CN114965637B - A method for detecting GPC3 by constructing a sandwich-type aptasensor based on nanocomposite materials - Google Patents
A method for detecting GPC3 by constructing a sandwich-type aptasensor based on nanocomposite materials Download PDFInfo
- Publication number
- CN114965637B CN114965637B CN202210433955.0A CN202210433955A CN114965637B CN 114965637 B CN114965637 B CN 114965637B CN 202210433955 A CN202210433955 A CN 202210433955A CN 114965637 B CN114965637 B CN 114965637B
- Authority
- CN
- China
- Prior art keywords
- rgo
- gpc3
- nps
- gpc3apt
- spce
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102100032530 Glypican-3 Human genes 0.000 title claims abstract description 125
- 101001014668 Homo sapiens Glypican-3 Proteins 0.000 title claims abstract description 125
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 title claims abstract description 10
- 239000000523 sample Substances 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 108091023037 Aptamer Proteins 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 8
- 150000003278 haem Chemical class 0.000 claims abstract description 5
- 230000008021 deposition Effects 0.000 claims abstract 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 77
- 239000000243 solution Substances 0.000 claims description 33
- 210000002966 serum Anatomy 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 12
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 7
- 229910001868 water Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 230000011664 signaling Effects 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 5
- 235000010323 ascorbic acid Nutrition 0.000 claims description 5
- 229960005070 ascorbic acid Drugs 0.000 claims description 5
- 239000011668 ascorbic acid Substances 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 5
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 claims description 5
- 229940025294 hemin Drugs 0.000 claims description 5
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 5
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 5
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 239000012086 standard solution Substances 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 229910004042 HAuCl4 Inorganic materials 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 239000007853 buffer solution Substances 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- CIJQGPVMMRXSQW-UHFFFAOYSA-M sodium;2-aminoacetic acid;hydroxide Chemical compound O.[Na+].NCC([O-])=O CIJQGPVMMRXSQW-UHFFFAOYSA-M 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 229910021505 gold(III) hydroxide Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 235000010333 potassium nitrate Nutrition 0.000 claims 2
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 claims 1
- 229910003244 Na2PdCl4 Inorganic materials 0.000 claims 1
- ABKQFSYGIHQQLS-UHFFFAOYSA-J sodium tetrachloropalladate Chemical compound [Na+].[Na+].Cl[Pd+2](Cl)(Cl)Cl ABKQFSYGIHQQLS-UHFFFAOYSA-J 0.000 claims 1
- 229910021642 ultra pure water Inorganic materials 0.000 claims 1
- 239000012498 ultrapure water Substances 0.000 claims 1
- 239000010931 gold Substances 0.000 abstract description 26
- 238000001179 sorption measurement Methods 0.000 abstract description 3
- 230000003321 amplification Effects 0.000 abstract description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 2
- 102000003992 Peroxidases Human genes 0.000 abstract 1
- 108040007629 peroxidase activity proteins Proteins 0.000 abstract 1
- 238000007650 screen-printing Methods 0.000 abstract 1
- 101710134784 Agnoprotein Proteins 0.000 description 9
- 238000001903 differential pulse voltammetry Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000007986 glycine-NaOH buffer Substances 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- BGXNGARHYXNGPK-UHFFFAOYSA-N 2-[1-[(4-methoxyphenyl)methylsulfanyl]cyclohexyl]acetic acid Chemical compound C1=CC(OC)=CC=C1CSC1(CC(O)=O)CCCCC1 BGXNGARHYXNGPK-UHFFFAOYSA-N 0.000 description 2
- 102000010956 Glypican Human genes 0.000 description 2
- 108050001154 Glypican Proteins 0.000 description 2
- 108050007237 Glypican-3 Proteins 0.000 description 2
- 101150003085 Pdcl gene Proteins 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 208000016097 disease of metabolism Diseases 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001085205 Prenanthella exigua Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000002789 catalaselike Effects 0.000 description 1
- 239000012189 cellwax Substances 0.000 description 1
- 210000005266 circulating tumour cell Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- KGYLMXMMQNTWEM-UHFFFAOYSA-J tetrachloropalladium Chemical compound Cl[Pd](Cl)(Cl)Cl KGYLMXMMQNTWEM-UHFFFAOYSA-J 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3277—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/49—Systems involving the determination of the current at a single specific value, or small range of values, of applied voltage for producing selective measurement of one or more particular ionic species
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物检测领域,具体涉及一种基于纳米复合材料构建夹心型适配体传感器检测GPC3的方法。The invention belongs to the field of biological detection, and in particular relates to a method for detecting GPC3 by constructing a sandwich-type aptamer sensor based on nanocomposite materials.
背景技术Background technique
磷脂酰肌醇蛋白聚糖-3(glypican-3, GPC3)的检测方法有ELISA、放射免疫吸附法、荧光免疫分析法、化学发光免疫分析法、电化学免疫传感器等。公开号为CN 112014577A的发明专利,公开了一种免疫试剂盒,采用磁珠微粒偶联鼠抗人GPC3单克隆抗体稀释的试剂M和碱性磷酸酶标记兔抗人GPC3多克隆抗体稀释的试剂R进行偶联,实现对血清中GPC3的检测,该方法具有较高的灵敏度,但制备工程繁琐,成本较高。公开号为CN 105717104 A的发明专利,利用膜过滤装置分离获取肝癌患者外周血中的CTC,运用细胞蜡块技术制作薄层切片,进而检测GPC3,该方法具有良好的稳定性和特异性,但所用仪器昂贵,操作复杂,需要专业技术人员检测。因此,需要建立一种快速、灵敏、便携检测GPC3的方法。Glypican-3 (glypican-3, GPC3) detection methods include ELISA, radioimmunosorbent assay, fluorescent immunoassay, chemiluminescence immunoassay, electrochemical immunosensor, etc. The invention patent with the publication number CN 112014577A discloses an immune kit, which uses magnetic bead microparticles coupled with reagent M diluted with mouse anti-human GPC3 monoclonal antibody and reagent M diluted with alkaline phosphatase-labeled rabbit anti-human GPC3 polyclonal antibody R is coupled to detect GPC3 in serum. This method has high sensitivity, but the preparation process is cumbersome and the cost is high. The invention patent with the publication number CN 105717104 A uses a membrane filtration device to separate and obtain CTCs in the peripheral blood of patients with liver cancer, uses cell wax block technology to make thin-layer sections, and then detects GPC3. This method has good stability and specificity, but The instruments used are expensive, the operation is complicated, and professional technicians are required to detect. Therefore, it is necessary to establish a rapid, sensitive and portable method for detecting GPC3.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种基于血红素-还原氧化石墨烯-铂@钯纳米复合材料(H-rGO-Pt@Pd NPs),构建夹心型适配体传感器,实现GPC3检测,最低检测限为0.4801 μg/mL。The technical problem to be solved by the present invention is to provide a sandwich-type aptamer sensor based on heme-reduced graphene oxide-platinum@palladium nanocomposite (H-rGO-Pt@Pd NPs) to realize GPC3 detection, with the lowest The detection limit was 0.4801 μg/mL.
为解决该技术问题,利用π-π键吸附作用合成具有高比表面积、高电导率以及类过氧化物酶性质的H-rGO-Pt@Pd NPs纳米复合材料,并通过π-π键结合的方式将纳米复合材料与GPC3适配体(GPC3Apt)结合,制备出能够与GPC3特异性结合的H-rGO-Pt@Pd NPs-GPC3Apt信号探针;采用电沉积技术将Au NPs@rGO修饰在丝网印刷电极表面;通过静电吸附作用将GPC3适配体修饰在Au NPs@rGO电极表面,由于GPC3能够与GPC3适配体特异性结合,形成稳定的化学结构,构建了H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/GPC3Apt/ Au NPs@rGO/SPCE夹心型电化学适配体传感器。在电极表面滴加过氧化氢(H2O2)和硝酸银(AgNO3),H-rGO-Pt@Pd NPs由于具有类过氧化物酶性质可有效催化H2O2与AgNO3反应,Ag+得到电子,被还原为金属Ag沉积在电极表面,通过用差分脉冲伏安法(DPV)检测沉积Ag传感器的电流响应,Ag的电流响应与GPC3浓度呈正相关,实现对GPC3的检测。In order to solve this technical problem, H-rGO-Pt@Pd NPs nanocomposites with high specific surface area, high conductivity and peroxidase-like properties were synthesized by π-π bond adsorption, and the NPs combined by π-π bonds The method combines the nanocomposite material with the GPC3 aptamer (GPC3 Apt ) to prepare the H-rGO-Pt@Pd NPs-GPC3 Apt signal probe that can specifically bind to GPC3; the Au NPs@rGO is modified by electrodeposition technology On the surface of the screen-printed electrode; the GPC3 aptamer was modified on the surface of the Au NPs@rGO electrode by electrostatic adsorption. Since GPC3 can specifically bind to the GPC3 aptamer to form a stable chemical structure, the H-rGO-Pt @Pd NPs-GPC3 Apt /GPC3/GPC3 Apt / Au NPs@rGO/SPCE sandwich type electrochemical aptamer sensor. Dropping hydrogen peroxide (H 2 O 2 ) and silver nitrate (AgNO 3 ) on the electrode surface, H-rGO-Pt@Pd NPs can effectively catalyze the reaction of H 2 O 2 and AgNO 3 due to their peroxidase-like properties. Ag + gets electrons and is reduced to metal Ag and deposited on the electrode surface. The current response of the deposited Ag sensor is detected by differential pulse voltammetry (DPV). The current response of Ag is positively correlated with the concentration of GPC3, and the detection of GPC3 is realized.
本发明按照以下步骤进行:The present invention carries out according to the following steps:
步骤1:H-rGO-Pt@Pd NPs-GPC3Apt信号探针的制备Step 1: Preparation of H-rGO-Pt@Pd NPs-GPC3 Apt signaling probe
(1)还原氧化石墨烯(rGO)的制备:取氧化石墨烯(GO)溶于纯水,超声破碎;加入抗坏血酸(AA),搅拌,得rGO悬浮液;(1) Preparation of reduced graphene oxide (rGO): Dissolve graphene oxide (GO) in pure water and ultrasonically crush it; add ascorbic acid (AA) and stir to obtain rGO suspension;
(2)血红素-还原氧化石墨烯(H-rGO)的制备:取血红素(Hemin)加入氨水(NH3·H2O)中溶解,加入rGO溶液以及水合肼(N2H4·H2O)溶液,水浴搅拌,离心,清洗,得H-rGO悬浮液;(2) Preparation of heme-reduced graphene oxide (H-rGO): take heme (Hemin) and dissolve it in ammonia water (NH 3 ·H 2 O), add rGO solution and hydrazine hydrate (N 2 H 4 ·H 2 O) solution, stirred in a water bath, centrifuged, and washed to obtain a H-rGO suspension;
作为改进,还包括以下步骤:As an improvement, the following steps are also included:
(3)H-rGO-Pt@Pd NPs的制备:在H-rGO悬浮液中加入聚二烯丙基二甲基氯化铵(PDDA)和氯化钠(NaCl),搅拌,加入四氯钯酸钠(Na2PdCl4)和四氯铂酸钠(Na2PtCl4)后继续搅拌,再加入水合肼(N2H4·H2O)溶液后搅拌、存放,离心,清洗,干燥,得H-rGO-Pd@Pd NPs固体;(3) Preparation of H-rGO-Pt@Pd NPs: Add polydiallyldimethylammonium chloride (PDDA) and sodium chloride (NaCl) to the H-rGO suspension, stir, and add tetrachloropalladium sodium chloride (Na 2 PdCl 4 ) and sodium tetrachloroplatinate (Na 2 PtCl 4 ) and continue to stir, then add hydrazine hydrate (N 2 H 4 ·H 2 O) solution and stir, store, centrifuge, wash, dry, Obtain H-rGO-Pd@Pd NPs solid;
(4)H-rGO-Pt@Pd NPs-GPC3Apt信号探针的制备:将GPC3适配体(GPC3Apt)溶液H-rGO-Pt@Pd NPs溶液超声均匀混合,孵育、离心、清洗,得H-rGO-Pt@Pd NPs-GPC3Apt信号探针。(4) Preparation of H-rGO-Pt@Pd NPs-GPC3 Apt signal probe: GPC3 aptamer (GPC3 Apt ) solution and H-rGO-Pt@Pd NPs solution were uniformly mixed by ultrasonic, incubated, centrifuged and washed to obtain H-rGO-Pt@Pd NPs-GPC3 Apt signaling probe.
步骤2:电极的修饰与生物传感界面的构建Step 2: Modification of electrodes and construction of biosensing interface
(1)将丝网印刷电极(SPCE)置于稀硫酸(H2SO4)溶液中活化;(1) Activate the screen-printed electrode (SPCE) in dilute sulfuric acid (H 2 SO 4 ) solution;
(2)将活化后得SPCE置于含有氯金酸(HAuCl4)和GO的混合液中,进行电沉积,得AuNPs@rGO/SPCE电极;(2) The activated SPCE was placed in a mixture containing auric acid (HAuCl 4 ) and GO for electrodeposition to obtain an AuNPs@rGO/SPCE electrode;
(3)将GPC3Apt滴加在Au NPs@rGO/SPCE的表面,孵育、洗涤、吹干,得GPC3Apt/AuNPs@rGO/SPCE。(3) Add GPC3 Apt dropwise on the surface of Au NPs@rGO/SPCE, incubate, wash, and dry to obtain GPC3 Apt /AuNPs@rGO/SPCE.
步骤3:GPC3工作曲线的绘制Step 3: Drawing of GPC3 working curve
(1)将不同浓度的GPC3标准液滴加在GPC3电化学生物传感界面,孵育,清洗,吹干,得GPC3/GPC3Apt/Au NPs@rGO/SPCE;(1) Add different concentrations of GPC3 standard solutions onto the GPC3 electrochemical biosensing interface, incubate, wash, and dry to obtain GPC3/GPC3 Apt /Au NPs@rGO/SPCE;
(2)在GPC3/GPC3Apt/Au NPs@rGO/SPCE上滴加H-rGO-Pt@Pd NPs- GPC3Apt溶液,孵育、清洗、吹干,得到H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/GPC3Apt/ Au NPs@rGO/SPCE;(2) Add H-rGO- Pt @Pd NPs-GPC3 Apt solution dropwise on GPC3/GPC3 Apt /Au NPs@rGO/SPCE, incubate, wash and dry to obtain H-rGO-Pt@Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /Au NPs@rGO/SPCE;
(3)将H2O2和AgNO3溶液滴加到H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/ GPC3Apt/Au NPs@rGO/SPCE上,避光反应,清洗,得到工作电极Ag/H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/GPC3Apt/AuNPs@rGO/SPCE,备用;(3) Add the H 2 O 2 and AgNO 3 solution dropwise onto the H-rGO-Pt@Pd NPs-GPC3 Apt /GPC3/ GPC3 Apt /Au NPs@rGO/SPCE, react in the dark, and wash to obtain the working electrode Ag /H-rGO-Pt@Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /AuNPs@rGO/SPCE, spare;
(4)将工作电极浸入到硝酸(HNO3)和硝酸钾(KNO3)的甘氨酸-氢氧化钠(NaOH)缓冲液中,采用电化学工作站的DPV进行扫描,记录传感器的响应电流值;(4) Immerse the working electrode in the glycine-sodium hydroxide (NaOH) buffer solution of nitric acid (HNO 3 ) and potassium nitrate (KNO 3 ), scan with the DPV of the electrochemical workstation, and record the response current value of the sensor;
(5)分别对不同浓度的GPC3工作电极进行检测,记录传感器的响应电流,根据传感器的电流响应值与GPC3浓度的关系,并绘制出标准工作曲线;计算出该方法的最低检测限。(5) Test the GPC3 working electrodes with different concentrations, record the response current of the sensor, and draw the standard working curve according to the relationship between the current response value of the sensor and the GPC3 concentration; calculate the minimum detection limit of the method.
步骤4:实际血清样本中GPC3的检测Step 4: Detection of GPC3 in actual serum samples
(1)用待测实际血清样品制备的工作电极浸入到含有HNO3和KNO3的甘氨酸-NaOH缓冲溶液中,采用电化学工作站的DPV进行扫描,记录传感器的响应电流值;(1) Immerse the working electrode prepared by the actual serum sample to be tested into the glycine-NaOH buffer solution containing HNO 3 and KNO 3 , scan with the DPV of the electrochemical workstation, and record the response current value of the sensor;
(2)根据步骤3所得到的工作曲线,计算得到所述待测实际样品中GPC3的浓度。(2) Calculate the concentration of GPC3 in the actual sample to be tested according to the working curve obtained in step 3.
作为优选:As preferred:
步骤1所述所述GPC3Apt的DNA序列为5'-TAA CGC TGA CCT TAG CTG CAT GGC TTTACA TGT TCC A-NH2-3';The DNA sequence of the GPC3 Apt described in step 1 is 5'-TAA CGC TGA CCT TAG CTG CAT GGC TTTACA TGT TCC A-NH 2 -3';
步骤2所述用于沉积金的HAuCl4溶液浓度为0.1%,rGO悬浮液浓度为1.0 mg/mL,混合体积比为1:8时,导电性最佳,电流值达到63.9 μA;The concentration of the HAuCl4 solution used to deposit gold in step 2 is 0.1%, the concentration of the rGO suspension is 1.0 mg/mL, and when the mixing volume ratio is 1:8, the conductivity is the best, and the current value reaches 63.9 μA;
步骤3和步骤4中所述电极的孵育温度为25 °C,孵育时间为30 min,PBS缓冲液pH值为7.0时,传感器的响应电流最大。The incubation temperature of the electrode described in steps 3 and 4 was 25 °C, the incubation time was 30 min, and the response current of the sensor was maximum when the pH of the PBS buffer was 7.0.
其中,步骤1提供了一种具有高比表面积、高电导率以及类过氧化物酶性质的H-rGO-Pt@Pd NPs纳米复合材料,与GPC3Apt通过π-π键结合形成了H-rGO-Pt@Pd NPs-GPC3Apt纳米信号探针,为步骤2提供一个检测信号;步骤2构成特异性识别GPC3的夹心型生物传感界面,利用GPC3适配体和GPC3蛋白的特异性结合以及H-rGO-Pt@Pd NPs纳米复合材料兼备的类过氧化酶性质,有利于电子传递与催化作用。步骤2中生物传感界面的构建为GPC3的测定提供了可行性条件,为步骤3和步骤4中GPC3的电化学检测中必不可少的先决步骤。可见步骤1-4层层递进,每一步都不可缺少,因此才能利用H-rGO-Pt@Pd NPs纳米复合材料、GPC3适配体(GPC3Apt)以及Au NPs@rGO纳米杂化物实现夹心型适配体传感器对GPC3的检测。Among them, step 1 provides a H-rGO-Pt@Pd NPs nanocomposite with high specific surface area, high conductivity and peroxidase-like properties, which is combined with GPC3 Apt through π-π bonds to form H-rGO -Pt@Pd NPs-GPC3 Apt nanosignal probe, providing a detection signal for step 2; step 2 constitutes a sandwich-type biosensing interface that specifically recognizes GPC3, using the specific binding of GPC3 aptamer and GPC3 protein and H -rGO-Pt@Pd NPs nanocomposites have both peroxidase-like properties, which are beneficial for electron transfer and catalysis. The construction of the biosensing interface in step 2 provides a feasible condition for the determination of GPC3, which is an essential prerequisite step in the electrochemical detection of GPC3 in step 3 and step 4. It can be seen that steps 1-4 are progressive, and each step is indispensable, so H-rGO-Pt@Pd NPs nanocomposites, GPC3 aptamers (GPC3 Apt ) and Au NPs@rGO nanohybrids can be used to achieve sandwich type Detection of GPC3 by aptasensor.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
1、本专利构建的H-rGO-Pt@Pd NPs纳米复合材料具有比表面积大,优异的类过氧化物酶催化活性以及良好的生物兼容性等特点,材料中具有导电物质Pt@Pd NPs,使电子转移效率增强。此外,H-rGO-Pt@Pd NPs纳米复合材料高效的类过氧化物酶性质,可有效催化H2O2和AgNO3发生氧化还原反应,将AgNO3中的Ag+还原为金属Ag沉积在电极表面,进行有效电流放大,沉积Ag传感器的电流响应通过DPV法检测,实现对GPC3蛋白的灵敏检测。1. The H-rGO-Pt@Pd NPs nanocomposite material constructed in this patent has the characteristics of large specific surface area, excellent peroxidase-like catalytic activity and good biocompatibility. The material has conductive substance Pt@Pd NPs, enhance the electron transfer efficiency. In addition, the efficient peroxidase-like properties of H-rGO-Pt@Pd NPs nanocomposites can effectively catalyze the redox reaction between H 2 O 2 and AgNO 3 , and reduce Ag + in AgNO 3 to metal Ag deposited on On the electrode surface, the effective current amplification is performed, and the current response of the deposited Ag sensor is detected by the DPV method to realize the sensitive detection of the GPC3 protein.
2、采用Au NPs@rGO和H-rGO-Pt@Pd NPs纳米复合材料修饰电极表面,不仅可以有效固定GPC3Apt,而且具有优良的导电性能,增强电子转移,有效放大检测信号。2. Using Au NPs@rGO and H-rGO-Pt@Pd NPs nanocomposites to modify the electrode surface can not only effectively immobilize GPC3 Apt , but also have excellent electrical conductivity, enhance electron transfer, and effectively amplify the detection signal.
3、以H-rGO-Pt@Pd NPs纳米复合材料中的Hemin作为电活性物质,构建H-rGO-Pt@Pd NPs-GPC3Apt为识别探针,GPC3Apt为捕获探针设计了一种夹心型电化学传感器检测GPC3的方法。夹心性结构更加稳固,精度高且稳定性良好,有利于靶向分子的检测,该方法的最低检测限为0.4801 μg/mL。3. Using Hemin in the H-rGO-Pt@Pd NPs nanocomposite as the electroactive substance, construct H-rGO-Pt@Pd NPs-GPC3 Apt as the recognition probe, and design a sandwich of GPC3 Apt as the capture probe A method for detecting GPC3 with a type electrochemical sensor. The sandwich structure is more stable, with high precision and good stability, which is conducive to the detection of target molecules. The minimum detection limit of this method is 0.4801 μg/mL.
附图说明Description of drawings
图1 基于H-rGO-Pt@Pd NPs纳米材料构建夹心型电化学适配体传感器检测GPC3的原理图;Fig. 1 Schematic diagram of the sandwich-type electrochemical aptasensor based on H-rGO-Pt@Pd NPs nanomaterials to detect GPC3;
图2 H-rGO-Pt@Pd NPs纳米复合材料的SEM图和XRD图;Fig. 2 SEM image and XRD image of H-rGO-Pt@Pd NPs nanocomposite;
图3 H-rGO-Pt@Pd NPs纳米复合材料的类过氧化物酶性质验证图;Fig. 3 Verification diagram of peroxidase-like properties of H-rGO-Pt@Pd NPs nanocomposites;
图4 H-rGO-Pt@Pd NPs-GPC3Apt信号探针验证图;Figure 4 H-rGO-Pt@Pd NPs-GPC3 Apt signal probe verification map;
图5 电极修饰过程的SEM图;Fig.5 SEM image of electrode modification process;
图6 不同GPC3浓度的DPV图谱。Fig. 6 DPV profiles of different GPC3 concentrations.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
一种基于H-rGO-Pt@Pd NPs纳米材料构建夹心型电化学适配体传感器检测GPC3的原理见图1。首先制备H-rGO-Pt@Pd NPs纳米复合材料,然后用该材料固定GPC3Apt,形成H-rGO-Pt@Pd NPs-GPC3Apt信号探针;然后将SPCE电极活化,将Au NPs@rGO通过电沉积技术修饰在活化的电极表面,增强电极的导电性;GPC3通过特异性与H-rGO-Pt@Pd NPs-GPC3Apt和GPC3Apt结合,形成稳定的化学结构,构建出H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/GPC3Apt/AuNPs@rGO/ SPCE夹心型电化学适配体传感器;通过H-rGO-Pt@Pd NPs纳米复合材料的类过氧化物酶性质催化H2O2和AgNO3反应,H2O2可以将AgNO3中的Ag+还原为金属Ag沉积在电极表面,采用电化学工作站DPV法,记录检测GPC3前后的电流信号,然后根据GPC3浓度和响应电流关系绘制工作曲线,得到血清中GPC3的水平,达到检测GPC3的目的。The principle of a sandwich-type electrochemical aptasensor based on H-rGO-Pt@Pd NPs nanomaterials to detect GPC3 is shown in Figure 1. First prepare the H-rGO-Pt@Pd NPs nanocomposite material, and then use the material to immobilize GPC3 Apt to form H-rGO-Pt@Pd NPs-GPC3 Apt signal probe; then activate the SPCE electrode and pass the Au NPs@rGO through Electrodeposition technology modified the surface of the activated electrode to enhance the conductivity of the electrode; GPC3 specifically combined with H-rGO-Pt@Pd NPs-GPC3 Apt and GPC3 Apt to form a stable chemical structure and construct H-rGO-Pt @Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /AuNPs@rGO/ SPCE Sandwich Electrochemical Aptamer Sensor; Catalysis of H 2 O 2 via Peroxidase-like Properties of H-rGO-Pt@Pd NPs Nanocomposites React with AgNO 3 , H 2 O 2 can reduce Ag + in AgNO 3 to metal Ag and deposit on the electrode surface, use the electrochemical workstation DPV method, record the current signal before and after the detection of GPC3, and then draw according to the relationship between the GPC3 concentration and the response current The working curve is used to obtain the level of GPC3 in the serum to achieve the purpose of detecting GPC3.
实施步骤如下:The implementation steps are as follows:
1、H-rGO-Pt@Pd NPs-GPC3Apt信号探针的制备1. Preparation of H-rGO-Pt@Pd NPs-GPC3 Apt signaling probe
(1)称取30.0 mg GO分散在30.0 mL纯水中,破碎,加入30.0 mg抗坏血酸(AA),磁力搅拌3 h,制备成1.0 mg/mL的rGO悬浮液;然后将rGO悬浮液加入到30.0 mL的Hemin溶液,搅拌30 min,加入5.0 μL水合肼溶液,漩涡振荡,50 ℃水浴2 h;离心、清洗,得H-rGO悬浮液。(1) Weigh 30.0 mg GO and disperse it in 30.0 mL pure water, break it up, add 30.0 mg ascorbic acid (AA), and stir it magnetically for 3 h to prepare a 1.0 mg/mL rGO suspension; then add the rGO suspension to 30.0 mL of Hemin solution, stirred for 30 min, added 5.0 μL of hydrazine hydrate solution, vortexed, 50 °C water bath for 2 h; centrifuged and washed to obtain H-rGO suspension.
(2)在30.0 mL 1.0 mg/mL的H-rGO悬浮液中加入2.0 mL 含有2%的PDDA溶液和2.0mL含有2%的NaCl溶液,搅拌18 h;将1.0 mL的Na2PdCl4和1.0 mL的Na2PtCl4加入H-rGO混合溶液中,再加入10.0 μL水合肼溶液,搅拌18 h,得H-rGO-Pt@Pd NPs纳米复合材料。(2) Add 2.0 mL of 2% PDDA solution and 2.0 mL of 2% NaCl solution to 30.0 mL of 1.0 mg/mL H-rGO suspension, and stir for 18 h; mix 1.0 mL of Na 2 PdCl 4 and 1.0 mL of Na 2 PtCl 4 was added to the H-rGO mixed solution, and then 10.0 μL of hydrazine hydrate solution was added, and stirred for 18 h to obtain the H-rGO-Pt@Pd NPs nanocomposite.
采用日本日立公司生产的SU8020扫描电镜(SEM)对H-rGO-Pt@Pd NPs纳米复合材料进行表征,如图2A所示,从图中可以看到在褶皱膜的表面上附着小颗粒,说明Pt和Pd粒子成功附着在H-rGO材料上。采用美国布鲁克公司生产的D8 ADVANCE X射线衍射仪对H-rGO-Pt@Pd NPs纳米复合材料进行表征,如图2B所示,rGO的C(002)晶面与2θ=23.51°的衍射峰相对应,Pt的(111)、(200)和(220)与2θ=39.76°、46.24°、67.45°的衍射峰相对应,Pd的(111)、(200)和(220)与2θ=40.12°、46.66°、68.12°衍射峰相对应,说明H-rGO-Pt@Pd NPs纳米复合材料制备成功。The H-rGO-Pt@Pd NPs nanocomposite was characterized by the SU8020 scanning electron microscope (SEM) produced by Hitachi, Japan, as shown in Figure 2A, it can be seen from the figure that small particles are attached to the surface of the wrinkled film, indicating that Pt and Pd particles were successfully attached on the H-rGO material. The H-rGO-Pt@Pd NPs nanocomposite was characterized by the D8 ADVANCE X-ray diffractometer produced by Bruker, USA. As shown in Figure 2B, the C(002) crystal plane of rGO is in phase with the diffraction peak at 2θ=23.51° Correspondingly, (111), (200) and (220) of Pt correspond to the diffraction peaks of 2θ=39.76°, 46.24°, 67.45°, and (111), (200) and (220) of Pd correspond to 2θ=40.12° , 46.66°, 68.12° diffraction peaks correspond to each other, indicating that the H-rGO-Pt@Pd NPs nanocomposite was successfully prepared.
采用中国上海辰华仪器有限公司生产的CHI660E电化学工作站对和上海日立UH5300紫外可见分光光度仪H-rGO-Pt@Pd NPs纳米复合材料的类过氧化物酶性质进行验证,如图3所示。图3A为H-rGO-Pt@Pd NPs的类过氧化物酶性质显色反应验证,单独的3,3',5,5'-四甲基联苯胺(TMB)(a)和单独的H2O2(b)无色透明,当把TMB和H2O2(c)混合,发生显色反应,呈淡蓝色,将H-rGO-Pt@Pd NPs分别加入TMB(d)和H2O2(e)时呈本色颜色,将H-rGO-Pt@Pd NPs与TMB和H2O2(f)混合时,呈深蓝色,浅蓝色的c试管与深蓝色的f试管对比,说明H-rGO-Pt@Pd NPs具有类过氧化物酶的性质,可催化TMB和H2O2反应。图3B为H-rGO-Pt@Pd NPs的类过氧化物酶性质紫外验证,a、b、d、e没有吸收峰,c有微小的峰,f有强吸收峰,说明TMB和H2O2发生显色反应,且纳米复合材料H-rGO-Pt@Pd NPs有催化作用,进一步说明该纳米复合材料有很强的类过氧化氢酶性质。The CHI660E electrochemical workstation produced by China Shanghai Chenhua Instrument Co., Ltd. was used to verify the peroxidase-like properties of H-rGO-Pt@Pd NPs nanocomposites with Shanghai Hitachi UH5300 UV-Vis spectrophotometer, as shown in Figure 3 . Figure 3A is the verification of the color reaction of peroxidase-like properties of H-rGO-Pt@Pd NPs, alone 3,3',5,5'-tetramethylbenzidine (TMB) (a) and alone H 2 O 2 (b) is colorless and transparent. When TMB and H 2 O 2 (c) are mixed, a color reaction occurs, showing a light blue color. Adding H-rGO-Pt@Pd NPs to TMB (d) and H Natural color when 2 O 2 (e), dark blue when H-rGO-Pt@Pd NPs are mixed with TMB and H 2 O 2 (f), light blue tube c compared with dark blue f tube , indicating that H-rGO-Pt@Pd NPs have peroxidase-like properties and can catalyze the reaction of TMB and H2O2. Figure 3B is the UV verification of the peroxidase-like properties of H-rGO-Pt@Pd NPs, a, b, d, e have no absorption peaks, c has a small peak, and f has a strong absorption peak, indicating that TMB and H 2 O 2 A color reaction occurs, and the nanocomposite H-rGO-Pt@Pd NPs has a catalytic effect, further indicating that the nanocomposite has a strong catalase-like property.
(3)将50.0 μL浓度为5.0 μmol/L的GPC3Apt和100.0 μL浓度为1.0 mg/mL的H-rGO-Pt@Pd NPs溶液混合,4℃下孵育12 h,清洗,得到H-rGO-Pt@Pd NPs-GPC3Apt信号探针。(3) Mix 50.0 μL of GPC3 Apt with a concentration of 5.0 μmol/L and 100.0 μL of a H-rGO-Pt@Pd NPs solution with a concentration of 1.0 mg/mL, incubate at 4°C for 12 h, and wash to obtain H-rGO- Pt@Pd NPs-GPC3 Apt signaling probe.
采用中国上海日立UH5300紫外可见分光光度仪对H-rGO-Pt@Pd NPs- GPC3Apt信号探针进行验证,如图4所示,氨基GPC3适配体(NH2-GPC3Apt)波长在260 nm处有明显吸收峰,H-rGO-Pt@Pd NPs波长在260 nm和397.5 nm有吸收峰,探针和离心后的探针上清液在260nm和400 nm左右有吸收峰,且探针吸收峰强度大于探针上清液,说明H-rGO-Pt@Pd NPs和NH2-GPC3Apt成功结合。结合率计算公式如下:The H-rGO-Pt@Pd NPs-GPC3 Apt signal probe was verified by using a UH5300 UV-Vis spectrophotometer from Shanghai Hitachi, China. As shown in Figure 4, the wavelength of the amino GPC3 aptamer (NH 2 -GPC3 Apt ) was at 260 nm There are obvious absorption peaks at 260 nm and 397.5 nm for H-rGO-Pt@Pd NPs, and the probe and the centrifuged probe supernatant have absorption peaks at around 260 nm and 400 nm, and the probe absorbs The peak intensity was greater than that of the probe supernatant, indicating that H-rGO-Pt@Pd NPs were successfully combined with NH 2 -GPC3 Apt . The formula for calculating the binding rate is as follows:
K=(X0-X)/X0×100%K=(X 0 -X)/X 0 ×100%
其中X0和X分别为相同浓度相同用量的信号探针(H-rGO-Pt@Pd NPs- GPC3Apt)和信号探针上清液的吸光强度,通过计算得到结合率为K=82.06%。Among them, X 0 and X are the absorbance intensity of the signal probe (H-rGO-Pt@Pd NPs- GPC3 Apt ) and the supernatant of the signal probe at the same concentration and the same amount, respectively, and the binding rate K=82.06% is obtained by calculation.
、电极的修饰与生物传感界面的构建, Modification of electrodes and construction of biosensing interface
(1)将电极(SPCE)浸入稀H2SO4中,在0.4~1.2 V的扫描电压下,以0.5 V/s的速度进行和CV扫描20圈;将经过预处理的电极置入1 mL含有0.01%的HAuCl4溶液和1.0 mL浓度为1.0 mg/mL的rGO溶液中,采用电化学工作站中的i-t技术,在0~1.2 V的扫描电压下沉积120s,清洗,吹干,得Au@rGO/SPCE。(1) Immerse the electrode (SPCE) in dilute H 2 SO 4 , and scan 20 laps of CV at a speed of 0.5 V/s at a scanning voltage of 0.4-1.2 V; put the pretreated electrode into 1 mL In the solution containing 0.01% HAuCl 4 and 1.0 mL of rGO solution with a concentration of 1.0 mg/mL, using the it technology in the electrochemical workstation, deposited at a scanning voltage of 0-1.2 V for 120 s, washed and dried to obtain Au@ rGO/SPCE.
(2)将2.0 μL浓度为5.0 μM的GPC3Apt滴加到Au NPs@rGO/SPCE电极表面,25 ℃孵育30 min,清洗、吹干;在电极上滴加2.0 μL 含有1% BSA溶液以封闭活性位点,25 ℃孵育30 min,清洗、吹干,得GPC3Apt/Au NPs@rGO/SPCE。(2) Add 2.0 μL of GPC3 Apt with a concentration of 5.0 μM onto the surface of Au NPs@rGO/SPCE electrode, incubate at 25 °C for 30 min, wash and dry; add 2.0 μL of 1% BSA solution on the electrode to block Active sites were incubated at 25°C for 30 min, washed and dried to obtain GPC3 Apt /Au NPs@rGO/SPCE.
、GPC3工作曲线的绘制, Drawing of GPC3 working curve
(1)在步骤2构建的GPC3电化学生物传感界面滴加1.0 μg/mL~70.0 μg/mL浓度范围的GPC3标准液,25 ℃孵育1 h,得到GPC3/GPC3Apt/Au NPs@rGO /SPCE。(1) Add GPC3 standard solution in the concentration range of 1.0 μg/mL~70.0 μg/mL to the GPC3 electrochemical biosensing interface constructed in step 2, and incubate at 25 °C for 1 h to obtain GPC3/GPC3 Apt /Au NPs@rGO / SPCE.
(2)在步骤(1)制备的传感界面上滴加3.0 μL 0.63 mg/mL的H-rGO-Pt@Pd NPs-GPC3Apt溶液,25 ℃孵育1 h,清洗、吹干,得到H-rGO-Pt@Pd NPs-GPC3Apt/ GPC3/GPC3Apt/AuNPs@rGO/SPCE。(2) Add 3.0 μL of 0.63 mg/mL H-rGO-Pt@Pd NPs-GPC3 Apt solution dropwise on the sensing interface prepared in step (1), incubate at 25 °C for 1 h, wash and dry to obtain H- rGO-Pt@Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /AuNPs@rGO/SPCE.
(3)在上述电极上滴加2.0 µL浓度为100 mM H2O2和1.0 µL浓度为50.0 mM AgNO3溶液,25 ℃的环境中避光反应30 min,清洗,吹干,备用,得到工作电极Ag/H-rGO-Pt@PdNPs-GPC3Apt/GPC3/GPC3Apt/Au NPs@rGO/SPCE。(3) Add 2.0 µL of 100 mM H 2 O 2 and 1.0 µL of 50.0 mM AgNO 3 solution dropwise on the above electrode, react in the dark at 25 °C for 30 min, wash, dry, and set aside to get working Electrode Ag/H-rGO-Pt@PdNPs-GPC3 Apt /GPC3/GPC3 Apt /Au NPs@rGO/SPCE.
(4)将上述电极放入HNO3和KNO3的甘氨酸-NaOH缓冲液中,采用电化学工作站的DPV对1.0 μg/mL~70.0 μg/mL范围的GPC3浓度进行检测,记录其峰电流,不同GPC3浓度的DPV曲线图见图6。其线性方程为Y=0.282183X+22.64276(Y为响应电流,X为GPC3浓度),相关系数R2=0.99564,通过多次测量空白样本,计算其标准偏差为0.045,在通过公式,LOD=3Sb/b,其中Sb为六次空白组测得标准偏差,b为标准曲线的斜率,通过该方法计算灵敏度最低检测限为0.4801 μg/mL。(4) Put the above electrode into the glycine-NaOH buffer solution of HNO 3 and KNO 3 , use the DPV of the electrochemical workstation to detect the concentration of GPC3 in the range of 1.0 μg/mL~70.0 μg/mL, and record the peak current. The DPV curve of GPC3 concentration is shown in Fig. 6 . Its linear equation is Y=0.282183X+22.64276 (Y is the response current, X is the concentration of GPC3), the correlation coefficient R 2 =0.99564, the standard deviation is calculated to be 0.045 by measuring the blank sample many times, and through the formula, LOD=3S b /b, where S b is the standard deviation measured in six blank groups, b is the slope of the standard curve, and the lowest detection limit of sensitivity calculated by this method is 0.4801 μg/mL.
采用扫描电镜(SEM)对电极构建过程进行表征,如图5所示。图5A为SPCE的SEM图,电极表面因其固有的碳颗粒而呈现出排列均匀的颗粒;图5B为Au NPs@rGO/SPCE的SEM图,可以看见在电极覆盖一层黑色薄膜并且均匀分布着许多明亮白色的球形微粒,说明AuNPs@rGO成功沉积到了电极表面;图5C为GPC3Apt/Au NPs@rGO/SPCE的SEM图,可以看到表面覆盖了一层薄膜,可知GPC3Apt成功固定在电极表面。图5D中可以看到薄膜表面较为平滑,归因于GPC3与GPC3Apt之间反应形成稳定的结构,可知GPC3成功吸附在电极表面。图5E为H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/GPC3Apt/Au NPs@rGO/SPCE,表面呈现典型的褶皱结构,且包裹着许多球形纳米颗粒,证明H-rGO-Pt@Pd NPs-GPC3Apt已均匀的修饰在电极表面。图5F为Ag/H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/ GPC3Apt/Au NPs@rGO/SPCE,表面有明亮颗粒,说明Ag已经有效沉积在表面。The electrode construction process was characterized by scanning electron microscopy (SEM), as shown in Figure 5. Figure 5A is the SEM image of SPCE, the surface of the electrode shows uniformly arranged particles due to its inherent carbon particles; Figure 5B is the SEM image of Au NPs@rGO/SPCE, it can be seen that the electrode is covered with a black film and uniformly distributed Many bright white spherical particles indicate that AuNPs@rGO has been successfully deposited on the electrode surface; Figure 5C is the SEM image of GPC3 Apt /Au NPs@rGO/SPCE, it can be seen that the surface is covered with a thin film, which shows that GPC3 Apt has been successfully immobilized on the electrode surface. It can be seen in Figure 5D that the surface of the film is relatively smooth, which is attributed to the reaction between GPC3 and GPC3 Apt to form a stable structure, which shows that GPC3 is successfully adsorbed on the electrode surface. Figure 5E shows H-rGO-Pt@Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /Au NPs@rGO/SPCE, the surface presents a typical wrinkled structure, and many spherical nanoparticles are wrapped, proving that H-rGO-Pt@Pd NPs-GPC3 Apt has been uniformly modified on the electrode surface. Figure 5F shows Ag/H-rGO-Pt@Pd NPs-GPC3 Apt /GPC3/ GPC3 Apt /Au NPs@rGO/SPCE, with bright particles on the surface, indicating that Ag has been effectively deposited on the surface.
、实际血清样本中GPC3的检测, Detection of GPC3 in actual serum samples
(1)通过加标法在最佳条件下检测人血清样本中的GPC3水平。将正常人血清样本以1:1的比例分别与10.0 μg/mL,20.0 μg/mL,40.0 μg/mL的GPC3标准溶液充分混合,制成混合液。(1) The level of GPC3 in human serum samples was detected under optimal conditions by the addition method. Mix normal human serum samples with 10.0 μg/mL, 20.0 μg/mL, and 40.0 μg/mL GPC3 standard solutions at a ratio of 1:1 to make a mixed solution.
(2)在步骤2构建的GPC3电化学生物传感界面滴加2.0 μL混合液,25 ℃孵育30min,GPC3/GPC3Apt/Au NPs@rGO/SPCE。(2) Add 2.0 μL of the mixed solution dropwise to the GPC3 electrochemical biosensing interface constructed in step 2, and incubate at 25 °C for 30 min, GPC3/GPC3 Apt /Au NPs@rGO/SPCE.
(3)在GPC3/GPC3Apt/Au NPs@rGO/SPCE上滴加3.0 μL 0.63 mg/mL的H-rGO-Pt@PdNPs-GPC3Apt溶液,25 ℃孵育1 h,清洗、吹干,得到H-rGO-Pt@Pd NPs-GPC3Apt/ GPC3/GPC3Apt/Au NPs@rGO/SPCE。(3) Add 3.0 μL of 0.63 mg/mL H-rGO-Pt@PdNPs-GPC3 Apt solution dropwise on GPC3/GPC3 Apt /Au NPs@rGO/SPCE, incubate at 25 °C for 1 h, wash and dry to obtain H -rGO-Pt@Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /Au NPs@rGO/SPCE.
(4)在上述电极上滴加2.0 µL浓度为100 mM H2O2和1.0 µL浓度为50.0 mM AgNO3溶液,25 ℃避光反应30 min,清洗,吹干,得到工作电极Ag/H-rGO-Pt@Pd NPs-GPC3Apt/GPC3/GPC3Apt/Au NPs@rGO/SPCE。(4) Add 2.0 µL of 100 mM H 2 O 2 and 1.0 µL of 50.0 mM AgNO 3 solution dropwise on the above electrode, react in the dark at 25 ℃ for 30 min, wash, and dry to obtain the working electrode Ag/H- rGO-Pt@Pd NPs-GPC3 Apt /GPC3/GPC3 Apt /Au NPs@rGO/SPCE.
(5)按照步骤3所述,将工作电极置于HNO3和KNO3的甘氨酸-NaOH缓冲液中进行DPV扫描,记录电流值。通过步骤3所得到的GPC3工作曲线,计算人血清样品中GPC3的浓度,结果见表1所示,其回收率在100.96 %~121.15 %范围内,RSD值为0.05 %~2.24 %。结果表明,该电化学适配体传感器可用在实际的血清样本检测GPC3浓度。(5) As described in step 3, place the working electrode in the glycine-NaOH buffer solution of HNO 3 and KNO 3 for DPV scanning, and record the current value. Through the GPC3 working curve obtained in step 3, the concentration of GPC3 in the human serum sample was calculated, and the results are shown in Table 1. The recovery rate was in the range of 100.96% to 121.15%, and the RSD value was 0.05% to 2.24%. The results show that the electrochemical aptasensor can be used to detect the concentration of GPC3 in actual serum samples.
表1 实际血清样本中GPC3的检测结果Table 1 Detection results of GPC3 in actual serum samples
。 .
样本1:正常血清,AFP = 5.14 ng/mLSample 1: Normal Serum, AFP = 5.14 ng/mL
样本2:肝癌血清,AFP = 88.27 ng/mLSample 2: liver cancer serum, AFP = 88.27 ng/mL
样本3:肝癌血清,AFP = 223.88 ng/mLSample 3: liver cancer serum, AFP = 223.88 ng/mL
(注:血清样本来自中国人民解放军第 924医院(中国桂林)广西代谢病研究重点实验室,并遵循中国人民解放军第 924医院广西代谢病研究重点实验室伦理委员会要求。)。(Note: Serum samples were obtained from the Guangxi Key Laboratory of Metabolic Disease Research, the 924th Hospital of the Chinese People's Liberation Army (Guilin, China), and followed the requirements of the Ethics Committee of the Guangxi Metabolic Disease Research Key Laboratory of the 924th Hospital of the Chinese People's Liberation Army.).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210433955.0A CN114965637B (en) | 2022-04-24 | 2022-04-24 | A method for detecting GPC3 by constructing a sandwich-type aptasensor based on nanocomposite materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210433955.0A CN114965637B (en) | 2022-04-24 | 2022-04-24 | A method for detecting GPC3 by constructing a sandwich-type aptasensor based on nanocomposite materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114965637A CN114965637A (en) | 2022-08-30 |
CN114965637B true CN114965637B (en) | 2023-08-18 |
Family
ID=82978942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210433955.0A Active CN114965637B (en) | 2022-04-24 | 2022-04-24 | A method for detecting GPC3 by constructing a sandwich-type aptasensor based on nanocomposite materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114965637B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140134172A (en) * | 2013-05-13 | 2014-11-21 | 현대중공업 주식회사 | Hydrogen sensor based on paladium-graphene nanocomposite and method of fabricating the same |
CN111307908A (en) * | 2020-04-28 | 2020-06-19 | 桂林电子科技大学 | Method for detecting GPC3 based on H-rGO-Pt @ Pd NPs nano composite material |
CN113203781A (en) * | 2021-05-13 | 2021-08-03 | 桂林电子科技大学 | Method for detecting GPC3 based on RGO-CS-Hemin @ Pt NPs nano material and aptamer |
CN113238040A (en) * | 2021-05-18 | 2021-08-10 | 桂林电子科技大学 | Method for detecting GPC3 by using LAPS sensor based on nano composite material |
CN114252489A (en) * | 2021-12-24 | 2022-03-29 | 广东石油化工学院 | A method for the detection of GPC3 based on H-rGO-Pd NPs and Au NPs@rGO nanomaterials |
-
2022
- 2022-04-24 CN CN202210433955.0A patent/CN114965637B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140134172A (en) * | 2013-05-13 | 2014-11-21 | 현대중공업 주식회사 | Hydrogen sensor based on paladium-graphene nanocomposite and method of fabricating the same |
CN111307908A (en) * | 2020-04-28 | 2020-06-19 | 桂林电子科技大学 | Method for detecting GPC3 based on H-rGO-Pt @ Pd NPs nano composite material |
CN113203781A (en) * | 2021-05-13 | 2021-08-03 | 桂林电子科技大学 | Method for detecting GPC3 based on RGO-CS-Hemin @ Pt NPs nano material and aptamer |
CN113238040A (en) * | 2021-05-18 | 2021-08-10 | 桂林电子科技大学 | Method for detecting GPC3 by using LAPS sensor based on nano composite material |
CN114252489A (en) * | 2021-12-24 | 2022-03-29 | 广东石油化工学院 | A method for the detection of GPC3 based on H-rGO-Pd NPs and Au NPs@rGO nanomaterials |
Non-Patent Citations (1)
Title |
---|
柿单宁-还原型氧化石墨烯-Pt-Pd无酶血糖传感器研究;薛叶薇;曾俊祥;赵乐;李昊远;黄勇;李桂银;;仪表技术与传感器(05);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114965637A (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110823980B (en) | A method for detecting GPC3 based on peroxidase-like catalyzed silver deposition | |
Wang et al. | An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes | |
CN102778561B (en) | Preparation and application of tumor marker immunosensor built by putamen nanometer materials | |
CN111307908B (en) | A method for detecting GPC3 based on H-rGO-Pt@Pd NPs nanocomposites | |
Wu et al. | Electrochemical immunosensor based on Fe3O4/MWCNTs-COOH/AuNPs nanocomposites for trace liver cancer marker alpha-fetoprotein detection | |
CN113203781B (en) | Method for detecting GPC3 based on RGO-CS-Hemin @ Pt NPs nano material and aptamer for non-diagnosis purpose | |
CN112964763B (en) | Electroactive material modified MOF composite electrochemical immunosensor and its preparation and application | |
Zhang et al. | Electrochemiluminescence immunosensing strategy based on the use of Au@ Ag nanorods as a peroxidase mimic and NH 4 CoPO 4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen | |
Cao et al. | Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@ PtNPs as probe for CEA detection | |
CN106383159A (en) | Electrochemical immunosensor for detecting alpha fetoprotein and preparation method thereof | |
Gong et al. | A dual-quenched ECL immunosensor for ultrasensitive detection of retinol binding protein 4 based on luminol@ AuPt/ZIF-67 and MnO 2@ CNTs | |
Liu et al. | Electrochemical immunosensor based on hollow Pt@ Cu2O as a signal label for dual-mode detection of procalcitonin | |
Zhang et al. | Triple amplification ratiometric electrochemical aptasensor for CA125 based on H-Gr/SH-β-CD@ PdPtNFs | |
Wu et al. | Sensitive electrochemical immunosensor for detection of nuclear matrix protein-22 based on NH2-SAPO-34 supported Pd/Co nanoparticles | |
CN106198699A (en) | Prepare two kind of two anti-conjugate and for detection alpha-fetoprotein and the method for carcinoembryonic antigen simultaneously | |
Li et al. | Visual and electrochemical determination of breast cancer marker CA15-3 based on etching of Au@ Ag core/shell nanoparticles | |
CN114252489A (en) | A method for the detection of GPC3 based on H-rGO-Pd NPs and Au NPs@rGO nanomaterials | |
CN113203782B (en) | A method for detecting glucose with an enzyme-free sensor based on composite materials | |
CN114965637B (en) | A method for detecting GPC3 by constructing a sandwich-type aptasensor based on nanocomposite materials | |
CN114858890B (en) | Method for detecting GP73 based on RGO-CMCS-Hemin/Pt@Pd NPs colorimetric sensor | |
Wang et al. | Electrochemiluminescence immunosensor based on Cu3 (PO4) 2 hybrid nanoflowers as a novel luminophore for the sensitive detection of prostate-specific antigen | |
CN113325060B (en) | Graphene magnetic nano-electrode, electrochemical immunosensor, preparation method and application | |
CN113203859B (en) | Method for visually detecting GPC3 based on H-rGO-Pt @ Pd NPs nanoenzyme | |
CN114813876B (en) | A method for detecting GPC3 based on RGO-CMCS-Hemin/Pd NPs electrochemical sensor | |
CN113238040B (en) | A nanocomposite-based LAPS sensor for GPC3 detection for non-diagnostic purposes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220830 Assignee: Xiamen Kuanxin Zhonghe Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045787 Denomination of invention: A Method for Detecting GPC3 Using a Sandwich Adaptor Sensor Based on Nanocomposite Materials Granted publication date: 20230818 License type: Common License Record date: 20231107 |
|
EE01 | Entry into force of recordation of patent licensing contract |