CN114926234A - Article information pushing method and device, electronic equipment and computer readable medium - Google Patents
Article information pushing method and device, electronic equipment and computer readable medium Download PDFInfo
- Publication number
- CN114926234A CN114926234A CN202210505090.4A CN202210505090A CN114926234A CN 114926234 A CN114926234 A CN 114926234A CN 202210505090 A CN202210505090 A CN 202210505090A CN 114926234 A CN114926234 A CN 114926234A
- Authority
- CN
- China
- Prior art keywords
- vector
- user attribute
- user
- item
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000013598 vector Substances 0.000 claims abstract description 360
- 230000003542 behavioural effect Effects 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 9
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 abstract description 9
- 230000006399 behavior Effects 0.000 description 21
- 230000006870 function Effects 0.000 description 9
- 239000002699 waste material Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000003064 k means clustering Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0631—Item recommendations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Accounting & Taxation (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Probability & Statistics with Applications (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本公开的实施例涉及计算机领域,具体涉及物品信息推送方法、装置、电子设备和计算机可读介质。Embodiments of the present disclosure relate to the field of computers, and in particular, to a method, apparatus, electronic device, and computer-readable medium for pushing item information.
背景技术Background technique
物品应用平台常常通过用户历史数据来为用户推荐可能感兴趣的物品。目前,物品应用平台为新用户推荐感兴趣的物品,通常采用的方式为:根据业务规则,确定新用户的用户类型,将用户类型所对应的各个物品确定为新用户可能感兴趣的物品。Item application platforms often recommend items that may be of interest to users through user historical data. At present, the item application platform recommends interesting items for new users, usually by: determining the user type of the new user according to business rules, and determining each item corresponding to the user type as the item that the new user may be interested in.
然而,采用上述方式通常会存在如下技术问题:However, using the above method usually has the following technical problems:
第一,由于业务规则为人为设定的,导致为新用户推送的物品不准确,浪费了新用户浏览物品信息的时间;First, because the business rules are artificially set, the items pushed for new users are inaccurate, which wastes the time for new users to browse item information;
第二,未考虑新用户与物品应用平台的历史用户之间的关联关系,导致所推送的物品无法满足新用户的浏览需求,造成新用户浏览时间的浪费。Second, the relationship between the new user and the historical users of the item application platform is not considered, so that the pushed items cannot meet the browsing needs of the new user, resulting in a waste of the new user's browsing time.
发明内容SUMMARY OF THE INVENTION
本公开的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本公开的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。This summary of the disclosure serves to introduce concepts in a simplified form that are described in detail in the detailed description that follows. The content section of this disclosure is not intended to identify key features or essential features of the claimed technical solution, nor is it intended to be used to limit the scope of the claimed technical solution.
本公开的一些实施例提出了物品信息推送方法、装置、电子设备和计算机可读介质,来解决以上背景技术部分提到的技术问题中的一项或多项。Some embodiments of the present disclosure propose an item information push method, apparatus, electronic device, and computer-readable medium to solve one or more of the technical problems mentioned in the above background art section.
第一方面,本公开的一些实施例提供了一种物品信息推送方法,该方法包括:根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集,其中,上述用户物品关联结点图表示行为用户与物品之间存在关联关系;对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组;从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇,其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量;从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组;根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。In a first aspect, some embodiments of the present disclosure provide a method for pushing item information. The method includes: generating a user attribute according to a user attribute information group corresponding to each behavior user among a plurality of behavior users and a user item association node graph vector and interest item vector to obtain the user attribute vector set and the interest item vector set, wherein, the above-mentioned user-item association node graph indicates that there is an association relationship between the behavioral user and the item; the above-mentioned user attribute vector set is clustered to generate User attribute vector cluster group; select the user attribute vector cluster corresponding to the target user attribute vector from the above-mentioned user attribute vector cluster group as the target user attribute vector cluster, wherein, the above-mentioned target user attribute vector is: the user attribute vector corresponding to the target inactive user ; Select the interest item vector corresponding to the above-mentioned target user attribute vector cluster from the above-mentioned interest item vector set as an alternative interest item vector, and obtain an alternative interest item vector group; According to the above-mentioned alternative interest item vector group, generate corresponding to the above target no behavior The target interest item vector of the user, and each item information corresponding to the target interest item vector is pushed to the target terminal.
第二方面,本公开的一些实施例提供了一种物品信息推送装置,装置包括:第一生成单元,被配置成根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集,其中,上述用户物品关联结点图表示行为用户与物品之间存在关联关系;聚类单元,被配置成对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组;第一选择单元,被配置成从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇,其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量;第二选择单元,被配置成从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组;第二生成单元,被配置成根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。In a second aspect, some embodiments of the present disclosure provide an apparatus for pushing item information, the apparatus includes: a first generating unit configured to associate a user item with a user attribute information group corresponding to each behavior user among a plurality of behavior users node graph, generating user attribute vector and interest item vector, and obtaining user attribute vector set and interest item vector set, wherein, the above-mentioned user item association node graph indicates that there is an association relationship between behavioral users and items; clustering unit, configured The above-mentioned user attribute vector sets are clustered to generate user attribute vector clusters; the first selection unit is configured to select a user attribute vector cluster corresponding to the target user attribute vector from the above-mentioned user attribute vector cluster groups as the target user Attribute vector cluster, wherein the target user attribute vector is: the user attribute vector corresponding to the target inactive user; the second selection unit is configured to select the interest item vector corresponding to the target user attribute vector cluster from the above-mentioned interest item vector set. As the candidate interest item vector, a candidate interest item vector group is obtained; the second generating unit is configured to generate a target interest item vector corresponding to the above-mentioned target inactive user according to the above-mentioned candidate interest item vector group, and the above target interest Each item information corresponding to the item vector is pushed to the target terminal.
第三方面,本公开的一些实施例提供了一种电子设备,包括:一个或至少一个处理器;存储装置,其上存储有一个或至少一个程序,当一个或至少一个程序被一个或至少一个处理器执行,使得一个或至少一个处理器实现上述第一方面任一实现方式所描述的方法。In a third aspect, some embodiments of the present disclosure provide an electronic device, comprising: one or at least one processor; a storage device on which one or at least one program is stored, when one or at least one program is stored by one or at least one The processor executes, so that one or at least one processor implements the method described in any implementation manner of the above first aspect.
第四方面,本公开的一些实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,程序被处理器执行时实现上述第一方面任一实现方式所描述的方法。In a fourth aspect, some embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, wherein, when the program is executed by a processor, the method described in any implementation manner of the above-mentioned first aspect is implemented.
本公开的上述各个实施例具有如下有益效果:通过本公开的一些实施例的物品信息推送方法,提升了为新用户推送的物品的准确性,避免了新用户浏览物品信息的时间的浪费。具体来说,浪费了新用户浏览物品信息的时间的原因在于:由于业务规则为人为设定的,导致为新用户推送的物品不准确,浪费了新用户浏览物品信息的时间。基于此,本公开的一些实施例的物品信息推送方法,首先,根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集。由此,通过生成用户属性向量集和兴趣物品向量集,便于后续确定与新用户(目标无行为用户)对应用户属性信息相似的至少一个行为用户。其次,对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组。由此,可以对各个历史用户(行为用户)进行分类,将用户属性信息相似的行为用户归为一类,便于后续确定上述至少一个行为用户。接着,从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇。其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量。由此,可以选择出与目标无行为用户相似的各个行为用户。然后,从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组。由此,可以确定出与目标无行为用户相似的各个行为用户的兴趣物品向量,便于确定目标无行为用户感兴趣的物品信息。最后,根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。由此,可以利用与目标无行为用户相似的各个行为用户的兴趣物品向量,确定出目标无行为用户的目标兴趣物品向量。从而,使得所推送的物品信息更为准确,提升了为新用户推送的物品的准确性,避免了新用户浏览物品信息的时间的浪费。The above-mentioned embodiments of the present disclosure have the following beneficial effects: the method for pushing item information in some embodiments of the present disclosure improves the accuracy of items pushed for new users, and avoids wasting time for new users to browse item information. Specifically, the reason for wasting time for new users to browse item information is that the items pushed for new users are inaccurate because the business rules are artificially set, which wastes time for new users to browse item information. Based on this, in the method for pushing item information according to some embodiments of the present disclosure, first, a user attribute vector and an interest item vector are generated according to the user attribute information group and the user item association node graph corresponding to each behavior user among the multiple behavior users, Get user attribute vector set and interest item vector set. Therefore, by generating the user attribute vector set and the interest item vector set, it is convenient to subsequently determine at least one behavioral user that is similar to the user attribute information corresponding to the new user (target inactive user). Next, the above-mentioned user attribute vector set is clustered to generate a user attribute vector cluster group. Therefore, each historical user (behavioral user) can be classified, and the behavioral users with similar user attribute information can be classified into one category, so as to facilitate the subsequent determination of the at least one behavioral user. Next, a user attribute vector cluster corresponding to the target user attribute vector is selected from the user attribute vector cluster group as the target user attribute vector cluster. The above target user attribute vector is: the user attribute vector corresponding to the target inactive user. Thus, each behavioral user similar to the target inactive user can be selected. Then, an interest item vector corresponding to the above-mentioned target user attribute vector cluster is selected from the above-mentioned interest item vector set as a candidate interest item vector, and a candidate interest item vector group is obtained. In this way, the interest item vectors of each behavioral user similar to the target inaction user can be determined, so as to facilitate the determination of the item information of the target inaction user's interest. Finally, according to the candidate interest item vector group, a target interest item vector corresponding to the target inactive user is generated, and each item information corresponding to the target interest item vector is pushed to the target terminal. Therefore, the target interest item vector of the target inactive user can be determined by using the interest item vectors of each behavioral user similar to the target inactive user. Therefore, the pushed item information is more accurate, the accuracy of the item pushed for the new user is improved, and the time for the new user to browse the item information is avoided.
附图说明Description of drawings
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。The above and other features, advantages and aspects of various embodiments of the present disclosure will become more apparent when taken in conjunction with the accompanying drawings and with reference to the following detailed description. Throughout the drawings, the same or similar reference numbers refer to the same or similar elements. It should be understood that the drawings are schematic and that elements and elements are not necessarily drawn to scale.
图1是根据本公开的物品信息推送方法的一些实施例的流程图;1 is a flowchart of some embodiments of a method for pushing item information according to the present disclosure;
图2是根据本公开的物品信息推送方法中用户物品关联结点图的示意图;2 is a schematic diagram of a user item association node graph in the item information push method according to the present disclosure;
图3是根据本公开的物品信息推送装置的一些实施例的结构示意图;3 is a schematic structural diagram of some embodiments of an item information pushing device according to the present disclosure;
图4是适于用来实现本公开的一些实施例的电子设备的结构示意图。4 is a schematic structural diagram of an electronic device suitable for implementing some embodiments of the present disclosure.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。Embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While certain embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided for a thorough and complete understanding of the present disclosure. It should be understood that the drawings and embodiments of the present disclosure are only for exemplary purposes, and are not intended to limit the protection scope of the present disclosure.
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。In addition, it should be noted that, for the convenience of description, only the parts related to the related invention are shown in the drawings. The embodiments of this disclosure and features of the embodiments may be combined with each other without conflict.
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that concepts such as "first" and "second" mentioned in the present disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order of functions performed by these devices, modules or units or interdependence.
需要注意,本公开中提及的“一个”、“至少一个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或至少一个”。It should be noted that the modifications of "a" and "at least one" mentioned in the present disclosure are illustrative rather than restrictive, and those skilled in the art should understand that unless the context clearly indicates otherwise, they should be understood as "one or one" at least one".
本公开实施方式中的至少一个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of messages or information exchanged between at least one device in the embodiments of the present disclosure are only for illustrative purposes, and are not intended to limit the scope of these messages or information.
下面将参考附图并结合实施例来详细说明本公开。The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.
图1是根据本公开一些实施例的物品信息推送方法的一些实施例的流程图。示出了根据本公开的物品信息推送方法的一些实施例的流程100。该物品信息推送方法,包括以下步骤:FIG. 1 is a flowchart of some embodiments of methods for pushing item information according to some embodiments of the present disclosure. A
步骤101,根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集。Step 101: Generate a user attribute vector and an interest item vector according to the user attribute information group and the user item association node graph corresponding to each behavior user among the multiple behavior users, and obtain a user attribute vector set and an interest item vector set.
在一些实施中,物品信息推送方法的执行主体(例如,计算设备)可以根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集。其中,上述用户物品关联结点图表示行为用户与物品之间存在关联关系。其中,多个行为用户中的行为用户可以是在物品应用平台上浏览物品信息的用户。用户属性向量可以是表征行为用户的属性信息的向量。行为用户的属性信息可以包括但不限于以下至少一项用户属性值:身高信息,年龄信息,学历信息,性别信息,地域信息。兴趣物品向量可以是表征行为用户感兴趣的多个物品的向量。用户物品关联结点图可以包括多个用户物品关联结点。多个用户物品关联结点可以包括用户属性向量对应的节点和至少一个物品向量对应的至少一个节点。上述用户属性向量对应的节点和上述至少一个物品向量对应的至少一个节点之间使用连接线连接。上述连接线可以表征上述用户属性向量与物品向量之间存在关联关系。如图2所示,多个用户物品关联结点可以包括用户属性向量对应的节点201、物品向量对应的节点202、物品向量对应的节点203。物品向量对应的节点202对应的物品信息可以为电脑。物品向量对应的节点203对应的物品信息可以为相机。节点201与节点202、节点203之间用连接线连接。In some implementations, the executing subject (for example, a computing device) of the item information pushing method may generate the user attribute vector and the interest item according to the user attribute information group and the user item association node graph corresponding to each behavior user among the multiple behavior users vector, get the user attribute vector set and the interest item vector set. The above-mentioned user-item association node graph indicates that there is an association relationship between the behavioral user and the item. The behavioral user among the plurality of behavioral users may be a user who browses item information on the item application platform. The user attribute vector may be a vector representing attribute information of a behavior user. The attribute information of the behavioral user may include, but is not limited to, at least one of the following user attribute values: height information, age information, educational background information, gender information, and region information. The interest item vector may be a vector representing a plurality of items of interest to the behavioral user. The user-item association node graph may include multiple user-item association nodes. The plurality of user item association nodes may include a node corresponding to a user attribute vector and at least one node corresponding to at least one item vector. A connection line is used to connect the node corresponding to the user attribute vector and at least one node corresponding to the at least one item vector. The above-mentioned connecting line may represent that there is an association relationship between the above-mentioned user attribute vector and the item vector. As shown in FIG. 2 , the plurality of user item association nodes may include a
实践中,根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,上述执行主体可以通过以下步骤生成用户属性向量和兴趣物品向量:In practice, according to the user attribute information group and the user item association node graph corresponding to each behavior user among the multiple behavior users, the above-mentioned execution subject can generate the user attribute vector and the interest item vector through the following steps:
第一步,对上述用户属性信息组中为连续特征的用户属性信息进行归一化处理,以生成归一化用户属性信息,得到归一化用户属性信息组。这里,归一化处理可以是指批量归一化(Batch Normalization)处理。其中,连续特征的用户属性信息可以是包括的用户属性值为连续数值的用户属性信息。例如,连续特征的用户属性信息可以是行为用户的身高信息。The first step is to normalize the user attribute information that is a continuous feature in the above-mentioned user attribute information group, so as to generate normalized user attribute information, and obtain a normalized user attribute information group. Here, the normalization process may refer to a batch normalization process. Wherein, the user attribute information of the continuous feature may be user attribute information that includes the user attribute value as a continuous numerical value. For example, the user attribute information of the continuous feature may be the height information of the behavioral user.
第二步,将上述归一化用户属性信息组与目标用户属性信息组进行拼接处理,以生成拼接用户属性信。其中,上述目标用户属性信息组为上述用户属性信息组中为离散特征的各个用户属性信息。离散特征的用户属性信息可以是包括的用户属性值为离散数值的用户属性信息。例如,离散特征的用户属性信息可以是用户的性别信息。In the second step, splicing processing is performed on the normalized user attribute information group and the target user attribute information group to generate spliced user attribute information. Wherein, the above-mentioned target user attribute information group is each user attribute information that is a discrete feature in the above-mentioned user attribute information group. The user attribute information of the discrete feature may be user attribute information including user attribute values of discrete numerical values. For example, the user attribute information of the discrete feature may be the user's gender information.
第三步,对上述拼接用户属性信息进行向量编码处理,以生成拼接用户属性信息向量,作为用户属性向量。实践中,上述执行主体可以通过向量编码模型对上述拼接用户属性信息进行向量编码处理,以生成拼接用户属性信息向量,作为用户属性向量。这里,向量编码模型可以是Bert编码模型。In the third step, vector coding is performed on the above-mentioned spliced user attribute information to generate a spliced user attribute information vector, which is used as a user attribute vector. In practice, the above-mentioned execution body may perform vector encoding processing on the above-mentioned spliced user attribute information by using a vector encoding model, so as to generate a spliced user attribute information vector as a user attribute vector. Here, the vector coding model may be a Bert coding model.
第四步,将上述用户物品关联结点图输入至预先训练的图神经网络,得到兴趣物品向量。这里,图神经网络可以是图神经网络(GCN,Graph Convolutional Network)。In the fourth step, the above-mentioned user-item association node graph is input into the pre-trained graph neural network to obtain the interest item vector. Here, the graph neural network may be a graph neural network (GCN, Graph Convolutional Network).
步骤102,对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组。Step 102: Perform clustering processing on the user attribute vector set to generate a user attribute vector cluster group.
在一些实施例中,上述执行主体可以通过k均值聚类算法(k-means clusteringalgorithm)对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组。其中,上述k均值聚类算法对应的向量簇数目可以是预先设置的。用户属性向量簇中的各个用户属性向量较为相似。In some embodiments, the above-mentioned execution body may perform clustering processing on the above-mentioned user attribute vector set by using a k-means clustering algorithm, so as to generate a user attribute vector cluster group. The number of vector clusters corresponding to the above k-means clustering algorithm may be preset. Each user attribute vector in the user attribute vector cluster is relatively similar.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组:In some optional implementations of some embodiments, the above-mentioned execution body may perform clustering processing on the above-mentioned user attribute vector set through the following steps to generate a user attribute vector cluster group:
第一步,确定上述用户属性向量集中用户属性向量所关联的用户属性集。可以将上述用户属性向量集中用户属性向量所表征的各个用户属性确定为用户属性集。其中,用户属性向量是基于用户属性集中各个用户属性的属性信息生成的。例如,用户属性可以是身高信息,年龄信息等。The first step is to determine the user attribute set associated with the user attribute vector in the user attribute vector set. Each user attribute represented by the user attribute vector in the user attribute vector set may be determined as a user attribute set. The user attribute vector is generated based on attribute information of each user attribute in the user attribute set. For example, user attributes can be height information, age information, and the like.
第二步,将上述用户属性集包括的用户属性的数量确定为用户属性数量。In the second step, the number of user attributes included in the above user attribute set is determined as the number of user attributes.
第三步,将上述多个行为用户包括的各个行为用户的数量确定为行为用户数量。In the third step, the number of each behavior user included in the above-mentioned multiple behavior users is determined as the number of behavior users.
第四步,根据上述用户属性数量和上述行为用户数量,确定簇数量。首先,可以将上述用户属性数量和上述行为用户数量的乘积确定为用户属性总数量。然后,可以将对上述用户属性总数量进行开根号处理,以将开根号后的用户属性总数量作为簇数量。In the fourth step, the number of clusters is determined according to the above-mentioned number of user attributes and the above-mentioned number of behavioral users. First, the product of the above-mentioned number of user attributes and the above-mentioned number of behavioral users may be determined as the total number of user attributes. Then, root-sign processing may be performed on the above-mentioned total number of user attributes, so as to use the total number of user attributes after the root-sign as the number of clusters.
第五步,根据上述簇数量,对上述用户属性向量集进行聚类处理以生成用户属性向量簇组。In the fifth step, according to the above-mentioned number of clusters, the above-mentioned user attribute vector set is clustered to generate a user attribute vector cluster group.
实践中,根据上述簇数量,上述执行主体可以通过以下子步骤对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组:In practice, according to the above-mentioned number of clusters, the above-mentioned execution body can perform clustering processing on the above-mentioned user attribute vector set through the following sub-steps, so as to generate a user attribute vector cluster group:
第一子步骤,从用户属性向量集中随机选择簇数量个用户属性向量作为初始簇数量个簇中心向量。In the first sub-step, the number of clusters of user attribute vectors is randomly selected from the set of user attribute vectors as the initial number of clusters and the number of cluster center vectors.
第二子步骤,确定每个用户属性向量到初始簇数量个簇中心向量间的距离。In the second sub-step, the distance between each user attribute vector and the initial number of cluster center vectors is determined.
第三子步骤,分别将每个用户属性向量划分到与初始簇数量个簇中心向量间距离最近的簇中心所对应的初始用户属性向量簇,得到初始用户属性向量簇集。The third sub-step is to divide each user attribute vector into the initial user attribute vector cluster corresponding to the cluster center with the closest distance between the initial cluster number and the cluster center vectors, to obtain the initial user attribute vector cluster set.
第四子步骤,确定初始用户属性向量簇集中每个初始用户属性向量簇对应的簇中心向量。其中,簇中心向量为初始用户属性向量簇中各个用户属性向量对应的平均向量。In the fourth sub-step, a cluster center vector corresponding to each initial user attribute vector cluster in the initial user attribute vector cluster is determined. The cluster center vector is the average vector corresponding to each user attribute vector in the initial user attribute vector cluster.
第五子步骤,确定初始用户属性向量簇集中每个初始用户属性向量簇对应的簇中心向量是否发生改变。即,上述初始用户属性向量簇对应的簇中心向量与初始确定的对应上述初始用户属性向量簇对应的簇中心向量是否相同。The fifth sub-step is to determine whether the cluster center vector corresponding to each initial user attribute vector cluster in the initial user attribute vector cluster has changed. That is, whether the cluster center vector corresponding to the initial user attribute vector cluster and the initially determined cluster center vector corresponding to the initial user attribute vector cluster are the same.
第六子步骤,响应于确定未发生改变,将初始用户属性向量簇集确定为用户属性向量簇组。A sixth sub-step, in response to determining that no changes have occurred, determine the initial user attribute vector cluster set as the user attribute vector cluster group.
步骤103,从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇。Step 103: Select a user attribute vector cluster corresponding to the target user attribute vector from the user attribute vector cluster group as the target user attribute vector cluster.
在一些实施例中,上述执行主体可以从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇。其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量。目标无行为用户为待确定对应兴趣物品向量的无行为用户。无行为用户可以是物品应用平台中的新用户,或第一次查看物品应用平台中物品的新用户。In some embodiments, the execution body may select a user attribute vector cluster corresponding to the target user attribute vector from the user attribute vector cluster group as the target user attribute vector cluster. The above target user attribute vector is: the user attribute vector corresponding to the target inactive user. The target inactive user is the inactive user whose corresponding interest item vector is to be determined. An inactive user can be a new user in the item application platform, or a new user viewing an item in the item application platform for the first time.
实践中,上述执行主体可以通过以下步骤从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇:In practice, the above-mentioned execution body may select the user attribute vector cluster corresponding to the target user attribute vector from the above-mentioned user attribute vector cluster group as the target user attribute vector cluster through the following steps:
第一步,确定上述用户属性向量簇组中每个用户属性向量簇的簇中心向量,得到簇中心向量组。The first step is to determine the cluster center vector of each user attribute vector cluster in the above user attribute vector cluster group to obtain a cluster center vector group.
第二步,确定上述簇中心向量组中每个簇中心向量与上述目标用户属性向量之间的向量距离,得到向量距离组。实践中,上述执行主体可以通过向量距离公式确定上述簇中心向量组中每个簇中心向量与上述目标用户属性向量之间的向量距离,得到向量距离组。这里,向量距离公式可以是欧式距离公式。The second step is to determine the vector distance between each cluster center vector in the above-mentioned cluster center vector group and the above-mentioned target user attribute vector to obtain a vector distance group. In practice, the above-mentioned executive body may determine the vector distance between each cluster center vector in the above-mentioned cluster center vector group and the above-mentioned target user attribute vector through a vector distance formula, and obtain a vector distance group. Here, the vector distance formula may be an Euclidean distance formula.
第三步,将上述向量距离组中最小的向量距离确定为目标向量距离。In the third step, the smallest vector distance in the above-mentioned vector distance group is determined as the target vector distance.
第四步,将上述目标向量距离对应的簇中心向量确定为目标簇中心向量。In the fourth step, the cluster center vector corresponding to the above target vector distance is determined as the target cluster center vector.
第五步,将上述目标簇中心向量对应的用户属性向量簇确定为目标用户属性向量簇。In the fifth step, the user attribute vector cluster corresponding to the center vector of the target cluster is determined as the target user attribute vector cluster.
步骤103的可选的中的相关内容作为本公开的一个发明点,由此解决了背景技术提及的技术问题二“未考虑新用户与物品应用平台的历史用户之间的关联关系,导致所推送的物品无法满足新用户的浏览需求,造成新用户浏览时间的浪费。”。造成新用户浏览时间的浪费的因素往往如下:未考虑新用户与物品应用平台的历史用户之间的关联关系,导致所推送的物品无法满足新用户的浏览需求,造成新用户浏览时间的浪费。如果解决了上述因素,就能达到减少新用户浏览时间的浪费的效果。首先,确定上述用户属性向量簇组中每个用户属性向量簇的簇中心向量,得到簇中心向量组。由此,为后续选择与新用户(目标无行为用户)相似的行为用户,提供了数据支持。其次,确定上述簇中心向量组中每个簇中心向量与上述目标用户属性向量之间的向量距离,得到向量距离组。由此,便于选择与新用户(目标无行为用户)相似的行为用户。接着,将上述向量距离组中最小的向量距离确定为目标向量距离。然后,将上述目标向量距离对应的簇中心向量确定为目标簇中心向量。由此,可以确定与新用户(目标无行为用户)最相似的行为用户。最后,将上述目标簇中心向量对应的用户属性向量簇确定为目标用户属性向量簇。从而,便于后续利用与新用户(目标无行为用户)相似的行为用户的感兴趣物品,确定出新用户的感兴趣物品。从而,便于后续所推送的物品满足新用户的浏览需求,减少新用户浏览时间的浪费。The relevant content in the
步骤104,从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组。Step 104: Select the interest item vector corresponding to the target user attribute vector cluster from the above-mentioned interest item vector set as the candidate interest item vector, and obtain the candidate interest item vector group.
在一些实施例中,上述执行主体可以从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组。实践中,可以将上述目标用户属性向量簇中每个目标用户属性向量对应的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组。In some embodiments, the execution subject may select the interest item vector corresponding to the target user attribute vector cluster from the interest item vector set as the candidate interest item vector to obtain the candidate interest item vector group. In practice, the interest item vector corresponding to each target user attribute vector in the above target user attribute vector cluster may be used as the candidate interest item vector to obtain the candidate interest item vector group.
步骤105,根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。Step 105: Generate a target interest item vector corresponding to the target inactive user according to the candidate interest item vector group, and push each item information corresponding to the target interest item vector to the target terminal.
在一些实施例中,上市执行主体可以根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。这里,目标终端可以是指登录了目标无行为用户的账号的终端。In some embodiments, the listing execution body may generate a target interest item vector corresponding to the target inactive user according to the candidate interest item vector group, and push each item information corresponding to the target interest item vector to the target terminal. Here, the target terminal may refer to a terminal to which the account of the target inactive user is logged in.
实践中,上述执行主体可以将上述备选兴趣物品向量组包括的各个备选兴趣物品向量的平均值确定为目标兴趣物品向量。In practice, the executive body may determine the average value of each candidate interest item vector included in the candidate interest item vector group as the target interest item vector.
实践中,上述执行主体可以通过以下步骤将上述目标兴趣物品向量对应的各个物品信息推送至目标终端:In practice, the above-mentioned execution body can push each item information corresponding to the above-mentioned target interest item vector to the target terminal through the following steps:
第一步,根据上述目标兴趣物品向量,生成上述目标无行为用户对应的各个兴趣物品的物品信息。实践中,可以将上述目标兴趣物品向量所表征的各个物品信息确定为上述目标无行为用户对应的各个兴趣物品的物品信息。实践中,上述执行主体还可以将上述目标兴趣物品向量输入至解码网络,得到各个兴趣物品的物品信息。上述解码网络可以是CNN(Convolutional Neural Network,卷积神经网络)。The first step is to generate item information of each interest item corresponding to the above target inactive user according to the above target interest item vector. In practice, each item information represented by the above-mentioned target interest item vector may be determined as the item information of each interest item corresponding to the above-mentioned target inactive user. In practice, the above-mentioned executive body may also input the above-mentioned target interest item vector into the decoding network to obtain item information of each interest item. The above-mentioned decoding network may be a CNN (Convolutional Neural Network, convolutional neural network).
第二步,将上述各个兴趣物品的物品信息推送至上述目标终端。In the second step, the item information of each of the above-mentioned items of interest is pushed to the above-mentioned target terminal.
本公开的上述各个实施例具有如下有益效果:通过本公开的一些实施例的物品信息推送方法,提升了为新用户推送的物品的准确性,避免了新用户浏览物品信息的时间的浪费。具体来说,浪费了新用户浏览物品信息的时间的原因在于:由于业务规则为人为设定的,导致为新用户推送的物品不准确,浪费了新用户浏览物品信息的时间。基于此,本公开的一些实施例的物品信息推送方法,首先,根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集。由此,通过生成用户属性向量集和兴趣物品向量集,便于后续确定与新用户(目标无行为用户)对应用户属性信息相似的至少一个行为用户。其次,对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组。由此,可以对各个历史用户(行为用户)进行分类,将用户属性信息相似的行为用户归为一类,便于后续确定上述至少一个行为用户。接着,从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇。其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量。由此,可以选择出与目标无行为用户相似的各个行为用户。然后,从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组。由此,可以确定出与目标无行为用户相似的各个行为用户的兴趣物品向量,便于确定目标无行为用户感兴趣的物品信息。最后,根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。由此,可以利用与目标无行为用户相似的各个行为用户的兴趣物品向量,确定出目标无行为用户的目标兴趣物品向量。从而,使得所推送的物品信息更为准确,提升了为新用户推送的物品的准确性,避免了新用户浏览物品信息的时间的浪费。The above-mentioned embodiments of the present disclosure have the following beneficial effects: the method for pushing item information in some embodiments of the present disclosure improves the accuracy of items pushed for new users, and avoids wasting time for new users to browse item information. Specifically, the reason for wasting time for new users to browse item information is that the items pushed for new users are inaccurate because the business rules are artificially set, which wastes time for new users to browse item information. Based on this, in the method for pushing item information according to some embodiments of the present disclosure, first, a user attribute vector and an interest item vector are generated according to the user attribute information group and the user item association node graph corresponding to each behavior user among the multiple behavior users, Get user attribute vector set and interest item vector set. Therefore, by generating the user attribute vector set and the interest item vector set, it is convenient to subsequently determine at least one behavioral user that is similar to the user attribute information corresponding to the new user (target inactive user). Next, the above-mentioned user attribute vector set is clustered to generate a user attribute vector cluster group. Therefore, each historical user (behavioral user) can be classified, and the behavioral users with similar user attribute information can be classified into one category, so as to facilitate the subsequent determination of the at least one behavioral user. Next, a user attribute vector cluster corresponding to the target user attribute vector is selected from the user attribute vector cluster group as the target user attribute vector cluster. The above target user attribute vector is: the user attribute vector corresponding to the target inactive user. Thus, each behavioral user similar to the target inactive user can be selected. Then, an interest item vector corresponding to the above-mentioned target user attribute vector cluster is selected from the above-mentioned interest item vector set as a candidate interest item vector, and a candidate interest item vector group is obtained. In this way, the interest item vectors of each behavioral user similar to the target inaction user can be determined, so as to facilitate the determination of the item information of the target inaction user's interest. Finally, according to the candidate interest item vector group, a target interest item vector corresponding to the target inactive user is generated, and each item information corresponding to the target interest item vector is pushed to the target terminal. Therefore, the target interest item vector of the target inactive user can be determined by using the interest item vectors of each behavioral user similar to the target inactive user. Therefore, the pushed item information is more accurate, the accuracy of the item pushed for the new user is improved, and the time for the new user to browse the item information is avoided.
进一步参考图3,作为对上述各图所示方法的实现,本公开提供了一种物品信息推送装置的一些实施例,这些装置实施例与图1所示的那些方法实施例相对应,该装置具体可以应用于各种电子设备中。With further reference to FIG. 3 , as an implementation of the methods shown in the above figures, the present disclosure provides some embodiments of an item information push device, these device embodiments correspond to those method embodiments shown in FIG. 1 , the device Specifically, it can be applied to various electronic devices.
如图3所示,一些实施例的物品信息推送装置300包括:第一生成单元301、聚类单元302、第一选择单元303、第二选择单元304和第二生成单元305。其中,第一生成单元301,被配置成根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集,其中,上述用户物品关联结点图表示行为用户与物品之间存在关联关系;聚类单元302,被配置成对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组;第一选择单元303,被配置成从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇,其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量;第二选择单元304,被配置成从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组;第二生成单元305,被配置成根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。As shown in FIG. 3 , the article
可以理解的是,该装置300中记载的诸单元与参考图1描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于装置300及其中包含的单元,在此不再赘述。It can be understood that the units recorded in the
下面参考图4,其示出了适于用来实现本公开的一些实施例的电子设备400的结构示意图。本公开的一些实施例中的电子设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图4示出的电子设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。Referring now to FIG. 4 , a schematic structural diagram of an
如图4所示,电子设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器(ROM)402中的程序或者从存储装置408加载到随机访问存储器(RAM)403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有电子设备400操作所需的各种程序和数据。处理装置401、ROM402以及RAM403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。As shown in FIG. 4 , an
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许电子设备400与其他设备进行无线或有线通信以交换数据。虽然图4示出了具有各种装置的电子设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图4中示出的每个方框可以代表一个装置,也可以根据需要代表至少一个装置。Typically, the following devices may be connected to the I/O interface 405:
特别地,根据本公开的一些实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的一些实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的一些实施例中,该计算机程序可以通过通信装置409从网络上被下载和安装,或者从存储装置408被安装,或者从ROM402被安装。在该计算机程序被处理装置401执行时,执行本公开的一些实施例的方法中限定的上述功能。In particular, according to some embodiments of the present disclosure, the processes described above with reference to the flowcharts may be implemented as computer software programs. For example, some embodiments of the present disclosure include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart. In some such embodiments, the computer program may be downloaded and installed from the network via the
需要说明的是,本公开的一些实施例中记载的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或至少一个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的一些实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的一些实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium described in some embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections having one or at least one wire, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In some embodiments of the present disclosure, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. Rather, in some embodiments of the present disclosure, a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device . Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, electrical wire, optical fiber cable, RF (radio frequency), etc., or any suitable combination of the foregoing.
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText TransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and server can communicate using any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and can communicate with digital data in any form or medium (eg, a communications network) interconnected. Examples of communication networks include local area networks ("LAN"), wide area networks ("WAN"), the Internet (eg, the Internet), and peer-to-peer networks (eg, ad hoc peer-to-peer networks), as well as any currently known or future development network of.
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者至少一个程序,当上述一个或者至少一个程序被该电子设备执行时,使得该电子设备:根据多个行为用户中每个行为用户对应的用户属性信息组和用户物品关联结点图,生成用户属性向量和兴趣物品向量,得到用户属性向量集和兴趣物品向量集,其中,上述用户物品关联结点图表示行为用户与物品之间存在关联关系;对上述用户属性向量集进行聚类处理,以生成用户属性向量簇组;从上述用户属性向量簇组中选择对应目标用户属性向量的用户属性向量簇作为目标用户属性向量簇,其中,上述目标用户属性向量为:目标无行为用户对应的用户属性向量;从上述兴趣物品向量集中选择出对应上述目标用户属性向量簇的兴趣物品向量作为备选兴趣物品向量,得到备选兴趣物品向量组;根据上述备选兴趣物品向量组,生成对应上述目标无行为用户的目标兴趣物品向量,以及将上述目标兴趣物品向量对应的各个物品信息推送至目标终端。The above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or may exist alone without being assembled into the electronic device. The above-mentioned computer-readable medium carries one or at least one program, and when the above-mentioned one or at least one program is executed by the electronic device, the electronic device makes the electronic device: according to the user attribute information group and the user corresponding to each behavior user in the plurality of behavior users Item association node graph, generate user attribute vector and interest item vector, and obtain user attribute vector set and interest item vector set, wherein, the above user item association node graph indicates that there is an association relationship between behavioral users and items; for the above user attributes The vector set is clustered to generate a user attribute vector cluster group; the user attribute vector cluster corresponding to the target user attribute vector is selected from the above-mentioned user attribute vector cluster group as the target user attribute vector cluster, wherein the above-mentioned target user attribute vector is: The user attribute vector corresponding to the target inactive user; select the interest item vector corresponding to the above-mentioned target user attribute vector cluster from the above-mentioned interest item vector set as the candidate interest item vector, and obtain the candidate interest item vector group; vector group, generate a target interest item vector corresponding to the target inactive user, and push each item information corresponding to the target interest item vector to the target terminal.
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的一些实施例的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out operations of some embodiments of the present disclosure may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, or a combination thereof, Also included are conventional procedural programming languages - such as the "C" language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to via Internet connection).
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或至少一个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or at least one function for implementing the specified logical function. executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions.
描述于本公开的一些实施例中的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括第一生成单元、聚类单元、第一选择单元、第二选择单元和第二生成单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一发送单元还可以被描述为“响应于检测到作用于上述提交控件的第一选择操作,将上述问答回复信息发送至上述教师终端的单元”。The units described in some embodiments of the present disclosure may be implemented by means of software, and may also be implemented by means of hardware. The described unit may also be provided in the processor, for example, it may be described as: a processor includes a first generating unit, a clustering unit, a first selecting unit, a second selecting unit and a second generating unit. The names of these units do not constitute a limitation on the unit itself under certain circumstances. For example, the first sending unit may also be described as "in response to detecting the first selection operation acting on the above-mentioned submit control, the above-mentioned The question and answer reply information is sent to the above-mentioned unit of the teacher's terminal".
本文中以上描述的功能可以至少部分地由一个或至少一个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described herein above may be performed, at least in part, by one or at least one hardware logic component. For example, without limitation, exemplary types of hardware logic components that may be used include: Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (ASSPs), Systems on Chips (SOCs), Complex Programmable Logical Devices (CPLDs) and more.
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above descriptions are merely some preferred embodiments of the present disclosure and illustrations of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, and should also cover, without departing from the above-mentioned inventive concept, the above-mentioned Other technical solutions formed by any combination of technical features or their equivalent features. For example, a technical solution is formed by replacing the above-mentioned features with the technical features disclosed in the embodiments of the present disclosure (but not limited to) with similar functions.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210505090.4A CN114926234A (en) | 2022-05-10 | 2022-05-10 | Article information pushing method and device, electronic equipment and computer readable medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210505090.4A CN114926234A (en) | 2022-05-10 | 2022-05-10 | Article information pushing method and device, electronic equipment and computer readable medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114926234A true CN114926234A (en) | 2022-08-19 |
Family
ID=82809033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210505090.4A Pending CN114926234A (en) | 2022-05-10 | 2022-05-10 | Article information pushing method and device, electronic equipment and computer readable medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114926234A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117876015A (en) * | 2024-03-11 | 2024-04-12 | 南京数策信息科技有限公司 | User behavior data analysis method and device and related equipment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140214537A1 (en) * | 2013-01-31 | 2014-07-31 | Samsung Electronics Co., Ltd. | User terminal and method and system for providing advertisement |
CN109859006A (en) * | 2019-01-15 | 2019-06-07 | 上海连尚网络科技有限公司 | For determining method, system, electronic equipment and the computer-readable medium of user interest profile |
CN111694951A (en) * | 2019-03-15 | 2020-09-22 | 百度在线网络技术(北京)有限公司 | Interest topic generation method, device, equipment and storage medium |
CN113609397A (en) * | 2021-08-16 | 2021-11-05 | 北京沃东天骏信息技术有限公司 | Method and device for pushing information |
CN113961797A (en) * | 2021-09-17 | 2022-01-21 | 北京百度网讯科技有限公司 | Resource recommendation method and device, electronic equipment and readable storage medium |
CN114065063A (en) * | 2021-11-12 | 2022-02-18 | 中国电信股份有限公司 | Information processing method, information processing apparatus, storage medium, and electronic device |
CN114297509A (en) * | 2022-01-26 | 2022-04-08 | 上海鱼尔网络科技有限公司 | User interest vector generation method, product recommendation method, device, equipment and medium |
-
2022
- 2022-05-10 CN CN202210505090.4A patent/CN114926234A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140214537A1 (en) * | 2013-01-31 | 2014-07-31 | Samsung Electronics Co., Ltd. | User terminal and method and system for providing advertisement |
CN109859006A (en) * | 2019-01-15 | 2019-06-07 | 上海连尚网络科技有限公司 | For determining method, system, electronic equipment and the computer-readable medium of user interest profile |
CN111694951A (en) * | 2019-03-15 | 2020-09-22 | 百度在线网络技术(北京)有限公司 | Interest topic generation method, device, equipment and storage medium |
CN113609397A (en) * | 2021-08-16 | 2021-11-05 | 北京沃东天骏信息技术有限公司 | Method and device for pushing information |
CN113961797A (en) * | 2021-09-17 | 2022-01-21 | 北京百度网讯科技有限公司 | Resource recommendation method and device, electronic equipment and readable storage medium |
CN114065063A (en) * | 2021-11-12 | 2022-02-18 | 中国电信股份有限公司 | Information processing method, information processing apparatus, storage medium, and electronic device |
CN114297509A (en) * | 2022-01-26 | 2022-04-08 | 上海鱼尔网络科技有限公司 | User interest vector generation method, product recommendation method, device, equipment and medium |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117876015A (en) * | 2024-03-11 | 2024-04-12 | 南京数策信息科技有限公司 | User behavior data analysis method and device and related equipment |
CN117876015B (en) * | 2024-03-11 | 2024-05-07 | 南京数策信息科技有限公司 | User behavior data analysis method and device and related equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111199459B (en) | Product recommendation method, device, electronic equipment, and storage medium | |
WO2022121801A1 (en) | Information processing method and apparatus, and electronic device | |
CN110688528A (en) | Method, apparatus, electronic device, and medium for generating classification information of video | |
CN115757400B (en) | Data table processing method, device, electronic equipment and computer readable medium | |
WO2022188534A1 (en) | Information pushing method and apparatus | |
CN112836128A (en) | Information recommendation method, apparatus, device and storage medium | |
CN111857720B (en) | User interface state information generation method and device, electronic equipment and medium | |
CN114428925A (en) | Page rendering method and device, electronic equipment and computer readable medium | |
CN111008213A (en) | Method and apparatus for generating language conversion model | |
CN114926234A (en) | Article information pushing method and device, electronic equipment and computer readable medium | |
CN112200643B (en) | Article information pushing method and device, electronic equipment and computer readable medium | |
CN116911954B (en) | Method and device for recommending items based on interests and popularity | |
CN112950239B (en) | Method, apparatus, device and computer readable medium for generating user information | |
WO2024109860A1 (en) | Interaction method and apparatus, electronic device and computer readable medium | |
CN110245342A (en) | The method, apparatus and storage medium of text matches | |
WO2024199349A1 (en) | Object recommendation method and apparatus, medium, and electronic device | |
CN112734462B (en) | Information recommendation method, device, equipment and medium | |
WO2023125000A1 (en) | Content output method and apparatus, computer readable medium, and electronic device | |
CN115204150A (en) | Information verification method and device, electronic equipment and computer readable medium | |
CN115272760A (en) | Small sample smoke image fine classification method suitable for forest fire smoke detection | |
CN112187945A (en) | Information pushing method and device and electronic equipment | |
CN118427675B (en) | Behavior recognition method, device and equipment based on user behavior prediction model training | |
CN115169321B (en) | Logistics content text checking method and device, electronic equipment and computer medium | |
CN111338621A (en) | Data display method and device, electronic equipment and computer readable medium | |
CN118095426B (en) | Click behavior prediction model training method and device, electronic equipment and readable medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220819 |