CN114696053A - Circular waveguide transmission line for millimeter wave and method for manufacturing the same - Google Patents
Circular waveguide transmission line for millimeter wave and method for manufacturing the same Download PDFInfo
- Publication number
- CN114696053A CN114696053A CN202011619786.7A CN202011619786A CN114696053A CN 114696053 A CN114696053 A CN 114696053A CN 202011619786 A CN202011619786 A CN 202011619786A CN 114696053 A CN114696053 A CN 114696053A
- Authority
- CN
- China
- Prior art keywords
- layer
- circular waveguide
- plastic rod
- transmission line
- outer conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229920003023 plastic Polymers 0.000 claims abstract description 84
- 239000004033 plastic Substances 0.000 claims abstract description 84
- 239000010410 layer Substances 0.000 claims abstract description 64
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000004020 conductor Substances 0.000 claims abstract description 41
- 239000012792 core layer Substances 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 14
- 229920000098 polyolefin Polymers 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000013043 chemical agent Substances 0.000 claims description 6
- 238000005187 foaming Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 4
- 239000003063 flame retardant Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 16
- 238000010276 construction Methods 0.000 abstract description 7
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 230000008054 signal transmission Effects 0.000 description 8
- 230000005672 electromagnetic field Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/02—Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
- H01P3/06—Coaxial lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
- H01P11/001—Manufacturing waveguides or transmission lines of the waveguide type
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信传输技术领域,具体涉及毫米波用的圆波导传输线。The invention relates to the technical field of communication transmission, in particular to a circular waveguide transmission line for millimeter waves.
背景技术Background technique
随着现代通信技术的不断发展,频谱资源越来越紧缺,而毫米波段拥有巨大的频谱资源开发空间,因此如何开发利用原本应用在卫星和雷达军用系统上的毫米波频谱资源成为了第五代移动通信技术的重点。其中毫米波信号在设备间的传输问题,因传统的同轴电缆在毫米波段的衰减急剧增加,面临改进和替换的问题。With the continuous development of modern communication technology, spectrum resources are becoming more and more scarce, and the millimeter-wave band has a huge space for spectrum resource development. Therefore, how to develop and utilize the millimeter-wave spectrum resources originally used in satellite and radar military systems has become the fifth generation. The focus of mobile communication technology. Among them, the transmission of millimeter-wave signals between devices faces the problem of improvement and replacement due to the sharp increase in the attenuation of traditional coaxial cables in the millimeter-wave band.
圆波导是波导的截面为圆形的柱形波导,圆波导具有损耗较小和双极化的特性,常用于天线馈线中,也可作较远距离的传输线,并广泛用作微波谐振腔。圆波导管作为通信传输线,用来传送毫米波电磁信号有着诸多优点:相同截面周长下传输功率更高(因圆的截面积最大)、传输衰减小。且相对于矩形波导管可装盘运输、施工布放相对简易等。但是,由于圆波导管要实现毫米波信号传输对波导管的工艺精度和产品一致性要求严格,为了实现圆波导的更广泛应用,需要对圆波导管的结构及生产工艺进行改进。Circular waveguide is a cylindrical waveguide with a circular section. Circular waveguides have the characteristics of low loss and dual polarization. They are often used in antenna feeders, and can also be used as long-distance transmission lines, and are widely used as microwave resonators. As a communication transmission line, the circular waveguide used to transmit millimeter wave electromagnetic signals has many advantages: the transmission power is higher under the same cross-sectional perimeter (because the cross-sectional area of the circle is the largest), and the transmission attenuation is small. Compared with the rectangular waveguide, it can be transported in a tray, and the construction and deployment are relatively simple. However, since the circular waveguide has strict requirements on the process accuracy and product consistency of the waveguide to realize millimeter wave signal transmission, in order to realize the wider application of the circular waveguide, the structure and production process of the circular waveguide need to be improved.
发明内容SUMMARY OF THE INVENTION
鉴于以上现有技术存在的缺点,本发明所要解决的技术问题在于提供一种波导结构及电气性能稳定的圆波导传输线及其制造方法。In view of the above shortcomings of the prior art, the technical problem to be solved by the present invention is to provide a circular waveguide transmission line with a waveguide structure and stable electrical performance and a manufacturing method thereof.
为解决上述技术问题,本发明首先提供如下技术方案:毫米波用的圆波导传输线,包括:In order to solve the above-mentioned technical problems, the present invention first provides the following technical solutions: a circular waveguide transmission line for millimeter waves, including:
塑料杆,其由内至外依次包括芯层及外皮层,所述外皮层包覆在所述芯层上;a plastic rod, which sequentially includes a core layer and an outer skin layer from the inside to the outside, and the outer skin layer covers the core layer;
外导体,所述外导体包覆在所述塑料杆上;an outer conductor, the outer conductor is wrapped on the plastic rod;
金属脊线,所述金属脊线与所述外导体连接,且所述金属脊线搭接在所述塑料杆上,且所述金属脊线沿所述塑料杆长度方向连续设置;a metal ridge line, the metal ridge line is connected with the outer conductor, and the metal ridge line is overlapped on the plastic rod, and the metal ridge line is continuously arranged along the length direction of the plastic rod;
护套层,所述护套层包覆在所述外导体上。a sheath layer, the sheath layer covering the outer conductor.
通过采用上述技术方案,将金属脊线引入波导结构,可以有效改善极化偏转问题,提高远距离传输的实用性,同时,将塑料杆作为毫米波用的圆波导传输线的内衬层,可以防止外界潮气侵入传输线内,从而影响传输线的电气性能。同时,以塑料杆作为内衬层的毫米波用的圆波导传输线相对于传统的全金属铜(铝)空管漏缆波导,更具有弹性和可恢复性,可以避免在运输或施工布放过程中的损坏。By adopting the above technical solution, the metal ridge line is introduced into the waveguide structure, which can effectively improve the polarization deflection problem and improve the practicability of long-distance transmission. External moisture penetrates into the transmission line, thereby affecting the electrical performance of the transmission line. At the same time, compared with the traditional all-metal copper (aluminum) empty tube leaky cable waveguide, the circular waveguide transmission line for millimeter waves with plastic rods as the inner lining is more elastic and recoverable, which can avoid the transportation or construction deployment process. damage in.
在本发明的一实施例中,所述外导体为单层铜塑复合膜,其包括一铜层及一塑料层,所述铜层与所述塑料层连接。In an embodiment of the present invention, the outer conductor is a single-layer copper-plastic composite film, which includes a copper layer and a plastic layer, and the copper layer is connected to the plastic layer.
在本发明的一实施例中,所述铜层的厚度范围为0.1mm~0.2mm,所述塑料层的厚度范围为0.08mm~0.2mm。In an embodiment of the present invention, the thickness of the copper layer ranges from 0.1 mm to 0.2 mm, and the thickness of the plastic layer ranges from 0.08 mm to 0.2 mm.
通过采用上述技术方案,将铜塑复合膜作为圆波导的外导体,可以提高波导管的性能,同时,铜层与塑料层的尺寸选择能够更好地满足通信要求,不会影响所述圆波导传输线的其它性能。By adopting the above technical solution, the copper-plastic composite film is used as the outer conductor of the circular waveguide, which can improve the performance of the waveguide, and at the same time, the size selection of the copper layer and the plastic layer can better meet the communication requirements without affecting the circular waveguide. Other properties of transmission lines.
在本发明的一实施例中,所述金属脊线的宽度为0.5mm~3mm。In an embodiment of the present invention, the width of the metal ridge is 0.5 mm˜3 mm.
通过采用上述技术方案,可以更好地改善圆波导在应用过程中产生的偏极化问题,且不会影响圆波导的其它性能。By adopting the above technical solution, the polarization problem generated in the application process of the circular waveguide can be better improved without affecting other properties of the circular waveguide.
在本发明的一实施例中,所述芯层为发泡的聚烯烃材料。In an embodiment of the present invention, the core layer is a foamed polyolefin material.
在本发明的一实施例中,所述外皮层为未发泡的聚烯烃材料。In an embodiment of the present invention, the outer skin layer is an unfoamed polyolefin material.
在本发明的一实施例中,所述芯层与所述外皮层所用材料的介电常数小于2.25F/m。In an embodiment of the present invention, the dielectric constant of the materials used in the core layer and the outer skin layer is less than 2.25 F/m.
通过采用上述技术方案,一方面可以防止长期工作中外界潮气入侵传输线,从而影响所述毫米波用的圆波导传输线的传输性能;另一方面所述芯层与所述外皮层采用相对介电常数低,可以减少所述填充物对高频信号传输的影响。By adopting the above technical solution, on the one hand, outside moisture can be prevented from invading the transmission line during long-term operation, thereby affecting the transmission performance of the circular waveguide transmission line for millimeter waves; on the other hand, the core layer and the outer skin layer adopt relative dielectric constants low, the effect of the filler on high frequency signal transmission can be reduced.
在本发明的一实施例中,所述的塑料杆的椭圆率为0.001,所述的塑料杆的直度每米不大于3mm。In an embodiment of the present invention, the ellipticity of the plastic rod is 0.001, and the straightness of the plastic rod is not more than 3 mm per meter.
通过采用上述技术方案,可以提高所述圆波导传输线的信号传输性能。By adopting the above technical solution, the signal transmission performance of the circular waveguide transmission line can be improved.
在本发明的一实施例中,所述护套层的材质为聚烯烃、阻燃聚烯烃或聚氯乙烯。In an embodiment of the present invention, the material of the sheath layer is polyolefin, flame-retardant polyolefin or polyvinyl chloride.
通过采用上述技术方案,可以保护圆波导不受机械损伤的目的,同时在有要求时具备阻燃性能。By adopting the above technical scheme, the circular waveguide can be protected from mechanical damage, and at the same time, it can have flame retardant properties when required.
为解决上述技术问题,本发明还提供了毫米波用的圆波导传输线的制造方法,包括以下步骤:In order to solve the above-mentioned technical problems, the present invention also provides a manufacturing method of a circular waveguide transmission line for millimeter waves, comprising the following steps:
S1:利用双层挤塑机将塑料杆挤出成型,得到的所述塑料杆包括芯层及外皮层,所述芯层是在挤塑过程中通过注入氮气或二氧化碳气体的方式进行物理发泡处理,所述外皮层未经发泡处理,且均匀地包裹住所述芯层;S1: The plastic rod is extruded by a double-layer extruder, and the obtained plastic rod includes a core layer and an outer skin layer, and the core layer is physically foamed by injecting nitrogen or carbon dioxide gas during the extrusion process. treatment, the outer skin layer is not foamed, and evenly wraps the core layer;
S2:在所述塑料杆外侧涂覆化学药剂,并将外导体以纵包的方式通过化学药剂粘附在塑料杆外表面,在粘附过程中,所述外导体的两边缘重叠并且搭接在所述塑料杆上形成金属脊线;S2: Coating chemical agents on the outside of the plastic rod, and adhering the outer conductor to the outer surface of the plastic rod through the chemical agent in a longitudinally wrapping manner. During the adhesion process, the two edges of the outer conductor overlap and overlap. forming metal ridges on the plastic rod;
S3:通过负压抽气工艺,将熔融的护套层材料通过挤塑机后,可以紧密包覆在所述外导体上,以将所述外导体收紧固定在所述塑料杆上。S3: After passing the molten sheath layer material through the extruder, it can be tightly wrapped on the outer conductor through a negative pressure air extraction process, so as to tighten and fix the outer conductor on the plastic rod.
通过采用上述技术方案,而本发明通过将外导体两边缘重叠搭接在所述塑料杆上形成金属脊线,不仅改善了圆波导传输线在实际应用中的极化偏转问题,且极大提高了工艺生产的可实现性,可实现连续、大长度的工业化规模生产,且提高了产品的一致性和稳定性。By adopting the above technical solution, the present invention forms a metal ridge line by overlapping the two edges of the outer conductor on the plastic rod, which not only improves the polarization deflection problem of the circular waveguide transmission line in practical application, but also greatly improves the The realizability of process production can realize continuous and large-length industrial-scale production, and improve the consistency and stability of products.
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。Of course, it is not necessary for any product embodying the present invention to achieve all of the above-described advantages simultaneously.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明提供的毫米波用的圆波导传输线的结构示意图;1 is a schematic structural diagram of a circular waveguide transmission line for millimeter waves provided by the present invention;
图2为本发明提供的毫米波用的圆波导传输线的截面示意图;2 is a schematic cross-sectional view of a circular waveguide transmission line for millimeter waves provided by the present invention;
图3为本发明提供的单层铜塑复合膜的结构示意图;3 is a schematic structural diagram of a single-layer copper-plastic composite film provided by the present invention;
图4为本发明提供的毫米波用的圆波导传输线的制造方法的流程图。FIG. 4 is a flow chart of the manufacturing method of the circular waveguide transmission line for millimeter waves provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, technical or scientific terms used in the present invention shall have the ordinary meaning as understood by one of ordinary skill in the art to which the present invention belongs. The terms "first," "second," and similar terms used herein do not denote any order, quantity, or importance, but are merely used to distinguish different components. "Comprises" or "comprising" and similar words mean that the elements or things appearing before the word encompass the elements or things recited after the word and their equivalents, but do not exclude other elements or things. Words like "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up", "Down", "Left", "Right", etc. are only used to represent the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
如图1至图3所示,本发明提供了一种毫米波用的圆波导传输线,其由内至外依次设有塑料杆1、外导体2、金属脊线3及护套层4。塑料杆1由内至外依次包括芯层11及外皮层12,所述外皮层12包覆在所述芯层11上。外导体2包覆在塑料杆1上,也就是说,外导体2包覆在外皮层上。金属脊线3与外导体2连接,且金属脊线3搭接在塑料杆1上,且所述金属脊线3沿所述塑料杆1长度方向连续设置。护套层4包覆在外导体2上。在本实施例中,外导体2通过一体化纵包的方式包覆在塑料杆1上。在本实施例中,外导体2为单层铜塑复合膜,其包括一铜层21及一塑料层22,铜层21为铜带,例如是TU2型无氧铜,铜层21的厚度范围为0.1mm~0.2mm,塑料层22可以采用乙烯丙烯酸共聚物或者乙烯甲基丙烯酸共聚物制成,塑料层22的厚度范围为0.08mm~0.2mm。铜塑复合膜厚度的选择需要既能够满足通信要求,也不会影响毫米波用的圆波导传输线的性能。进一步地,根据高频电磁场在金属导体中传输的趋肤深度计算公式:其中:δ为趋肤深度,ω为角频率,Μ为磁导率,ρ为电阻率,通过计算可得:As shown in FIGS. 1 to 3 , the present invention provides a circular waveguide transmission line for millimeter waves, which is provided with a
因此,铜塑复合膜的铜层21厚度可以满足高频下的通信要求,可以作为毫米波用的圆波导传输线的外导体2,且不会影响毫米波用的圆波导传输线的高频电气性能。将金属脊线3引入波导结构,且金属脊线3沿塑料杆1长度方向连续设置,可以有效改善极化偏转问题,提高远距离传输的实用性,同时,将塑料杆作为毫米波用的圆波导传输线的内衬层,可以防止外界潮气侵入传输线内,从而影响传输线的电气性能。同时,以塑料杆作为内衬层的毫米波用的圆波导传输线相对于传统的全金属铜(铝)空管漏缆波导,更具有弹性和可恢复性,可以避免在运输或施工布放过程中的损坏。Therefore, the thickness of the
如图1至图3所示,在本实施例中,塑料杆1为双层结构,由内到外分别是芯层11和外皮层12,芯层11为物理发泡后低密度的聚烯烃材料,或者其它介电常数性能优良的材料。外皮层12为未发泡的低密度聚烯烃材料,或者其它与芯层材料的介电常数性能相同或相近的材料,芯层11与与所述外皮层12所用材料的介电常数小于2.25F/m。本实施例将塑料杆作为波导内衬层,可以提高毫米波用的圆波导传输线的结构稳定性及电气性能稳定性。同时,一方面,可以防止传输线在长期运行过程中,周边环境中的潮气逐渐侵入,从而影响圆波导的电气性能,另一方面,塑料材质更具有弹性和可恢复性,可防止在运输或施工布放过程中的损坏,进一步提高产品结构的稳定性。在本实施例中,所述塑料杆1的外径大小与传输信号的截止波长呈线性关系,塑料杆1的外径可以根据通信工作频率及圆波导的截止频率,按照公式来选取。例如,圆波导中高频信号传输受截止波长的限制,也就是当圆波导中传输主模分别为TE11时和TM01时,对应的截止波长,圆波导的直径可根据以下公式进行推导:λc=3.412*D/2,λc=2.61*D/2,其中,λc为截止波长;D为圆波导的直径,也就是本实施例中塑料杆1的外径,塑料杆1的外径应控制在偏差小于±0.05mm、椭圆率为0.001、直度每米不大于3mm。当然,在实际应用中,对于圆波导而言,其波导信号的传输和还需要区分圆波导的等效介电常数εg大于等于和小于1这两种情形,而εg由芯层11的介电常数、波导工作频率、波导截止波长等参数决定。因此,要确定圆波导的外径尺寸,需同时考虑塑料杆内芯层11的等效介电常数、波导管的工作辐射模式、工作频率、波导截止波长、用于信号的槽孔大小和周期等等。在本实施例中,护套层4为聚烯烃,但不限于此,也可以是阻燃聚烯烃、聚氟乙烯等材质,只要能够保护电缆不受机械损伤的目的,同时在需要时具有阻燃功能即可。As shown in FIG. 1 to FIG. 3 , in this embodiment, the
如图1至图3所示,在本实施例中,通过外导体2的两边缘重叠并且搭接在所述塑料杆上形成金属脊线3,金属脊线3的形状可以是矩形、圆形等,该金属脊线3的最大尺寸可以在小于圆波导半径的范围内变化,在本实施例中,金属脊线3的宽度范围为0.5mm~3mm。当圆形波导内不存在金属脊线3时,圆波导的边界条件旋转对称,TE11波型电场极化面偏转任意角度时的场分布都是麦克斯韦方程组在满足相同边界条件下的解。波导内部的电场随着金属脊线3宽度的增大而增大,并且随着金属脊线3宽度的增加,更多的能量将被集中在金属脊线3周围,金属脊线3的加入使得边界条件不再具有旋转对称性,从而改善圆波导的极化偏转问题。但是,金属脊线3的宽度也不能过大,金属脊线3宽度过大将会影响圆波导内部的场分布,进而影响信号的传输。金属脊线3宽度的不同可以影响圆波导内部电磁场的分布,进而增大传输损耗。因此,本实施例中,将金属脊线3的宽度范围设定在0.5mm~3mm之间,在能够改善圆波导极化偏转问题的同时,也不会对信号传输产生很大的影响,是根据圆波导管的外径及传输信号的频率进行地合理设计。As shown in FIG. 1 to FIG. 3 , in this embodiment, a
如图4所示,本发明还提供了毫米波用的圆波导传输线的制造方法,包括以下步骤:As shown in Figure 4, the present invention also provides the manufacture method of the circular waveguide transmission line that millimeter wave is used, comprises the following steps:
S1:利用双层挤塑机将塑料杆挤出成型,得到的所述塑料杆包括芯层及外皮层,所述芯层是在挤塑过程中通过注入氮气或二氧化碳气体的方式进行物理发泡处理,所述外皮层未经发泡处理,且均匀地包裹住所述芯层;S1: The plastic rod is extruded by a double-layer extruder, and the obtained plastic rod includes a core layer and an outer skin layer, and the core layer is physically foamed by injecting nitrogen or carbon dioxide gas during the extrusion process. treatment, the outer skin layer is not foamed, and evenly wraps the core layer;
S2:在所述塑料杆外侧涂覆化学药剂,并将外导体以纵包的方式通过化学药剂粘附在塑料杆外表面,在粘附过程中,所述外导体的两边缘重叠并且搭接在所述塑料杆上形成金属脊线;S2: Coating chemical agents on the outside of the plastic rod, and adhering the outer conductor to the outer surface of the plastic rod through the chemical agent in a longitudinally wrapping manner. During the adhesion process, the two edges of the outer conductor overlap and overlap. forming metal ridges on the plastic rod;
S3:通过负压抽气工艺,将熔融的护套层材料通过挤塑机后,可以紧密包覆在所述外导体上,以将所述外导体收紧固定在所述塑料杆上。S3: After passing the molten sheath layer material through the extruder, it can be tightly wrapped on the outer conductor through a negative pressure air extraction process, so as to tighten and fix the outer conductor on the plastic rod.
需要说明的是,步骤S1中芯层通过注入氮气或二氧化碳气体的方式进行物理发泡处理,为了使得芯层发泡出的泡孔具有均匀性和一致性,发泡度(指芯层中气体与材料之间的体积比)需达75%以上,芯层选用发泡的低密度聚烯烃材料,外皮层选用未发泡的低密度聚烯烃材料,芯层与外皮层所用材料的介电常数均小于2.25F/m且性能相近。芯层采用发泡结构可以有效降低材料的介电常数,降低圆波导中高频电磁信号的衰减。氮气为非极性气体,对高频电磁信号影响较小,而二氧化碳气体在注入过程中可以工作在超临界流体状态,提高材料的发泡程度。保证泡孔的均匀性和一致性可以改善圆波导内部电磁波信号传输的稳定性,降低对信号电压驻波比性能的影响。同时,可以防止长期工作中外界潮气入侵传输线,从而影响所述毫米波用的圆波导传输线的传输性能。步骤S2中外导体选用单层铜塑复合膜,将铜塑复合膜的铜层面向内,以纵包的方式粘附在塑料杆外表面上。在纵包粘附铜塑复合膜时,需要将铜塑复合膜的两边缘重叠搭接在塑料杆上,且重叠搭接部分的宽度为0.5mm~3mm。金属脊线的引入可以改善圆波导工程化应用中的圆波导极化偏转问题。当圆波导为圆形对称结构时,其内部结构存在细微的不均匀性,主模TE11场结构的极化面将发生旋转,影响信号传输。而传统工艺生产的圆波导很难彻底消除生产、运输、敷设和使用过程中产生的各种结构不均匀。本方法在铜塑复合膜纵包工序时,将复合膜的两边缘搭接,形成沿波导管长度方向的金属脊线,金属脊破坏了圆波导边界条件的旋转对称性,使得波导内场结构的极化方向具有唯一性,波导内场结构的极化方向保持不变,从而使圆波导用于长距离传输具有了实用性。It should be noted that, in step S1, the core layer is subjected to physical foaming treatment by injecting nitrogen gas or carbon dioxide gas. The volume ratio between the All are less than 2.25F/m and have similar performance. The core layer adopts a foamed structure, which can effectively reduce the dielectric constant of the material and reduce the attenuation of high-frequency electromagnetic signals in the circular waveguide. Nitrogen is a non-polar gas and has little effect on high-frequency electromagnetic signals, while carbon dioxide gas can work in a supercritical fluid state during the injection process to improve the foaming degree of the material. Ensuring the uniformity and consistency of the cells can improve the stability of the electromagnetic wave signal transmission inside the circular waveguide and reduce the influence on the performance of the signal VSWR. At the same time, outside moisture can be prevented from invading the transmission line during long-term operation, thereby affecting the transmission performance of the circular waveguide transmission line for millimeter waves. In step S2, a single-layer copper-plastic composite film is selected for the outer conductor, and the copper layer of the copper-plastic composite film is turned inward, and is adhered to the outer surface of the plastic rod in a longitudinally wrapping manner. When the copper-plastic composite film is adhered to the vertical wrap, the two edges of the copper-plastic composite film need to be overlapped and overlapped on the plastic rod, and the width of the overlapped part is 0.5mm to 3mm. The introduction of metal ridges can improve circular waveguide polarization deflection in circular waveguide engineering applications. When the circular waveguide is a circularly symmetric structure, there is a slight inhomogeneity in its internal structure, and the polarization plane of the main mode TE 11 field structure will rotate, affecting the signal transmission. However, it is difficult to completely eliminate various structural inhomogeneities during production, transportation, laying and use of circular waveguides produced by traditional processes. In this method, during the longitudinal wrapping process of the copper-plastic composite film, the two edges of the composite film are overlapped to form a metal ridge line along the length of the waveguide. The polarization direction of the circular waveguide is unique, and the polarization direction of the inner field structure of the waveguide remains unchanged, which makes the circular waveguide practical for long-distance transmission.
综上所述,本发明提供了一种毫米波用的圆波导传输线及其制造方法,将铜塑复合膜作为圆波导的外导体,替代了传统的全金属铜(铝)管不断拉拔,分段定型的工艺,可以实现圆波导连续、大长度生产,同时极大减少了材料的消耗,降低了生产成本。In summary, the present invention provides a circular waveguide transmission line for millimeter waves and a manufacturing method thereof. The copper-plastic composite film is used as the outer conductor of the circular waveguide instead of the traditional all-metal copper (aluminum) tube for continuous drawing. The segmented shaping process can realize continuous and large-length production of circular waveguides, and at the same time greatly reduce material consumption and production costs.
本发明通过将外导体的两边缘重叠搭接形成金属脊线,可以改善圆波导工程化应用中的极化偏转问题,当圆波导为圆形对称结构时,当其内部结构存在细微的不均匀性,影响信号传输。而传统工艺生产的圆波导很难彻底消除生产、运输、敷设和使用过程中产生的各种结构不均匀。而金属脊线可以破坏圆波导边界条件的旋转对称性,实现波导内电磁场结构的极化方向具有唯一性,波导内电磁场结构的极化方向保持不变,从而使圆波导用于长距离传输具有了实用性。The invention can improve the polarization deflection problem in the engineering application of the circular waveguide by overlapping the two edges of the outer conductor to form a metal ridge line. sex, affecting signal transmission. However, it is difficult to completely eliminate various structural inhomogeneities during production, transportation, laying and use of circular waveguides produced by traditional processes. The metal ridge line can destroy the rotational symmetry of the boundary conditions of the circular waveguide, so that the polarization direction of the electromagnetic field structure in the waveguide is unique, and the polarization direction of the electromagnetic field structure in the waveguide remains unchanged. practicality.
本发明将塑料杆作为圆波导的内衬层,可以防止外界潮气侵入波导管内,提高波导电气性能,同时,塑料杆相对于传统的全金属铜(铝)空管漏缆波导,更具有弹性和可恢复性,可以防止运输或施工布放过程中的损坏。In the invention, the plastic rod is used as the inner lining of the circular waveguide, which can prevent external moisture from invading the waveguide and improve the electrical performance of the waveguide. Recoverability prevents damage during transportation or construction deployment.
本发明塑料杆采用物理发泡后的低密度聚烯烃材料,可以减小对圆波导在通信高频下传输性能的影响,外皮层可以进一步防止潮气侵入圆波导中。The plastic rod of the invention adopts the low-density polyolefin material after physical foaming, which can reduce the influence on the transmission performance of the circular waveguide at high communication frequencies, and the outer skin layer can further prevent moisture from invading the circular waveguide.
本发明提供的圆波导传输线弯曲性能优于传统的全金属铜(或铝)空管漏缆波导,并且具有减少材料用料、减轻传输线重量、降低成本、方便布放施工等优点。The bending performance of the circular waveguide transmission line provided by the invention is better than that of the traditional all-metal copper (or aluminum) empty tube leaky cable waveguide, and has the advantages of reduced material consumption, lightened transmission line weight, reduced cost, and convenient deployment and construction.
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。The above-disclosed preferred embodiments of the present invention are provided only to help illustrate the present invention. The preferred embodiments do not exhaust all the details, nor do they limit the invention to only the described embodiments. Obviously, many modifications and variations are possible in light of the content of this specification. The present specification selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present invention, so that those skilled in the art can well understand and utilize the present invention. The present invention is to be limited only by the claims and their full scope and equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011619786.7A CN114696053A (en) | 2020-12-31 | 2020-12-31 | Circular waveguide transmission line for millimeter wave and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011619786.7A CN114696053A (en) | 2020-12-31 | 2020-12-31 | Circular waveguide transmission line for millimeter wave and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114696053A true CN114696053A (en) | 2022-07-01 |
Family
ID=82134384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011619786.7A Pending CN114696053A (en) | 2020-12-31 | 2020-12-31 | Circular waveguide transmission line for millimeter wave and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114696053A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101005150A (en) * | 2006-01-20 | 2007-07-25 | 阿尔卡特朗讯 | Radio frequency waveguide |
CN101496225A (en) * | 2005-09-19 | 2009-07-29 | 查尔斯·D·贝克尔 | Waveguide based wireless distribution system and method of operation |
CN202275609U (en) * | 2011-10-19 | 2012-06-13 | 江苏俊知技术有限公司 | Coaxial-cable with novel structure |
CN214124080U (en) * | 2020-12-31 | 2021-09-03 | 江苏俊知技术有限公司 | Circular waveguide transmission line with metal ridge line |
-
2020
- 2020-12-31 CN CN202011619786.7A patent/CN114696053A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101496225A (en) * | 2005-09-19 | 2009-07-29 | 查尔斯·D·贝克尔 | Waveguide based wireless distribution system and method of operation |
CN101005150A (en) * | 2006-01-20 | 2007-07-25 | 阿尔卡特朗讯 | Radio frequency waveguide |
CN202275609U (en) * | 2011-10-19 | 2012-06-13 | 江苏俊知技术有限公司 | Coaxial-cable with novel structure |
CN214124080U (en) * | 2020-12-31 | 2021-09-03 | 江苏俊知技术有限公司 | Circular waveguide transmission line with metal ridge line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015145537A1 (en) | Transmission line | |
US20190207290A1 (en) | Co-extrusion of multi-material sets for millimeter-wave waveguide fabrication | |
CN201741784U (en) | Super flexible low-loss stable-phase radio-frequency cable | |
CN204464430U (en) | A Lightweight RF Coaxial Cable | |
KR20180094066A (en) | Dielectric waveguide | |
US9209510B2 (en) | Corrugated stripline RF transmission cable | |
US20190198961A1 (en) | Methods for conductively coating millimeter waveguides | |
US20190173149A1 (en) | Millimeter-wave holey waveguides and multi-material waveguides | |
CN111029698B (en) | Leaky coaxial cable for 5G signal transmission | |
CN110336109B (en) | Composite copper layer polyvinyl chloride leaky waveguide feeder and manufacturing method thereof | |
CN214124080U (en) | Circular waveguide transmission line with metal ridge line | |
CN114696053A (en) | Circular waveguide transmission line for millimeter wave and method for manufacturing the same | |
CN214124127U (en) | Novel leaky circular waveguide component | |
CN111145947A (en) | Aviation airborne coaxial cable and preparation method thereof | |
CN104143391A (en) | High-mechanical-phase stabilization type phase-stabilizing cable and production method thereof | |
CN203366796U (en) | Low loss coaxial cable | |
CN211929073U (en) | Aviation airborne coaxial cable | |
CN214124130U (en) | Dielectric-filled leaky circular waveguide transmission line | |
US20130037320A1 (en) | Hybrid Stripline RF Coaxial Cable | |
CN103943256A (en) | Constant-temperature cable with controllable temperature | |
WO2013025515A2 (en) | Multi-conductor stripline rf transmission cable | |
US20130038410A1 (en) | Thermally Conductive Stripline RF Transmission Cable | |
CN110675978A (en) | A microwave low-loss phase-stable cable | |
CN210092308U (en) | Polyvinyl chloride waveguide feeder with composite copper layer | |
CN114696105B (en) | Leaky circular waveguide transmission line with novel structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |