CN114839106A - Method, system, vehicle and medium for measuring hydrogen concentration of fuel cell - Google Patents
Method, system, vehicle and medium for measuring hydrogen concentration of fuel cell Download PDFInfo
- Publication number
- CN114839106A CN114839106A CN202110143956.7A CN202110143956A CN114839106A CN 114839106 A CN114839106 A CN 114839106A CN 202110143956 A CN202110143956 A CN 202110143956A CN 114839106 A CN114839106 A CN 114839106A
- Authority
- CN
- China
- Prior art keywords
- gas
- hydrogen
- hydrogen concentration
- humidity
- volume fraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 107
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 107
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 239000000446 fuel Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 54
- 239000007789 gas Substances 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 42
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 238000000926 separation method Methods 0.000 claims abstract description 33
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 14
- 229910001868 water Inorganic materials 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 238000009423 ventilation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 abstract description 2
- 238000009833 condensation Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- -1 steam pass through Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N7/00—Analysing materials by measuring the pressure or volume of a gas or vapour
- G01N7/14—Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
- G01N7/16—Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by heating the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明涉及燃料电池技术领域,具体涉及一种燃料电池氢浓度的测量方法、 系统、车辆以及介质。The present invention relates to the technical field of fuel cells, in particular to a method, system, vehicle and medium for measuring hydrogen concentration of fuel cells.
背景技术Background technique
质子交换膜燃料电池的工作原理是氢气和氧气发生电化学反应,生成水的 同时输出电能。由于燃料电池单体的电压通常小于1V,在实际应用时,需要将 上百片单体串联组成燃料电池电堆,并匹配相应的外围附件,构成燃料电池系 统。The working principle of proton exchange membrane fuel cell is that hydrogen and oxygen undergo electrochemical reaction to generate water and output electricity at the same time. Since the voltage of the fuel cell is usually less than 1V, in practical application, it is necessary to connect hundreds of cells in series to form a fuel cell stack, and match the corresponding peripheral accessories to form a fuel cell system.
氢气是燃料电池电化学反应的反应物之一,现有的燃料电池系统中,在阳 极侧通常借助氢气循环泵或者引射器进行氢气再循环,提高氢气的利用率,但 其浓度的大小严重影响电堆的输出性能和寿命,由于阳极侧通常携带有液态水, 现有的氢浓度传感器容易受到液态水影响导致功能失效,因此需要开发适当的 技术监测阳极侧的氢气浓度。Hydrogen is one of the reactants in the electrochemical reaction of fuel cells. In the existing fuel cell system, hydrogen is usually recycled on the anode side with the help of a hydrogen circulation pump or an ejector to improve the utilization rate of hydrogen, but its concentration is serious. It affects the output performance and life of the stack. Since the anode side usually carries liquid water, the existing hydrogen concentration sensor is easily affected by liquid water and leads to functional failure. Therefore, it is necessary to develop an appropriate technology to monitor the hydrogen concentration on the anode side.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是:提供一种结构简单,成本低廉的燃料电池 氢浓度的测量方法、系统、车辆以及介质。The technical problem to be solved by the present invention is to provide a fuel cell hydrogen concentration measurement method, system, vehicle and medium with simple structure and low cost.
为了解决上述技术问题,本发明采用的第一种技术方案为:In order to solve the above-mentioned technical problems, the first technical scheme adopted by the present invention is:
一种燃料电池氢浓度的测量方法,包括A method for measuring hydrogen concentration in a fuel cell, comprising:
对氢气循环泵出口的气体进行气液分离,并对分离后的气体进行加热,加 热后的气体的相对湿度小于100%;获取气体加热前的温度T7和对应温度下的饱 和气压psat(T7);Gas-liquid separation is performed on the gas at the outlet of the hydrogen circulation pump, and the separated gas is heated, and the relative humidity of the heated gas is less than 100%; the temperature T 7 before the gas heating and the saturated pressure p sat ( T7 );
获取加热后气体的温度T10、压力p10、湿度RH10、对应温度下的饱和气压 psat(T10)、加热后氢气体积xH2,11和加热后氢气体积分数xw,11,所述加热后氢气 体积分数xw,11计算方式为:Obtain the temperature T 10 , the pressure p 10 , the humidity RH 10 , the saturation pressure p sat (T 10 ) at the corresponding temperature, the hydrogen volume x H2,11 after heating, and the hydrogen volume fraction x w,11 after heating, so The calculation method of the hydrogen volume fraction x w, 11 after the heating is:
根据加热后的气体温度T10和湿度RH10获取加热前的气体湿度RH9,所述气 体湿度RH9计算方式为:The gas humidity RH 9 before heating is obtained according to the heated gas temperature T 10 and the humidity RH 10 , and the calculation method of the gas humidity RH 9 is:
若RH9>100%;则最终氢气体积分数xH2,final的计算方式为:If RH 9 >100%; then the final hydrogen volume fraction x H2, the final calculation method is:
若气体湿度RH9≤100%,则加热后氢气体积分数xw,11等于最终氢气体积分数xH2,final。If the gas humidity RH 9 ≤ 100%, the hydrogen volume fraction x w,11 after heating is equal to the final hydrogen volume fraction x H2,final .
为了解决上述技术问题,本发明采用的第二种技术方案为:In order to solve the above-mentioned technical problems, the second technical scheme adopted by the present invention is:
一种电池氢浓度测量系统,包括测量回路和依次设置在测量回路上的气液 分离组件、加热件、温压湿传感器以及氢气浓度传感器;A battery hydrogen concentration measurement system, comprising a measurement loop and a gas-liquid separation component, a heating element, a temperature, pressure and humidity sensor and a hydrogen concentration sensor arranged in sequence on the measurement loop;
所述加热件之前的测量回路上设置有温压传感器。A temperature and pressure sensor is arranged on the measurement loop before the heating element.
为了解决上述技术问题,本发明采用的第三种技术方案为:In order to solve the above-mentioned technical problems, the third technical scheme adopted by the present invention is:
一种车辆,包括燃料电池,所述燃料电池包括氢气循环泵,所述氢气循环 泵包括进口和出口,还包括权利上述的电池氢浓度测量系统;A vehicle, comprising a fuel cell, the fuel cell comprising a hydrogen circulation pump, the hydrogen circulation pump comprising an inlet and an outlet, and the battery hydrogen concentration measurement system described above;
所述电池氢浓度测量系统的测量回路并联在氢气循环泵包括进口和出口上;The measurement loop of the battery hydrogen concentration measurement system is connected in parallel with the hydrogen circulation pump including the inlet and the outlet;
具有所述气液分离组件的测量回路的一端连接上进口上。One end of the measurement loop with the gas-liquid separation assembly is connected to the inlet.
为了解决上述技术问题,本发明采用的第四种技术方案为:In order to solve the above-mentioned technical problems, the fourth technical scheme adopted by the present invention is:
一种介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如 上述的燃料电池氢浓度的测量方法。A medium having stored thereon a computer program that, when executed by a processor, implements the method for measuring the hydrogen concentration of a fuel cell as described above.
本发明的有益效果在于:通过本发明的电池氢浓度测量系统以及方法,能 够实现开发成本低、结构简单、可靠性高的氢浓度测试;克服现有技术中为了 实现测量导致系统复杂,成本高的问题;通过对分离后的气体进行加热,加热 后的气体的相对湿度小于100%提高饱和蒸气压,防止饱和水蒸气的冷凝,保证 测量的准确性。The beneficial effects of the present invention are as follows: through the battery hydrogen concentration measurement system and method of the present invention, a hydrogen concentration test with low development cost, simple structure and high reliability can be realized; and the system is complicated and the cost is high in order to achieve measurement in the prior art. By heating the separated gas, the relative humidity of the heated gas is less than 100%, increasing the saturated vapor pressure, preventing the condensation of saturated water vapor, and ensuring the accuracy of the measurement.
附图说明Description of drawings
图1为本发明具体实施方式的一种燃料电池氢浓度的测量系统的结构示意 图;1 is a schematic structural diagram of a fuel cell hydrogen concentration measurement system according to a specific embodiment of the present invention;
标号说明:1、控制阀;2、氢气循环泵;3、电磁吹扫阀;4、电堆;5、调 压阀;6、空压机;7、温压传感器;8、分水件;9、防水透气件;10、温压湿 传感器;11、氢气浓度传感器;12、加热件;13、测量回路。Label description: 1. Control valve; 2. Hydrogen circulation pump; 3. Electromagnetic purge valve; 4. Electric stack; 5. Pressure regulating valve; 6. Air compressor; 7. Temperature and pressure sensor; 8. Water separation piece; 9. Waterproof and breathable parts; 10. Temperature, pressure and humidity sensor; 11. Hydrogen concentration sensor; 12. Heating element; 13. Measuring circuit.
具体实施方式Detailed ways
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并 配合附图予以说明。In order to describe in detail the technical content, achieved objects and effects of the present invention, the following descriptions are given with reference to the embodiments and the accompanying drawings.
请参照图1,一种燃料电池氢浓度的测量方法,包括Please refer to FIG. 1, a method for measuring the hydrogen concentration of a fuel cell, comprising:
对氢气循环泵出口的气体进行气液分离,并对分离后的气体进行加热,加 热后的气体的相对湿度小于100%;获取气体加热前的温度T7和对应温度下的饱 和气压psat(T7);Gas-liquid separation is performed on the gas at the outlet of the hydrogen circulation pump, and the separated gas is heated, and the relative humidity of the heated gas is less than 100%; the temperature T 7 before the gas heating and the saturated pressure p sat ( T7 );
获取加热后气体的温度T10、压力p10、湿度RH10、对应温度下的饱和气压 psat(T10)、加热后氢气体积xH2,11和加热后氢气体积分数xw,11,所述加热后氢气 体积分数xw,11计算方式为:Obtain the temperature T 10 , the pressure p 10 , the humidity RH 10 , the saturation pressure p sat (T 10 ) at the corresponding temperature, the hydrogen volume x H2,11 after heating, and the hydrogen volume fraction x w,11 after heating, so The calculation method of the hydrogen volume fraction x w, 11 after the heating is:
根据加热后的气体温度T10和湿度RH10获取加热前的气体湿度RH9,所述气 体湿度RH9计算方式为:The gas humidity RH 9 before heating is obtained according to the heated gas temperature T 10 and the humidity RH 10 , and the calculation method of the gas humidity RH 9 is:
若RH9>100%;则最终氢气体积分数xH2,final的计算方式为:If RH 9 >100%; then the final hydrogen volume fraction x H2, the final calculation method is:
若气体湿度RH9≤100%,则加热后氢气体积分数xw,11等于最终氢气体积分数xH2,final。If the gas humidity RH 9 ≤ 100%, the hydrogen volume fraction x w,11 after heating is equal to the final hydrogen volume fraction x H2,final .
进一步的,所述气液分离前和气液分离后的流量比小于5%。Further, the flow ratio before the gas-liquid separation and after the gas-liquid separation is less than 5%.
从上述描述可知,通过气液分离前和气液分离后的流量比小于5%,避免测 量过程对系统正常运行的影响;可选的,如果流量比小于5%,则测量回路中的 流量可以在保证安全的情况下排放到大气中。It can be seen from the above description that the flow ratio before gas-liquid separation and after gas-liquid separation is less than 5% to avoid the influence of the measurement process on the normal operation of the system; optionally, if the flow ratio is less than 5%, the flow in the measurement loop can be Released to the atmosphere in a safe manner.
进一步的,所述气液分离前和气液分离后的流量比为1%。Further, the flow ratio before the gas-liquid separation and after the gas-liquid separation is 1%.
进一步的,还包括最终氮气体积分数xN2;若RH9>100%;则最终氮气体积 分数xN2计算方式为:Further, it also includes the final nitrogen volume fraction x N2 ; if RH 9 >100%; the calculation method of the final nitrogen volume fraction x N2 is:
若气体湿度RH9≤100%,则最终氮气体积分数xN2计算方式为:If the gas humidity RH 9 ≤ 100%, the final nitrogen volume fraction x N2 is calculated as:
xN2=1-xH2,final-xw,11。x N2 = 1-x H2, final -x w, 11 .
一种电池氢浓度测量系统,包括测量回路和依次设置在测量回路上的气液 分离组件、加热件、温压湿传感器以及氢气浓度传感器;A battery hydrogen concentration measurement system, comprising a measurement loop and a gas-liquid separation component, a heating element, a temperature, pressure and humidity sensor and a hydrogen concentration sensor arranged in sequence on the measurement loop;
所述加热件之前的测量回路上设置有温压传感器。A temperature and pressure sensor is arranged on the measurement loop before the heating element.
进一步的,所述气液分离组件包括沿测量回路依次设置的分水件和防水透 气伴。Further, the gas-liquid separation assembly includes a water dividing member and a waterproof and air-permeable partner arranged in sequence along the measurement circuit.
进一步的,所述氢气浓度传感器之后的测量回路上还设置有流量传感器。Further, a flow sensor is also provided on the measurement loop after the hydrogen concentration sensor.
从上述描述可知,通过流量传感器的设置,能够精确的计算气体组分。It can be seen from the above description that the gas composition can be accurately calculated by setting the flow sensor.
进一步的,所述氢气浓度传感器之后的测量回路上还设置有调压件。Further, a pressure regulating member is also provided on the measurement loop after the hydrogen concentration sensor.
从上述描述可知,通过调压件的设置,能够对测量回路中流量的精确控制, 满足回路中的流量与循环回路中的流量比小于5%。It can be seen from the above description that, through the arrangement of the pressure regulating element, the flow rate in the measurement loop can be precisely controlled, so that the ratio of the flow rate in the loop to the flow rate in the circulation loop is less than 5%.
一种车辆,包括燃料电池,所述燃料电池包括氢气循环泵,所述氢气循环 泵包括进口和出口,还包括上述的电池氢浓度测量系统;A vehicle, comprising a fuel cell, the fuel cell comprising a hydrogen circulation pump, the hydrogen circulation pump comprising an inlet and an outlet, and the above-mentioned battery hydrogen concentration measurement system;
所述电池氢浓度测量系统的测量回路并联在氢气循环泵包括进口和出口上;The measurement loop of the battery hydrogen concentration measurement system is connected in parallel with the hydrogen circulation pump including the inlet and the outlet;
具有所述气液分离组件的测量回路的一端连接上进口上。One end of the measurement loop with the gas-liquid separation assembly is connected to the inlet.
一种介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上 述的燃料电池氢浓度的测量方法。A medium having stored thereon a computer program that, when executed by a processor, implements the above-described method for measuring hydrogen concentration in a fuel cell.
从上述描述可知,通过本发明的电池氢浓度测量系统以及方法,能够实现 开发成本低、结构简单、可靠性高的氢浓度测试;克服现有技术中为了实现测 量导致系统复杂,成本高的问题。As can be seen from the above description, the battery hydrogen concentration measurement system and method of the present invention can realize the hydrogen concentration measurement with low development cost, simple structure and high reliability; and overcome the problems of complicated system and high cost in the prior art in order to realize the measurement. .
实施例一Example 1
一种燃料电池氢浓度的测量方法,包括A method for measuring hydrogen concentration in a fuel cell, comprising:
对氢气循环泵出口的气体进行气液分离,并对分离后的气体进行加热,加 热后的气体的相对湿度小于100%或小于80%;获取气体加热前的温度T7和 对应温度下的饱和气压psat(T7);Gas-liquid separation is performed on the gas at the outlet of the hydrogen circulating pump, and the separated gas is heated. The relative humidity of the heated gas is less than 100% or less than 80%; the temperature T7 before gas heating and the saturation at the corresponding temperature are obtained. air pressure p sat (T 7 );
获取加热后气体的温度T10、压力p10、湿度RH10、对应温度下的饱和气压 psat(T10)、加热后氢气体积xH2,11和加热后氢气体积分数xw,11,所述加热后氢气 体积分数xw,11计算方式为:Obtain the temperature T 10 , the pressure p 10 , the humidity RH 10 , the saturation pressure p sat (T 10 ) at the corresponding temperature, the hydrogen volume x H2,11 after heating, and the hydrogen volume fraction x w,11 after heating, so The calculation method of the hydrogen volume fraction x w, 11 after the heating is:
根据加热后的气体温度T10和湿度RH10获取加热前的气体湿度RH9(公式中 采用T7是因为经过气液分离前后,测量回路内的温度变化极小,可以忽略不计, 视作等同,因此直接采用作为气液分离后的温度使用),所述气体湿度RH9计算 方式为:Obtain the gas humidity RH 9 before heating according to the gas temperature T 10 after heating and humidity RH 10 (T 7 is used in the formula because the temperature change in the measurement loop is very small before and after gas-liquid separation, which can be ignored and regarded as equivalent , so it is directly used as the temperature after gas-liquid separation), and the calculation method of the gas humidity RH 9 is:
若RH9>100%;则最终氢气体积分数xH2,final的计算方式为:If RH 9 >100%; then the final hydrogen volume fraction x H2, the final calculation method is:
若气体湿度RH9≤100%,则加热后氢气体积分数xw,11等于最终氢气体积分数xH2,final。If the gas humidity RH 9 ≤ 100%, the hydrogen volume fraction x w,11 after heating is equal to the final hydrogen volume fraction x H2,final .
所述气液分离前和气液分离后的流量比为1%。The flow ratio before the gas-liquid separation and after the gas-liquid separation is 1%.
还包括最终氮气体积分数xN2;若RH9>100%;则最终氮气体积分数xN2计算方式为:It also includes the final nitrogen volume fraction x N2 ; if RH 9 >100%; then the final nitrogen volume fraction x N2 is calculated as:
若气体湿度RH9≤100%,则最终氮气体积分数xN2计算方式为:If the gas humidity RH 9 ≤ 100%, the final nitrogen volume fraction x N2 is calculated as:
xN2=1-xH2,final-xw,11。x N2 = 1-x H2, final -x w, 11 .
其中in
参照图1,T7为温压传感器7处的温度,psat(T7)为温压传感器7对应温度下 的饱和气压;Referring to FIG. 1 , T 7 is the temperature at the temperature and
T10、p10、RH10为温压湿传感器10处的温度、压力和湿度,psat(T10) 为温压湿传感器10对应温度下的饱和气压;T 10 , p 10 , and RH 10 are the temperature, pressure, and humidity at the temperature, pressure, and
xH2,11为氢气浓度传感器处获得加热后氢气体积;x H2 , 11 is the hydrogen volume after heating obtained at the hydrogen concentration sensor;
RH9为防水透气件9处的气体湿度。RH 9 is the gas humidity at the
实施例二Embodiment 2
参照图1,一种电池氢浓度测量系统,包括测量回路13和依次设置在测量 回路13上的气液分离组件、加热件12、温压湿传感器10以及氢气浓度传感器 11;Referring to Fig. 1, a battery hydrogen concentration measurement system includes a
所述加热件之前的测量回路13上设置有温压传感器7。A temperature and
所述气液分离组件包括沿测量回路13依次设置的分水件8和防水透气件9。The gas-liquid separation assembly includes a
所述氢气浓度传感器11之后的测量回路13上还设置有流量传感器。A flow sensor is also provided on the
所述氢气浓度传感器11之后的测量回路13上还设置有调压件。A pressure regulating member is also provided on the
其中in
所述分水件8为SMC型号的分水装置,可以选择将气体中液态水颗粒直径 大于50um的去除;所述防水透气件9为防水透气阀,理论上,可以只允许氢气、 氮气、水蒸气等气体通过,不允许液态水颗粒通过,其采用的e-PTFE薄膜材料 孔径在0.1-10um之间,液态水颗粒一般大于这个范围,而气体分子的直径在 0.4nm,且由于薄膜材料的高接触角等特性,可以有效实现气水分离。Described
实施例三
参照图1,一种车辆,包括燃料电池,所述燃料电池包括控制阀1、氢气循 环泵2、电磁吹扫阀3、电堆4、调压阀5、空压机6,所述氢气通过控制阀1进 入到电堆4内,所述空气通过空压机6进入到电堆4内,所述电磁吹扫阀3控 制反应生成物的排出,所述调压阀5控制电堆4的压力;所述氢气循环泵2包 括进口和出口,1, a vehicle includes a fuel cell, the fuel cell includes a
还包括实施例一所述的电池氢浓度测量系统;Also includes the battery hydrogen concentration measurement system described in
所述电池氢浓度测量系统的测量回路13并联在氢气循环泵2包括进口和出 口上;The
具有所述气液分离组件的测量回路13的一端连接上进口上。One end of the measuring
所述测量回路13以靠近氢气循环泵2的出口为起始端,靠近氢气循环泵2 的进口为末尾端,所述测量回路13从起始端到末尾端依次设置有温压传感器7、 分水件8、防水透气件9、加热件12、温压湿传感器10以及氢气浓度传感器11。The measuring
实施例四
一种介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如 实施例一所述的燃料电池氢浓度的测量方法。A medium on which a computer program is stored, and when the computer program is executed by a processor, implements the method for measuring the hydrogen concentration of a fuel cell as described in the first embodiment.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利 用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术 领域,均同理包括在本发明的专利保护范围内。The above descriptions are only examples of the present invention, and are not intended to limit the scope of the patent of the present invention. Any equivalent transformations made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in related technical fields, are similarly included in the within the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110143956.7A CN114839106B (en) | 2021-02-02 | 2021-02-02 | Method, system, vehicle and medium for measuring hydrogen concentration of fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110143956.7A CN114839106B (en) | 2021-02-02 | 2021-02-02 | Method, system, vehicle and medium for measuring hydrogen concentration of fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114839106A true CN114839106A (en) | 2022-08-02 |
CN114839106B CN114839106B (en) | 2024-11-29 |
Family
ID=82560834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110143956.7A Active CN114839106B (en) | 2021-02-02 | 2021-02-02 | Method, system, vehicle and medium for measuring hydrogen concentration of fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114839106B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024190174A1 (en) * | 2023-03-14 | 2024-09-19 | パナソニックIpマネジメント株式会社 | Physical quantity measurement system |
WO2024190176A1 (en) * | 2023-03-14 | 2024-09-19 | パナソニックIpマネジメント株式会社 | Physical quantity measurement system |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007026824A (en) * | 2005-07-14 | 2007-02-01 | Nissan Motor Co Ltd | Fuel cell system |
CN101106200A (en) * | 2006-07-11 | 2008-01-16 | 株式会社东芝 | Hydrogen generation device, a fuel cell system, and an analysis system |
CN101216495A (en) * | 2007-12-29 | 2008-07-09 | 清华大学 | On-line test system and test method for high-temperature steam electrolysis hydrogen production |
CN101443940A (en) * | 2006-05-10 | 2009-05-27 | 丰田自动车株式会社 | Fuel battery system and method for calculating circulation ratio in the fuel battery system |
JP2009283243A (en) * | 2008-05-21 | 2009-12-03 | Toyota Motor Corp | Fuel cell system and movable body |
KR20100047055A (en) * | 2008-10-28 | 2010-05-07 | 현대자동차주식회사 | System and method for measuring flow rate of recirculation hydrogen for fuel cell vehicle |
CN102914562A (en) * | 2011-08-02 | 2013-02-06 | 日立汽车系统株式会社 | Hydrogen sensing device |
EP2645098A2 (en) * | 2012-03-27 | 2013-10-02 | Azbil Corporation | Electric power generating system and gas measuring system |
JP2014055863A (en) * | 2012-09-13 | 2014-03-27 | Honda Motor Co Ltd | Gas sensor and fuel cell system |
CN109216737A (en) * | 2017-06-29 | 2019-01-15 | 通用汽车环球科技运作有限责任公司 | The detection and remedial measure of impure fuel |
CN110277577A (en) * | 2018-03-14 | 2019-09-24 | 现代自动车株式会社 | The control method and control system of the density of hydrogen of fuel cell |
CN111003975A (en) * | 2019-12-16 | 2020-04-14 | 安徽领珂数据科技有限公司 | Preparation method of diatomite-based building humidity-controlling material |
CN111952643A (en) * | 2020-08-19 | 2020-11-17 | 上海捷氢科技有限公司 | Method for controlling humidity of anode inlet and related device |
CN112228331A (en) * | 2020-09-15 | 2021-01-15 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Hydrogen circulating pump capability test system |
CN214668365U (en) * | 2021-02-02 | 2021-11-09 | 北京亿华通科技股份有限公司 | Measuring system and vehicle of fuel cell hydrogen concentration |
-
2021
- 2021-02-02 CN CN202110143956.7A patent/CN114839106B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007026824A (en) * | 2005-07-14 | 2007-02-01 | Nissan Motor Co Ltd | Fuel cell system |
CN101443940A (en) * | 2006-05-10 | 2009-05-27 | 丰田自动车株式会社 | Fuel battery system and method for calculating circulation ratio in the fuel battery system |
CN101106200A (en) * | 2006-07-11 | 2008-01-16 | 株式会社东芝 | Hydrogen generation device, a fuel cell system, and an analysis system |
CN101216495A (en) * | 2007-12-29 | 2008-07-09 | 清华大学 | On-line test system and test method for high-temperature steam electrolysis hydrogen production |
JP2009283243A (en) * | 2008-05-21 | 2009-12-03 | Toyota Motor Corp | Fuel cell system and movable body |
KR20100047055A (en) * | 2008-10-28 | 2010-05-07 | 현대자동차주식회사 | System and method for measuring flow rate of recirculation hydrogen for fuel cell vehicle |
CN102914562A (en) * | 2011-08-02 | 2013-02-06 | 日立汽车系统株式会社 | Hydrogen sensing device |
EP2645098A2 (en) * | 2012-03-27 | 2013-10-02 | Azbil Corporation | Electric power generating system and gas measuring system |
JP2014055863A (en) * | 2012-09-13 | 2014-03-27 | Honda Motor Co Ltd | Gas sensor and fuel cell system |
CN109216737A (en) * | 2017-06-29 | 2019-01-15 | 通用汽车环球科技运作有限责任公司 | The detection and remedial measure of impure fuel |
CN110277577A (en) * | 2018-03-14 | 2019-09-24 | 现代自动车株式会社 | The control method and control system of the density of hydrogen of fuel cell |
CN111003975A (en) * | 2019-12-16 | 2020-04-14 | 安徽领珂数据科技有限公司 | Preparation method of diatomite-based building humidity-controlling material |
CN111952643A (en) * | 2020-08-19 | 2020-11-17 | 上海捷氢科技有限公司 | Method for controlling humidity of anode inlet and related device |
CN112228331A (en) * | 2020-09-15 | 2021-01-15 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Hydrogen circulating pump capability test system |
CN214668365U (en) * | 2021-02-02 | 2021-11-09 | 北京亿华通科技股份有限公司 | Measuring system and vehicle of fuel cell hydrogen concentration |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024190174A1 (en) * | 2023-03-14 | 2024-09-19 | パナソニックIpマネジメント株式会社 | Physical quantity measurement system |
WO2024190176A1 (en) * | 2023-03-14 | 2024-09-19 | パナソニックIpマネジメント株式会社 | Physical quantity measurement system |
Also Published As
Publication number | Publication date |
---|---|
CN114839106B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108288717B (en) | Method for detecting gas leakage of fuel cell | |
WO2020200214A1 (en) | Temperature active fault-tolerant control method for proton exchange membrane fuel cell system | |
CN106469819B (en) | A fuel cell parameter control system and its working method | |
Chen et al. | Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode | |
US8877402B2 (en) | Method for a fuel cell air system leakage diagnostic | |
US20110053014A1 (en) | Fuel cell system and method for adjusting moisture content in a polymer electrolyte membrane | |
US8470479B2 (en) | Sensorless relative humidity control in a fuel cell application | |
Karimäki et al. | The use of on-line hydrogen sensor for studying inert gas effects and nitrogen crossover in PEMFC system | |
US20100112386A1 (en) | Method for remedial action in the event of the failure of the primary air flow measurement device in a fuel cell system | |
CN109888337B (en) | Fuel cell self-humidification control method and self-humidification control system | |
CN114839106A (en) | Method, system, vehicle and medium for measuring hydrogen concentration of fuel cell | |
Barzegari et al. | Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator | |
CN108875166A (en) | The modeling method of anode of fuel cell hydrogen is received using electrochemical hydrogen blowback | |
JP4680530B2 (en) | Fuel cell system | |
CN214668365U (en) | Measuring system and vehicle of fuel cell hydrogen concentration | |
US10329150B2 (en) | Fuel cell system and method for determining purity level of hydrogen gas provided to an anode side of the fuel cell | |
US20070227900A1 (en) | Performance enhancement via water management in electrochemical cells | |
CN103852222B (en) | Anode leak location detection | |
JPWO2014103101A1 (en) | Fuel cell system and method for recovering power generation performance of fuel cell in fuel cell system | |
Song et al. | AI-based proton exchange membrane fuel cell inlet relative humidity control | |
Kavya et al. | Steady state analysis and control of PEM fuel cell power plant | |
Angelo et al. | Calculating Hydrogen Mass Transport Coefficients in a PEMFC at Different Operating Conditions Using a Hydrogen Pump Configuration | |
JP2014165063A (en) | Gas flow controller and gas flow control method | |
Fang et al. | A dynamic model of PEM fuel cell stack system for real time simulation | |
JP7261828B2 (en) | FUEL CELL SYSTEM AND METHOD OF CONTROLLING SAME SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |