory mapping relationships as the second target area trajectory mapping relationship is repeatedly performed. If based on the fourth step, the optimal trajectory mapping relationship of the target area can be determined from the plurality of first target area trajectory mapping relationships, the optimal trajectory mapping relationship of the target area is used as the second target area trajectory mapping relationship. It should be noted that the process of determining the optimal trajectory mapping relationship of the target area from multiple first target area trajectory mapping relationships based on the fourth step length as the second target area trajectory mapping relationship is the same as determining the optimal trajectory mapping relationship of the target area from multiple first target area trajectory mapping relationships based on the third step length. The process of determining the optimal trajectory mapping relationship of the target region as the second trajectory mapping relationship of the target region in the trajectory mapping relationship of the target region is similar and will not be repeated here.
根据本发明的实施例,可以设置多个第四步长以进行多轮寻优。例如,在利用一个第四步长未匹配到目标区域轨迹优化映射关系的情况下,还可以利用另一个第四步长来进行寻优;如此重复操作,直至确定一个目标区域轨迹优化映射关系作为第二目标区域轨迹映射关系,或者确定不存在目标区域轨迹优化映射关系。According to an embodiment of the present invention, multiple fourth step sizes may be set to perform multiple rounds of optimization. For example, in the case that a fourth step does not match the optimal mapping relationship of the trajectory of the target area, another fourth step can also be used for optimization; the operation is repeated until an optimal mapping relationship of the trajectory of the target area is determined as The second target area trajectory mapping relationship, or determine that there is no target area trajectory optimization mapping relationship.
根据本发明的实施例,以上所述的偏差度可以为方差、差值、偏差、标准差等,本发明对此不做限定。According to an embodiment of the present invention, the degree of deviation mentioned above may be variance, difference, deviation, standard deviation, etc., which is not limited in the present invention.
需要说明的是,以上所述的第三阈值、第四阈值、第三步长和第四步长可以根据实际需要设置,本发明对此不做限定。It should be noted that the above-mentioned third threshold, fourth threshold, third step size, and fourth step size may be set according to actual needs, which is not limited in the present invention.
在本发明实施例中,基于多个第一目标子区域轨迹映射关系从多个第一目标区域轨迹映射关系中确定与目标区域对应的第二目标区域轨迹映射关系,从而得到针对目标区域的最优轨迹估计,能够保证目标区域对应成像时间内斜距误差的精确估计和补偿,提高了目标区域成像时间范围内的星载SAR图像的质量。In the embodiment of the present invention, the second target area trajectory mapping relationship corresponding to the target area is determined from the multiple first target area trajectory mapping relationships based on the multiple first target sub-area trajectory mapping relationships, so as to obtain the optimal target area for the target area. The optimal trajectory estimation can ensure the accurate estimation and compensation of the slant range error corresponding to the imaging time of the target area, and improves the quality of the spaceborne SAR image within the imaging time range of the target area.
为了使本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例来说明本发明的优势。In order to enable those skilled in the art to understand the technical solutions of the present invention more clearly, the advantages of the present invention will be described below in conjunction with specific examples.
在本发明实施例中,仿真实验的主要雷达参数如表1所示。如表1所示,仿真实验的主要雷达参数包括载频、调频率、采样频率、脉冲宽度、脉冲重复频率、斜视角和合成孔径时间。其中,载频为9.6GHz,调频率为1.1×1013Hz/s,采样频率为133333333Hz,脉冲宽度为9.24μs,脉冲重复频率为4567Hz,斜视角为0˚,合成孔径时间约为1s。In the embodiment of the present invention, the main radar parameters of the simulation experiment are shown in Table 1. As shown in Table 1, the main radar parameters of the simulation experiment include carrier frequency, modulation frequency, sampling frequency, pulse width, pulse repetition frequency, oblique angle of view and synthetic aperture time. Among them, the carrier frequency is 9.6GHz, the modulation frequency is 1.1×10 13 Hz/s, the sampling frequency is 133333333Hz, the pulse width is 9.24 μs , the pulse repetition frequency is 4567Hz, the oblique angle is 0°, and the synthetic aperture time is about 1s.
表1Table 1
图6A和图6B是采用本发明的方法对目标子区域成像图像质量进行改善之前的仿真实验结果。需要说明的是,为了简便描述,下面将目标子区域称为点目标,对此后续将不再赘述。FIG. 6A and FIG. 6B are simulation experiment results before the method of the present invention is used to improve the imaging quality of the target sub-region. It should be noted that, for simplicity of description, the target sub-region is referred to as a point target below, which will not be described in detail later.
图6A是采用本发明的方法处理之前点目标的成像结果。如图6A所示,由于受到卫星轨迹误差的影响,点目标的成像图像在方位向上出现了明显的散焦现象。Fig. 6A is the imaging result of a point target before being processed by the method of the present invention. As shown in Figure 6A, due to the influence of the satellite trajectory error, the imaging image of the point target has obvious defocus phenomenon in the azimuth direction.
图6B是与图6A对应的点目标方位向剖面图。根据图6B中示出的点目标方位向剖面图可知,由于受到卫星轨迹误差的影响,主瓣与旁瓣严重混叠、无法分辨,这影响了点目标在方位向上的分辨率。Fig. 6B is an azimuth sectional view of a point target corresponding to Fig. 6A. According to the azimuth profile of the point target shown in Figure 6B, due to the influence of the satellite trajectory error, the main lobe and side lobes are seriously aliased and cannot be distinguished, which affects the resolution of the point target in the azimuth direction.
图7、图8A至图8D分别是利用本发明的方法对点目标成像图像质量进行改善处理的仿真实验结果。FIG. 7 , and FIG. 8A to FIG. 8D are simulation experiment results of using the method of the present invention to improve the image quality of point target imaging.
在利用本发明的方法对点目标成像图像质量进行改善处理过程中,对卫星轨迹点加入垂直于航向的误差。在点目标成像时间内选取5个方位时刻的轨迹点,并针对5个轨迹点中的每一个,确定与该轨迹点相关联的4个第一参考轨迹点。根据5个轨迹点及其对应的20个第一参考轨迹点,得到55个第一轨迹点组合。接下来,利用55个第一轨迹点组合确定了第一目标子区域轨迹映射关系,并基于第一目标子区域轨迹映射关系与点目标对应的星载SAR回波数据进行成像处理,得到点目标的成像结果。In the process of improving the image quality of point target imaging by using the method of the invention, an error perpendicular to the course is added to the satellite track point. The trajectory points at five azimuth moments are selected within the point target imaging time, and for each of the five trajectory points, four first reference trajectory points associated with the trajectory point are determined. According to the 5 track points and the corresponding 20 first reference track points, 5 to 5 first track point combinations are obtained. Next, the trajectory mapping relationship of the first target sub-area is determined by using the combination of 5 to 5 first track points, and imaging processing is performed on the spaceborne SAR echo data corresponding to the point target based on the trajectory mapping relationship of the first target sub-area, and the point Target imaging results.
在本发明实施例中,分别采用了不同的步长策略进行寻优,以成像对比度的增加量小于10-2为停止条件,以寻找到与点目标对应的第一目标子区域轨迹映射关系,并基于第一目标子区域轨迹映射关系对点目标成像,得到如图7、图8A至图8D所示的成像结果。其中,图7显示了初始步长为1m,每次迭代减少0.2m,经过2次迭代后停止(以下称第一步长策略)的成像结果。图8A至图8D显示了固定步长为0.2m,经过8次迭代后停止(以下称第二步长策略)的成像结果。In the embodiment of the present invention, different step length strategies are used for optimization, and the increase of imaging contrast is less than 10 -2 as the stop condition to find the trajectory mapping relationship of the first target sub-region corresponding to the point target. And the point target is imaged based on the trajectory mapping relationship of the first target sub-area, and the imaging results shown in FIG. 7, FIG. 8A to FIG. 8D are obtained. Among them, Figure 7 shows the imaging results of the initial step size of 1m, each iteration is reduced by 0.2m, and stopped after 2 iterations (hereinafter referred to as the first step length strategy). Figures 8A to 8D show the imaging results of a fixed step size of 0.2 m and stopping after 8 iterations (hereinafter referred to as the second step size strategy).
请一并参考图6A、图6B和图7,相比于采用本发明的方法处理之前点目标的成像结果,以第一步长策略得到的成像结果能够明显改善点目标在方位向上出现的散焦问题,点目标的聚焦程度得到了良好改善。并且,采用本发明的方法能够清晰区分主瓣与旁瓣,提升了点目标在方位向上的分辨率。由此,提高了星载SAR图像的质量。Please refer to Fig. 6A, Fig. 6B and Fig. 7 together. Compared with the imaging results of the previous point targets processed by the method of the present invention, the imaging results obtained with the first step length strategy can significantly improve the scatter of the point targets in the azimuth direction. The focusing problem of the point target has been greatly improved. Moreover, the method of the invention can clearly distinguish the main lobe and the side lobe, and improves the resolution of the point target in the azimuth direction. Thus, the quality of spaceborne SAR images is improved.
类似地,通过比较图6A与图8A和图8B可知,以第二步长策略得到的成像结果同样能够明显改善点目标在方位向上出现的散焦问题,点目标的聚焦程度得到了良好改善。另外,通过对比图6B与图8C和图8D可知,采用本发明的方法能够清晰区分主瓣与旁瓣,提升了点目标在方位向上的分辨率。由此提高了星载SAR图像的质量。Similarly, by comparing Fig. 6A with Fig. 8A and Fig. 8B, it can be seen that the imaging result obtained by the second step length strategy can also significantly improve the defocusing problem of the point target in the azimuth direction, and the focus degree of the point target has been well improved. In addition, by comparing FIG. 6B with FIG. 8C and FIG. 8D , it can be seen that the method of the present invention can clearly distinguish the main lobe and the side lobe, and improve the resolution of the point target in the azimuth direction. This improves the quality of spaceborne SAR images.
在本发明实施例中,还比较了利用两种步长策略对点目标成像图像质量进行改善的结果,其比较结果如表2所示。In the embodiment of the present invention, the results of improving the image quality of point target imaging by using two step length strategies are also compared, and the comparison results are shown in Table 2.
表2Table 2
在本发明实施例中,可以使用峰值旁瓣比、积分旁瓣比和成像对比度来评价对点目标成像图像质量改善的情况。如表2所示,利用第一步长策略处理得到的峰值旁瓣比、积分旁瓣比分别为-13.255dB和-9.79dB,利用第二步长策略处理得到的峰值旁瓣比、积分旁瓣比分别为-13.258dB和-9.79dB。可以理解,利用第一步长策略和第二步长策略得到的峰值旁瓣比均接近-13.26dB,且积分旁瓣比均接近-10dB,可以满足图像聚焦要求。另外,利用第一步长策略处理得到的峰值旁瓣比、积分旁瓣比和成像对比度,与利用第二步长策略处理得到的峰值旁瓣比、积分旁瓣比和成像对比度,具有较好的一致性,这与图7、图8A至图8D所示的成像结果一致,说明采用本发明的方法具有较好的适应性,可以采用不同的步长策略对点目标成像图像质量进行改善,以提高星载SAR图像的质量。In the embodiment of the present invention, the peak side lobe ratio, the integral side lobe ratio and the imaging contrast can be used to evaluate the improvement of the imaging quality of the point target. As shown in Table 2, the peak sidelobe ratio and integral sidelobe ratio obtained by using the first step strategy are -13.255dB and -9.79dB respectively, and the peak sidelobe ratio and integral sidelobe ratio obtained by using the second step strategy are The lobe ratios are -13.258dB and -9.79dB, respectively. It can be understood that the peak sidelobe ratio obtained by using the first step size strategy and the second step size strategy is close to -13.26dB, and the integral sidelobe ratio is close to -10dB, which can meet the image focusing requirements. In addition, the peak sidelobe ratio, integral sidelobe ratio and imaging contrast obtained by using the first step length strategy are better than the peak sidelobe ratio, integral sidelobe ratio and imaging contrast obtained by using the second step length strategy. Consistency, which is consistent with the imaging results shown in Fig. 7, Fig. 8A to Fig. 8D, indicating that the method of the present invention has good adaptability, and different step length strategies can be used to improve the image quality of point target imaging. To improve the quality of spaceborne SAR images.
在一些实施例中,还可以利用本发明的方法对目标区域内的多个点目标进行成像图像质量改善。下面将结合具体的实施例对此进行详细说明。In some embodiments, the method of the present invention can also be used to improve the imaging image quality of multiple point targets in the target area. This will be described in detail below in conjunction with specific embodiments.
图9是采用本发明的方法处理之前在目标区域内的点目标的成像结果。Fig. 9 is the imaging result of a point target in the target area before processing by the method of the present invention.
如图9所示,目标区域中包括5个点目标,例如点目标A、点目标B、点目标C、点目标D和点目标E。各点目标受卫星轨迹误差影响,均存在方位向的散焦。As shown in FIG. 9 , the target area includes 5 point objects, such as point object A, point object B, point object C, point object D, and point object E. All point targets are affected by satellite trajectory errors, and there is defocus in the azimuth direction.
为了改善目标区域中各点目标成像质量,利用本发明的方法进行轨迹寻优,可以得到各点目标情况下的最优轨迹估计(即第一目标子区域轨迹映射关系),对应的各目标成像质量改善情况如表3所示。如表3所示,各点目标对应的峰值旁瓣比基本接近-13.26dB,且积分旁瓣比基本接近-10dB,可以满足图像聚焦要求,目标区域中的各点目标的聚焦程度能够得到良好的改善。In order to improve the imaging quality of each point target in the target area, the method of the present invention is used to optimize the trajectory, and the optimal trajectory estimation (that is, the trajectory mapping relationship of the first target sub-area) in the case of each point target can be obtained. The corresponding target imaging The quality improvement is shown in Table 3. As shown in Table 3, the peak sidelobe ratio corresponding to each point target is basically close to -13.26dB, and the integral sidelobe ratio is basically close to -10dB, which can meet the image focus requirements, and the focus degree of each point target in the target area can be obtained. improvement.
表3table 3
可以理解,各点目标对应的最优轨迹估计结果表征了对应点目标合成孔径时间内的最接近实际轨迹的估计结果。根据本发明的方法,可以对每个点目标在合成孔径时间内选取3个方位时刻对应的卫星的轨迹点,并计算对应最优估计轨迹下的第一斜距,得到15个方位时刻下的第一斜距。It can be understood that the optimal trajectory estimation result corresponding to each point target represents the estimation result closest to the actual trajectory within the synthetic aperture time of the corresponding point target. According to the method of the present invention, the trajectory points of satellites corresponding to 3 azimuth moments can be selected for each point target within the synthetic aperture time, and the first slant distance under the corresponding optimal estimated trajectory can be calculated to obtain the slant distances at 15 azimuth moments. first slope distance.
接下来,可以以这15个方位时刻以及对应的点目标的第一斜距为准,在目标区域的成像时间内选取对应的15个方位时刻下的轨迹点,并以斜距误差最小为寻优条件,以拟合得到针对目标区域的最优轨迹估计(即第二目标区域轨迹映射关系)。并利用目标区域的最优轨迹估计对目标区域中的各点目标进行成像质量改善,得到如表4以及图10A至图10E所示的结果。Next, based on the 15 azimuth moments and the first slant distance of the corresponding point target, the trajectory points at the corresponding 15 azimuth moments can be selected within the imaging time of the target area, and the slant distance error is the smallest. The optimal condition is used to fit the optimal trajectory estimation for the target area (that is, the trajectory mapping relationship of the second target area). And the optimal trajectory estimation of the target area is used to improve the imaging quality of each point target in the target area, and the results shown in Table 4 and FIGS. 10A to 10E are obtained.
表4Table 4
表4是利用目标区域的最优轨迹估计对目标区域中的各点目标进行成像质量改善的结果。图10A至图10E是利用目标区域的最优轨迹估计对各点目标进行成像质量改善的结果。Table 4 is the result of improving the imaging quality of each point target in the target area by using the optimal trajectory estimation of the target area. 10A to 10E are the results of improving the imaging quality of each point target by using the optimal trajectory estimation of the target area.
如表4和图10A至图10E所示,利用目标区域的最优轨迹估计对目标区域中的各点目标进行成像质量改善,可以使各点目标聚焦效果得到明显改善。而且,通过比较表3和表4可知,利用目标区域的最优轨迹估计对各点目标进行成像质量改善的结果,与各点目标对应的最优轨迹估计对自身成像质量改善的结果具有较好的一致性。As shown in Table 4 and Figures 10A to 10E, using the optimal trajectory estimation of the target area to improve the imaging quality of each point target in the target area can significantly improve the focusing effect of each point target. Moreover, by comparing Table 3 and Table 4, it can be seen that using the optimal trajectory estimation of the target area to improve the imaging quality of each point target, the optimal trajectory estimation corresponding to each point target has a better effect on the improvement of its own imaging quality. consistency.
基于上述星载SAR图像获取方法,本发明还提供了一种星载SAR图像获取装置。Based on the above-mentioned space-borne SAR image acquisition method, the present invention also provides a space-borne SAR image acquisition device.
图11示意性示出了根据本发明实施例的星载SAR图像获取装置的框图。Fig. 11 schematically shows a block diagram of a spaceborne SAR image acquisition device according to an embodiment of the present invention.
如图11所示,在本发明实施例中,星载SAR图像获取装置1100可以包括获取模块1110、第一映射模块1120、第二映射模块1130、确定模块1140和成像模块1150。As shown in FIG. 11 , in the embodiment of the present invention, the spaceborne SAR
获取模块1110用于获取针对目标区域的星载SAR回波数据,其中,目标区域包括Ntarget个目标子区域,Ntarget为大于等于3的整数。The
第一映射模块1120用于针对Ntarget个目标子区域中的每个目标子区域,分别根据星载SAR回波数据,在该目标子区域的成像时间内确定与N1个方位时刻对应的卫星的轨迹点,并根据N1个轨迹点和卫星轨迹模型,确定与目标子区域对应的第一目标子区域轨迹映射关系,N1为大于等于3的整数。The
第二映射模块1130用于根据星载SAR回波数据,在目标区域的成像时间内确定与N2个方位时刻对应的卫星的轨迹点,并根据N2个轨迹点和卫星轨迹模型,确定与目标区域对应的多个第一目标区域轨迹映射关系,N2为大于等于5的整数。The
确定模块1140用于根据Ntarget个第一目标子区域轨迹映射关系以及多个第一目标区域轨迹映射关系,确定与目标区域对应的第二目标区域轨迹映射关系。The determining
成像模块1150用于根据第二目标区域轨迹映射关系以及针对目标区域的星载SAR回波数据,确定针对目标区域的星载SAR图像。The
需要说明的是,装置部分实施例中各模块/单元/子单元等的实施方式、解决的技术问题、实现的功能、以及达到的技术效果分别与方法部分实施例中各对应的步骤的实施方式、解决的技术问题、实现的功能、以及达到的技术效果相同或类似,在此不再赘述。It should be noted that the implementations of modules/units/subunits, etc., the technical problems solved, the functions realized, and the technical effects achieved in the embodiments of the device part are respectively the same as those of the corresponding steps in the embodiments of the method part. , the technical problems solved, the functions realized, and the technical effects achieved are the same or similar, and will not be repeated here.
根据本发明的实施例,获取模块1110、第一映射模块1120、第二映射模块1130、确定模块1140和成像模块1150中的任意多个模块可以合并在一个模块中实现,或者其中的任意一个模块可以被拆分成多个模块。或者,这些模块中的一个或多个模块的至少部分功能可以与其他模块的至少部分功能相结合,并在一个模块中实现。根据本发明的实施例,获取模块1110、第一映射模块1120、第二映射模块1130、确定模块1140和成像模块1150中的至少一个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,获取模块1110、第一映射模块1120、第二映射模块1130、确定模块1140和成像模块1150中的至少一个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。According to an embodiment of the present invention, any number of modules in the
根据本发明的实施例,本发明还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to the embodiments of the present invention, the present invention also provides an electronic device, a readable storage medium and a computer program product.
根据本发明的实施例,一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如上所述的方法。According to an embodiment of the present invention, an electronic device includes: at least one processor; and a memory communicatively connected to at least one processor; wherein, the memory stores instructions executable by at least one processor, and the instructions are processed by at least one The processor is executed, so that at least one processor can perform the method as described above.
根据本发明的实施例,一种存储有计算机指令的非瞬时计算机可读存储介质,其中,计算机指令用于使计算机执行如上所述的方法。According to an embodiment of the present invention, a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause a computer to execute the method as described above.
根据本发明的实施例,一种计算机程序产品,包括计算机程序,计算机程序在被处理器执行时实现如上所述的方法。According to an embodiment of the present invention, a computer program product includes a computer program, and the computer program implements the above method when executed by a processor.
图12示意性示出了根据本发明实施例的适于实现星载SAR图像获取方法的电子设备的方框图。Fig. 12 schematically shows a block diagram of an electronic device adapted to implement the method for acquiring a spaceborne SAR image according to an embodiment of the present invention.
如图12所示,根据本发明实施例的电子设备1200包括处理器1201,其可以根据存储在只读存储器(ROM)1202中的程序或者从存储部分1208加载到随机访问存储器(RAM)1203中的程序而执行各种适当的动作和处理。处理器1201例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC))等等。处理器1201还可以包括用于缓存用途的板载存储器。处理器1201可以包括用于执行根据本发明实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。As shown in FIG. 12 , an
在RAM 1203中,存储有电子设备1200操作所需的各种程序和数据。处理器1201、ROM 1202以及RAM 1203通过总线1204彼此相连。处理器1201通过执行ROM 1202和/或RAM1203中的程序来执行根据本发明实施例的方法流程的各种操作。需要注意,所述程序也可以存储在除ROM 1202和RAM 1203以外的一个或多个存储器中。处理器1201也可以通过执行存储在所述一个或多个存储器中的程序来执行根据本发明实施例的方法流程的各种操作。In the
根据本发明的实施例,电子设备1200还可以包括输入/输出(I/O)接口1205,输入/输出(I/O)接口1205也连接至总线1204。电子设备1200还可以包括连接至I/O接口1205的以下部件中的一项或多项:包括键盘、鼠标等的输入部分1206;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分1207;包括硬盘等的存储部分1208;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分1209。通信部分1209经由诸如因特网的网络执行通信处理。驱动器1210也根据需要连接至I/O接口1205。可拆卸介质1211,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1210上,以便于从其上读出的计算机程序根据需要被安装入存储部分1208。According to an embodiment of the present invention, the
本发明还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本发明实施例的方法。The present invention also provides a computer-readable storage medium. The computer-readable storage medium may be included in the device/apparatus/system described in the above embodiments; it may also exist independently without being assembled into the device/system device/system. The above-mentioned computer-readable storage medium carries one or more programs, and when the above-mentioned one or more programs are executed, the method according to the embodiment of the present invention is implemented.
根据本发明的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质,例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。例如,根据本发明的实施例,计算机可读存储介质可以包括上文描述的ROM 1202和/或RAM 1203和/或ROM 1202和RAM 1203以外的一个或多个存储器。According to an embodiment of the present invention, the computer-readable storage medium may be a non-volatile computer-readable storage medium, such as but not limited to: portable computer disk, hard disk, random access memory (RAM), read-only memory (ROM) , erasable programmable read-only memory (EPROM or flash memory), portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. For example, according to an embodiment of the present invention, a computer-readable storage medium may include one or more memories other than
本发明的实施例还包括一种计算机程序产品,其包括计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。当计算机程序产品在计算机系统中运行时,该程序代码用于使计算机系统实现本发明实施例所提供的星载SAR图像获取方法。Embodiments of the present invention also include a computer program product, which includes a computer program including program codes for executing the methods shown in the flowcharts. When the computer program product runs in the computer system, the program code is used to make the computer system realize the method for acquiring satellite-borne SAR images provided by the embodiment of the present invention.
在该计算机程序被处理器1201执行时执行本发明实施例的系统/装置中限定的上述功能。根据本发明的实施例,上文描述的系统、装置、模块、单元等可以通过计算机程序模块来实现。When the computer program is executed by the
在一种实施例中,该计算机程序可以依托于光存储器件、磁存储器件等有形存储介质。在另一种实施例中,该计算机程序也可以在网络介质上以信号的形式进行传输、分发,并通过通信部分1209被下载和安装,和/或从可拆卸介质1211被安装。该计算机程序包含的程序代码可以用任何适当的网络介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。In one embodiment, the computer program may rely on tangible storage media such as optical storage devices and magnetic storage devices. In another embodiment, the computer program can also be transmitted and distributed in the form of a signal on network media, downloaded and installed through the
在这样的实施例中,该计算机程序可以通过通信部分1209从网络上被下载和安装,和/或从可拆卸介质1211被安装。在该计算机程序被处理器1201执行时,执行本发明实施例的系统中限定的上述功能。根据本发明的实施例,上文描述的系统、设备、装置、模块、单元等可以通过计算机程序模块来实现。In such an embodiment, the computer program may be downloaded and installed from a network via
根据本发明的实施例,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明实施例提供的计算机程序的程序代码,具体地,可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。程序设计语言包括但不限于诸如Java,C++,python,“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。According to the embodiments of the present invention, the program codes for executing the computer programs provided by the embodiments of the present invention can be written in any combination of one or more programming languages, specifically, high-level procedural and/or object-oriented programming language, and/or assembly/machine language to implement these computing programs. Programming languages include, but are not limited to, programming languages such as Java, C++, python, "C" or similar programming languages. The program code can execute entirely on the user computing device, partly on the user device, partly on the remote computing device, or entirely on the remote computing device or server. In cases involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (for example, using an Internet service provided business to connect via the Internet).
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or portion of code that includes one or more logical functions for implementing specified executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block in the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or operation, or can be implemented by a A combination of dedicated hardware and computer instructions.
本领域技术人员可以理解,本发明的各个实施例中记载的特征可以进行多种组合和/或结合,即使这样的组合或结合没有明确记载于本发明中。特别地,在不脱离本发明精神和教导的情况下,本发明的各个实施例中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本发明的范围。Those skilled in the art can understand that the features described in the various embodiments of the present invention can be combined and/or combined in various ways, even if such a combination or combination is not explicitly recorded in the present invention. In particular, without departing from the spirit and teaching of the present invention, the features described in the various embodiments of the present invention can be combined and/or combined in various ways. All such combinations and/or combinations fall within the scope of the present invention.
以上对本发明的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本发明的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。不脱离本发明的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本发明的范围之内。The embodiments of the present invention have been described above. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. Although the various embodiments have been described separately above, this does not mean that the measures in the various embodiments cannot be advantageously used in combination. Those skilled in the art can make various substitutions and modifications without departing from the scope of the present invention, and these substitutions and modifications should all fall within the scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211219052.9A CN115291216B (en) | 2022-10-08 | 2022-10-08 | Satellite-borne SAR image acquisition method and device, electronic equipment and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211219052.9A CN115291216B (en) | 2022-10-08 | 2022-10-08 | Satellite-borne SAR image acquisition method and device, electronic equipment and medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115291216A CN115291216A (en) | 2022-11-04 |
CN115291216B true CN115291216B (en) | 2023-01-13 |
Family
ID=83834521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211219052.9A Active CN115291216B (en) | 2022-10-08 | 2022-10-08 | Satellite-borne SAR image acquisition method and device, electronic equipment and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115291216B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014012828A1 (en) * | 2012-07-19 | 2014-01-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for processing high-resolution spaceborne spotlight sar raw data |
CN106556822A (en) * | 2016-11-09 | 2017-04-05 | 上海卫星工程研究所 | Spaceborne Sliding spotlight SAR pointing accuracy Orbital detection method |
CN106886021A (en) * | 2017-01-24 | 2017-06-23 | 上海卫星工程研究所 | High Resolution Spaceborne SAR image quality method for improving |
CN110488294A (en) * | 2019-09-09 | 2019-11-22 | 上海无线电设备研究所 | A kind of spaceborne more baseline holography SAR imaging methods |
CN111381217A (en) * | 2020-04-01 | 2020-07-07 | 上海无线电设备研究所 | Missile-borne SAR motion compensation method based on low-precision inertial navigation system |
CN113640794A (en) * | 2021-07-20 | 2021-11-12 | 北京理工大学 | A self-focusing method for MIMO-SAR 3D imaging |
CN114384519A (en) * | 2022-03-23 | 2022-04-22 | 中国科学院空天信息创新研究院 | Ultrahigh resolution spaceborne synthetic aperture radar imaging method and device |
CN114910911A (en) * | 2022-07-18 | 2022-08-16 | 中国科学院空天信息创新研究院 | A Spaceborne Multibase SAR Imaging Method Based on Multiphase Center Reconstruction |
CN115128603A (en) * | 2022-06-17 | 2022-09-30 | 北京理工大学 | Satellite-borne SAR non-tracking multi-target imaging satellite-ground configuration joint design and optimization method |
-
2022
- 2022-10-08 CN CN202211219052.9A patent/CN115291216B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014012828A1 (en) * | 2012-07-19 | 2014-01-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for processing high-resolution spaceborne spotlight sar raw data |
CN106556822A (en) * | 2016-11-09 | 2017-04-05 | 上海卫星工程研究所 | Spaceborne Sliding spotlight SAR pointing accuracy Orbital detection method |
CN106886021A (en) * | 2017-01-24 | 2017-06-23 | 上海卫星工程研究所 | High Resolution Spaceborne SAR image quality method for improving |
CN110488294A (en) * | 2019-09-09 | 2019-11-22 | 上海无线电设备研究所 | A kind of spaceborne more baseline holography SAR imaging methods |
CN111381217A (en) * | 2020-04-01 | 2020-07-07 | 上海无线电设备研究所 | Missile-borne SAR motion compensation method based on low-precision inertial navigation system |
CN113640794A (en) * | 2021-07-20 | 2021-11-12 | 北京理工大学 | A self-focusing method for MIMO-SAR 3D imaging |
CN114384519A (en) * | 2022-03-23 | 2022-04-22 | 中国科学院空天信息创新研究院 | Ultrahigh resolution spaceborne synthetic aperture radar imaging method and device |
CN115128603A (en) * | 2022-06-17 | 2022-09-30 | 北京理工大学 | Satellite-borne SAR non-tracking multi-target imaging satellite-ground configuration joint design and optimization method |
CN114910911A (en) * | 2022-07-18 | 2022-08-16 | 中国科学院空天信息创新研究院 | A Spaceborne Multibase SAR Imaging Method Based on Multiphase Center Reconstruction |
Non-Patent Citations (3)
Title |
---|
A New Geosynchronous SAR Constellation and Its Signal Characteristics;Xu Hailong, et al.;《IEEE Access》;20190809;第7卷;第101540-101550页 * |
同步轨道SAR参数分析及成像方法;李军等;《系统工程与电子技术》;20100515;第32卷(第05期);第932-935页 * |
考虑运动补偿的机载SAR定位误差传递模型及航迹标定方法;高铭等;《雷达学报》;20210831;第10卷(第4期);第647-652页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115291216A (en) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113436238B (en) | Point cloud registration accuracy evaluation method and device and electronic equipment | |
CN112098964B (en) | Calibration method, device, equipment and storage medium of road-end radar | |
US20180306922A1 (en) | Method and apparatus for positioning vehicle | |
CN110208792B (en) | Arbitrary straight line constraint tracking method for simultaneously estimating target state and track parameters | |
US8542947B2 (en) | Method for RPC refinement using ground control information | |
CN105137408B (en) | A Radar Angle Super-resolution Method for Optimal Antenna Pattern Selection | |
CN110865346B (en) | Satellite-borne SAR time parameter calibration method based on direct positioning algorithm | |
CN111443349B (en) | BiSAR echo-based correlation motion error compensation method, system and application | |
CN110082761A (en) | Distributed external illuminators-based radar imaging method | |
CN113902645A (en) | Reverse RD positioning model-based RPC correction parameter acquisition method for satellite-borne SAR image | |
CN111551934A (en) | A motion-compensated self-focusing method and device for unmanned aerial vehicle SAR imaging | |
CN110221298A (en) | Self-focusing method for low-frequency-band spaceborne SAR ionosphere scintillation effect | |
CN113030964A (en) | Bistatic ISAR (inverse synthetic aperture radar) thin-aperture high-resolution imaging method based on complex Laplace prior | |
CN115981148A (en) | Unmanned aerial vehicle ground moving target tracking method | |
CN109657191A (en) | A kind of Ionospheric Tomography method and device | |
CN112099006A (en) | A synthetic aperture radar relative positioning error correction method, system and device | |
CN115291216B (en) | Satellite-borne SAR image acquisition method and device, electronic equipment and medium | |
CN118050707A (en) | Laser radar calibration method and device, storage medium and terminal equipment | |
CN109799502A (en) | A kind of bidimensional self-focusing method suitable for filter back-projection algorithm | |
CN108983172B (en) | SAR radiation calibration method based on random evolution constraint | |
CN111127334A (en) | Real-time geometric correction method and system for SAR image based on RD plane pixel mapping | |
CN107255816B (en) | Maximum contrast space-varying phase self-focusing ISAR imaging method | |
CN109856624B (en) | Target state estimation method for single-radar linear flight path line | |
CN109324326B (en) | A method for SAR baseline calibration without control points for surveying and mapping | |
CN111127348B (en) | SAR image geometric correction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |