CN115082337A - Hyperspectral mixed noise removing method based on double total variation - Google Patents
Hyperspectral mixed noise removing method based on double total variation Download PDFInfo
- Publication number
- CN115082337A CN115082337A CN202210676035.1A CN202210676035A CN115082337A CN 115082337 A CN115082337 A CN 115082337A CN 202210676035 A CN202210676035 A CN 202210676035A CN 115082337 A CN115082337 A CN 115082337A
- Authority
- CN
- China
- Prior art keywords
- hyperspectral
- image
- hyperspectral image
- sparse
- noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000013461 design Methods 0.000 claims abstract description 5
- 230000003595 spectral effect Effects 0.000 claims description 17
- 230000000007 visual effect Effects 0.000 claims description 15
- 230000011218 segmentation Effects 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 230000008602 contraction Effects 0.000 claims description 6
- 238000012804 iterative process Methods 0.000 claims description 6
- 230000003190 augmentative effect Effects 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 8
- 235000011613 Pinus brutia Nutrition 0.000 description 8
- 241000018646 Pinus brutia Species 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/94—Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10036—Multispectral image; Hyperspectral image
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
本发明提供了一种基于双重全变分的高光谱混合噪声去除方法,获取含有混合噪声的高光谱图像,选取SSTV正则项来描述高光谱图像全局稀疏结构,同时设计重加权范数约束高光谱图像主成分图的空间方向差分影像的局部稀疏结构,引入双重约束,选取更稀疏的全局特征和局部特征,稀疏正则项用于隔离稀疏噪声,范数刻画影像的高斯噪声,构建基于双重全变分的高光谱图像去噪模型,引入辅助变量优化基于双重全变分的高光谱图像去噪模型,采用ALM算法框架来优化提出的模型,将复杂的问题转换成多个简单的子问题来交替迭代求解,得到去噪后高光谱图像;本发明可以有效提高高光谱影像去噪的适用性和精度。
The present invention provides a method for removing hyperspectral mixed noise based on double total variation, obtains a hyperspectral image containing mixed noise, selects an SSTV regular term to describe the global sparse structure of the hyperspectral image, and at the same time designs a weighted norm to constrain the hyperspectral image The local sparse structure of the spatial direction difference image of the principal component map of the image, introduces double constraints, selects more sparse global features and local features, the sparse regular term is used to isolate sparse noise, and the norm describes the Gaussian noise of the image. Separate hyperspectral image denoising model, introduce auxiliary variables to optimize the hyperspectral image denoising model based on double total variation, use the ALM algorithm framework to optimize the proposed model, and convert complex problems into multiple simple sub-problems to alternate Iterative solution is performed to obtain a denoised hyperspectral image; the invention can effectively improve the applicability and accuracy of hyperspectral image denoising.
Description
技术领域technical field
本发明专利属于遥感图像处理领域,更具体的,涉及一种基于双重全变分的高光谱混合噪声去除方法。The patent of the present invention belongs to the field of remote sensing image processing, and more specifically, relates to a method for removing hyperspectral hybrid noise based on double total variation.
背景技术Background technique
高光谱遥感技术把先进的光谱技术和传统二维图像的成像技术有效地结合在一起。高光谱影像具有丰富的光谱信息,这种具有很高光谱分辨率的影像在实际中具有广泛的应用价值。在成像过程中,由于电磁干扰、成像环境和传输过程等原因,收集到的高光谱影像会受到各种混合噪声的污染,包括高斯噪声,脉冲噪声,条带噪声和死线等噪声。混合噪声在影像中降低了影像质量,影响进一步应用的精度和可靠性,比如高光谱图像的分类、解混以及目标检测等。因此,混合噪声去除在高光谱影像处理中具有重要的研究价值。Hyperspectral remote sensing technology effectively combines advanced spectral technology and traditional two-dimensional image imaging technology. Hyperspectral images have rich spectral information, and such images with very high spectral resolution have wide application value in practice. During the imaging process, due to electromagnetic interference, imaging environment and transmission process, the collected hyperspectral images will be polluted by various mixed noises, including Gaussian noise, impulse noise, stripe noise and dead line noise. Mixing noise in images reduces the image quality and affects the accuracy and reliability of further applications, such as classification, unmixing, and object detection of hyperspectral images. Therefore, hybrid noise removal has important research value in hyperspectral image processing.
目前国内外提出了众多去噪方法,已取得了良好的效果。当前的高光谱去噪方法主要有基于空间域去噪方法、基于光谱域去噪方法和基于模型优化去噪方法三大类型。近些年,稀疏和低秩模型广泛应用于高光谱图像去噪,从不同的角度分解估计张量秩,效果也不尽相同。需选取更合适的正则化约束项,保留有更多有用及细节信息,进一步提高高光谱图像去噪的效果。At present, many denoising methods have been proposed at home and abroad, and good results have been achieved. The current hyperspectral denoising methods mainly include three types: spatial domain denoising method, spectral domain denoising method and model-based optimization denoising method. In recent years, sparse and low-rank models have been widely used in hyperspectral image denoising, decomposing and estimating the tensor rank from different angles, and the effects are not the same. More appropriate regularization constraints should be selected to retain more useful and detailed information to further improve the effect of hyperspectral image denoising.
把遥感影像当成一个张量数据进行建模表达,进而通过约束待求变量满足某种张量性质并实现信息复原的有效估计。解决遥感影像信息复原的两个核心问题分别是建立有效的张量优化模型以及设计模型求解的高效算法。因此,设计出一个能够高效的求解算法去找到模型的满意解的算法是当前一个重要任务。The remote sensing image is regarded as a tensor data for modeling and expression, and then by constraining the variable to be determined, it can satisfy a certain tensor property and realize the effective estimation of information restoration. The two core problems in solving remote sensing image information restoration are establishing an effective tensor optimization model and designing an efficient algorithm for solving the model. Therefore, designing an efficient solution algorithm to find a satisfactory solution to the model is an important task at present.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术中存在的上述问题,本发明专利提出了一种基于双重全变分的高光谱混合噪声去除方法。In order to overcome the above problems existing in the prior art, the patent of the present invention proposes a method for removing hyperspectral hybrid noise based on double total variation.
本发明是通过如下技术方案实现的:The present invention is achieved through the following technical solutions:
一种基于双重全变分的高光谱混合噪声去除方法,高光谱影像是一个三维张量数据,即两维空间维度和一维光谱维度,用Tucker分解刻画高维影像整体结构的相似性,将视觉显著图作为加权因子作用在原图上,再与原图相加以增强显著性特征,影像的空间分片光滑性先验是混合噪声去除的另一个有效的正则项,选取SSTV正则项来描述高光谱图像全局稀疏结构,同时设计重加权L1范数约束高光谱图像主成分图的空间方向差分影像的局部稀疏结构,引入双重约束,选取更稀疏的全局特征和局部特征,L1稀疏正则项用于隔离稀疏噪声,F范数刻画影像的高斯噪声,建立的模型采用ALM算法框架来优化提出的模型,将复杂的问题转换成多个简单的子问题来交替迭代求解,得到去噪后高光谱图像,本方法的步骤如下:A hyperspectral hybrid noise removal method based on double total variation. The hyperspectral image is a three-dimensional tensor data, that is, two-dimensional spatial dimension and one-dimensional spectral dimension. Tucker decomposition is used to describe the similarity of the overall structure of high-dimensional images. The visual saliency map acts as a weighting factor on the original image, and then is added to the original image to enhance the saliency features. The spatial segmentation smoothness prior of the image is another effective regular term for mixed noise removal. The SSTV regular term is selected to describe the high The global sparse structure of spectral images, while designing the reweighted L 1 norm to constrain the local sparse structure of the spatial direction difference image of the principal component map of hyperspectral images, introducing double constraints, selecting more sparse global features and local features, L 1 sparse regular term It is used to isolate sparse noise, and the F-norm characterizes the Gaussian noise of the image. The established model adopts the ALM algorithm framework to optimize the proposed model, and converts the complex problem into multiple simple sub-problems for alternate iterative solutions. Spectral image, the steps of this method are as follows:
步骤一:获取含有混合噪声的高光谱图像Y;Step 1: Obtain a hyperspectral image Y containing mixed noise;
步骤二:选取SSTV正则项来描述高光谱图像全局稀疏结构,同时设计重加权L1范数约束高光谱图像主成分图的空间方向差分影像的局部稀疏结构,引入双重约束,选取更稀疏的全局特征和局部特征,L1稀疏正则项用于隔离稀疏噪声,F范数刻画影像的高斯噪声,引入稀疏结构双重约束,获得更准确的局部特征和全局特征,更好的去除噪声,复原高光谱图像,结合张量分解,构建基于双重全变分的高光谱图像去噪模型;Step 2: Select the SSTV regular term to describe the global sparse structure of the hyperspectral image, and design the reweighted L 1 norm to constrain the local sparse structure of the spatial direction difference image of the principal component map of the hyperspectral image, introduce double constraints, and select a more sparse global Features and local features, L 1 sparse regular term is used to isolate sparse noise, F-norm describes the Gaussian noise of the image, introduces double constraints of sparse structure, obtains more accurate local features and global features, better remove noise, and restore hyperspectral Image, combined with tensor decomposition, build a hyperspectral image denoising model based on double total variation;
步骤三:引入辅助变量Z、R1和R2优化步骤二基于双重全变分的高光谱图像去噪模型,辅助变量的引入使得步骤二基于双重全变分的高光谱图像去噪模型的问题可分离,分离子问题更易于求解,其中X=Z,DwX=R1,DH=R2,Z为与X相等的高光谱影像,R1为X的差分影像,R2为主成分图的差分影像;Step 3: Introduce auxiliary variables Z, R 1 and R 2 to optimize the step 2 hyperspectral image denoising model based on double total variation. The introduction of auxiliary variables makes the problem of step 2 based on the hyperspectral image denoising model based on double total variation Separable, the separation sub-problem is easier to solve, where X=Z, Dw X=R 1 , DH=R 2 , Z is the hyperspectral image equal to X, R 1 is the differential image of X, and R 2 is the principal component difference image of the graph;
步骤四:采用ALM算法求解优化后的基于双重全变分的高光谱图像去噪模型,获得降噪后的高光谱图像。Step 4: Use the ALM algorithm to solve the optimized hyperspectral image denoising model based on double total variation, and obtain a denoised hyperspectral image.
进一步的技术方案包括:Further technical solutions include:
步骤二的具体过程为:The specific process of step 2 is as follows:
根据先验信息建立高光谱图像去噪模型的数学模型为:The mathematical model for establishing a hyperspectral image denoising model based on prior information is:
Y=X+S+N;Y=X+S+N;
其中Y表示带噪的高光谱图像, 是实数空间,I1、I2分别是高光谱图像的长和宽,I3为光谱的数量,X表示干净的高光谱图像,S表示稀疏噪声,N表示高斯噪声,X、S、N与Y大小相同;高光谱遥感影像混合噪声去除的目标是从观测的Y中复原出真实的影像X,这是一个病态反问题;where Y represents the noisy hyperspectral image, is a real number space, I 1 , I 2 are the length and width of the hyperspectral image, respectively, I 3 is the number of spectra, X represents a clean hyperspectral image, S represents sparse noise, N represents Gaussian noise, X, S, N and The size of Y is the same; the goal of removing the mixed noise of hyperspectral remote sensing images is to restore the real image X from the observed Y, which is an ill-conditioned inverse problem;
构建基于双重全变分的高光谱图像去噪模型:Construct a hyperspectral image denoising model based on double total variation:
其中,Dw(·)=[w1×Dx(·);w2×Dy(·);w3Dz(·)]是各向异性空谱差分算子,D(·)=[Dx(·);Dy(·)]是主成分空间差分算子,Dx是空间水平方向的差分算子,Dy是空间竖直方向的差分算子,Dz是光谱方向的差分算子,G是重加权权因子,λ1、λ2、λ3是非负正则参数,用于平衡各项之间的权重,ε是高斯噪声的方差,|| ||1表示张量的L1范数,|| ||F表示张量的Frobenius范数;Among them, D w (·)=[w 1 ×D x (·); w 2 ×D y (·); w 3 D z (·)] is an anisotropic space spectral difference operator, D(·)= [D x ( ); Dy ( )] is the principal component spatial difference operator, D x is the difference operator in the horizontal direction of space, Dy is the difference operator in the vertical direction of space, and D z is the difference operator in the spectral direction Difference operator, G is the weighting factor, λ 1 , λ 2 , λ 3 are non-negative regularization parameters used to balance the weights between items, ε is the variance of Gaussian noise, || || 1 represents the tensor L 1 norm, || || F represents the Frobenius norm of the tensor;
设置稀疏系数λ1=λ2=1,λ3=10,各向差分系数w=[w1,w2,w3]取值为[1,1,0.6];Set the sparse coefficient λ 1 =λ 2 =1, λ 3 =10, and the isotropic difference coefficient w=[w 1 ,w 2 ,w 3 ] takes the value [1,1,0.6];
x、y和z方向在高维遥感数据中分别表示空间水平方向、空间竖直方向和光谱方向,Dx、Dy、Dz分别表示三维张量在三个不同方向的差分算子且在任意位置(i,j,p)的值定义如下:The x, y and z directions respectively represent the spatial horizontal direction, the spatial vertical direction and the spectral direction in the high-dimensional remote sensing data, and D x , Dy , and D z represent the difference operators of the three-dimensional tensor in three different directions, respectively. The value of any position (i, j, p) is defined as follows:
对高光谱图像进行PCA降维得到主成分图H,通过水平和竖直差分获得主成分图的边缘信息图W,G作为重加权权因子,按照下式更新:The PCA dimension reduction is performed on the hyperspectral image to obtain the principal component map H, and the edge information map W of the principal component map is obtained through the horizontal and vertical differences, and G is used as a weighting factor, which is updated according to the following formula:
其中eps是一个很小的数,实现过程中选用matlab内嵌函数eps()来获取这个很小的数,来避免分母为零;Among them, eps is a very small number. In the implementation process, the matlab built-in function eps() is used to obtain this very small number to avoid the denominator being zero;
PCA降维选用matlab内嵌函数实现,选取前三个主成分;PCA dimensionality reduction is realized by matlab embedded function, and the first three principal components are selected;
步骤三的具体过程为:The specific process of step three is as follows:
引入辅助变量Z、R1和R2优化模型,其中X=Z,DwX=R1,DH=R2,提出的基于双重全变分的高光谱图像去噪模型等价地表示成以下模型:Introducing auxiliary variables Z, R 1 and R 2 to optimize the model, where X=Z, Dw X=R 1 , DH=R 2 , the proposed hyperspectral image denoising model based on double total variation is equivalently expressed as the following Model:
步骤四的具体过程为:The specific process of step 4 is as follows:
基于ALM求解框架,基于双重全变分的高光谱图像去噪模型的增广拉格朗日函数写成如下形式:Based on the ALM solution framework, the augmented Lagrangian function of the hyperspectral image denoising model based on double total variation is written in the following form:
式中,μ是惩罚系数,Λ1,Λ2,Λ3,Λ4是拉格朗日乘子;where μ is the penalty coefficient, Λ 1 , Λ 2 , Λ 3 , Λ 4 are Lagrange multipliers;
初始化X=Y,Z=R1=R2=S=Λ1=Λ2=Λ3=Λ4=0张量,μ=0;Initialize X=Y, Z=R1 = R2=S= Λ1 = Λ2 = Λ3 = Λ4 =0 tensor, μ=0;
ALM的框架下,我们可以在固定其他变量的情况下,对每个变量进行交替迭代求解,初始化k=0;Under the framework of ALM, we can alternately iteratively solve each variable while fixing other variables, and initialize k=0;
步骤4.1,固定其他变量,更新Xk+1:Step 4.1, fix other variables, update X k+1 :
子问题用HOOI算法求解,当Gk+1和Ui k+1通过HOOI算法得到后,X的更新回代到Tucker分解中得到,即:The sub-problem is solved by the HOOI algorithm. When G k+1 and U i k+1 are obtained by the HOOI algorithm, the update of X is substituted into the Tucker decomposition to obtain, namely:
Xk+1=Ck+1×1U1 k+1×2U2 k+1×3U3 k+1;X k+1 =C k+1 × 1 U 1 k+1 × 2 U 2 k+1 × 3 U 3 k+1 ;
其中HOOI算法中张量秩参数设为[120,120,10];The tensor rank parameter in the HOOI algorithm is set to [120, 120, 10];
步骤4.2,固定其他变量,更新Zk+1:Step 4.2, fix other variables, update Z k+1 :
子问题是一个最小二乘问题,该最小二乘问题通过求解如下的线性方程得到:The subproblem is a least squares problem, which is obtained by solving the linear equation as follows:
μ(I+Dw TDw)Z=μX+Λ2+Dw T(μR1-Λ3);μ(I+D w T D w )Z=μX+Λ 2 +D w T (μR 1 −Λ 3 );
以上公式使用快速傅里叶变换来求解:The above formula is solved using the Fast Fourier Transform:
通过上式得到当前迭代过程的Zk+1后,继续对Zk+1进一步补偿更新;After obtaining Z k+1 of the current iteration process through the above formula, continue to further compensate and update Z k+1 ;
对步骤二中得到的主成分图H进行SLIC超像素分割,获得视觉显著图M,将视觉显著图M作为加权因子与当前迭代过程的高光谱图像Zk+1的每一波段进行元素相乘,再与当前迭代过程的高光谱图像Zk+1相加,由此对高光谱图像的显著性特征进行增强,得到复原效果更好的高光谱平滑区域;Perform SLIC superpixel segmentation on the principal component map H obtained in step 2 to obtain a visual saliency map M, and use the visual saliency map M as a weighting factor to perform element multiplication with each band of the hyperspectral image Z k+1 in the current iterative process. , and then added to the hyperspectral image Z k+1 of the current iterative process, thereby enhancing the salient features of the hyperspectral image, and obtaining a hyperspectral smooth region with better restoration effect;
将Zk+1带入Zk+1(:,:,i)+a×M×Zk+1(:,:,i)计算得到的结果,即为补偿更新后的Zk +1;Bring Z k+1 into Z k+1 (:,:,i)+a×M×Z k+1 (:,:,i) The calculated result is Z k +1 after compensation update;
其中,M是视觉显著图,a是显著性特征增强的系数,SLIC超像素分割选用matlab内嵌函数实现,视觉显著图系数a取值范围定为[0,1],超像素分割参数设置为默认值,预计超像素数范围为[300,600];Among them, M is the visual saliency map, a is the coefficient of saliency feature enhancement, the SLIC superpixel segmentation is implemented by matlab embedded function, the value range of the visual saliency map coefficient a is set to [0, 1], and the superpixel segmentation parameters are set as The default value, the expected number of superpixels is in the range [300,600];
步骤4.3,固定其他变量,更新R1 k+1:Step 4.3, fix other variables, update R 1 k+1 :
用软阈值收缩算子运算,得到如下R1的闭式解:Using the soft-threshold contraction operator, the closed-form solution of R 1 is obtained as follows:
其中,Shrinkage为软阈值收缩算子,Shrinkage(m,n)=sign(m)max(|m|-n,0),sign(m)是符号函数,当m>0时值为1,m=0时值为0,否则值为-1;Among them, Shrinkage is the soft threshold shrinkage operator, Shrinkage(m,n)=sign(m)max(|m|-n,0), sign(m) is the sign function, when m>0, the value is 1, m = 0, the value is 0, otherwise the value is -1;
步骤4.4,固定其他变量,更新R2 k+1:Step 4.4, fix other variables, update R 2 k+1 :
用软阈值收缩算子运算,得到如下R2的闭式解:Using the soft-threshold contraction operator, the closed - form solution of R2 is obtained as follows:
步骤4.5,固定其他变量,更新Sk+1:Step 4.5, fix other variables, update S k+1 :
用软阈值收缩算子运算,得到如下S的闭式解:Using the soft-threshold contraction operator, the closed-form solution of S is obtained as follows:
步骤4.6,固定其他变量,更新拉格朗日乘子:Step 4.6, fix other variables, update Lagrange multipliers:
步骤4.7,判断是否满足迭代终止条件,相对变化误差当满足Rel≤10-6,则终止迭代,输出无噪图像;若Rel>10-6,则重复步骤四中步骤4.1至步骤4.6,继续交替迭代更新,直至满足迭代终止条件即Rel≤10-6或迭代次数k达到预设最大迭代次数40时,输出无噪图像X。Step 4.7, judge whether the iteration termination condition is met, the relative change error When Rel≤10 -6 is satisfied, the iteration is terminated, and a noise-free image is output; if Rel>10 -6 , steps 4.1 to 4.6 in step 4 are repeated, and the alternate iterative update is continued until the iteration termination condition is satisfied, that is, Rel≤10 - 6 or when the number of iterations k reaches a preset maximum number of iterations of 40, a noise-free image X is output.
本发明提出的一种基于双重全变分的高光谱混合噪声去除方法,选用SSTV正则项来描述高光谱图像全局稀疏结构,重加权L1范数约束高光谱图像主成分图空间差分影像的局部稀疏结构,引入双重约束,选取更稀疏的全局特征和局部特征。高光谱图像的细节信息在实际应用中具有重要作用,传统的SSTV正则化方法对高光谱图像混合噪声污染严重的局部细节复原效果较差,加入重加权L1范数约束选取更稀疏的局部特征,提高复原图像的峰值信噪比和结构相似度,进而获得混合噪声去除效果更好的高光谱复原图像。The method for removing hyperspectral mixed noise based on double total variation proposed by the present invention selects SSTV regular term to describe the global sparse structure of hyperspectral image, and re-weights L 1 norm to constrain the local difference image of hyperspectral image principal component map space. Sparse structure, introducing double constraints, selects more sparse global features and local features. The detail information of hyperspectral images plays an important role in practical applications. The traditional SSTV regularization method has poor recovery effect on local details with serious mixed noise pollution in hyperspectral images. The reweighted L 1 norm constraint is added to select sparser local features. , improve the peak signal-to-noise ratio and structural similarity of the restored image, and then obtain a hyperspectral restored image with better mixed noise removal effect.
附图说明Description of drawings
图1为本发明提供的一种基于双重全变分的高光谱混合噪声去除方法的整体框图;1 is an overall block diagram of a method for removing hyperspectral hybrid noise based on double total variation provided by the present invention;
图2为IndianPines高光谱图像第160个波段的真实影像;Figure 2 is the real image of the 160th band of the IndianPines hyperspectral image;
图3为IndianPines高光谱图像第160个波段的噪声影像;Figure 3 shows the noise image of the 160th band of the IndianPines hyperspectral image;
图4为IndianPines高光谱图像第160个波段的复原影像;Figure 4 is the restored image of the 160th band of the IndianPines hyperspectral image;
具体实施方式Detailed ways
下面结合附图,对本发明做进一步的解释说明。The present invention will be further explained below in conjunction with the accompanying drawings.
本发明提出了一种基于双重全变分的高光谱混合噪声去除方法,本方法的测试图像为国内外公认的Indian Pines高光谱图像,测试的Indian Pines高光谱图像尺寸为145×145×224。含有混合噪声的Indian Pines高光谱图像即为模型输入Y,按如下技术方案进行测试:The invention proposes a hyperspectral hybrid noise removal method based on double total variation. The test image of this method is the Indian Pines hyperspectral image recognized at home and abroad, and the size of the tested Indian Pines hyperspectral image is 145×145×224. The Indian Pines hyperspectral image with mixed noise is the model input Y, which is tested according to the following technical solutions:
步骤一:获取含有混合噪声的高光谱图像Y;Step 1: Obtain a hyperspectral image Y containing mixed noise;
步骤二:选取SSTV正则项来描述高光谱图像全局稀疏结构,同时设计重加权L1范数约束高光谱图像主成分图的空间方向差分影像的局部稀疏结构,引入双重约束,选取更稀疏的全局特征和局部特征,L1稀疏正则项用于隔离稀疏噪声,F范数刻画影像的高斯噪声,引入稀疏结构双重约束,获得更准确的局部特征和全局特征,更好的去除噪声,复原高光谱图像,结合张量分解,构建基于双重全变分的高光谱图像去噪模型;具体过程为:Step 2: Select the SSTV regular term to describe the global sparse structure of the hyperspectral image, and design the reweighted L 1 norm to constrain the local sparse structure of the spatial direction difference image of the principal component map of the hyperspectral image, introduce double constraints, and select a more sparse global Features and local features, L 1 sparse regular term is used to isolate sparse noise, F-norm describes the Gaussian noise of the image, introduces double constraints of sparse structure, obtains more accurate local features and global features, better remove noise, and restore hyperspectral Image, combined with tensor decomposition, build a hyperspectral image denoising model based on double total variation; the specific process is:
根据先验信息建立高光谱图像去噪模型的数学模型为:The mathematical model for establishing a hyperspectral image denoising model based on prior information is:
Y=X+S+N;Y=X+S+N;
其中Y表示带噪的高光谱图像, 是实数空间,I1、I2分别是高光谱图像的长和宽,I3为光谱的数量,X表示干净的高光谱图像,S表示稀疏噪声,N表示高斯噪声,X、S、N与Y大小相同;高光谱遥感影像混合噪声去除的目标是从观测的Y中复原出真实的影像X,这是一个病态反问题;where Y represents the noisy hyperspectral image, is a real number space, I 1 , I 2 are the length and width of the hyperspectral image, respectively, I 3 is the number of spectra, X represents a clean hyperspectral image, S represents sparse noise, N represents Gaussian noise, X, S, N and The size of Y is the same; the goal of removing the mixed noise of hyperspectral remote sensing images is to restore the real image X from the observed Y, which is an ill-conditioned inverse problem;
构建基于双重全变分的高光谱图像去噪模型:Construct a hyperspectral image denoising model based on double total variation:
其中,Dw(·)=[w1×Dx(·);w2×Dy(·);w3Dz(·)]是各向异性空谱差分算子,D(·)=[Dx(·);Dy(·)]是主成分空间差分算子,Dx是空间水平方向的差分算子,Dy是空间竖直方向的差分算子,Dz是光谱方向的差分算子,G是重加权权因子,λ1、λ2、λ3是非负正则参数,用于平衡各项之间的权重,ε是高斯噪声的方差,|| ||1表示张量的L1范数,|| ||F表示张量的Frobenius范数;Among them, D w (·)=[w 1 ×D x (·); w 2 ×D y (·); w 3 D z (·)] is an anisotropic space spectral difference operator, D(·)= [D x ( ); Dy ( )] is the principal component spatial difference operator, D x is the difference operator in the horizontal direction of space, Dy is the difference operator in the vertical direction of space, and D z is the difference operator in the spectral direction Difference operator, G is the weighting factor, λ 1 , λ 2 , λ 3 are non-negative regularization parameters used to balance the weights between items, ε is the variance of Gaussian noise, || || 1 represents the tensor L 1 norm, || || F represents the Frobenius norm of the tensor;
设置稀疏系数λ1=λ2=1,λ3=10,各向差分系数w=[w1,w2,w3]取值为[1,1,0.6];Set the sparse coefficient λ 1 =λ 2 =1, λ 3 =10, and the isotropic difference coefficient w=[w 1 ,w 2 ,w 3 ] takes the value [1,1,0.6];
x、y和z方向在高维遥感数据中分别表示空间水平、空间竖直和光谱方向,Dx、Dy、Dz分别表示三维张量在三个不同方向的差分算子且在任意位置(i,j,p)的值定义如下:The x, y and z directions respectively represent the spatial horizontal, spatial vertical and spectral directions in high-dimensional remote sensing data, and D x , Dy , and D z represent the difference operators of three-dimensional tensors in three different directions and at any position. The value of (i,j,p) is defined as follows:
对高光谱图像进行PCA降维得到主成分图H,通过水平和竖直差分获得主成分图的边缘信息图W,G作为重加权权因子,按照下式更新:The PCA dimension reduction is performed on the hyperspectral image to obtain the principal component map H, and the edge information map W of the principal component map is obtained through the horizontal and vertical differences, and G is used as a weighting factor, which is updated according to the following formula:
其中eps是一个很小的数,实现过程中选用matlab内嵌函数eps()来获取这个很小的数,来避免分母为零;Among them, eps is a very small number. In the implementation process, the matlab built-in function eps() is used to obtain this very small number to avoid the denominator being zero;
PCA降维选用matlab内嵌函数实现,选取前三个主成分;PCA dimensionality reduction is realized by matlab embedded function, and the first three principal components are selected;
步骤三:引入辅助变量Z、R1和R2优化步骤二基于双重全变分的高光谱图像去噪模型,辅助变量的引入使得步骤二基于双重全变分的高光谱图像去噪模型的问题可分离,分离子问题更易于求解,其中X=Z,DwX=R1,DH=R2,Z为与X相等的高光谱影像,R1为X的差分影像,R2为主成分图的差分影像;具体过程为:Step 3: Introduce auxiliary variables Z, R 1 and R 2 to optimize the step 2 hyperspectral image denoising model based on double total variation. The introduction of auxiliary variables makes the problem of step 2 based on the hyperspectral image denoising model based on double total variation Separable, the separation sub-problem is easier to solve, where X=Z, Dw X=R 1 , DH=R 2 , Z is the hyperspectral image equal to X, R 1 is the differential image of X, and R 2 is the principal component The differential image of the graph; the specific process is:
引入辅助变量Z、R1和R2优化模型,其中X=Z,DwX=R1,DH=R2,提出的基于双重全变分的高光谱图像去噪模型等价地表示成以下模型:Introducing auxiliary variables Z, R 1 and R 2 to optimize the model, where X=Z, Dw X=R 1 , DH=R 2 , the proposed hyperspectral image denoising model based on double total variation is equivalently expressed as the following Model:
步骤四:采用ALM算法求解优化后的基于双重全变分的高光谱图像去噪模型,获得降噪后的高光谱图像;具体过程为:Step 4: Use the ALM algorithm to solve the optimized hyperspectral image denoising model based on double total variation, and obtain the denoised hyperspectral image; the specific process is as follows:
基于ALM求解框架,基于双重全变分的高光谱图像去噪模型的增广拉格朗日函数写成如下形式:Based on the ALM solution framework, the augmented Lagrangian function of the hyperspectral image denoising model based on double total variation is written in the following form:
式中,μ是惩罚系数,Λ1,Λ2,Λ3,Λ4是拉格朗日乘子;where μ is the penalty coefficient, Λ 1 , Λ 2 , Λ 3 , Λ 4 are Lagrange multipliers;
初始化X=Y,Z=R1=R2=S=Λ1=Λ2=Λ3=Λ4=0张量,μ=0;Initialize X=Y, Z=R1 = R2=S= Λ1 = Λ2 = Λ3 = Λ4 =0 tensor, μ=0;
ALM的框架下,我们可以在固定其他变量的情况下,对每个变量进行交替迭代求解,初始化k=0;Under the framework of ALM, we can alternately iteratively solve each variable while fixing other variables, and initialize k=0;
步骤4.1,固定其他变量,更新Xk+1:Step 4.1, fix other variables, update X k+1 :
子问题用HOOI算法求解,当Gk+1和Ui k+1通过HOOI算法得到后,X的更新回代到Tucker分解中得到,即:The sub-problem is solved by the HOOI algorithm. When G k+1 and U i k+1 are obtained by the HOOI algorithm, the update of X is substituted into the Tucker decomposition to obtain, namely:
Xk+1=Ck+1×1U1 k+1×2U2 k+1×3U3 k+1;X k+1 =C k+1 × 1 U 1 k+1 × 2 U 2 k+1 × 3 U 3 k+1 ;
其中HOOI算法中张量秩参数设为[120,120,10];The tensor rank parameter in the HOOI algorithm is set to [120, 120, 10];
步骤4.2,固定其他变量,更新Zk+1:Step 4.2, fix other variables, update Z k+1 :
子问题是一个最小二乘问题,该最小二乘问题通过求解如下的线性方程得到:The subproblem is a least squares problem, which is obtained by solving the linear equation as follows:
μ(I+Dw TDw)Z=μX+Λ2+Dw T(μR1-Λ3);μ(I+D w T D w )Z=μX+Λ 2 +D w T (μR 1 −Λ 3 );
以上公式使用快速傅里叶变换来求解:The above formula is solved using the Fast Fourier Transform:
通过上式得到当前迭代过程的Zk+1后,继续对Zk+1进一步补偿更新;After obtaining Z k+1 of the current iteration process through the above formula, continue to further compensate and update Z k+1 ;
对步骤二中得到的主成分图H进行SLIC超像素分割,获得视觉显著图M,将视觉显著图M作为加权因子与当前迭代过程的高光谱图像Zk+1的每一波段进行元素相乘,再与当前迭代过程的高光谱图像Zk+1相加,由此对高光谱图像的显著性特征进行增强,得到复原效果更好的高光谱平滑区域;Perform SLIC superpixel segmentation on the principal component map H obtained in step 2 to obtain a visual saliency map M, and use the visual saliency map M as a weighting factor to perform element multiplication with each band of the hyperspectral image Z k+1 in the current iterative process. , and then added to the hyperspectral image Z k+1 of the current iterative process, thereby enhancing the salient features of the hyperspectral image, and obtaining a hyperspectral smooth region with better restoration effect;
将Zk+1带入Zk+1(:,:,i)+a×M×Zk+1(:,:,i)计算得到的结果,即为补偿更新后的Zk +1;Bring Z k+1 into Z k+1 (:,:,i)+a×M×Z k+1 (:,:,i) The calculated result is Z k +1 after compensation update;
其中,M是视觉显著图,a是显著性特征增强的系数,SLIC超像素分割选用matlab内嵌函数实现,视觉显著图系数a的取值范围定为[0,1],超像素分割参数设置为默认值,预计超像素数范围为[300,600];Among them, M is the visual saliency map, a is the coefficient of saliency feature enhancement, SLIC superpixel segmentation is implemented by matlab embedded function, the value range of the visual saliency map coefficient a is set as [0, 1], and the superpixel segmentation parameters are set is the default value, and the expected number of superpixels ranges from [300,600];
步骤4.3,固定其他变量,更新R1 k+1:Step 4.3, fix other variables, update R 1 k+1 :
子问题可以用软阈值收缩算子运算,得到如下R1的闭式解:The sub-problem can be operated with the soft threshold shrinkage operator, and the closed-form solution of R 1 can be obtained as follows:
其中,Shrinkage为软阈值收缩算子,Shrinkage(m,n)=sign(m)max(|m|-n,0),sign(m)是符号函数,当m>0时值为1,m=0时值为0,否则值为-1;Among them, Shrinkage is the soft threshold shrinkage operator, Shrinkage(m,n)=sign(m)max(|m|-n,0), sign(m) is the sign function, when m>0, the value is 1, m = 0, the value is 0, otherwise the value is -1;
步骤4.4,固定其他变量,更新R2 k+1:Step 4.4, fix other variables, update R 2 k+1 :
子问题可以用软阈值收缩算子运算,得到如下R2的闭式解:The subproblem can be operated with the soft threshold shrinkage operator, and the closed-form solution of R 2 is obtained as follows:
步骤4.5,固定其他变量,更新Sk+1:Step 4.5, fix other variables, update S k+1 :
子问题可以用软阈值收缩算子运算,得到如下S的闭式解:The subproblem can be operated with the soft threshold shrinkage operator, and the closed-form solution of S is obtained as follows:
步骤4.6,固定其他变量,更新拉格朗日乘子:Step 4.6, fix other variables, update Lagrange multipliers:
步骤4.7,判断是否满足迭代终止条件,相对变化误差当满足Rel≤10-6,则终止迭代,输出无噪图像;若Rel>10-6,则重复步骤四中步骤4.1至步骤4.6,继续交替迭代更新,直至满足迭代终止条件即Rel≤10-6或迭代次数k达到预设最大迭代次数40时,输出无噪图像X。Step 4.7, judge whether the iteration termination condition is met, the relative change error When Rel≤10 -6 is satisfied, the iteration is terminated, and a noise-free image is output; if Rel>10 -6 , steps 4.1 to 4.6 in step 4 are repeated, and the alternate iterative update is continued until the iteration termination condition is satisfied, that is, Rel≤10 - 6 or when the number of iterations k reaches a preset maximum number of iterations of 40, a noise-free image X is output.
特别地,步骤四中的每一个子问题会基于ALM框架交替迭代求解,直至Rel≤10-6或迭代次数达到预设最大迭代次数40时终止迭代,输出X即为无噪IndianPines高光谱图像,达到去除高光谱图像混合噪声的目的。In particular, each sub-problem in step 4 will be solved alternately and iteratively based on the ALM framework, until Rel≤10 -6 or the iteration number reaches the preset maximum number of iterations 40, the iteration is terminated, and the output X is the noise-free IndianPines hyperspectral image, To achieve the purpose of removing the mixed noise of hyperspectral images.
从不同的角度来评价本发明噪声去除的结果,包括:视觉比较和定量比较。定量比较的指标平均峰值信噪比MPSNR和平均结构相似度MSSIM值越大表示去噪图像与参考图像越接近,去噪效果越好。The results of noise removal of the present invention are evaluated from different perspectives, including: visual comparison and quantitative comparison. The indicators of quantitative comparison, the average peak signal-to-noise ratio (MPSNR) and the average structural similarity (MSSIM), the larger the value, the closer the denoised image is to the reference image, and the better the denoising effect.
本发明提出的一种基于双重全变分的高光谱混合噪声去除方法,实验平台基于MATLAB软件实现,PCA主成分分析和SLIC算法均选用MATLAB内嵌函数。案例模拟实验结果如图所示,图2为Indian Pines高光谱图像第160个波段的真实影像,图3为Indian Pines高光谱图像第160个波段被噪声污染的影像,图4为Indian Pines高光谱图像第160个波段通过本方法复原的复原影像。分析图2、图3和图4,可以看到通过本方法复原的图像细节恢复的很清晰。Indian Pines高光谱噪声图像的MPSNR为13.7389dB,MSSIM为0.2025,通过本方法复原后的Indian Pines高光谱复原图像MPSNR提高到38.8024dB,MSSIM提高到0.9848,证明了本方法的有效性和可行性。A method for removing hyperspectral mixed noise based on double total variation proposed by the present invention, the experimental platform is realized based on MATLAB software, and the PCA principal component analysis and SLIC algorithm both use MATLAB embedded functions. The results of the case simulation experiment are shown in the figure. Figure 2 is the real image of the 160th band of the Indian Pines hyperspectral image, Figure 3 is the image of the 160th band of the Indian Pines hyperspectral image contaminated by noise, and Figure 4 is the Indian Pines hyperspectral image. The 160th band of the image is restored by this method. By analyzing Figure 2, Figure 3 and Figure 4, it can be seen that the image details restored by this method are very clear. The MPSNR of the Indian Pines hyperspectral noise image is 13.7389dB, and the MSSIM is 0.2025. The MPSNR of the Indian Pines hyperspectral restored image restored by this method is increased to 38.8024dB, and the MSSIM is increased to 0.9848, which proves the effectiveness and feasibility of this method.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210676035.1A CN115082337A (en) | 2022-06-15 | 2022-06-15 | Hyperspectral mixed noise removing method based on double total variation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210676035.1A CN115082337A (en) | 2022-06-15 | 2022-06-15 | Hyperspectral mixed noise removing method based on double total variation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115082337A true CN115082337A (en) | 2022-09-20 |
Family
ID=83253455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210676035.1A Pending CN115082337A (en) | 2022-06-15 | 2022-06-15 | Hyperspectral mixed noise removing method based on double total variation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115082337A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115496699A (en) * | 2022-11-16 | 2022-12-20 | 武汉大学 | Venus-1 satellite hyperspectral image fusion method and system |
CN117173042A (en) * | 2023-08-23 | 2023-12-05 | 长春理工大学 | A method, device and medium for removing stripe noise from remote sensing data based on unidirectional variation |
-
2022
- 2022-06-15 CN CN202210676035.1A patent/CN115082337A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115496699A (en) * | 2022-11-16 | 2022-12-20 | 武汉大学 | Venus-1 satellite hyperspectral image fusion method and system |
CN115496699B (en) * | 2022-11-16 | 2023-02-03 | 武汉大学 | Venus-1 satellite hyperspectral image fusion method and system |
CN117173042A (en) * | 2023-08-23 | 2023-12-05 | 长春理工大学 | A method, device and medium for removing stripe noise from remote sensing data based on unidirectional variation |
CN117173042B (en) * | 2023-08-23 | 2024-05-31 | 长春理工大学 | Remote sensing data stripe noise removing method, device and medium based on unidirectional variation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111369487B (en) | Hyperspectral and multispectral image fusion method, system and medium | |
Gu et al. | A brief review of image denoising algorithms and beyond | |
CN108133465B (en) | Non-convex low-rank relaxation hyperspectral image recovery method based on spatial spectrum weighted TV | |
Zhang et al. | Joint image denoising using adaptive principal component analysis and self-similarity | |
CN112200750A (en) | A method for establishing an ultrasonic image denoising model and an ultrasonic image denoising method | |
CN103854262B (en) | Medical image denoising method based on documents structured Cluster with sparse dictionary study | |
CN103093434B (en) | Non-local wiener filtering image denoising method based on singular value decomposition | |
Kato et al. | Multi-frame image super resolution based on sparse coding | |
Gou et al. | Remote sensing image super-resolution reconstruction based on nonlocal pairwise dictionaries and double regularization | |
CN101976435A (en) | Combination learning super-resolution method based on dual constraint | |
Jiang et al. | Hyperspectral image denoising with a combined spatial and spectral weighted hyperspectral total variation model | |
CN115082337A (en) | Hyperspectral mixed noise removing method based on double total variation | |
CN114820352A (en) | Hyperspectral image denoising method and device and storage medium | |
Dong et al. | Image restoration: a data-driven perspective | |
CN103093431B (en) | The compressed sensing reconstructing method of Based PC A dictionary and structure prior imformation | |
CN102074013A (en) | Wavelet multi-scale Markov network model-based image segmentation method | |
Ma et al. | Image deblurring via total variation based structured sparse model selection | |
CN112837220A (en) | A method for improving the resolution of infrared images and use thereof | |
Yang et al. | Variation learning guided convolutional network for image interpolation | |
CN111915518A (en) | Hyperspectral image denoising method based on triple low-rank model | |
CN105894462A (en) | Remote sensing image de-noising method based on shearing-wave-domain hidden markov tree model | |
CN103310424B (en) | A kind of image de-noising method based on structural similarity Yu total variation hybrid model | |
Milanfar et al. | Denoising: A powerful building-block for imaging, inverse problems, and machine learning | |
CN113435487B (en) | Deep learning-oriented multi-scale sample generation method | |
CN105260992A (en) | Traffic image denoising algorithm based on robust principal component decomposition and feature space reconstruction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |