CN115228595B - Intelligent mining area segmentation method based on target detection - Google Patents
Intelligent mining area segmentation method based on target detection Download PDFInfo
- Publication number
- CN115228595B CN115228595B CN202210858722.5A CN202210858722A CN115228595B CN 115228595 B CN115228595 B CN 115228595B CN 202210858722 A CN202210858722 A CN 202210858722A CN 115228595 B CN115228595 B CN 115228595B
- Authority
- CN
- China
- Prior art keywords
- ore
- model
- bed surface
- belt
- target detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005065 mining Methods 0.000 title claims abstract description 26
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 230000011218 segmentation Effects 0.000 title claims abstract description 19
- 238000004364 calculation method Methods 0.000 claims abstract description 17
- 238000012549 training Methods 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 12
- 230000033001 locomotion Effects 0.000 claims abstract description 7
- 238000011156 evaluation Methods 0.000 claims abstract description 5
- 238000009826 distribution Methods 0.000 claims description 23
- 238000005457 optimization Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 38
- 239000011707 mineral Substances 0.000 description 38
- 239000012141 concentrate Substances 0.000 description 15
- 238000000926 separation method Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 10
- 238000005070 sampling Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- AFNRRBXCCXDRPS-UHFFFAOYSA-N tin(ii) sulfide Chemical compound [Sn]=S AFNRRBXCCXDRPS-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B5/00—Washing granular, powdered or lumpy materials; Wet separating
- B03B5/02—Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
- B03B5/04—Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on shaking tables
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210858722.5A CN115228595B (en) | 2022-07-20 | 2022-07-20 | Intelligent mining area segmentation method based on target detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210858722.5A CN115228595B (en) | 2022-07-20 | 2022-07-20 | Intelligent mining area segmentation method based on target detection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115228595A CN115228595A (en) | 2022-10-25 |
CN115228595B true CN115228595B (en) | 2024-10-25 |
Family
ID=83672517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210858722.5A Active CN115228595B (en) | 2022-07-20 | 2022-07-20 | Intelligent mining area segmentation method based on target detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115228595B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117409009A (en) * | 2023-12-15 | 2024-01-16 | 长沙矿冶研究院有限责任公司 | Real-time sorting method for dry magnetic separation particles based on UNet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103785532A (en) * | 2014-02-18 | 2014-05-14 | 云南锡业集团有限责任公司研究设计院 | Method for automatically monitoring tin ore table beneficiation |
CN103810500A (en) * | 2014-02-25 | 2014-05-21 | 北京工业大学 | Place image recognition method based on supervised learning probability topic model |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108681743B (en) * | 2018-04-16 | 2019-12-06 | 腾讯科技(深圳)有限公司 | Image object recognition method and device and storage medium |
CN113269675B (en) * | 2021-05-18 | 2022-05-13 | 东北师范大学 | Time-variant data time super-resolution visualization method based on deep learning model |
-
2022
- 2022-07-20 CN CN202210858722.5A patent/CN115228595B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103785532A (en) * | 2014-02-18 | 2014-05-14 | 云南锡业集团有限责任公司研究设计院 | Method for automatically monitoring tin ore table beneficiation |
CN103810500A (en) * | 2014-02-25 | 2014-05-21 | 北京工业大学 | Place image recognition method based on supervised learning probability topic model |
Also Published As
Publication number | Publication date |
---|---|
CN115228595A (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110567974A (en) | Cloud artificial intelligence based surface defect detection system | |
Kaartinen et al. | Machine-vision-based control of zinc flotation—a case study | |
CN115228595B (en) | Intelligent mining area segmentation method based on target detection | |
CN109115785A (en) | A kind of casting grinding quality determining method, device and its application method | |
CN111753912A (en) | Coal slime flotation clean coal ash content prediction method based on deep learning | |
CN110070526A (en) | Defect inspection method based on the prediction of deep neural network temperature figure | |
CN102284428A (en) | Corn real-time detection and grading machine vision system | |
CN111157537A (en) | Strip steel defect detection device and system based on bionic machine vision | |
CN110394307B (en) | Tobacco leaf automated inspection letter sorting system | |
CN117764443B (en) | Internet of things-based full life cycle green quality control method for big data concrete | |
CN106979952A (en) | A kind of algae detection and Statistics of Density devices and methods therefor based on machine vision technique | |
CN110243732B (en) | Whole-course ore pulp grinding granularity online detection system with granularity range of 2-500um | |
CN114858806A (en) | Cigarette quality inspection data analysis system and method | |
CN109726777A (en) | PCB appearance detection system and detection method Internet-based | |
CN112485257A (en) | Method and device for detecting roller surface abrasion of roller press based on machine vision | |
CN202114018U (en) | Machine vision system for grain real-time detection and grading | |
CN207222339U (en) | A kind of intelligent controller of stack high-frequency vibration undersize sieve | |
CN112801211A (en) | Power grid defect accurate identification method based on image identification technology | |
CN108380525A (en) | Bastard coal device for visual identification and method | |
CN114378002A (en) | Hericium erinaceus grading system and grading method based on machine vision | |
CN112580185A (en) | Prediction method for intermediate grade content of ore grinding product of vertical stirring mill | |
CN113304869B (en) | Automatic identification and access method and device for shaking table ore belt | |
CN214894918U (en) | Belted steel defect detecting device based on bionical machine vision | |
CN116740449A (en) | Shaving form detection method and system based on AI (advanced technology attachment) computer vision technology | |
CN117034538A (en) | Design method for structural counterweight iron slag concrete mix proportion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhang Wenkang Inventor after: Wang Chunjing Inventor after: Yuan Linxun Inventor after: Liu Dan Inventor after: Yu Longzhou Inventor before: Zhang Wenkang Inventor before: Wang Chunjing Inventor before: Yuan Linxun Inventor before: Liu Dan Inventor before: Zhou Gongqiang Inventor before: He Qixue Inventor before: Lei Chao Inventor before: Yu Longzhou |
|
GR01 | Patent grant | ||
GR01 | Patent grant |