CN114735927A - A method of producing synthetic quartz material for semiconductor reticle - Google Patents
A method of producing synthetic quartz material for semiconductor reticle Download PDFInfo
- Publication number
- CN114735927A CN114735927A CN202210396733.6A CN202210396733A CN114735927A CN 114735927 A CN114735927 A CN 114735927A CN 202210396733 A CN202210396733 A CN 202210396733A CN 114735927 A CN114735927 A CN 114735927A
- Authority
- CN
- China
- Prior art keywords
- synthetic quartz
- low
- producing
- quartz material
- semiconductor mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 239000010453 quartz Substances 0.000 title claims abstract description 53
- 239000000463 material Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000000151 deposition Methods 0.000 claims abstract description 43
- 230000008021 deposition Effects 0.000 claims abstract description 38
- 238000005245 sintering Methods 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 22
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000010703 silicon Substances 0.000 claims abstract description 14
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims abstract description 10
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 10
- 239000011737 fluorine Substances 0.000 claims abstract description 10
- 239000011261 inert gas Substances 0.000 claims abstract description 9
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 7
- 238000005906 dihydroxylation reaction Methods 0.000 claims abstract description 7
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 7
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 7
- 238000005137 deposition process Methods 0.000 claims abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 56
- 239000004071 soot Substances 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 27
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 22
- 239000012535 impurity Substances 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000000460 chlorine Substances 0.000 claims description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 8
- 229910003902 SiCl 4 Inorganic materials 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 239000002274 desiccant Substances 0.000 claims description 5
- 230000033001 locomotion Effects 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 239000011856 silicon-based particle Substances 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 230000018044 dehydration Effects 0.000 abstract description 11
- 238000006297 dehydration reaction Methods 0.000 abstract description 11
- 238000004017 vitrification Methods 0.000 abstract description 10
- 230000007547 defect Effects 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 15
- 238000002834 transmittance Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000000280 densification Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910018557 Si O Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002912 waste gas Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229910002808 Si–O–Si Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910008045 Si-Si Inorganic materials 0.000 description 2
- 229910006411 Si—Si Inorganic materials 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910001510 metal chloride Inorganic materials 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910001902 chlorine oxide Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000003617 peroxidasic effect Effects 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1453—Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1453—Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
- C03B19/1461—Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
技术领域technical field
本发明涉及石英制备技术领域,尤其是指一种生产半导体掩模版用合成石英材料的方法。The invention relates to the technical field of quartz preparation, in particular to a method for producing a synthetic quartz material for a semiconductor mask.
背景技术Background technique
石英玻璃是由单一组分的二氧化硅组成的特种玻璃,其化学式为SiO2。石英具备独特的光学、机械以及热学性能,包括:软化温度高、耐热性强;纯度高、耐腐蚀;热膨胀系数低、抗热冲击;从紫外波段到红外波段都有较好的透光性能;抗辐射性强;优良的电绝缘性等。以上性能使得石英产品被广泛应用于航空航天、激光光学、半导体、光通讯、冶金、化工等高端制造领域。Quartz glass is a special glass composed of a single component of silicon dioxide, and its chemical formula is SiO 2 . Quartz has unique optical, mechanical and thermal properties, including: high softening temperature, strong heat resistance; high purity, corrosion resistance; low thermal expansion coefficient, thermal shock resistance; good light transmittance from the ultraviolet band to the infrared band ; Strong radiation resistance; excellent electrical insulation, etc. The above properties make quartz products widely used in aerospace, laser optics, semiconductors, optical communications, metallurgy, chemical and other high-end manufacturing fields.
传统的光学石英玻璃制备工艺有电熔、气炼、化学气相沉积(CVD)、间接合成法和溶胶凝胶法等。电熔和气炼工艺均是以高纯石英砂为原料,经过1800℃以上高温熔制成石英玻璃,由于原料纯度和熔制工艺自身的局限,所制备的石英玻璃纯度低,而且存在气泡、杂点较多等缺陷,对玻璃的物化性能影响很大。Traditional optical quartz glass preparation processes include electrofusion, gas refining, chemical vapor deposition (CVD), indirect synthesis and sol-gel methods. Both the electrofusion and gas smelting processes use high-purity quartz sand as the raw material, and are fused into quartz glass at a high temperature above 1800 °C. Defects such as more dots have a great influence on the physical and chemical properties of the glass.
CVD直接合成工艺目前主要采用立式工艺,但其也存在一个显著的缺点,即羟基含量过高,这导致制备的石英玻璃耐高温性能降低,折射率和热膨胀系数等物理性质也受到影响,无法满足高端光电技术和半导体领域的应用需求。The CVD direct synthesis process currently mainly adopts the vertical process, but it also has a significant disadvantage, that is, the hydroxyl content is too high, which leads to the reduction of the high temperature resistance of the prepared quartz glass, and the physical properties such as refractive index and thermal expansion coefficient are also affected. Meet the application needs of high-end optoelectronic technology and semiconductor fields.
间接合成法是近十年发展起来的工艺技术,该技术制备的石英的光吸收系数很小、羟基含量可控在(1~1000ppm)、光谱透过率T157-4000 nm≥80%,并且因易于掺杂及控制缺陷。The indirect synthesis method is a process technology developed in the past ten years. The light absorption coefficient of quartz prepared by this technology is very small, the hydroxyl content is controllable (1-1000ppm), the spectral transmittance T 157-4000 nm≥80%, and Because of easy doping and control of defects.
光掩模版是微电子制造中光刻工艺所使用的图形母版,其核心作用是:作为模具,通过光刻技术将掩膜版上的电路图案复制到芯片或液晶面板玻璃上,从而批量化生产集成电路或液晶面板等产品。光掩模版基板材料必须内部和外表面均无缺点,在光刻胶的曝光波长下有高的光学透过率。当前集成电路产业快速发展,硅片尺寸向8→12→16扩大,集成度越来越高,曝光光线也由可见光转为近紫外光,甚至远紫外光。由于石英玻璃基板中任何微小气泡等缺点均会使芯片构图产生致命错误,严重影响芯片性能,这也对光掩模用石英玻璃基板提出了更高的要求:高紫外透过率、高光学均匀性、高内在质量及高表面加工质量。The photomask is a graphic master used in the photolithography process in microelectronics manufacturing. Its core function is: as a mold, the circuit pattern on the mask is copied to the chip or the liquid crystal panel glass through photolithography technology, so as to be batched. Production of integrated circuits or LCD panels and other products. The photomask substrate material must have flawless interior and exterior surfaces and high optical transmittance at the exposure wavelengths of the photoresist. At present, the integrated circuit industry is developing rapidly, the size of silicon wafers is expanding to 8→12→16, the integration degree is getting higher and higher, and the exposure light is also changed from visible light to near-ultraviolet light, and even far-ultraviolet light. Due to defects such as any tiny bubbles in the quartz glass substrate, the chip patterning will cause fatal errors, which will seriously affect the chip performance, which also puts forward higher requirements for the quartz glass substrate for photomasks: high ultraviolet transmittance, high optical uniformity performance, high intrinsic quality and high surface finish.
被用来制作光掩模版的玻璃包括合成石英、硼硅玻璃和苏打玻璃,其中合成石英最为化学稳定,具有高硬度、低膨胀系数和透光性强等优势,是较高精度要求产品生产的不二选择,其被广泛应用于LSI用光掩膜、FPD用大型掩膜的制造。合成石英能够提供宽的光投射区域、低的杂质含量和少的物理缺陷,并且随着半导体的发展,其对合成石英的深UV、高均匀性要求越来越高。现有的合成石英制造无法满足半导体用高精度用掩模版。The glasses used to make photomasks include synthetic quartz, borosilicate glass and soda glass. Among them, synthetic quartz is the most chemically stable and has the advantages of high hardness, low expansion coefficient and strong light transmittance. It is produced by products requiring higher precision. The best choice, it is widely used in the manufacture of photomasks for LSI and large-scale masks for FPD. Synthetic quartz can provide a wide light projection area, low impurity content, and few physical defects, and with the development of semiconductors, it requires more and more deep UV, high uniformity of synthetic quartz. Existing synthetic quartz manufacturing cannot satisfy high-precision reticles for semiconductors.
因此要满足半导体用光掩模版的高均匀性高透过率合成石英需要重点解决以下2个方面:金属杂质含量、石英内部的缺陷控制;Therefore, in order to meet the high uniformity and high transmittance of synthetic quartz for semiconductor photomasks, the following two aspects need to be solved: metal impurity content and defect control inside quartz;
1)合成石英玻璃中存在过渡金属杂质会引起光通过过时产生吸收,导致渡金属吸收大量能量,同时当石英中存在碱金属杂质时,硅氧四面体组成的网络被断裂,在某些四面体的空隙中均匀而无序地分布着碱金属与碱金属离子,使石英硅氧结构发生变化,形成非桥氧离子,引起吸收。1) The existence of transition metal impurities in synthetic quartz glass will cause the absorption of light through outdated, resulting in the absorption of a large amount of energy by the transition metal. Alkali metal and alkali metal ions are uniformly and disorderly distributed in the voids of the quartz, which changes the structure of silica silicon and oxygen, forms non-bridging oxygen ions, and causes absorption.
沉积过程中,四氯化硅原料在高温下发生水解生成二氧化硅。该过程涉及高温反应(反应温度通常超过1000℃),同时伴随着大量氯化氢产生。由于沉积腔体内部材料大部分采用金属材料材料,高温条件及高腐蚀环境下极易产生金属氯化物气体,金属氯化物气体随着沉积腔体内的气流流动,沉积在石英材料上,对已沉积的材料造成污染。高温水解反应过程中腔体的腐蚀使得石英材料金属杂质污染不可避免,使降低石英材料中的金属杂质含量变得更加困难。During the deposition process, the silicon tetrachloride raw material is hydrolyzed at high temperature to form silicon dioxide. The process involves high temperature reactions (reaction temperatures typically exceeding 1000°C), accompanied by the production of large amounts of hydrogen chloride. Since most of the materials inside the deposition chamber are made of metal materials, metal chloride gas is easily generated under high temperature conditions and high corrosive environments. The metal chloride gas flows with the gas flow in the deposition chamber and is deposited on the quartz material. materials causing contamination. The corrosion of the cavity during the high temperature hydrolysis reaction makes the metal impurity contamination of the quartz material inevitable, making it more difficult to reduce the metal impurity content in the quartz material.
2)石英材料中的主要本征缺陷在材料体内和材料表面均具有吸收和发射特性,较常见的氧缺陷中心和非桥键氧空位中心等缺陷均具有吸收和发光特性,并且即使同一类缺陷,在材料表面和材料体内的性质也存在细微的区别。可见结构缺陷对石英材料的光学特性影响很大,而这种影响往往可能是多种缺陷共同存在导致的。理论上,石英玻璃应为完整的Si-O网络四面体,每一个Si原子与四个O原子相连接,每个O原子又与两个Si原子连接,由此形成一个立体的硅氧四面体。该结构有几个关键参数,包括键长d(Si-O),平均约四面体角平均键角约109°;间四面体角α(Si-O-Si),平均键角约144°-150°,分布范围在120°到180°;还包括键扭转角δ1和δ2等,正是因为Si-O-Si之间键角的连续变化和扭曲,导致了石英光纤材料远程无序的结构特征。在石英光纤材料的无规则网格结构中分布着(Si-O)n拓扑环状结构,有三环、四环至十环或杂环结构存在,其中以三、四、六环或七环占多数。在石英光纤材料结构中,如果出现偏离上述由Si-O-Si构成的理想的无规则网格结构时,就会形成点缺陷结构。高纯石英光纤材料中常见的点缺陷结构主要有缺氧型缺陷和富氧型缺陷。缺氧型缺陷包括E’色心、Si-Si键等;富氧型缺陷包括非桥氧缺陷(NBOHC)、过氧自由基和过氧链接。2) The main intrinsic defects in quartz materials have absorption and emission characteristics both in the material and on the surface of the material. The more common defects such as oxygen defect centers and non-bridging oxygen vacancy centers have absorption and emission characteristics, and even the same type of defects , there are also subtle differences in the properties of the material surface and the material body. It can be seen that structural defects have a great influence on the optical properties of quartz materials, and this effect may often be caused by the coexistence of multiple defects. In theory, quartz glass should be a complete Si-O network tetrahedron, each Si atom is connected with four O atoms, and each O atom is connected with two Si atoms, thus forming a three-dimensional silicon-oxygen tetrahedron . The structure has several key parameters, including the bond length d(Si-O), which averages about approx. Tetrahedral angle The average bond angle is about 109°; the inter-tetrahedral angle α(Si-O-Si), the average bond angle is about 144°-150°, and the distribution range is 120° to 180°; it also includes bond torsion angles δ1 and δ2, etc., positive It is because of the continuous change and twist of the bond angle between Si-O-Si, which leads to the structural characteristics of long-range disorder in the silica fiber material. There are (Si-O)n topological ring structures distributed in the random grid structure of silica fiber materials, and there are three-ring, four-ring to ten-ring or heterocyclic structures, among which three, four, six or seven rings exist. Majority. In the structure of the silica fiber material, if there is a deviation from the ideal random grid structure composed of Si-O-Si, a point defect structure will be formed. The common point defect structures in high-purity silica fiber materials mainly include oxygen-deficient defects and oxygen-rich defects. The oxygen-deficient defects include E' color centers, Si-Si bonds, etc.; the oxygen-rich defects include non-bridging oxygen defects (NBOHC), peroxy radicals and peroxy linkages.
有鉴于此,有必要提供一种生产半导体用光掩模版的方法,以制备高紫外透过率、高光学均匀性的合成石英产品。In view of this, it is necessary to provide a method for producing photomasks for semiconductors, so as to prepare synthetic quartz products with high ultraviolet transmittance and high optical uniformity.
发明内容SUMMARY OF THE INVENTION
为此,本发明提供了一种生产半导体掩膜板用合成石英材料的方法,该方法生产过程的连续性高,合成石英产品T170-193 nm≥95%。Therefore, the present invention provides a method for producing a synthetic quartz material for a semiconductor mask. The method has high production process continuity, and the synthetic quartz product T 170-193 nm ≥95%.
为解决上述技术问题,本发明提供了一种生产半导体掩模版用合成石英材料的方法,包括以下步骤:In order to solve the above-mentioned technical problems, the present invention provides a method for producing a synthetic quartz material for a semiconductor mask, comprising the following steps:
(1)在沉积腔体内,采用气相轴向沉积法将硅源沉积于引杆上得到低密度SiO2疏松体;其中,所述硅源于燃烧的氢氧火焰中发生化学反应,形成二氧化硅颗粒并沉积形成低密度SiO2疏松体;在沉积过程中,控制所述沉积腔体内为负压环境,温度不高于500℃;(1) In the deposition chamber, the silicon source is deposited on the lead rod by the vapor-phase axial deposition method to obtain a low-density SiO2 soot; wherein, the silicon source undergoes a chemical reaction in the oxyhydrogen flame of combustion to form dioxide Silicon particles are deposited to form low-density SiO 2 loose bodies; during the deposition process, the deposition chamber is controlled to be in a negative pressure environment, and the temperature is not higher than 500°C;
(2)将低密度SiO2疏松体转移至烧结炉中,在充满脱羟气流和氧气的密闭环境中,升温至1100~1300℃,使所述低密度SiO2疏松体脱水;(2) Transfer the low-density SiO 2 soot to a sintering furnace, and in a closed environment filled with dehydroxylation gas flow and oxygen, the temperature is raised to 1100-1300° C. to dehydrate the low-density SiO 2 soot;
(3)在惰性气体环境中,向烧结炉中通入含氟气体,并加热至1400~1600℃,使得所述低密度SiO2疏松体玻璃化以形成透明石英玻璃;在脱水和玻璃化的过程中,所述低密度SiO2疏松体保持纵向不运动,沉积腔体内纵向与径向的温度梯度≤2℃;(3) In an inert gas environment, a fluorine-containing gas is introduced into the sintering furnace, and heated to 1400-1600 ° C, so that the low-density SiO 2 loose body is vitrified to form transparent quartz glass; During the process, the low-density SiO 2 loose body keeps vertical motion, and the temperature gradient between the longitudinal and radial directions in the deposition chamber is ≤ 2°C;
(4)对步骤(3)得到的透明石英玻璃进行退火处理,得到所述生产半导体掩模版用合成石英材料。(4) annealing the transparent quartz glass obtained in step (3) to obtain the synthetic quartz material for producing the semiconductor mask.
进一步地:步骤(1)中,所述硅源为纯度达99.9999%以上的SiCl4,通入的氢气和氧气的纯度达99.999%以上,沉积腔体的内壁采用高纯石英内衬。Further: in step (1), the silicon source is SiCl 4 with a purity of more than 99.9999%, the purity of the hydrogen and oxygen supplied is more than 99.999%, and the inner wall of the deposition cavity is lined with high-purity quartz.
进一步地:步骤(1)中,通过电机控制低密度SiO2疏松体的旋转速度为20~50rpm/min,提升速度为0.4~1.2mm/min。Further: in step (1), the rotating speed of the low-density SiO 2 soot body is controlled by the motor to be 20-50 rpm/min, and the lifting speed is 0.4-1.2 mm/min.
进一步地:步骤(1)中,得到的低密度SiO2疏松体中,金属杂质的含量≤10ppb。Further: in step (1), in the obtained low-density SiO 2 soot body, the content of metal impurities is less than or equal to 10ppb.
进一步地:步骤(2)中,所述脱羟气流中包括惰性气体和氯基干燥剂。Further: in step (2), the dehydroxylation gas stream includes an inert gas and a chlorine-based desiccant.
进一步地:步骤(2)中,所述惰性气体包括氦气或氩气,所述氯基干燥剂包括氯气;所述氧气的流量为0.5~2L/min。Further: in step (2), the inert gas includes helium or argon, the chlorine-based desiccant includes chlorine, and the flow rate of the oxygen is 0.5-2 L/min.
进一步地:步骤(3)中,所述含氟气体包括CF4、C2F6、C3F8中的一种或多种。Further: in step (3), the fluorine-containing gas includes one or more of CF 4 , C 2 F 6 , and C 3 F 8 .
进一步地:步骤(3)中,所述烧结炉的炉壁外设有2~4层加热件,并均匀对称分布6~14个热电偶,所述热电偶分别接入PLC系统中,通过所述热电偶监控烧结炉内不同区域的温度,并反馈至所述PLC系统,再根据反馈的温度数据调整不同加热件的加热功率,以保证烧结炉内纵向与径向的温度梯度≤2℃。Further: in step (3), 2 to 4 layers of heating elements are arranged outside the furnace wall of the sintering furnace, and 6 to 14 thermocouples are evenly and symmetrically distributed. The thermocouple monitors the temperature of different areas in the sintering furnace, and feeds it back to the PLC system, and then adjusts the heating power of different heating elements according to the feedback temperature data to ensure that the longitudinal and radial temperature gradients in the sintering furnace are ≤2°C.
进一步地:步骤(3)中,得到的透明石英玻璃中,金属杂质的含量≤8ppb。Further: in step (3), in the obtained transparent quartz glass, the content of metal impurities is less than or equal to 8ppb.
进一步地:步骤(4)中,得到的石英材料的光学均匀性达1.2×10-6,透过率外过率水平≥90.5%(5mm),内过率水平≥99.5%。Further: in step (4), the optical uniformity of the obtained quartz material reaches 1.2×10 -6 , the transmittance level of the outer pass rate is greater than or equal to 90.5% (5mm), and the level of the inner pass rate is greater than or equal to 99.5%.
本发明的上述技术方案相比现有技术具有以下优点:The above-mentioned technical scheme of the present invention has the following advantages compared with the prior art:
1.通常间接法合成石英的玻璃化需采用区域烧结技术,多孔疏松体经电阻炉区域烧结致密化,从而变成无气泡的透明玻璃预制棒,由于烧结工艺为区域烧结工艺,因此疏松体在玻璃化过程中由于纵向运动及纵向的温度差,造成石英玻璃的应力过大。本发明提供的合成石英材料的方法,采用的烧结炉具备多层加热件,能够保证疏松体在脱水、掺杂、玻璃化及退火过程无纵向位置的运动,从而保证了疏松体在玻璃化过程中无机械纵向运动的影响;同时多热电偶的温度反馈与PLC控制系统保证疏松体在脱水、掺杂、玻璃化及退火过程中炉内的温场高度稳定,无提升造成的温度梯度对玻璃的应力的影响,从而提高了合成石英的光学均匀性,此装置生产的合成石英玻璃120口径,光学均匀性达1.2×10-6。1. Usually, the vitrification of the indirect synthetic quartz needs to use the regional sintering technology. The porous soot body is sintered and densified by the resistance furnace area, so as to become a transparent glass preform without bubbles. Since the sintering process is a regional sintering process, the soot body is During the vitrification process, the stress of the quartz glass is too large due to the longitudinal movement and the longitudinal temperature difference. The method for synthesizing quartz material provided by the present invention adopts a sintering furnace equipped with multi-layer heating elements, which can ensure that the soot body has no longitudinal position movement during the process of dehydration, doping, vitrification and annealing, thereby ensuring that the soot body is in the vitrification process. There is no influence of mechanical longitudinal motion; at the same time, the temperature feedback of multiple thermocouples and PLC control system ensure that the temperature field in the furnace is highly stable during the process of dehydration, doping, vitrification and annealing of the soot, and there is no temperature gradient caused by lifting to the glass. The influence of the stress, thereby improving the optical uniformity of synthetic quartz, the synthetic quartz glass produced by this device has a diameter of 120, and the optical uniformity reaches 1.2×10 -6 .
2.二氧化硅疏松体的生产主要是由来自供气系统的卤化物原料(SiCl4)火焰水解反应生成细玻璃微粒,这些微粒随后沉积于生长表面上从而形成多孔疏松体。在沉积生产过程中,由于沉积温度较高,绝大部分反应生成的H2O和HCl以及尚未沉积于表面的残余玻璃微粒将从位于沉积区附近的废气排气口排出。但由于反应温度较大,一部分H2O与HCl会扩散到沉积金属腔室内壁,对腔体造成腐蚀,沉积在石英材料上,对已沉积的疏松体造成污染。本发明通过使用高纯度的原料及气体,沉积腔体采用耐腐蚀的材料,使用高纯石英内衬等沉积过程防护技术实现疏松体的高纯。经过该发明处理的疏松体的金属杂质含量显著降低,金属杂质含量可控制在≤10ppb。2. The production of the silica soot is mainly by the flame hydrolysis reaction of the halide feedstock (SiCl 4 ) from the gas supply system to generate fine glass particles, which are then deposited on the growth surface to form the porous soot. During the deposition production process, due to the high deposition temperature, most of the H 2 O and HCl produced by the reaction and the residual glass particles that have not been deposited on the surface will be discharged from the exhaust gas exhaust port located near the deposition area. However, due to the high reaction temperature, a part of H 2 O and HCl will diffuse into the inner wall of the deposition metal chamber, causing corrosion to the chamber, and depositing on the quartz material, causing pollution to the deposited loose body. The invention realizes the high purity of the loose body by using high-purity raw materials and gases, using corrosion-resistant materials for the deposition chamber, and using deposition process protection technologies such as high-purity quartz linings. The metal impurity content of the soot body treated by the invention is significantly reduced, and the metal impurity content can be controlled to be less than or equal to 10ppb.
3.多孔疏松目前一般经电阻炉区域烧结致密化,其主要包括两个步骤:1)多孔玻璃的致密化增加,该过程中出现敞口气孔向封闭气孔的转变;2)封闭气孔的收缩消失。经过这两个过程,疏松体从而变成无气泡的合成石英玻璃。在疏松体致密化过程中,电阻内温场一般控制在1500℃以上,本发明在烧结过程中通过通入一定浓度的含氟气体,在高温条件下与金属氧化物生成气态金属卤化物,氯化物的最高沸点是1500℃,经过烧结可以将卤化物去除,从而实现合成石英玻璃的纯化。经过本发明处理的合成石英玻璃的金属杂质含量显著降低,金属杂质含量可控制在≤8ppb。3. Porous porosity is generally densified by sintering in the resistance furnace area, which mainly includes two steps: 1) The densification of porous glass increases, and the transition from open pores to closed pores occurs during this process; 2) The shrinkage of closed pores disappears . After these two processes, the loose body thus becomes a bubble-free synthetic quartz glass. During the densification process of the loose body, the internal temperature field of the resistance is generally controlled above 1500°C. In the present invention, a certain concentration of fluorine-containing gas is introduced during the sintering process to generate gaseous metal halide, chlorine and metal oxides under high temperature conditions. The highest boiling point of the compound is 1500 ℃, and the halide can be removed by sintering, so as to realize the purification of synthetic quartz glass. The metal impurity content of the synthetic quartz glass treated by the invention is significantly reduced, and the metal impurity content can be controlled to be less than or equal to 8ppb.
4.石英玻璃的结构缺陷是[SiO4]四面体网络结构自身缺陷,包括缺氧型缺陷(≡Si、≡Si-Si≡)和过氧型缺陷(≡Si-O·、≡Si-O-O·、≡Si-O-O-Si≡)。本发明的VAD烧结气氛可为惰性气氛和氧化性气氛。氧化性气氛易造成富氧环境,从而引起富氧缺陷。本发明通过氟掺杂对已形成的E’缺陷和NBOHC缺陷进行修复,同时其对疏松体的密度要求低,无需针对不同密度的疏松体而相应的调整工艺参数,合成的石英材料的紫外透过率水平明显优化,透过率外过率水平≥90.5%(5mm),内过率水平≥99.5%。4. The structural defects of quartz glass are the defects of the [SiO 4 ] tetrahedral network structure itself, including oxygen-deficient defects (≡Si, ≡Si-Si≡) and peroxidative defects (≡Si-O·, ≡Si-OO ·, ≡Si-OO-Si≡). The VAD sintering atmosphere of the present invention can be an inert atmosphere and an oxidizing atmosphere. An oxidizing atmosphere can easily create an oxygen-enriched environment, resulting in oxygen-enriched defects. The invention repairs the formed E' defects and NBOHC defects through fluorine doping, and at the same time, it has low requirements on the density of the loose body, and does not need to adjust the process parameters correspondingly for the loose bodies of different densities. The pass rate level is obviously optimized, the transmittance outer pass rate level is ≥90.5% (5mm), and the inner pass rate level is ≥99.5%.
5.本发明的工艺重复性好,生产的合成石英尺寸大、品质高,通过在致密化阶段引入氟基,控制进入烧结装置中的氟化物的浓度、流量与气体分压,能够实现合成石英玻璃径向折射率均匀性≤5ppm,生产合成石英材料纯度较高,经过切片→抛光→测试测得产品120口径,光学均匀性达1.2×10-6。5. The process of the present invention has good repeatability, and the synthetic quartz produced is large in size and high in quality. By introducing fluorine groups in the densification stage and controlling the concentration, flow rate and gas partial pressure of the fluoride entering the sintering device, the synthetic quartz can be realized. The uniformity of the radial refractive index of the glass is ≤5ppm, and the purity of the synthetic quartz material produced is relatively high. After slicing → polishing → testing, the product is 120 caliber, and the optical uniformity reaches 1.2 × 10 -6 .
附图说明Description of drawings
图1为本发明的工艺流程图;Fig. 1 is the process flow diagram of the present invention;
图2为本发明的沉积装置的结构示意图;2 is a schematic structural diagram of a deposition apparatus of the present invention;
图3为本发明的烧结装置的结构示意图;Fig. 3 is the structural schematic diagram of the sintering device of the present invention;
图4为本发明制备的合成石英玻璃(A)与常规合成石英(B)的透过率对比图;Fig. 4 is the transmittance comparison diagram of synthetic quartz glass (A) prepared by the present invention and conventional synthetic quartz (B);
图5为本发明制备的合成石英玻璃的折射率曲线图;Fig. 5 is the refractive index curve diagram of synthetic quartz glass prepared by the present invention;
其中,1、引杆;2、沉积腔体;3、高效过滤器;4、硅源燃烧装置;5、阀门;6、分配系统;7、进料管;8、SiCl4原料;9、抽风装置;10、废气出料管;11、阀;12、低密度SiO2疏松体;13、烧结炉;14、炉芯管口出口;15、透明石英玻璃;16、加热件;17、炉芯管底部进气口;18、热电偶。Among them, 1, lead rod; 2, deposition chamber; 3, high efficiency filter; 4, silicon source combustion device; 5, valve; 6, distribution system; 7, feed pipe; 8, SiCl 4 raw material; 9, exhaust air Device; 10. Exhaust gas discharge pipe; 11. Valve; 12. Low density SiO 2 loose body; 13. Sintering furnace; 14. Outlet of furnace core; 15. Transparent quartz glass; 16. Heating element; 17. Furnace core Air inlet at the bottom of the tube; 18. Thermocouple.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below with reference to specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.
请参见图1,本发明提供了一种生产半导体掩模版用合成石英材料的方法,包括疏松体沉积、疏松体脱水、玻璃化及氟基引入、炉内退火四个主要工序,即采用气相轴向沉积工艺(VAD)首先沉积形成低密度SiO2疏松体12,再进行烧结;烧结过程进行脱水、脱羟、脱气及致密化,直至达到玻璃化;烧结完成后将获得的石英玻璃进行退火,以充分释放石英玻璃内部的应力以保证其均匀性,最终得到退火后的石英玻璃26成品,即高品质的高纯高均匀性低羟基石英玻璃。下面对各步骤进行详细描述。Referring to FIG. 1, the present invention provides a method for producing a synthetic quartz material for a semiconductor mask, including four main processes: deposition of soot, dehydration of soot, vitrification and introduction of fluorine bases, and annealing in a furnace. The deposition process (VAD) first deposits to form a low-density SiO2 soot body 12, and then sinters; the sintering process performs dehydration, dehydroxylation, degassing and densification until vitrification is achieved; after the sintering is completed, the obtained quartz glass is annealed , so as to fully release the stress inside the quartz glass to ensure its uniformity, and finally obtain the finished quartz glass 26 after annealing, that is, a high-quality high-purity, high-uniformity, low-hydroxyl quartz glass. Each step is described in detail below.
1、疏松体沉积1. Loose body deposition
请参见图2,低密度SiO2疏松体12的沉积在沉积腔体2内进行,在沉积腔体2内,采用VAD工艺将硅源沉积在引杆1上,得到低密度SiO2疏松体12。其中,硅源即SiCl4原料8,通过载气进入分配系统6,再通过阀门5和质量流量控制器进入到硅源燃烧装置4中。同时,纯化后的Ar、H2和O2通过金属管道进入到分配系统6中,再通过金属管路进入硅源燃烧装置4中。SiCl4原料8在燃烧的氢氧火焰中发生化学反应,形成二氧化硅颗粒,并沉积至沉积腔体2内的引杆1上,得到低密度SiO2疏松体12。分配系统6即为气体流量控制器,用于控制不同气体流量的大小。本发明中,SiCl4原料8的纯度优选地达99.9999%以上,氢气和氧气优选地采用高纯度气体,纯度达99.999%以上,从而有利于提高石英玻璃成品的纯度。Ar作为一种保护气体,在燃烧器内起到了物理隔离的作用,避免损坏燃烧器。Referring to FIG. 2 , the deposition of the low-density SiO 2 soot body 12 is carried out in the
上述各原料气体的流量本领域技术人员可根据需要进行设定,或采用现有技术流量。SiCl4原料8的流量可为80~120g/min,本实施例中优选为80g/min;H2、O2和Ar的流量分别可为110~130L/min、70~90L/min和15~17L/min,本实施例中优选为120L/min、80L/min、16L/min。The flow rate of each of the above-mentioned raw material gases can be set by those skilled in the art as required, or the flow rate of the prior art can be adopted. The flow rate of the SiCl 4
本发明中,为保证沉积腔体2内气流的稳定性以保证稳定沉积,在沉积腔体2的侧壁上分别设有高效过滤器3与抽风装置9,且抽风装置9的高度略低于高效过滤器位置。通过高效过滤器3和抽风装置9,抽风装置9的高度略低于高效过滤器3位置。沉积腔体2内呈微负压,优选地为低于标准大气压50~150Pa,从而保证了沉积腔体2内的气流稳定,不容易引入杂质,有效地减少了外界杂质引入疏松体内。优选地,在抽风口设置有压力计,从而可以监控压力并进行动态压力调节。通过压力的动态控制,保证沉积腔体2内的气流稳定,从而不容易引入杂质。优选地,在沉积腔体2内设有温度传感器,用于监测并保证沉积腔体2内的温度不高于500℃,以减少金属杂质的引入。In the present invention, in order to ensure the stability of the airflow in the
本发明中,沉积腔体2内悬置有待沉积的引杆1,在沉积腔体2上设置的驱动装置,本实施例中,所述驱动装置为电机。所述电机可带动引杆1提升及旋转,从而有利于提高疏松体沉积的均匀性。电机的旋转速度为20~50rpm/min,优选为30rpm/min。为提高石英玻璃均匀性,可适当提高电机旋转速度。电机提升速度为0.4~1.2mm/min,优选为0.8mm/min,以保证疏松体直径大小。沉积腔体2的侧壁上设置有废气出料管10,沉积腔体2内产生的废气通过废气出料管10排出,废气出料管10上设有阀11。In the present invention, a lead rod 1 to be deposited is suspended in the
2.疏松体脱水2. Loose body dehydration
请参见图3,将低密度SiO2疏松体12转移至烧结炉13中,通过炉芯管口入口向烧结炉13内通入Cl2或其他氯基干燥剂及惰性气体,利用烧结炉13上设置的加热件16将低密度SiO2疏松体12加热至1100~1300℃的高温,通过物理以及化学作用,将低密度SiO2疏松体12中的羟基、水分等成分去除,并随后通过炉芯管口出口14排出烧结炉13外。本发明中,为保证疏松体的温场的稳定与均匀性,在烧结炉外壁上设定了多层(2~4)加热件,并在炉芯管有效温场区域均匀对称分布多个相同型号的热电偶18(6~14个)(热电偶型号为B型),并分别接入PLC系统中,通过热电偶的监控温度分别调整不同加热件的加热功率,从而保证了炉芯管内纵向与径向的温度梯度≤2℃。因此,在脱水和玻璃化阶段,疏松体无需纵向运动,从而避免了由于提升时温度梯度对玻璃的应力的影响,提高了合成石英的光学均匀性。为进一步地保证石英材料的光学均匀性,在脱水及脱羟基过程中同步通入一定流量的O2,O2的通入量控制在0.5~2L/min,优选为1L/min,用于提高产品的光学均匀性。Referring to FIG. 3 , the low-density SiO 2 soot body 12 is transferred to the
3.玻璃化及氟基引入3. Vitrification and introduction of fluorine groups
低密度SiO2疏松体12脱水完毕后,置于氦气或氩气气体的惰性气体环境中,同时加热至1400~1600℃,在此条件下疏松体玻璃化形成透明石英玻璃23。显而易见,疏松体在脱水以及烧结过程中,疏松体必须置于一个密闭环境下,为其脱水和完全透明化提供相应的气氛环境,同时避免外界杂质进入其中。本发明中,在疏松体致密化的过程中,通入一定流量的含氟气体,例如CF4、C2F6、C3F8等,优选为CF4,在高温条件下含氟气体可以与金属氧化物生成气态金属卤化物,而卤化物最高沸点是1500℃,经过烧结可以将卤化物去除,从而实现合成石英玻璃的纯化。经过该步骤处理的合成石英玻璃的金属杂质含量显著降低,金属杂质含量可控制在≤8ppb。After the dehydration of the low-density SiO 2
4.炉内退火4. Furnace annealing
透明石英玻璃15烧结完成后,使用精密退火装置对其进行精退火,以消除残留的永久应力,同时满足高均匀性的要求。显而易见地,退火工序分为加热阶段、保温阶段、慢冷阶段与快冷阶段四个阶段。After the
图4为本发明制备的合成石英玻璃与常规合成石英的透过率对比图,图5为本发明制备的合成石英玻璃的折射率曲线。FIG. 4 is a comparison diagram of the transmittance of synthetic quartz glass prepared by the present invention and conventional synthetic quartz, and FIG. 5 is a refractive index curve of the synthetic quartz glass prepared by the present invention.
从图中可以看出,本发明最终得到的退火后的石英玻璃,产品口径为120mm时,光学均匀性达1.2×10-6,透过率外过率水平≥90.5%(5mm),内过率水平≥99.5%。It can be seen from the figure that the annealed quartz glass finally obtained by the present invention has an optical uniformity of 1.2 × 10 -6 when the product diameter is 120 mm, the transmittance of the outer pass rate level is ≥90.5% (5mm), and the inner pass rate level ≥ 99.5%.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, other different forms of changes or modifications can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210396733.6A CN114735927A (en) | 2022-04-15 | 2022-04-15 | A method of producing synthetic quartz material for semiconductor reticle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210396733.6A CN114735927A (en) | 2022-04-15 | 2022-04-15 | A method of producing synthetic quartz material for semiconductor reticle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114735927A true CN114735927A (en) | 2022-07-12 |
Family
ID=82280828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210396733.6A Pending CN114735927A (en) | 2022-04-15 | 2022-04-15 | A method of producing synthetic quartz material for semiconductor reticle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114735927A (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291432A (en) * | 1985-06-19 | 1986-12-22 | Furukawa Electric Co Ltd:The | Production of base material for optical fiber |
US4859224A (en) * | 1986-06-10 | 1989-08-22 | U.S. Philips Corp. | Method of manufacturing glass or ceramic bodies |
JPH07330364A (en) * | 1994-06-01 | 1995-12-19 | Fujikura Ltd | Heating furnace for manufacturing optical fiber preform |
US20010018835A1 (en) * | 2000-03-03 | 2001-09-06 | Jun Abe | Synthesized silica glass optical member and method for manufacturing the same |
CN1516681A (en) * | 2001-06-13 | 2004-07-28 | 住友电气工业株式会社 | Glass preform and method for manufacturing glass preform |
US20070271964A1 (en) * | 2004-07-20 | 2007-11-29 | Heraeus Tenevo Gmbh | Method and Device for Producing a Hollow Quartz-Glass Cylinder |
CN106116121A (en) * | 2016-08-31 | 2016-11-16 | 中国建筑材料科学研究总院 | The preparation method of quartz glass and quartz glass |
CN107540209A (en) * | 2017-10-25 | 2018-01-05 | 江苏亨通光导新材料有限公司 | The sintering equipment and corresponding sintering method of a kind of preform female rod |
CN211255702U (en) * | 2019-12-20 | 2020-08-14 | 杭州永通智造科技有限公司 | Quick sintering device of jumbo size optical fiber perform |
CN213202837U (en) * | 2020-05-26 | 2021-05-14 | 华能(泰安)光电科技有限公司 | Sintering device for loose body of optical fiber preform |
CN112876044A (en) * | 2021-02-03 | 2021-06-01 | 江苏亨通智能科技有限公司 | Chemical deposition method and device for high-purity low-hydroxyl high-uniformity quartz glass |
-
2022
- 2022-04-15 CN CN202210396733.6A patent/CN114735927A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291432A (en) * | 1985-06-19 | 1986-12-22 | Furukawa Electric Co Ltd:The | Production of base material for optical fiber |
US4859224A (en) * | 1986-06-10 | 1989-08-22 | U.S. Philips Corp. | Method of manufacturing glass or ceramic bodies |
JPH07330364A (en) * | 1994-06-01 | 1995-12-19 | Fujikura Ltd | Heating furnace for manufacturing optical fiber preform |
US20010018835A1 (en) * | 2000-03-03 | 2001-09-06 | Jun Abe | Synthesized silica glass optical member and method for manufacturing the same |
CN1516681A (en) * | 2001-06-13 | 2004-07-28 | 住友电气工业株式会社 | Glass preform and method for manufacturing glass preform |
US20070271964A1 (en) * | 2004-07-20 | 2007-11-29 | Heraeus Tenevo Gmbh | Method and Device for Producing a Hollow Quartz-Glass Cylinder |
CN106116121A (en) * | 2016-08-31 | 2016-11-16 | 中国建筑材料科学研究总院 | The preparation method of quartz glass and quartz glass |
CN107540209A (en) * | 2017-10-25 | 2018-01-05 | 江苏亨通光导新材料有限公司 | The sintering equipment and corresponding sintering method of a kind of preform female rod |
CN211255702U (en) * | 2019-12-20 | 2020-08-14 | 杭州永通智造科技有限公司 | Quick sintering device of jumbo size optical fiber perform |
CN213202837U (en) * | 2020-05-26 | 2021-05-14 | 华能(泰安)光电科技有限公司 | Sintering device for loose body of optical fiber preform |
CN112876044A (en) * | 2021-02-03 | 2021-06-01 | 江苏亨通智能科技有限公司 | Chemical deposition method and device for high-purity low-hydroxyl high-uniformity quartz glass |
Non-Patent Citations (3)
Title |
---|
李俊寿主编: "新材料概论", 31 August 2004, 国防工业出版社, pages: 185 - 186 * |
胡先志等: "光纤与光缆及其前沿研究", 31 July 2021, 武汉理工大学出版社, pages: 70 * |
苏君红、张玉龙主编: "光纤材料制备技术", 30 April 2009, 浙江科学技术出版社, pages: 75 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240034667A1 (en) | Method for making halogen doped optical element | |
US6319634B1 (en) | Projection lithography photomasks and methods of making | |
JP5644058B2 (en) | Silica glass containing TiO2 | |
JPH07507034A (en) | Heat treatment equipment for synthetic vitreous silica molded bodies | |
CN112876044B (en) | Chemical deposition method and device for high-purity low-hydroxyl high-uniformity quartz glass | |
JP6423434B2 (en) | Method for producing titanium-doped silica glass used in EUV lithography | |
WO2011068064A1 (en) | Silica glass containing tio2 | |
CN101798168B (en) | Method of producing synthetic quartz glass for excimer laser | |
JP3865039B2 (en) | Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate | |
US20030159465A1 (en) | Fabrication of inclusion free homogeneous glasses | |
JP6302910B2 (en) | Niobium-doped silica titania glass and production method | |
JP5630268B2 (en) | Optical member made of silica glass containing TiO 2 | |
CN114735927A (en) | A method of producing synthetic quartz material for semiconductor reticle | |
JP2016534959A (en) | Mirror blank for EUV lithography that does not expand under EUV irradiation | |
WO2010134449A1 (en) | Method for producing tio2-sio2 glass body, method for heat-treating tio2-sio2 glass body, tio2-sio2 glass body, and optical base for euvl | |
JPH05178632A (en) | Optical quartz glass having high heat resistance and its production | |
JP2011121857A (en) | Titania and sulfur co-doped quartz glass member and method for producing the same | |
JP3796653B2 (en) | Fluorine-containing synthetic quartz glass and method for producing the same | |
CN114031274A (en) | Method for preparing continuous low-hydroxyl high-uniformity quartz glass | |
JP2006273659A (en) | Method for producing synthetic quartz glass and synthetic quartz glass for optical member | |
JP5381786B2 (en) | Method for producing synthetic quartz glass member | |
JP5287271B2 (en) | Method for molding silica glass containing TiO2 and optical member for EUV lithography molded thereby | |
KR20240104056A (en) | Method for manufacturing TiO2-SiO2 glass body and glass body menufactured thereby | |
JP2024141315A (en) | Method for manufacturing silica glass and method for manufacturing optical fiber | |
CN119461799A (en) | A synthetic quartz glass preparation device for excimer laser and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220712 |
|
RJ01 | Rejection of invention patent application after publication |