Nothing Special   »   [go: up one dir, main page]

CN115227504A - Automatic lifting sickbed system based on electroencephalogram and electrooculogram signals - Google Patents

Automatic lifting sickbed system based on electroencephalogram and electrooculogram signals Download PDF

Info

Publication number
CN115227504A
CN115227504A CN202210842339.0A CN202210842339A CN115227504A CN 115227504 A CN115227504 A CN 115227504A CN 202210842339 A CN202210842339 A CN 202210842339A CN 115227504 A CN115227504 A CN 115227504A
Authority
CN
China
Prior art keywords
electroencephalogram
electro
data set
data
oculogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210842339.0A
Other languages
Chinese (zh)
Other versions
CN115227504B (en
Inventor
孙爱西
张昱
蔡建程
鄂世举
徐子盛
寇建龙
楼刚
王成武
郑佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202210842339.0A priority Critical patent/CN115227504B/en
Publication of CN115227504A publication Critical patent/CN115227504A/en
Application granted granted Critical
Publication of CN115227504B publication Critical patent/CN115227504B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/002Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
    • A61G7/018Control or drive mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/002Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
    • A61G7/012Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame raising or lowering of the whole mattress frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2203/00General characteristics of devices
    • A61G2203/10General characteristics of devices characterised by specific control means, e.g. for adjustment or steering
    • A61G2203/18General characteristics of devices characterised by specific control means, e.g. for adjustment or steering by patient's head, eyes, facial muscles or voice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Nursing (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computing Systems (AREA)
  • Genetics & Genomics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Psychology (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Human Computer Interaction (AREA)

Abstract

The invention discloses an automatic lifting sickbed system based on electroencephalogram and electro-oculogram signals, which belongs to the field of rehabilitation and medical treatment, and comprises a brain wave sensor, a sickbed control system and a sickbed body, wherein the sickbed body has lifting, active calling and alarming functions; the brain wave sensor is connected with the hospital bed control system and used for collecting the electroencephalogram and electro-oculogram fusion signals of the patient and transmitting the electroencephalogram and electro-oculogram fusion signals to the hospital bed control system; the sickbed control system sends a control instruction according to the electroencephalogram and electrooculogram fusion signal of a patient, the control instruction is used for controlling the sickbed body to rise and level, actively calling and alarming, and the sickbed body responds according to the control instruction; the patient can be lifted, actively called and intelligently alarmed in a bed-lying state by monitoring the electroencephalogram signals in real time.

Description

Automatic lifting sickbed system based on electroencephalogram and electrooculogram signals
Technical Field
The invention belongs to the field of rehabilitation and medical treatment, and particularly relates to an automatic lifting sickbed system based on electroencephalogram and electrooculogram signals.
Background
For patients lying in bed for a long time, particularly patients with inconvenient limbs, the state of the sickbed needs to be adjusted with the help of nursing staff, the labor intensity of the nursing staff is increased, and the patients cannot independently adjust the state of the sickbed and call doctors and the like. Although the existing sickbed can automatically realize the functions of lifting, alarming and the like through a simple button, the sickbed is only suitable for patients who can move simply, and the sickbed does not have any mobility for patients who are inconvenient to lie in bed completely, and the common intelligent sickbed cannot meet the requirements.
With the continuous development of scientific technology, scientific research means of human beings on the brain are diversified, wherein a brain-computer interface method adopts electroencephalogram and an eye electrical signal to form corresponding relations with the movement of eyes and eye accessories, and a body-independent sickbed system is designed by utilizing the corresponding relations, so that a bedridden patient can get up, actively call and intelligently alarm, and the brain-computer interface method becomes a research hotspot of rehabilitation medical engineering.
Disclosure of Invention
In order to solve the technical problem, the invention provides an automatic lifting sickbed system based on electroencephalogram signals, which can realize lifting, active calling and intelligent alarming of a patient in a bed state by monitoring the electroencephalogram signals in real time.
The invention adopts the following technical scheme:
an automatic lifting sickbed system based on electroencephalogram and electrooculogram signals comprises an electroencephalogram sensor, a sickbed control system and a sickbed body, wherein the sickbed body has lifting, active calling and alarming functions;
the brain wave sensor is connected with the hospital bed control system and used for collecting the electroencephalogram and electrooculogram fusion signals of the patient and transmitting the electroencephalogram and electrooculogram fusion signals to the hospital bed control system; the sickbed control system sends a control instruction according to the electroencephalogram and electrooculogram fusion signal of the patient, the control instruction is used for controlling the sickbed body to rise and level, actively calling and alarming, and the sickbed body responds according to the control instruction;
the hospital bed control system comprises:
the brain electric eye electrical fusion signal noise filtering module is used for carrying out noise filtering processing on the brain electric eye electrical fusion signal;
the electroencephalogram electro-fusion signal segmentation window module is used for segmenting the electroencephalogram electro-fusion signal subjected to noise filtering into different groups with consistent length;
and the brain electric eye electric fusion signal pattern recognition module is used for recognizing the characteristic type of each group of brain electric eye electric fusion signals and sending an instruction according to the characteristic type.
Preferably, the brain wave sensor is wirelessly connected to a hospital bed control system.
Preferably, the hospital bed control system sends a control instruction according to the electroencephalogram and electrooculogram fused signal of the patient, and the hospital bed control system comprises:
s1, carrying out noise filtering processing on the electroencephalogram and electro-oculogram fusion signal to obtain electroencephalogram and electro-oculogram data subjected to noise filtering;
s2, dividing the electroencephalogram electro-ocular data after noise filtering into groups to obtain electroencephalogram electro-ocular data groups, and calculating waveform characteristics of each electroencephalogram electro-ocular data group, wherein the waveform characteristics of the electroencephalogram electro-ocular data groups comprise an average value, an absolute average value, a mean square error and a standard deviation;
s3, classifying the waveform characteristics of each electro-oculogram data set relative to the waveform characteristics of the sample library data set by adopting a K-nearest neighbor algorithm to obtain the characteristic type of each electro-oculogram data set; and sending a control command according to the type of the characteristic of each electro-oculogram data set.
As the optimization of the invention, the characteristic types of each electroencephalogram and electrooculogram data set comprise one-time blinking, two-time blinking, eyeball rotation and electroencephalogram abnormity, and the corresponding control commands are respectively lifting up and leveling up of a sickbed, active calling and alarming.
Preferably, step S3 includes:
calculating the distance between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and each electroencephalogram electro-ocular data set in the sample library data set to obtain a distance set D = { D = 1,1 ,d 1,2 ,…,d 1,m1 ,d 2,1 ,d 2,2 ,…,d 2,m2 ,…,d 4,1 ,d 4,2 ,…,d 4,m4 M1 represents the number of electroencephalogram and electro-oculogram data sets belonging to a one-time blinking type in the sample library data set, m2 represents the number of electroencephalogram and electro-oculogram data sets belonging to a two-time blinking type in the sample library data set, m3 represents the number of electroencephalogram and electro-oculogram data sets belonging to an eyeball rotation type in the sample library data set, m4 represents the number of electroencephalogram and electro-oculogram data sets belonging to an electroencephalogram abnormal type in the sample library data set, and d 1,m1 Representing the distance, d, between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m1 st blink type 2,m2 Representing the distance, d, between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m2 th blink type 3,m3 Represents the distance between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m 3-th eyeball rotation type, d 4,m4 The waveform characteristics of the electroencephalogram electro-ocular data group to be tested and the m4 th electroencephalogram abnormityThe distance between waveform features of common types of electroencephalogram electro-ocular data sets;
and (3) performing ascending order arrangement on the numerical values in the distance set D, taking the first K distances, judging the number of the four characteristic types in the sample library data set corresponding to the first K distances, and taking the characteristic type with the largest number as the characteristic type of the electroencephalogram and electrooculogram data set to be tested.
Preferably, the method for constructing the sample library data set comprises:
s31, acquiring electroencephalogram electro-oculogram signals of different patients under the conditions of primary blink, secondary blink, eyeball rotation and electroencephalogram abnormity through an electroencephalogram sensor, carrying out noise filtering on the electroencephalogram electro-oculogram signals, dividing the electroencephalogram electro-oculogram signals into groups, extracting waveform characteristics of each data group, and obtaining a database with p groups of total data;
s32, randomly generating m sample library data sets, r training library data sets and S testing library data sets from the data base with the total data volume of p groups; the sample library data set, the training library data set and the testing library data set respectively contain four types of data of blink once, blink twice, eyeball rotation and electroencephalogram abnormity and are not repeated;
s33, repeating the step S32, initializing a plurality of data sets, wherein each data set consists of a randomly initialized sample base data set, a training base data set, a test base data set and a K value parameter of a K nearest neighbor algorithm;
calculating a distance set between the waveform characteristics of each training library data set and the waveform characteristics of each sample library data set, performing characteristic classification on one training library data set by adopting a K nearest neighbor algorithm, constructing a target function by using the recognition rate and the misjudgment rate, and selecting an optimal data set;
s34, taking the sample library data group in the optimal data set obtained in the step S33 as an optimal sample library data group, calculating a distance set between the waveform characteristics of the test library data group in the optimal data set and the waveform characteristics of each sample library data group, performing characteristic classification on one test library data group by adopting a K-nearest neighbor algorithm, constructing a target function by using the recognition rate and the misjudgment rate, and judging whether the preset requirements are met;
if yes, the sample library data group in the optimal data set obtained in the step S33 is taken as a final optimal sample library data group;
if not, returning to the step S32, and reinitializing a plurality of data sets.
Preferably, in step S33, a genetic algorithm is used to select, cross and mutate data groups in the initialized data sets, and the obtained new data set is used to replace the original data set.
Compared with the prior art, the invention has the advantages that:
1) The sickbed system provided by the invention realizes automatic lifting, active calling and intelligent alarming by monitoring the electroencephalogram and electro-oculogram signals of a patient, adopts a K-nearest neighbor method to identify the characteristic types of the electroencephalogram and electro-oculogram signals, has high operation speed, and ensures timely correspondence of the sickbed system;
2) The invention provides a sample library construction method based on an embedded AI algorithm, which ensures the accuracy of the sample library and improves the accuracy of the characteristic type identification of the electroencephalogram electro-ocular signal.
Drawings
FIG. 1 is an overall schematic diagram of an automatic lifting sickbed system based on electroencephalogram and electrooculogram signals according to an embodiment of the invention;
fig. 2 is a data processing diagram of a patient bed control system according to an embodiment of the present invention;
FIG. 3 is a schematic diagram illustrating a flow of recognizing a brain-electric-eye electrical fusion signal pattern according to an embodiment of the present invention;
fig. 4 is a schematic diagram illustrating a sample library construction process based on an embedded AI algorithm according to an embodiment of the present invention.
Detailed Description
The present invention will be described in further detail below by way of examples with reference to the accompanying drawings. The following examples are only for illustrating the technical solutions of the present invention more clearly, and the protection scope of the present invention is not limited thereby. Some of the block diagrams shown in the figures are functional entities, which do not necessarily have to correspond to physically or logically separate entities, and which may be implemented in software, or in one or more hardware modules or integrated circuits, or in different networks and/or processor devices and/or microcontroller devices.
The flow charts shown in the drawings are merely illustrative and do not necessarily include all of the steps. For example, some steps may be decomposed, and some steps may be combined or partially combined, so that the actual execution sequence may be changed according to the actual situation.
Fig. 1 is an overall schematic view of an automatic lifting hospital bed system based on electroencephalogram electro-oculogram signals according to an embodiment of the present invention, the automatic lifting hospital bed system includes a brain wave sensor, a hospital bed control system and a hospital bed body, the hospital bed body has lifting, leveling, active calling and alarming functions, and can be realized by a motion module or an alarm module for realizing different functions, and the four functions are controlled by sending control instructions through the hospital bed control system.
The brain wave sensor is used for collecting and transmitting brain electrical signals and eye electrical signals, is connected with the hospital bed control system, and is used for collecting brain electrical eye electrical fusion signals of a patient and transmitting the brain electrical eye electrical fusion signals to the hospital bed control system; in the signal acquisition process, the electroencephalogram signal and the electro-oculogram signal are fused together and output. In this embodiment, the brain wave sensor is wirelessly connected to the hospital bed control system, for example, using wireless communication methods such as bluetooth and wifi.
The sickbed control system is used for carrying out noise filtering, feature extraction and mode identification on the electroencephalogram and electrooculogram fusion signals of the patient and converting the electroencephalogram and electrooculogram fusion signals into sickbed control instructions, namely the control instructions are sent according to the electroencephalogram and electrooculogram fusion signals of the patient and used for controlling the sickbed body to rise, level, actively call and alarm, and the sickbed body responds according to the control instructions. The hospital bed control system comprises:
the brain electric eye electrical fusion signal noise filtering module is used for carrying out noise filtering processing on the brain electric eye electrical fusion signal;
and the electroencephalogram electro-ocular fusion signal segmentation window module is used for segmenting the electroencephalogram electro-ocular fusion signal after noise filtering processing into different groups with consistent length, for example, the length n of the data fetching segment is a group of electroencephalogram electro-ocular data groups.
And the electro-oculogram fused signal pattern recognition module is used for extracting the waveform characteristics of the electro-oculogram fused signals, recognizing the type of the characteristic of each group of electro-oculogram fused signals and sending instructions according to the type of the characteristic. In this embodiment, as shown in fig. 2, the characteristic types of the electroencephalogram and electrooculogram data sets include single blink, double blink, eyeball rotation and electroencephalogram abnormality, and the corresponding control commands are respectively a sickbed lifting, a sickbed leveling, an active calling and an alarm. The electroencephalogram abnormality refers to an electroencephalogram electro-ocular signal acquired when a patient is in acute cerebral infarction, cerebral blood supply insufficiency, epilepsy and the like; the waveform characteristics include mean, absolute mean, sample mean square error, sample standard deviation, and the like.
As shown in fig. 3, a K-nearest neighbor algorithm is adopted to classify and judge each electroencephalogram electro-ocular data set with respect to a sample library, so as to obtain a feature type of each electroencephalogram electro-ocular data set; and according to the characteristic types of the electroencephalogram and electrooculogram data sets, the hospital bed control system sends out hospital bed control instructions.
In one embodiment of the present invention, for a certain electroencephalogram electro-ocular data set, firstly, the waveform characteristics are calculated; and then a distance function, such as a euclidean distance, calculating a distance set between the waveform characteristics of the electroencephalogram electro-oculogram data set and the waveform characteristics of each electroencephalogram electro-oculogram data set in the sample library data set, and recording as the distance set D = { D = 1,1 ,d 1,2 ,…,d 1,m1 ,d 2,1 ,d 2,2 ,…,d 2,m2 ,…,d 4,1 ,d 4,2 ,…,d 4,m4 Wherein m1 represents the number of electroencephalogram and electro-oculogram data groups belonging to a blink once type in the sample library data group, m2 represents the number of electroencephalogram and electro-oculogram data groups belonging to a blink twice type in the sample library data group, m3 represents the number of electroencephalogram and electro-oculogram data groups belonging to a eyeball rotation type in the sample library data group, m4 represents the number of electroencephalogram and electro-oculogram data groups belonging to an electroencephalogram abnormality type in the sample library data group, and d 1,m1 Represents the distance between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m1 st blink type, d 2,m2 Representing the distance, d, between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m2 th blink type 3,m3 Representing the distance, d, between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m3 th eyeball rotation type 4,m4 Representing the distance between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m4 th electroencephalogram abnormal type; finally, the values in the distance set D are sorted in ascending order, and a new set of distances is obtained, for example, the new set of distances is D' = { D = 2,1 ,d 1,1 ,d 2,4 ,…,d 2,m2 ,d 3,1 ,d 4,1 ,…,d 4,m4 Get the first K distances { d } 2,1 ,d 1,1 ,d 2,4 ,…,d 2,m2 And judging that the number of the second blink types in the sample library data set corresponding to the first K distances is the largest, so that the electroencephalogram electro-oculogram data set belongs to the second blink type.
In a specific implementation of the invention, the embedded AI algorithm is adopted to construct the sample library, so as to quickly find out the optimal sample library data set, use the optimal sample library data set for the characteristic classification of the electroencephalogram and electrooculogram signals and further improve the signal identification rate.
As shown in fig. 4, the sample library construction process based on the embedded AI algorithm is as follows:
1. and (3) constructing a constraint condition:
1.1 To increase the diversity of the sample library and avoid falling into local extreme values, a sample library data set is formed by randomly generating a primary blink data set, a secondary blink data set, an eyeball rotation data set and an electroencephalogram abnormity data set.
s.t.rand (m 1 blink data set)
rand (m 2 double blink data set)
rand (m 3 eyeball rotation data set)
rand (m 4 electroencephalogram abnormal data set)
1.2 Adopting a K nearest neighbor algorithm and a distance function, calculating the waveform characteristics of the electroencephalogram and electrooculogram data set, and judging the characteristic classification. The K value parameter in the K nearest neighbor algorithm takes a smaller value or a larger value, which causes large deviation of the feature recognition rate and the feature misjudgment rate, and adopts a mode of randomly generating the K value to obtain a proper K value, thereby avoiding falling into a local extreme value.
s.t.rand(K)
1.3 For the same reason, to avoid getting trapped in local extrema, training library data sets are randomly generated.
s.t.rand (r training database data set)
1.4 K value should be less than the number of sample library data sets.
s.t.K<m
1.5 The number of the sample library data sets and the training library data sets is less than that of the electroencephalography data sets.
s.t.m<p
r<p
m+r<p
m1+m2+m3+m4=m
2. Constructing a multi-objective function:
and adopting the feature recognition rate and the feature error judgment rate to represent the feature classification accuracy and the error judgment rate of the electroencephalogram and electrooculogram data set. Aiming at the characteristic classification result of the electroencephalogram and electrooculogram data set, the larger the characteristic identification rate is, the better the characteristic misjudgment rate is, and the better the characteristic misjudgment rate is. Therefore, the maximum feature recognition rate and the minimum feature misjudgment rate are used as the multi-objective function.
Max { feature recognition rate }
Min { feature misjudgment rate }
3. Optimizing a sample library dataset
And (5) constructing a model by using the sample library, namely, the linear programming problem. The solving process of the sample library construction model is actually the solving process of a linear programming problem, and an embedded AI algorithm is adopted for calculating to quickly and accurately solve the sample library construction model.
Taking a basic genetic algorithm as an example, updating the evolutionary cycle process of the current optimal chromosome after population selection, a crossover algorithm and a mutation algorithm, and the method comprises the following basic steps:
3.1 Randomly generating a sample library data set (primary blink data, secondary blink data, eyeball rotation data and electroencephalogram abnormal data), a K value and a training library data set, wherein the rest electroencephalogram data sets are test library data sets (the rest data sets except the sample library data set and the training library data set in the p electroencephalogram electro-oculogram data sets), forming a data set and carrying out feasibility check;
3.2 Repeating the step of 3.1), and randomly generating POP _ SIZE data sets, wherein each data set comprises a sample library data set, a K value, a training library data set and a testing library data set;
3.3 In a data set, calculating a distance set between waveform characteristics of a training library data set and waveform characteristics of each sample library data set, performing characteristic classification on the training library data set by adopting a K nearest neighbor algorithm, and performing characteristic classification on each training library data set in the data set by analogy to calculate characteristic recognition rate and characteristic misjudgment rate of the data set;
3.4 The POP _ SIZE data sets are arranged in an ascending order or a descending order according to the feature recognition rate and the feature misjudgment rate of the data sets, the corresponding data set contents (sample library data sets and K values) are exchanged, and the current best data set is stored;
3.5 Adopting roulette selection, crossover algorithm and variation algorithm to update the data set to generate a new POP _ SIZE data set;
3.6 Repeating the steps 3.3) to 3.4) to generate the current best data set, and storing a better data set compared with the best data set of the previous generation;
3.7 Repeating the steps 3.5) to 3.6) until the termination condition is met, outputting the current best data set as an optimal solution, and taking a sample database data group in the current best data set as an optimal sample database;
3.8 In the current best data set, calculating a distance set between the waveform characteristics of a test library data set and the waveform characteristics of each sample library data set, performing characteristic classification on one test library data set by adopting a K nearest neighbor algorithm, and so on, performing characteristic classification on each test library data set in the data set, and calculating the characteristic recognition rate and the characteristic misjudgment rate of the test library data sets. If the target is reached, the characteristic recognition rate of the test library data set is more than 85%, the characteristic misjudgment rate is less than 8%, and the optimal sample library data set in the current best data set is feasible. If the target is not achieved, repeating the steps from 3.1) to 3.8), and retraining the sample library data set until the optimal sample library meeting the target is output.
In the embodiment, an optimal sample library data set is obtained, and in the feature classification of the electroencephalogram and electrooculogram data set, the feature recognition rate is further improved to be more than 85%, and the feature misjudgment rate is reduced to be less than 8 per thousand.
When the automatic lifting sickbed system is used, firstly, a patient electroencephalogram electro-oculogram fused signal with a certain length is collected through the electroencephalogram sensor to be subjected to noise filtering processing, waveform characteristics are extracted, the waveform characteristics are compared with an optimized sample library data set, the waveform characteristics to be recognized are classified by adopting a K-nearest neighbor algorithm, a control instruction is sent to a sickbed body according to a classification result, and the sickbed body responds according to the control instruction. The sickbed control scheme is as follows: the sickbed is lifted corresponding to one blink, the sickbed is leveled corresponding to the second blink, the eyeball rotation corresponds to active calling, and the electroencephalogram abnormity corresponds to intelligent alarm.
The sickbed system provided by the invention realizes automatic lifting, active calling and intelligent alarming by monitoring the electroencephalogram and electro-oculogram signals of a patient, adopts a K-nearest neighbor method to identify the type of the electroencephalogram and electro-oculogram signals, has high operation speed, and ensures timely correspondence of the sickbed system; the optimized sample library ensures the accuracy of the type identification of the electroencephalogram electro-oculogram signals.
The foregoing lists merely illustrate specific embodiments of the invention. It is obvious that the invention is not limited to the above embodiments, but that many variations are possible. All modifications which can be derived or suggested by a person skilled in the art from the disclosure of the present invention are to be considered within the scope of the invention.

Claims (7)

1. An automatic lifting sickbed system based on electroencephalogram and electrooculogram signals is characterized by comprising an electroencephalogram sensor, a sickbed control system and a sickbed body, wherein the sickbed body has lifting, active calling and alarming functions;
the brain wave sensor is connected with the hospital bed control system and used for collecting the electroencephalogram and electro-oculogram fusion signals of the patient and transmitting the electroencephalogram and electro-oculogram fusion signals to the hospital bed control system; the sickbed control system sends a control instruction according to the electroencephalogram and electrooculogram fusion signal of the patient, the control instruction is used for controlling the sickbed body to rise and level, actively calling and alarming, and the sickbed body responds according to the control instruction;
the hospital bed control system comprises:
the brain electric eye electrical fusion signal noise filtering module is used for carrying out noise filtering processing on the brain electric eye electrical fusion signal;
the electroencephalogram electro-fusion signal segmentation window module is used for segmenting the electroencephalogram electro-fusion signal subjected to noise filtering into different groups with consistent length;
and the brain electrical eye electrical fusion signal mode identification module is used for identifying the type of the characteristic of each group of brain electrical eye electrical fusion signals and sending instructions according to the type of the characteristic.
2. The electroencephalogram electro-oculogram signal based automatic lifting hospital bed system according to claim 1, wherein the electroencephalogram sensor is wirelessly connected with a hospital bed control system.
3. The automatic lifting sickbed system based on the electroencephalogram electro-oculogram signal as claimed in claim 1, wherein the sickbed control system sends a control instruction according to the electroencephalogram electro-oculogram fusion signal of the patient, and comprises:
s1, noise filtering is carried out on the electroencephalogram electro-oculogram fusion signal, and electroencephalogram electro-oculogram data after noise filtering are obtained;
s2, dividing the electroencephalogram electro-ocular data after noise filtering into groups to obtain electroencephalogram electro-ocular data groups, and calculating waveform characteristics of each electroencephalogram electro-ocular data group, wherein the waveform characteristics of the electroencephalogram electro-ocular data groups comprise an average value, an absolute average value, a mean square error and a standard deviation;
s3, classifying the waveform characteristics of each electro-oculogram data set relative to the waveform characteristics of the sample library data set by adopting a K-nearest neighbor algorithm to obtain the characteristic type of each electro-oculogram data set; and sending a control command according to the characteristic type of each electroencephalogram electro-ocular data set.
4. The electroencephalogram electro-oculogram signal based automatic lifting hospital bed system according to claim 3, it is characterized in that the preparation method is characterized in that, the characteristic types of each brain electricity and eye data set comprise one-time blinking, two-time blinking, eyeball rotation and brain electricity abnormity, and the corresponding control instructions are respectively lifting and leveling of the sickbed, active calling and alarming.
5. The EEG-ELECTRO-OPTOMIC SIGNAL-BASED AUTOMATIC RISE sickbed system according to claim 3, wherein said step S3 comprises:
calculating the distance between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and each electroencephalogram electro-ocular data set in the sample library data set to obtain a distance set D = { D = 1,1 ,d 1,2 ,…,d 1,m1 ,d 2,1 ,d 2,2 ,…,d 2,m2 ,…,d 4,1 ,d 4,2 ,…,d 4,m4 M1 represents the number of electroencephalogram and electro-oculogram data sets belonging to a one-time blinking type in the sample library data set, m2 represents the number of electroencephalogram and electro-oculogram data sets belonging to a two-time blinking type in the sample library data set, m3 represents the number of electroencephalogram and electro-oculogram data sets belonging to an eyeball rotation type in the sample library data set, m4 represents the number of electroencephalogram and electro-oculogram data sets belonging to an electroencephalogram abnormal type in the sample library data set, and d 1,m1 Representing the distance, d, between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m1 st blink type 2,m2 Representing the distance, d, between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m2 th blink type 3,m3 Representing the electroencephalogram and ocular counts to be testedAccording to the distance between the waveform characteristics of the group and the waveform characteristics of the m3 th eyeball rotation type electroencephalogram electro-ocular data group, d 4,m4 Representing the distance between the waveform characteristics of the electroencephalogram electro-ocular data set to be tested and the waveform characteristics of the electroencephalogram electro-ocular data set of the m4 th electroencephalogram abnormal type;
and (3) carrying out ascending sequence arrangement on the numerical values in the distance set D, taking the first K distances, judging the number of the four characteristic types in the sample library data group corresponding to the first K distances, and taking the characteristic type with the largest number as the characteristic type of the electroencephalogram and electrooculogram data group to be tested.
6. The automatic lifting sickbed system based on electroencephalogram and electrooculogram signals according to claim 3 or 5, the method for constructing the sample database data set is characterized by comprising the following steps:
s31, acquiring electroencephalogram electro-oculogram signals of different patients under the conditions of primary blink, secondary blink, eyeball rotation and electroencephalogram abnormity through an electroencephalogram sensor, carrying out noise filtering on the electroencephalogram electro-oculogram signals, dividing the electroencephalogram electro-oculogram signals into groups, extracting waveform characteristics of each data group, and obtaining a database with p groups of total data;
s32, randomly generating m sample base data sets, r training base data sets and S testing base data sets from the data base with the total data volume of p groups; the sample library data set, the training library data set and the testing library data set respectively contain four types of data of blink once, blink twice, eyeball rotation and electroencephalogram abnormity and are not repeated;
s33, repeating the step S32, initializing a plurality of data sets, wherein each data set consists of a sample base data group, a training base data group, a testing base data group and a K value parameter of a K neighbor algorithm which are initialized randomly;
calculating a distance set between the waveform characteristics of each training base data set and the waveform characteristics of each sample base data set, performing characteristic classification on one training base data set by adopting a K nearest neighbor algorithm, constructing a target function according to the recognition rate and the misjudgment rate, and selecting an optimal data set;
s34, taking the sample library data group in the optimal data set obtained in the step S33 as an optimal sample library data group, calculating a distance set between the waveform characteristics of the test library data group in the optimal data set and the waveform characteristics of each sample library data group, performing characteristic classification on one test library data group by adopting a K-nearest neighbor algorithm, constructing a target function according to the recognition rate and the misjudgment rate, and judging whether the preset requirements are met;
if yes, taking the sample database data group in the optimal data set obtained in the step S33 as a final optimal sample database data group;
if not, returning to the step S32, and reinitializing a plurality of data sets.
7. The electroencephalogram electro-ocular signal based automatic lifting hospital bed system according to claim 6, wherein in the step S33, the method further comprises the steps of selecting, intersecting and mutating data groups in the initialized data sets by adopting a genetic algorithm, comparing the obtained new data set with the original data set, and storing a more optimal data set.
CN202210842339.0A 2022-07-18 2022-07-18 Automatic lifting sickbed system based on electroencephalogram-eye electric signals Active CN115227504B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210842339.0A CN115227504B (en) 2022-07-18 2022-07-18 Automatic lifting sickbed system based on electroencephalogram-eye electric signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210842339.0A CN115227504B (en) 2022-07-18 2022-07-18 Automatic lifting sickbed system based on electroencephalogram-eye electric signals

Publications (2)

Publication Number Publication Date
CN115227504A true CN115227504A (en) 2022-10-25
CN115227504B CN115227504B (en) 2023-05-26

Family

ID=83672650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210842339.0A Active CN115227504B (en) 2022-07-18 2022-07-18 Automatic lifting sickbed system based on electroencephalogram-eye electric signals

Country Status (1)

Country Link
CN (1) CN115227504B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116849942A (en) * 2023-07-28 2023-10-10 中国医学科学院生物医学工程研究所 Brain-control intelligent lifting and turning-over multifunctional medical care bed

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674908B1 (en) * 2002-05-04 2004-01-06 Edward Lasar Aronov Method of compression of binary data with a random number generator
US20040024298A1 (en) * 2002-08-05 2004-02-05 Infraredx, Inc. Spectroscopic unwanted signal filters for discrimination of vulnerable plaque and method therefor
US20090137924A1 (en) * 2007-08-27 2009-05-28 Microsoft Corporation Method and system for meshing human and computer competencies for object categorization
US20100063948A1 (en) * 2008-09-10 2010-03-11 Digital Infuzion, Inc. Machine learning methods and systems for identifying patterns in data
CN104063645A (en) * 2014-07-01 2014-09-24 清华大学深圳研究生院 Identity recognition method based on ECG dynamic self-updating samples
CN106200984A (en) * 2016-07-21 2016-12-07 天津大学 Mental imagery brain-computer interface model modelling approach
CN106709572A (en) * 2015-11-16 2017-05-24 阿里巴巴集团控股有限公司 Data processing method and equipment
CN109165615A (en) * 2018-08-31 2019-01-08 中国人民解放军军事科学院军事医学研究院 A kind of parameter training algorithm under multi-categorizer single channel mode towards EEG signals
CN109284004A (en) * 2018-10-29 2019-01-29 中国矿业大学 A kind of intelligent nursing system based on brain-computer interface
CN110162182A (en) * 2019-05-28 2019-08-23 深圳市宏智力科技有限公司 Brain electric control module device and its method for controlling controlled plant
CN110969108A (en) * 2019-11-25 2020-04-07 杭州电子科技大学 Limb action recognition method based on autonomic motor imagery electroencephalogram
CN112370017A (en) * 2020-11-09 2021-02-19 腾讯科技(深圳)有限公司 Training method and device of electroencephalogram classification model and electronic equipment
CN112890834A (en) * 2021-03-01 2021-06-04 福州大学 Attention-recognition-oriented machine learning-based eye electrical signal classifier
CN113095511A (en) * 2021-04-16 2021-07-09 广东电网有限责任公司 Method and device for judging in-place operation of automatic master station
CN113269217A (en) * 2020-12-14 2021-08-17 北方信息控制研究院集团有限公司 Radar target classification method based on Fisher criterion
CN113269201A (en) * 2021-04-25 2021-08-17 浙江师范大学 Hyperspectral image band selection method and system based on potential feature fusion
CN113842118A (en) * 2021-12-01 2021-12-28 浙江大学 Epileptic seizure real-time detection monitoring system for epileptic video electroencephalogram examination
CN113850192A (en) * 2021-09-26 2021-12-28 杭州电子科技大学 Blink artifact detection method based on EMD-CSP electroencephalogram feature learning and intelligent fusion
CN216168407U (en) * 2021-10-20 2022-04-05 科大讯飞华南有限公司 Hospital bed control system based on brain waves

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674908B1 (en) * 2002-05-04 2004-01-06 Edward Lasar Aronov Method of compression of binary data with a random number generator
US20040024298A1 (en) * 2002-08-05 2004-02-05 Infraredx, Inc. Spectroscopic unwanted signal filters for discrimination of vulnerable plaque and method therefor
US20090137924A1 (en) * 2007-08-27 2009-05-28 Microsoft Corporation Method and system for meshing human and computer competencies for object categorization
US20100063948A1 (en) * 2008-09-10 2010-03-11 Digital Infuzion, Inc. Machine learning methods and systems for identifying patterns in data
CN104063645A (en) * 2014-07-01 2014-09-24 清华大学深圳研究生院 Identity recognition method based on ECG dynamic self-updating samples
CN106709572A (en) * 2015-11-16 2017-05-24 阿里巴巴集团控股有限公司 Data processing method and equipment
CN106200984A (en) * 2016-07-21 2016-12-07 天津大学 Mental imagery brain-computer interface model modelling approach
CN109165615A (en) * 2018-08-31 2019-01-08 中国人民解放军军事科学院军事医学研究院 A kind of parameter training algorithm under multi-categorizer single channel mode towards EEG signals
CN109284004A (en) * 2018-10-29 2019-01-29 中国矿业大学 A kind of intelligent nursing system based on brain-computer interface
CN110162182A (en) * 2019-05-28 2019-08-23 深圳市宏智力科技有限公司 Brain electric control module device and its method for controlling controlled plant
CN110969108A (en) * 2019-11-25 2020-04-07 杭州电子科技大学 Limb action recognition method based on autonomic motor imagery electroencephalogram
CN112370017A (en) * 2020-11-09 2021-02-19 腾讯科技(深圳)有限公司 Training method and device of electroencephalogram classification model and electronic equipment
CN113269217A (en) * 2020-12-14 2021-08-17 北方信息控制研究院集团有限公司 Radar target classification method based on Fisher criterion
CN112890834A (en) * 2021-03-01 2021-06-04 福州大学 Attention-recognition-oriented machine learning-based eye electrical signal classifier
CN113095511A (en) * 2021-04-16 2021-07-09 广东电网有限责任公司 Method and device for judging in-place operation of automatic master station
CN113269201A (en) * 2021-04-25 2021-08-17 浙江师范大学 Hyperspectral image band selection method and system based on potential feature fusion
CN113850192A (en) * 2021-09-26 2021-12-28 杭州电子科技大学 Blink artifact detection method based on EMD-CSP electroencephalogram feature learning and intelligent fusion
CN216168407U (en) * 2021-10-20 2022-04-05 科大讯飞华南有限公司 Hospital bed control system based on brain waves
CN113842118A (en) * 2021-12-01 2021-12-28 浙江大学 Epileptic seizure real-time detection monitoring system for epileptic video electroencephalogram examination

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALI, AMJAD, 等: "A k-Nearest Neighbours Based Ensemble via Optimal Model Selection for Regression" *
张英凯: "基于机器学习的重症监护病患死亡率预测" *
曹宁: "基于静态图像的人脸表情识别算法研究" *
蔡建程,等: "离心风机振动噪声及压力脉动实验研究" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116849942A (en) * 2023-07-28 2023-10-10 中国医学科学院生物医学工程研究所 Brain-control intelligent lifting and turning-over multifunctional medical care bed

Also Published As

Publication number Publication date
CN115227504B (en) 2023-05-26

Similar Documents

Publication Publication Date Title
CN117457147B (en) Personalized nursing planning method and system for rehabilitation patient
Barsocchi Position recognition to support bedsores prevention
EP1864246A1 (en) Spatio-temporal self organising map
KR20210085867A (en) Apparatus and method for estimating user&#39;s blood pressure
CN109284004A (en) A kind of intelligent nursing system based on brain-computer interface
CN115227504B (en) Automatic lifting sickbed system based on electroencephalogram-eye electric signals
CN117854739A (en) Intelligent internal medicine nursing monitoring system
CN109949438A (en) Abnormal driving monitoring model method for building up, device and storage medium
CN114849063B (en) Extracorporeal charger, program-controlled system, and computer-readable storage medium
CN117877734A (en) Mental disorder patient risk level judging system
Turgunov et al. Comparative analysis of the results of EMG signal classification based on machine learning algorithms
Khorshidtalab et al. Evaluation of time-domain features for motor imagery movements using FCM and SVM
Pogorelc et al. Home-based health monitoring of the elderly through gait recognition
JP2014239789A (en) Sleep stage estimating device, method, and program
CN113380397A (en) Medical system for providing treatment recommendations
CN118038548A (en) Abnormal behavior detection method, device, electronic equipment and storage medium
Morresi et al. Machine learning algorithms for the activity monitoring of elders by home sensor network
EP4294259A1 (en) Systems, methods, and media for decoding observed spike counts for spiking cells
CN115501442A (en) Sleep regulation system based on pulse and electroencephalogram signals
KR101375673B1 (en) Method for warning of epileptic seizure using excitatory-inhibitory model based on the chaos neuron and electronic device supporting the same
Wang et al. Epileptic seizures prediction based on unsupervised learning for feature extraction
Suganthi et al. Pattern recognition for EMG based forearm orientation and contraction in myoelectric prosthetic hand
CN118658603B (en) Medical care monitoring method and system based on computer vision and various sensors
Madhavan Design and Evaluation of a Brain Signal-based Monitoring System for Differently-Abled People
Stephen et al. Automatic autonomous heart monitoring device using machine learning for COVID patients

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant