Nothing Special   »   [go: up one dir, main page]

CN114621728A - 一种耐高温宽频吸波结构复合材料及其制备方法 - Google Patents

一种耐高温宽频吸波结构复合材料及其制备方法 Download PDF

Info

Publication number
CN114621728A
CN114621728A CN202011435806.5A CN202011435806A CN114621728A CN 114621728 A CN114621728 A CN 114621728A CN 202011435806 A CN202011435806 A CN 202011435806A CN 114621728 A CN114621728 A CN 114621728A
Authority
CN
China
Prior art keywords
composite material
wave
layer
absorbing
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011435806.5A
Other languages
English (en)
Inventor
陈照峰
肖七巧
尚磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202011435806.5A priority Critical patent/CN114621728A/zh
Publication of CN114621728A publication Critical patent/CN114621728A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种耐高温宽频吸波结构复合材料,包括复合材料介质层和周期性结构层,复合材料介质层由混编纤维预制体增强陶瓷基复合材料组成,由外至内为透波层、损耗层,周期性结构层为金属复合材料。该复合材料的制备方法包括:纤维预制体制备、界面制备、基体制备、周期性结构层制备。得到的复合材料有效实现对电磁波的宽频吸收,且由于整体性明显提高,结构强度得到明显的提升,同时由于材料特性,耐热性等物理性能优异。由于具有高阻抗表面,该耐高温宽频吸波结构复合材料可通过不同的周期性结构,可实现对不同频率的电磁波的选择性吸收,具有优异的调谐能力。

Description

一种耐高温宽频吸波结构复合材料及其制备方法
技术领域
本发明涉及吸波材料,尤其涉及一种耐高温宽频吸波结构复合材料及其制备方法。
背景技术
吸波材料通过将电磁波转化为热能或其它形式的能量而减少反射回波,在军用和民用领域的需求日益增长。吸波材料通常分为涂覆型吸波材料和结构型吸波材料,涂层吸波材料以铁氧体、金属粉、短切纤维等为吸收剂溶解于有机溶剂涂覆使用,但是由于厚度的限制,其吸波频带通常较窄,且在使用过程中容易剥落,性能稳定性较差。结构型吸波材料集结构承载与吸波于一体,通过材料内部的结构设计可有效实现对电磁波传输路径调控及吸波性能优化,同时通过材料的组合设计可实现耐温、耐热、耐候等物理性能。因此,研究结构型吸波材料对于实际应用具有重要意义。
在传统吸波材料的基础上,又出现了一类新材料——吸波超材料,它具有周期性亚波长结构,通过多种结构设计实现与电磁波的谐振作用以实现对电磁波的吸收。但是超材料由于结构材料特性,功能形式单一,承载与耐温等物理性能十分有限。
针对吸波性能要求,将多种结构形式进行复合制备吸波复合材料,能有效拓宽吸波频带提升吸波性能。
授权公告号为CN109664566B的中国发明专利公开了一种轻质宽频带多层结构吸波复合材料,包括三部分:面层、夹芯层和底板。面层包括石英纤维布和/或玻璃纤维布、吸波剂、锏锡掺杂吸波剂表面处理剂、分散剂、聚合物,夹芯层由吸波型PMI泡沫、吸波胶膜、聚合物、石英纤维布和/或玻璃纤维布组成,底层包括吸波剂、锏锡掺杂吸波剂表面处理剂、分散剂、聚合物和纤维布。该吸波复合材料具有吸收频带宽、低频性能好、面密度低和力学强度高等特点,提高吸波复合材料的承载性能和工程应用价值,可广泛应用于军事和民用等领域。
申请公布号为CN109526192A的中国发明专利公开了一种吸波复合材料。该吸波复合材料的结构从表层到里层依次为:电介质层、磁介质层、反射层,其中电介质层可以通过吸收电介质的浓度变化进行结构设计;电介质层包括电介质吸收剂、树脂、纤维布;磁介质层包括磁介质吸收剂、树脂和纤维布。该吸波复合材料的过程包括:制备吸波树脂胶料;制备吸波胶膜;制备吸波预浸料;制备吸波复合材料。该吸波复合材料以树脂为基体,从一定程度上减轻了吸波复合材料的重量,提高了吸波复合材料的宽频吸波性能。
申请公告号为CN109994839A的中国发明专利公开了一种三维超材料吸波体,该三维超材料吸波体包括:反射层、吸波层。吸波层设置在反射层的顶部表面的上方;多个超材料单元阵列层,多个超材料单元阵列层设置在吸波层上方,以及多个超材料单元阵列层和吸波层的接触边平行设置,每个超材料单元阵列层划分为多个相同的超材料单元,以及在每个超材料单元的面向同一方向的面上,附着有人造微结构。该利用吸波材料和人造微结构组成三维超材料吸波体,在实现良好的宽频吸收效果的基础上,还实现了良好的宽角吸收效果。
目前,吸波材料结构形式多为层状复合或者多层超材料复合,材料的整体性能较差,结构强度有待提高,同时性能较为单一,由于应用环境条件的恶劣化对吸波材料提出了更高的耐温耐候性的要求,而简单的层状树脂基复合材料或是超材料均无法保证宽频吸波的同时实现良好的结构强度与耐高温等性能。
发明内容
本发明的目的在于提出一种耐高温宽频吸波结构复合材料,由复合材料介质层和周期性结构层由外至内依次复合而成,所述复合材料介质层为纤维预制体增强陶瓷基复合材料,由外至内依次为透波层和损耗层,所述周期性结构层为金属复合材料。
进一步地,所述的周期性结构层经过刻蚀、电镀在复合材料下表面进行制备,其图案类型为圆形、环形、多边形中的一种或多种,圆形的直径为0.1~10mm,环形为圆环或方环,多边形的边数为3~20,采用的材料为金属及其合金,与电镀的金属层构成吸波反射的双重效果,厚度为0.1~2mm;
更进一步地,所述的介质层为三维立体织物增强陶瓷基复合材料,采用的透波层为石英纤维、高硅氧纤维、玻璃纤维、氧化铝纤维中的1~2种,损耗层为碳化硅纤维、碳纤维,上述各层纤维通过角联锁、针刺缝合或加纱引纱的方式形成三维整体结构,采用的层间连接纤维为石英纤维、高硅氧纤维、玻璃纤维或氧化铝纤维,采用的复合材料基体为碳化硅、二氧化硅、氮化硅、莫来石或者钡氧体陶瓷,基体中含有吸波剂,采用的吸波剂为碳化硅纳米线、石墨烯、碳纳米管、炭黑、羰基铁、碳硅钛、四氧化三铁、金属钴及其衍生物、金属镍及其衍生物,采用的界面为氮化硼、石墨烯、热解碳、碳化硅和氧化物界面。
一种耐高温宽频吸波结构复合材料的制备方法,其特征在于包括以下顺序的步骤:
步骤1,选择不同的纤维层间组合制备纤维预制体,织物各层的组织优先为平纹或者2/2斜纹;
步骤2,在真空或惰性气氛下300~1000℃对纤维预制体进行处理;
步骤3,通过化学气相沉积或者浸渍-热解对纤维预制体制备界面;
步骤4,通过浸渍-热解法对具有界面的纤维预制体制备基体得到复合材料介质层,在第二个浸渍热解周期中,使用加入吸波剂的先驱体,吸波剂的质量分数为0.1%~20%;
步骤5,加工复合材料介质层的表面,根据吸波性能需求选定周期性结构类型;
步骤6,针对已经选定的周期性结构,采用刻蚀、电镀超结构表面,得到耐高温宽频吸波结构复合材料。
与现有材料及技术相比,本发明具有如下有益效果:(1)有效实现对电磁波的吸收,吸收能力强,吸波频带宽;(2)吸波材料的整体性明显提高,承受载荷能力大大得到改善;(3)通过选择高阻抗表面的周期性结构,可实现对不同频率的电磁波的选择性吸收,调谐能力优异;(4)通过材料体系的选择可实现吸波与结构强度、耐热性能兼备,大大提高吸波材料的应用价值;(5)材料制备过程的可重复性与操作性高,有利于耐高温宽频吸波结构复合材料的批量化生产。
附图说明
图1是本发明实施例1提供的一种周期性结构示意图。
图2是本发明实施例2提供的一种周期性结构示意图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
实施例1
一种耐高温宽频吸波结构复合材料,由复合材料介质层和周期性结构层由外至内依次复合而成,所述复合材料介质层为纤维预制体增强陶瓷基复合材料,由外至内依次为透波层和损耗层,所述周期性结构层为金属复合材料。
进一步地,所述的周期性结构层经过刻蚀、电镀在复合材料下表面进行制备,其图案类型为圆形,圆形的直径为6mm,采用的材料为金属铝,与电镀的金属层构成吸波反射的双重效果,厚度为0.5mm,参见图1。
更进一步地,所述的介质层为三维立体织物增强陶瓷基复合材料,采用的透波层为石英纤维,损耗层为碳化硅纤维,上述各层纤维通过角联锁的方式形成三维整体结构,采用的层间连接纤维为高硅氧纤维,采用的复合材料基体为碳化硅,基体中含有吸波剂,采用的吸波剂为石墨烯,采用的界面为氮化硼。
一种耐高温宽频吸波结构复合材料的制备方法,其特征在于包括以下顺序的步骤:
步骤1,纤维预制体的表层至里层依次为石英纤维和碳化硅纤维,表层玻璃纤维为平纹组织,碳化硅纤维为2/2斜纹组织,经由角联锁将编织得到纤维预制体;
步骤2,在真空下800℃对纤维预制体进行处理,升温速率5℃/min,保温时间1小时;
步骤3,通过浸渍-热解对纤维预制体制备氮化硼界面,采用硼酸和尿素的无水乙醇/去离子水溶液为先驱体溶液,溶剂中无水乙醇、去离子水的体积比为2∶1,硼酸、尿素的摩尔分数分别为0.17mol/L、2.0mol/L,浸渍后1000℃热解制备氮化硼界面。
步骤4,以聚碳硅烷为先驱体,二甲苯为溶剂,两者质量比为1∶1,通过浸渍-热解法对具有界面的纤维预制体制备碳化硅基体,且在第二个浸渍热解周期中,在先驱体溶液中加入石墨烯,吸波剂的质量分数为1%,重复浸渍-热解过程制备基体直至增重<1%,得到复合材料介质层;
步骤5,加工复合材料介质层的表面,根据吸波性能需求选定直径为6mm的圆形周期性结构类型;
步骤6,针对已经选定的周期性结构,采用刻蚀、电镀周期性结构层,得到耐高温宽频吸波结构复合材料。
得到的上述耐高温宽频吸波结构复合材料可在7.29~18GHz频段内实现对电磁波的有效吸收,最低反射损耗值可达-23.5dB,弯曲性能可达290MPa,耐温800℃。
实施例2
一种耐高温宽频吸波结构复合材料,由复合材料介质层和周期性结构层由外至内依次复合而成,所述复合材料介质层为纤维预制体增强陶瓷基复合材料,由外至内依次为透波层和损耗层,所述周期性结构层为金属复合材料。
进一步地,所述的周期性结构层经过刻蚀、电镀在复合材料下表面进行制备,其图案类型为边数为12的十字形,采用的材料为金属镍,与电镀的金属层构成吸波反射的双重效果,厚度为0.5mm,参见图2;
更进一步地,所述的介质层为三维立体织物增强陶瓷基复合材料,采用的透波层为氧化铝纤维,损耗层为碳纤维,碳纤维的电阻率为0.1Ω·m,上述各层纤维通过针刺缝合形成三维整体结构,采用的层间连接纤维为石英纤维,采用的复合材料基体为二氧化硅,基体中含有碳纳米管吸波剂,采用的界面为热解碳。
一种耐高温宽频吸波结构复合材料的制备方法,其特征在于包括以下顺序的步骤:
步骤1,从表层至里层各层纤维依次为石英纤维、碳纤维,石英纤维为平纹组织,碳纤维为2/2斜纹组织,经由针刺缝合制备得到纤维预制体;
步骤2,在真空下900℃保温1小时对纤维预制体进行除胶处理;
步骤3,以丙烯为源气,氢气为载气,通过化学气相沉积对纤维预制体制备热解碳界面,沉积温度为1000℃,沉积时间为8h;
步骤4,以硅溶胶为先驱体,外加压力0.5MPa进行真空浸渍,在90℃保温12小时脱水凝胶化,750℃保温2小时进行热处理,对具有界面的纤维预制体制备二氧化硅基体,且在第二个浸渍热解周期中,使用加入石墨烯作为吸波剂的先驱体,吸波剂的质量分数为2%,得到复合材料介质层;
步骤5,加工复合材料介质层的表面,根据吸波性能需求选定超结构类型为十字形;
步骤6,针对已经选定的周期性结构,采用刻蚀制备周期性结构并电镀金属表层,得到耐高温宽频吸波结构复合材料。
得到的上述耐高温宽频吸波结构复合材可在6.93~18GHz频段内实现对电磁波的有效吸收,最低反射损耗值可达-25.8dB,弯曲性能可达250MPa,耐温1200℃。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (4)

1.一种耐高温宽频吸波结构复合材料,由复合材料介质层和周期性结构层由外至内依次复合而成,所述复合材料介质层为纤维预制体增强陶瓷基复合材料,由外至内依次为透波层和损耗层,所述周期性结构层为金属复合材料。
2.根据权利要求1所述的耐高温结构吸波复合材料,其特征在于所述的周期性结构层经过刻蚀、电镀在复合材料下表面进行制备,其图案类型为圆形、环形、多边形中的一种或多种,圆形的直径为0.1~10mm,环形为圆环或方环,多边形的边数为3~20,采用的材料为金属及其合金,与电镀的金属层构成吸波反射的双重效果,厚度为0.1~2mm。
3.根据权利要求1所述的耐高温结构吸波复合材料,其特征在于所述的介质层为三维立体织物增强陶瓷基复合材料,采用的透波层为石英纤维、高硅氧纤维、玻璃纤维、氧化铝纤维中的1~2种,损耗层为碳化硅纤维、碳纤维,上述各层纤维通过角联锁、针刺缝合或加纱引纱的方式形成三维整体结构,采用的层间连接纤维为石英纤维、高硅氧纤维、玻璃纤维或氧化铝纤维,采用的复合材料基体为碳化硅、二氧化硅、氮化硅、莫来石或者钡氧体陶瓷,基体中含有吸波剂,采用的吸波剂为碳化硅纳米线、石墨烯、碳纳米管、炭黑、羰基铁、碳硅钛、四氧化三铁、金属钴及其衍生物、金属镍及其衍生物,采用的界面为氮化硼、石墨烯、热解碳、碳化硅和氧化物界面。
4.一种耐高温宽频吸波结构复合材料的制备方法,其特征在于包括以下顺序的步骤:
步骤1,选择不同的纤维层间组合制备纤维预制体,织物各层的组织优先为平纹或者2/2斜纹;
步骤2,在真空或惰性气氛下300~1000℃对纤维预制体进行处理;
步骤3,通过化学气相沉积或者浸渍-热解对纤维预制体制备界面;
步骤4,通过浸渍-热解法对具有界面的纤维预制体制备基体得到复合材料介质层,在第二个浸渍热解周期中,使用加入吸波剂的先驱体,吸波剂的质量分数为0.1%~20%;
步骤5,加工复合材料介质层的表面,根据吸波性能需求选定周期性结构类型;
步骤6,针对已经选定的周期性结构,采用刻蚀、电镀超结构表面,得到耐高温宽频吸波结构复合材料。
CN202011435806.5A 2020-12-10 2020-12-10 一种耐高温宽频吸波结构复合材料及其制备方法 Pending CN114621728A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011435806.5A CN114621728A (zh) 2020-12-10 2020-12-10 一种耐高温宽频吸波结构复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011435806.5A CN114621728A (zh) 2020-12-10 2020-12-10 一种耐高温宽频吸波结构复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114621728A true CN114621728A (zh) 2022-06-14

Family

ID=81895507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011435806.5A Pending CN114621728A (zh) 2020-12-10 2020-12-10 一种耐高温宽频吸波结构复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114621728A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716750A (zh) * 2022-11-24 2023-02-28 西北工业大学 基底诱导化学气相沉积吸波SiC陶瓷的制备方法
CN116515334A (zh) * 2023-05-16 2023-08-01 中国人民解放军92228部队 一种梯度吸波涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180695A (zh) * 2011-03-04 2011-09-14 中国人民解放军国防科学技术大学 碳化硅复合材料的吸波陶瓷及其制备方法
CN103715513A (zh) * 2014-01-17 2014-04-09 中国科学院光电技术研究所 一种基于亚波长金属结构的宽频吸波材料
CN106007804A (zh) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 一种耐高温高阻抗表面雷达吸波材料及其制备方法
CN106042515A (zh) * 2016-05-18 2016-10-26 中国人民解放军国防科学技术大学 一种夹层结构的耐高温雷达吸波材料及其制备方法
CN109020588A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN109677038A (zh) * 2018-12-04 2019-04-26 北京机电工程研究所 一种兼容耐温性能与力学性能的超宽频吸波结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180695A (zh) * 2011-03-04 2011-09-14 中国人民解放军国防科学技术大学 碳化硅复合材料的吸波陶瓷及其制备方法
CN103715513A (zh) * 2014-01-17 2014-04-09 中国科学院光电技术研究所 一种基于亚波长金属结构的宽频吸波材料
CN106007804A (zh) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 一种耐高温高阻抗表面雷达吸波材料及其制备方法
CN106042515A (zh) * 2016-05-18 2016-10-26 中国人民解放军国防科学技术大学 一种夹层结构的耐高温雷达吸波材料及其制备方法
CN109020588A (zh) * 2018-07-30 2018-12-18 西北工业大学 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN109677038A (zh) * 2018-12-04 2019-04-26 北京机电工程研究所 一种兼容耐温性能与力学性能的超宽频吸波结构及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716750A (zh) * 2022-11-24 2023-02-28 西北工业大学 基底诱导化学气相沉积吸波SiC陶瓷的制备方法
CN115716750B (zh) * 2022-11-24 2023-11-10 西北工业大学 基底诱导化学气相沉积吸波SiC陶瓷的制备方法
CN116515334A (zh) * 2023-05-16 2023-08-01 中国人民解放军92228部队 一种梯度吸波涂层及其制备方法

Similar Documents

Publication Publication Date Title
Xu et al. High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism
He et al. High-performance multifunctional carbon–silicon carbide composites with strengthened reduced graphene oxide
Zhang et al. Flexible carbon fiber-based composites for electromagnetic interference shielding
CN111592371B (zh) 一种钛硅碳界面改性SiCf/SiC吸波复合材料及其制备方法
CN113524820A (zh) 一种吸波复合材料及其制备方法
Fu et al. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design
CN114621728A (zh) 一种耐高温宽频吸波结构复合材料及其制备方法
CN113046718B (zh) 一种碳化硅纳米隔热吸波复合材料及其制备方法
CN103922776B (zh) 碳化硅纤维增强碳化硅复合材料吸波陶瓷及其制备方法
CN107804470B (zh) 一种兼容雷达隐身与红外隐身的耐高温进气道及其制备方法
Han et al. Carbon microtube/NiCo carbonate hydride nanoneedle composite foams for broadband electromagnetic interference shielding
CN114716258B (zh) 一种碳纤维增强碳化硼复合材料的制备方法
Ye et al. Facile synthesis of a strong Ni-based composite electromagnetic microwave absorber
CN108395267A (zh) 具有电磁功能的SiC纤维增韧SiBCN陶瓷基复合材料及制备方法
CN114619724A (zh) 一种耐高温结构吸波复合材料及其制备方法
CN115745647B (zh) 一种陶瓷基复合材料吸波蜂窝的制备方法
CN114734698B (zh) 一种高性能结构吸波体及其制备方法
CN101817971B (zh) 一种碳微米管环氧树脂吸波复合材料及其制备方法
CN113978064A (zh) 一种混杂结构吸波复合材料及其制备方法
CN116512686A (zh) 多夹层透波-吸波-反射结构一体化复合材料及制备方法
CN115594945A (zh) 一种结构/电磁屏蔽一体化混杂复合材料的制备方法
CN113696567A (zh) 耐高温宽频吸波/承载复合材料及其制备方法
CN114619718A (zh) 一种宽频吸波复合材料及其制备方法
CN116217253A (zh) 一种阻抗渐变层状梯度复合气凝胶及其制备方法和应用
CN117344436A (zh) 一种一体化编织高温宽频隐身格栅结构吸波材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220614

WD01 Invention patent application deemed withdrawn after publication