Nothing Special   »   [go: up one dir, main page]

CN114621307A - An oligonucleotide spatial coordinate encoding method and its microfluidic device - Google Patents

An oligonucleotide spatial coordinate encoding method and its microfluidic device Download PDF

Info

Publication number
CN114621307A
CN114621307A CN202210383346.9A CN202210383346A CN114621307A CN 114621307 A CN114621307 A CN 114621307A CN 202210383346 A CN202210383346 A CN 202210383346A CN 114621307 A CN114621307 A CN 114621307A
Authority
CN
China
Prior art keywords
sample
oligonucleotide
microfluidic
flow channel
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210383346.9A
Other languages
Chinese (zh)
Other versions
CN114621307B (en
Inventor
李传宇
周连群
李金泽
张威
李莹雪
徐绮
张芷齐
姚佳
郭振
李超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Biomedical Engineering and Technology of CAS
Original Assignee
Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Biomedical Engineering and Technology of CAS filed Critical Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority to CN202210383346.9A priority Critical patent/CN114621307B/en
Publication of CN114621307A publication Critical patent/CN114621307A/en
Application granted granted Critical
Publication of CN114621307B publication Critical patent/CN114621307B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The invention relates to an oligonucleotide space coordinate encoding method and a microfluidic device thereof, belonging to the technical field of molecular biology. The invention provides an oligonucleotide space coordinate coding method, presetting the oligonucleotide full sequence to be coded as being formed by connecting n + i sections of oligonucleotide sequence segments, and synthesizing n groups of different oligonucleotide sequence segments X and i groups of different oligonucleotide sequence segments Y according to the presetting; setting an oligonucleotide synthesis array formed by orthogonally setting an X flow channel and a Y flow channel, so that a coding region for connecting oligonucleotide sequence fragments is formed at the intersection of the X flow channel and the Y flow channel; and respectively applying the oligonucleotide sequence fragment X and the oligonucleotide sequence fragment Y to each X flow channel and each Y flow channel of the oligonucleotide synthesis array by wheel pair so as to gradually connect the oligonucleotide sequence fragment X and the oligonucleotide sequence fragment Y in the coding region to obtain the oligonucleotide complete sequence to be coded. The method greatly reduces the synthesis cost of the oligonucleotide.

Description

一种寡核苷酸空间坐标编码方法及其微流控装置An oligonucleotide spatial coordinate encoding method and its microfluidic device

技术领域technical field

本发明涉及一种寡核苷酸空间坐标编码方法及其微流控装置,属于分子生物学技术领域。The invention relates to an oligonucleotide space coordinate encoding method and a microfluidic device thereof, belonging to the technical field of molecular biology.

背景技术Background technique

组织中细胞空间生物信息解析对肿瘤学、免疫学、神经科学、遗传发育、病理学等学科至关重要。例如,肿瘤学中的肿瘤异质性、肿瘤微环境、肿瘤转移;遗传发育中的胚胎发育、器官发育图谱、神经科学中的大脑各个细胞层、大脑正常和异常部分解剖特征。空间生物信息解析可借助空间编码,即在二维空间的每个点上构建独特编码,通过编码对待测样本进行标记,再通过解码实现空间生物信息解析。Spatial bioinformatics analysis of cells in tissues is crucial to disciplines such as oncology, immunology, neuroscience, genetic development, and pathology. For example, tumor heterogeneity in oncology, tumor microenvironment, tumor metastasis; embryonic development in genetic development, atlas of organ development, individual cell layers of the brain in neuroscience, anatomical features of normal and abnormal parts of the brain. Spatial biological information analysis can use spatial coding, that is, construct a unique code on each point in the two-dimensional space, mark the sample to be tested by coding, and then realize spatial biological information analysis by decoding.

寡核苷酸(Oligo)由携带ATCG四种碱基的核苷酸连接而成,通过碱基的排列顺序组合可以实现多至4n种编码组合,可以用于空间编码。目前,得益于DNA人工合成技术的进步,高通量、低成本的寡核苷酸体外合成已经实现。然而,在二维空间上构建已知序列的寡核苷酸阵列仍具有技术难度。现阶段,在二维空间上构建已知序列寡核苷酸阵列的主要策略及其存在的缺陷如下:Oligonucleotides (Oligo) are formed by connecting nucleotides carrying four ATCG bases. Up to 4 n coding combinations can be achieved through the sequence combination of bases, which can be used for spatial coding. At present, thanks to the advancement of DNA artificial synthesis technology, high-throughput and low-cost oligonucleotide synthesis in vitro has been achieved. However, it is still technically difficult to construct oligonucleotide arrays of known sequences in two-dimensional space. At this stage, the main strategies for constructing oligonucleotide arrays with known sequences in two-dimensional space and their defects are as follows:

1、先合成后固定:即先合成大量的已知序列的寡核苷酸片段,再根据需要的空间排布依次通过点样将已知序列的寡核苷酸片段引入基底目标位置,再连接固定形成寡核苷酸阵列;此种方法受限于点样液滴的尺寸,空间分辨率一般大于50微米,且随着编码点数量增加,成本显著增加;1. Synthesize first and then fix: that is, first synthesize a large number of oligonucleotide fragments of known sequence, and then sequentially introduce the oligonucleotide fragments of known sequence into the target position of the substrate by spotting according to the required spatial arrangement, and then connect Fixed formation of oligonucleotide arrays; this method is limited by the size of the spotting droplets, the spatial resolution is generally greater than 50 microns, and the cost increases significantly as the number of encoded spots increases;

2、原位合成:即在二维基底上原位化学合成所需寡核苷酸阵列;此种方法的关键技术是选择性的引入ATCG原料,可通过光刻、喷墨打印、活字印刷等技术实现,具有空间分辨率高(10~60微米)的优势,但是受限于DNA合成的化学反应效率,此种方法连接的编码长度受限(一般不超过20bp,极限长度为60bp),编码点内寡核苷酸的密度低、纯度低;2. In situ synthesis: that is, in situ chemical synthesis of the required oligonucleotide array on a two-dimensional substrate; the key technology of this method is to selectively introduce ATCG raw materials, which can be achieved by photolithography, inkjet printing, movable type printing, etc. The technical realization has the advantage of high spatial resolution (10-60 microns), but limited by the chemical reaction efficiency of DNA synthesis, the coding length of this method is limited (generally no more than 20 bp, and the limit length is 60 bp). Low density and low purity of oligonucleotides in the spot;

3、随机固定再测序:即先合成全部所需的编码序列,混合形成引物池,然后一次添加随机连接在二维基底上,再通过原位测序的方式读取编码信息,确定每个空间位置所连接的编码序列信息;此种方法虽然可以构建高空间分辨率、长编码序列的Oligo阵列,但是无论是前期引物池合成还是后续的测序都导致其成本居高不下难以批量制备。3. Random fixation and re-sequencing: that is, first synthesizing all the required coding sequences, mixing them to form a primer pool, then adding random connections to the two-dimensional substrate at one time, and then reading the coding information by in situ sequencing to determine each spatial position Connected coding sequence information; although this method can construct Oligo arrays with high spatial resolution and long coding sequences, both the synthesis of primer pools in the early stage and the subsequent sequencing lead to high cost and difficult to prepare in batches.

因此,亟需找到高空间分辨率、长编码序列、低成本的寡核苷酸合成技术,以在二维空间上构建已知序列的寡核苷酸阵列,进而推动空间编码技术的进一步发展。Therefore, it is urgent to find a high spatial resolution, long coding sequence, and low-cost oligonucleotide synthesis technology to construct oligonucleotide arrays with known sequences in two-dimensional space, thereby promoting the further development of spatial coding technology.

发明内容SUMMARY OF THE INVENTION

为解决上述问题,本发明提供了一种寡核苷酸空间坐标编码方法,所述方法包括如下步骤:In order to solve the above-mentioned problems, the present invention provides an oligonucleotide spatial coordinate encoding method, which comprises the following steps:

步骤一:预设需编码的寡核苷酸全序列为由n+i段寡核苷酸序列片段连接而成,并根据此预设,合成n组不同寡核苷酸序列片段X以及i组不同寡核苷酸序列片段Y;Step 1: The full sequence of the oligonucleotide to be encoded is preset to be composed of n+i segments of oligonucleotide sequence fragments, and according to this preset, n groups of different oligonucleotide sequence fragments X and i groups are synthesized Different oligonucleotide sequence fragment Y;

步骤二:设置由X流道和Y流道正交设置而成的寡核苷酸合成阵列,使得X流道和Y流道的交汇处形成供寡核苷酸序列片段连接的编码区域;Step 2: Setting up an oligonucleotide synthesis array formed by the orthogonal arrangement of the X flow channel and the Y flow channel, so that the intersection of the X flow channel and the Y flow channel forms a coding region for the connection of the oligonucleotide sequence fragments;

步骤三:逐轮对寡核苷酸合成阵列的每一个X流道和Y流道分别施加寡核苷酸序列片段X和寡核苷酸序列片段Y,使得寡核苷酸序列片段X和寡核苷酸序列片段Y在编码区域逐步连接,得到需编码的寡核苷酸全序列;Step 3: Apply oligonucleotide sequence fragment X and oligonucleotide sequence fragment Y to each X channel and Y channel of the oligonucleotide synthesis array round by round, so that oligonucleotide sequence fragment X and oligonucleotide sequence fragment X are The nucleotide sequence fragment Y is gradually connected in the coding region to obtain the full sequence of the oligonucleotide to be encoded;

其中,X流道的数量为n;Y流道的数量为i;逐轮施加寡核苷酸序列片段X和寡核苷酸序列片段Y时,在同一流道对编码区域施加相同的寡核苷酸序列片段,在不同流道对编码区域施加不同的寡核苷酸序列片段,使得每一轮可以编码多行。Among them, the number of X channels is n; the number of Y channels is i; when applying oligonucleotide sequence fragment X and oligonucleotide sequence fragment Y one by one, the same oligonucleotide is applied to the coding region in the same channel For nucleotide sequence fragments, different oligonucleotide sequence fragments are applied to the coding region in different channels, so that each round can encode multiple lines.

本发明还提供了一种用于寡核苷酸合成的微流控装置,所述微流控装置包括第一微流控芯片和第二微流控芯片;所述第一微流控芯片上设有若干X流道;所述第二微流控芯片上设有若干Y流道;所述X流道和Y流道正交设置;所述X流道和Y流道的交汇处形成编码区域。The present invention also provides a microfluidic device for oligonucleotide synthesis, the microfluidic device includes a first microfluidic chip and a second microfluidic chip; on the first microfluidic chip There are several X flow channels; several Y flow channels are arranged on the second microfluidic chip; the X flow channel and the Y flow channel are arranged orthogonally; the intersection of the X flow channel and the Y flow channel forms a code area.

在本发明的一种实施方式中,所述微流控装置包括第一微流控模块和第二微流控模块;所述第一微流控模块从下至上依次设有第一基底、第一编码芯片、第一微流控芯片、第一进样转接板和第一上固定板;所述第一微流控芯片上设有若干第一进样口和若干第一出样口;所述第一进样口成对设置,一对第一进样口之间通过X流道相连通;所述第一出样口成对设置,一对第一出样口之间通过X流道相连通;所述第一进样转接板上设有若干第一样本进口和若干第一样本出口;所述第一样本进口与第一进样口一一对应;所述第一样本出口与第一出样口一一对应;所述第一上固定板上设有若干第一开口;所述第一开口至少与一个第一样本进口或第一样本出口连通;所述第一开口上设有第一密封盖板;所述第二微流控模块从下至上依次设有第二基底、第二编码芯片、第二微流控芯片、第二进样转接板和第二上固定板;所述第二微流控芯片上设有若干第二进样口和若干第二出样口;所述第二进样口成对设置,一对第二进样口之间通过Y流道相连通;所述第二出样口成对设置,一对第二出样口之间通过Y流道相连通;所述第二进样转接板上设有若干第二样本进口和若干第二样本出口;所述第二样本进口与第二进样口一一对应;所述第二样本出口与第二出样口一一对应;所述第二上固定板上设有若干第二开口;所述第二开口至少与一个第二样本进口或第二样本出口连通;所述第二开口上设有第二密封盖板。In an embodiment of the present invention, the microfluidic device includes a first microfluidic module and a second microfluidic module; the first microfluidic module is sequentially provided with a first substrate, a second microfluidic module from bottom to top a coding chip, a first microfluidic chip, a first sample injection adapter plate and a first upper fixing plate; the first microfluidic chip is provided with several first sample inlets and several first sample outlets; The first sample inlets are arranged in pairs, and the pair of first inlets communicate with each other through the X flow channel; the first sample outlets are arranged in pairs, and the X flow between the pair of first sample outlets The first sample introduction adapter plate is provided with several first sample inlets and several first sample outlets; the first sample inlets are in one-to-one correspondence with the first sample inlets; A sample outlet is in one-to-one correspondence with the first sample outlet; the first upper fixing plate is provided with a plurality of first openings; the first openings communicate with at least one first sample inlet or first sample outlet; The first opening is provided with a first sealing cover plate; the second microfluidic module is sequentially provided with a second substrate, a second coding chip, a second microfluidic chip, and a second sample injection adapter from bottom to top plate and a second upper fixed plate; the second microfluidic chip is provided with a number of second injection ports and a number of second injection ports; the second injection ports are arranged in pairs, and a pair of second injection ports The ports are connected through the Y flow channel; the second sample outlets are arranged in pairs, and the pair of second sample outlets are connected through the Y flow channel; the second sample injection adapter plate is provided with several The second sample inlet and several second sample outlets; the second sample inlet corresponds to the second sample inlet one-to-one; the second sample outlet corresponds to the second sample outlet one-to-one; the second upper fixing plate A plurality of second openings are arranged thereon; the second openings communicate with at least a second sample inlet or a second sample outlet; and a second sealing cover plate is arranged on the second openings.

在本发明的一种实施方式中,所述第一编码芯片和/或第二编码芯片上设有编码拍照区域。In an embodiment of the present invention, the first coding chip and/or the second coding chip is provided with a coding photographing area.

在本发明的一种实施方式中,所述编码拍照区域设于第一编码芯片和/或第二编码芯片的中心位置。In an embodiment of the present invention, the encoding photographing area is set at the center of the first encoding chip and/or the second encoding chip.

在本发明的一种实施方式中,所述第一密封盖板和第一开口之间设有第一密封圈。In an embodiment of the present invention, a first sealing ring is provided between the first sealing cover plate and the first opening.

在本发明的一种实施方式中,所述第二密封盖板和第二开口之间设有第二密封圈。In an embodiment of the present invention, a second sealing ring is provided between the second sealing cover plate and the second opening.

在本发明的一种实施方式中,所述第一基底和第一上固定板之间通过螺栓固定。In an embodiment of the present invention, the first base and the first upper fixing plate are fixed by bolts.

在本发明的一种实施方式中,所述第二基底和第二上固定板之间通过螺栓固定。In an embodiment of the present invention, the second base and the second upper fixing plate are fixed by bolts.

在本发明的一种实施方式中,所述第一微流控芯片、第一进样转接板、第一上固定板、第二微流控芯片、第二进样转接板和第二上固定板采用透光材料。In an embodiment of the present invention, the first microfluidic chip, the first sample injection adapter plate, the first upper fixing plate, the second microfluidic chip, the second sample injection adapter plate and the second The upper fixing plate is made of light-transmitting material.

在本发明的一种实施方式中,所述第一微流控芯片、第一进样转接板、第一上固定板、第二微流控芯片、第二进样转接板和第二上固定板采用柔性透光材料。In an embodiment of the present invention, the first microfluidic chip, the first sample injection adapter plate, the first upper fixing plate, the second microfluidic chip, the second sample injection adapter plate and the second The upper fixing plate is made of flexible light-transmitting material.

本发明还提供了一种合成寡核苷酸的方法,所述方法使用上述寡核苷酸空间坐标编码方法在上述用于寡核苷酸合成的微流控装置上进行寡核苷酸的合成。The present invention also provides a method for synthesizing oligonucleotides, which uses the above-mentioned oligonucleotide spatial coordinate encoding method to perform oligonucleotide synthesis on the above-mentioned microfluidic device for oligonucleotide synthesis .

本发明还提供了上述寡核苷酸空间坐标编码方法或上述用于寡核苷酸合成的微流控装置或上述合成寡核苷酸的方法在寡核苷酸合成中的应用。The present invention also provides the application of the above-mentioned oligonucleotide spatial coordinate encoding method or the above-mentioned microfluidic device for oligonucleotide synthesis or the above-mentioned method for synthesizing oligonucleotides in oligonucleotide synthesis.

本发明技术方案,具有如下优点:The technical scheme of the present invention has the following advantages:

1、本发明提供了一种寡核苷酸空间坐标编码方法,所述方法为:先预设需编码的寡核苷酸全序列为由n+i段寡核苷酸序列片段连接而成,并根据此预设,合成n组不同寡核苷酸序列片段X以及i组不同寡核苷酸序列片段Y,然后设置由X流道和Y流道正交设置而成的寡核苷酸合成阵列,使得X流道和Y流道的交汇处形成供寡核苷酸序列片段连接的编码区域,最后逐轮对寡核苷酸合成阵列的每一个X流道和Y流道分别施加寡核苷酸序列片段X和寡核苷酸序列片段Y,使得寡核苷酸序列片段X和寡核苷酸序列片段Y在编码区域逐步连接,得到需编码的寡核苷酸全序列,其中,X流道的数量为n,Y流道的数量为i,逐轮施加寡核苷酸序列片段X和寡核苷酸序列片段Y时,在同一流道对编码区域施加相同的寡核苷酸序列片段,在不同流道对编码区域施加不同的寡核苷酸序列片段,使得每一轮可以编码多行。所述方法将一段需编码的寡核苷酸全序列拆分成多段进行合成与连接,通过多次的微流控选择区域连接反应,保证每个编码区域至少有一段的编码序列不同,进而保证最终组合而成的编码序列每一个位点的编码序列不同。所述方法对编码区域的定位使用平行线性微流道阵列,同一条流道对流经区域施加相同的寡核苷酸序列片段,不同流道施加不同的寡核苷酸序列片段,每一轮可以编码多行。所述方法为了完成点阵编码,会通过微流道进行多轮编码施加与连接,每轮微流道的方向或角度不同,保证对于不同的编码区域,施加的寡核苷酸序列片段至少有一轮不同,因此,假设编码轮数为q,每轮微流道数量为p(即每轮施加编码序列的数量为p),仅需合成p×q种寡核苷酸序列片段,即可完成pq×4m种编码组合,相比于传统编码方法,达到相同编码数量所需合成的寡核苷酸序列片段数量减少了pq-1/q倍,大大降低了寡核苷酸的合成成本。1. The present invention provides a method for encoding oligonucleotide spatial coordinates. The method is as follows: first, the full sequence of the oligonucleotide to be encoded is preliminarily formed by connecting n+i segments of oligonucleotide sequence fragments, And according to this preset, synthesize n groups of different oligonucleotide sequence fragments X and i groups of different oligonucleotide sequence fragments Y, and then set up the oligonucleotide synthesis formed by the X flow channel and the Y flow channel orthogonally set. Array, so that the intersection of X flow channel and Y flow channel form a coding region for oligonucleotide sequence fragments to connect, and finally apply oligonucleotides to each X flow channel and Y flow channel of the oligonucleotide synthesis array round by round. The nucleotide sequence fragment X and the oligonucleotide sequence fragment Y, so that the oligonucleotide sequence fragment X and the oligonucleotide sequence fragment Y are gradually connected in the coding region to obtain the full sequence of the oligonucleotide to be encoded, wherein X The number of flow channels is n, and the number of Y channels is i. When applying oligonucleotide sequence fragment X and oligonucleotide sequence fragment Y one by one, the same oligonucleotide sequence is applied to the coding region in the same channel Fragments, different oligonucleotide sequence fragments are applied to the coding region in different channels, so that each round can encode multiple lines. The method divides a whole sequence of oligonucleotides to be encoded into multiple segments for synthesis and connection, and through multiple microfluidic selection region ligation reactions, it is ensured that at least one segment of the coding sequence in each coding region is different, thereby ensuring that The coding sequence of each site of the final combined coding sequence is different. The method uses parallel linear microfluidic arrays for the positioning of coding regions. The same oligonucleotide sequence fragment is applied to the flow-through region in the same channel, and different oligonucleotide sequence fragments are applied to different channels. Encode multiple lines. In order to complete the dot matrix coding in the method, multiple rounds of coding application and connection are performed through the microchannel, and the direction or angle of each round of the microchannel is different to ensure that for different coding regions, at least one oligonucleotide sequence fragment is applied. The rounds are different. Therefore, assuming that the number of coding rounds is q and the number of microchannels in each round is p (that is, the number of coding sequences applied in each round is p), it is only necessary to synthesize p×q kinds of oligonucleotide sequence fragments to complete p q ×4 m encoding combinations, compared with the traditional encoding method, the number of oligonucleotide sequence fragments required to be synthesized to achieve the same encoding number is reduced by p q-1 /q times, which greatly reduces the synthesis of oligonucleotides cost.

2、本发明提供了一种用于寡核苷酸合成的微流控装置,所述微流控装置包括第一微流控芯片和第二微流控芯片,所述第一微流控芯片上设有若干X流道,所述第二微流控芯片上设有若干X流道,所述X流道和Y流道正交设置,所述X流道和Y流道的交汇处形成编码区域。所述微流控装置采用独立并行微流道设计(X流道+Y流道),结合可拆卸压力密封装配模块(基底+编码芯片+微流控芯片+进样转接板+上固定板),可以实现并行的寡核苷酸序列片段添加,以及多次的寡核苷酸序列片段添加、定位与连接。所述微流控装置通过微流道尺寸设计可以调控寡核苷酸编码阵列密度。所述微流控装置的上固定板、进样转接板、微流控芯片需均选用透光材料,便于在编码芯片的编码拍照区域光学拍照,获取光学信息。所述微流控装置的进样转接板和微流控芯片均选用如PDMS的柔性透光材料,有利于提升可拆卸压力密封装配模块的密封效果。2. The present invention provides a microfluidic device for oligonucleotide synthesis, the microfluidic device comprises a first microfluidic chip and a second microfluidic chip, the first microfluidic chip There are several X flow channels on the second microfluidic chip, and several X flow channels are arranged on the second microfluidic chip. The X flow channel and the Y flow channel are arranged orthogonally, and the intersection of the X flow channel and the Y flow channel is formed. coding area. The microfluidic device adopts an independent parallel microfluidic channel design (X channel + Y channel), combined with a detachable pressure-sealed assembly module (substrate + coding chip + microfluidic chip + sample injection adapter plate + upper fixed plate). ), can realize parallel oligonucleotide sequence fragment addition, and multiple oligonucleotide sequence fragment addition, positioning and connection. The microfluidic device can control the oligonucleotide encoding array density through the design of the microfluidic channel size. The upper fixing plate, the sample injection adapter plate, and the microfluidic chip of the microfluidic device all need to be made of light-transmitting materials, so that it is convenient to take an optical photograph in the coded photographing area of the coded chip to obtain optical information. The sample injection adapter plate and the microfluidic chip of the microfluidic device are all selected from flexible light-transmitting materials such as PDMS, which is beneficial to improve the sealing effect of the detachable pressure sealing assembly module.

3、本发明提供了一种合成寡核苷酸的方法,所述方法使用上述寡核苷酸空间坐标编码方法在上述用于寡核苷酸合成的微流控装置上进行寡核苷酸的合成。所述方法采用逐步连接法,先通过标准寡核苷酸合成方法制备所需寡核苷酸序列片段及修饰,然后通过化学连接和酶连接等连接方法结合微流控装置依次将所需寡核苷酸序列片段连接至目标位置,以获得序列确定的寡核苷酸编码阵列,且制得的寡核苷酸序列长度长、纯度高。3. The present invention provides a method for synthesizing oligonucleotides, which uses the above-mentioned oligonucleotide spatial coordinate encoding method to perform oligonucleotide synthesis on the above-mentioned microfluidic device for oligonucleotide synthesis. synthesis. The method adopts a step-by-step ligation method. First, the required oligonucleotide sequence fragments and modifications are prepared by standard oligonucleotide synthesis methods, and then the required oligonucleotides are sequentially combined with a microfluidic device by chemical ligation and enzymatic ligation. The nucleotide sequence fragments are ligated to the target position to obtain a sequence-determined oligonucleotide coding array, and the prepared oligonucleotide sequence has a long length and high purity.

附图说明Description of drawings

图1:寡核苷酸合成的流程示意图。Figure 1: Schematic flow chart of oligonucleotide synthesis.

图2:微流控装置中第一微流控芯片和第二微流控芯片的流道结构示意图。Figure 2: Schematic diagram of the flow channel structure of the first microfluidic chip and the second microfluidic chip in the microfluidic device.

图3:微流控装置中第一微流控模块和第二微流控模块的剖面图。Figure 3: Cross-sectional views of the first microfluidic module and the second microfluidic module in the microfluidic device.

图4:微流控装置中第一微流控模块和第二微流控模块的整体结构示意图。FIG. 4 is a schematic diagram of the overall structure of the first microfluidic module and the second microfluidic module in the microfluidic device.

图5:微流控装置中第一微流控芯片的俯视图。Figure 5: Top view of the first microfluidic chip in the microfluidic device.

图6:微流控装置中第二微流控芯片的俯视图。Figure 6: Top view of the second microfluidic chip in the microfluidic device.

图7:微流控装置中第一编码芯片和第二编码芯片的俯视图。Figure 7: Top view of the first encoding chip and the second encoding chip in the microfluidic device.

图8:微流控装置中第一进样转接板和第二进样转接板的俯视图。Figure 8: Top view of the first sampling adapter plate and the second sampling adapter plate in the microfluidic device.

图9:微流控装置中第一微流控模块和第二微流控模块的俯视图。Figure 9: Top view of the first microfluidic module and the second microfluidic module in the microfluidic device.

图10:微流控装置中第一上固定板和第二上固定板的整体结构示意图。Figure 10: Schematic diagram of the overall structure of the first upper fixing plate and the second upper fixing plate in the microfluidic device.

图11:微流控装置中第一密封圈和第二密封圈的整体结构示意图。Figure 11: Schematic diagram of the overall structure of the first sealing ring and the second sealing ring in the microfluidic device.

图12:微流控装置中第一密封盖板和第二密封盖板的整体结构示意图。Figure 12: Schematic diagram of the overall structure of the first sealing cover plate and the second sealing cover plate in the microfluidic device.

图13:寡核苷酸的合成过程。Figure 13: Synthesis process of oligonucleotides.

图14:局部编码区域的寡核苷酸合成结果。Figure 14: Results of oligonucleotide synthesis of local coding regions.

图2~12中,第一微流控模块1、第二微流控模块2、第一基底3、第一编码芯片4、第一微流控芯片5、第一进样转接板6、第一上固定板7、第一进样口8、第一出样口9、X流道10、第一样本进口11、第一样本出口12、第一开口13、第一密封盖板14、第二基底15、第二编码芯片16、第二微流控芯片17、第二进样转接板18、第二上固定板19、第二进样口20、第二出样口21、Y流道22、编码区域23、第二样本进口24、第二样本出口25、第二开口26、第二密封盖板27、编码拍照区域28、第一密封圈29和第二密封圈30。2 to 12, the first microfluidic module 1, the second microfluidic module 2, the first substrate 3, the first coding chip 4, the first microfluidic chip 5, the first sample injection adapter plate 6, The first upper fixing plate 7, the first sample inlet 8, the first sample outlet 9, the X flow channel 10, the first sample inlet 11, the first sample outlet 12, the first opening 13, the first sealing cover 14. The second substrate 15, the second coding chip 16, the second microfluidic chip 17, the second sample injection adapter plate 18, the second upper fixing plate 19, the second sample inlet 20, the second sample outlet 21 , Y channel 22 , coding area 23 , second sample inlet 24 , second sample outlet 25 , second opening 26 , second sealing cover 27 , coding photographing area 28 , first sealing ring 29 and second sealing ring 30 .

具体实施方式Detailed ways

提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。The following examples are provided for a better understanding of the present invention, and are not limited to the best embodiments, and do not limit the content and protection scope of the present invention. Any product identical or similar to the present invention obtained by combining with the features of other prior art shall fall within the protection scope of the present invention.

下述实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。If the specific experimental steps or conditions are not indicated in the following examples, it can be carried out according to the operations or conditions of the conventional experimental steps described in the literature in this field. The reagents or instruments used without the manufacturer's indication are all conventional reagent products that can be obtained from the market.

实施例1:一种寡核苷酸空间坐标编码方法Embodiment 1: A kind of oligonucleotide spatial coordinate encoding method

本实施例提供了一种寡核苷酸空间坐标编码方法(使用此方法合成寡核苷酸的流程见图1),所述方法包括如下步骤:This embodiment provides a method for encoding oligonucleotide spatial coordinates (see Figure 1 for the process of synthesizing oligonucleotides using this method), and the method includes the following steps:

步骤一:预设需编码的寡核苷酸全序列为由n+i段寡核苷酸序列片段连接而成,并根据此预设,合成n组不同寡核苷酸序列片段X以及i组不同寡核苷酸序列片段Y;Step 1: The full sequence of the oligonucleotide to be encoded is preset to be composed of n+i segments of oligonucleotide sequence fragments, and according to this preset, n groups of different oligonucleotide sequence fragments X and i groups are synthesized Different oligonucleotide sequence fragment Y;

步骤二:设置由X流道和Y流道正交设置而成的寡核苷酸合成阵列,使得X流道和Y流道的交汇处形成供寡核苷酸序列片段连接的编码区域;Step 2: Setting up an oligonucleotide synthesis array formed by the orthogonal arrangement of the X flow channel and the Y flow channel, so that the intersection of the X flow channel and the Y flow channel forms a coding region for the connection of the oligonucleotide sequence fragments;

步骤三:逐轮对寡核苷酸合成阵列的每一个X流道和Y流道分别施加寡核苷酸序列片段X和寡核苷酸序列片段Y,使得寡核苷酸序列片段X和寡核苷酸序列片段Y在编码区域逐步连接,得到需编码的寡核苷酸全序列;Step 3: Apply oligonucleotide sequence fragment X and oligonucleotide sequence fragment Y to each X channel and Y channel of the oligonucleotide synthesis array round by round, so that oligonucleotide sequence fragment X and oligonucleotide sequence fragment X are The nucleotide sequence fragment Y is gradually connected in the coding region to obtain the full sequence of the oligonucleotide to be encoded;

其中,X流道的数量为n;Y流道的数量为i;逐轮施加寡核苷酸序列片段X和寡核苷酸序列片段Y时,在同一流道对编码区域施加相同的寡核苷酸序列片段,在不同流道对编码区域施加不同的寡核苷酸序列片段,使得每一轮可以编码多行。Among them, the number of X channels is n; the number of Y channels is i; when applying oligonucleotide sequence fragment X and oligonucleotide sequence fragment Y one by one, the same oligonucleotide is applied to the coding region in the same channel For nucleotide sequence fragments, different oligonucleotide sequence fragments are applied to the coding region in different channels, so that each round can encode multiple lines.

实施例2:一种微流控装置Example 2: A microfluidic device

如图2~12所示,本实施例提供了一种用于实施实施例1所述寡核苷酸空间坐标编码方法的微流控装置(使用此装置合成寡核苷酸的流程见图1),所述微流控装置由第一微流控模块1和第二微流控模块2组成;所述第一微流控模块1从下至上依次设有第一基底3、第一编码芯片4、第一微流控芯片5、第一进样转接板6和第一上固定板7;所述第一微流控芯片5上设有若干第一进样口8、若干第一出样口9和若干X流道10;所述第一进样口9成对设置,一对第一进样口9之间通过X流道10相连通;所述第一出样口9成对设置,一对第一出样口9之间通过X流道10相连通;所述第一进样转接板6上设有若干第一样本进口11和若干第一样本出口12;所述第一样本进口11与第一进样口8一一对应;所述第一样本出口12与第一出样口9一一对应;所述第一上固定板7上设有若干第一开口13;所述第一开口13至少与一个第一样本进口11或第一样本出口12连通;所述第一开口13上设有第一密封盖板14;所述第二微流控模块2从下至上依次设有第二基底15、第二编码芯片16、第二微流控芯片17、第二进样转接板18和第二上固定板19;所述第二微流控芯片17上设有若干第二进样口20、若干第二出样口21和若干Y流道22;所述第二进样口20成对设置,一对第二进样口20之间通过Y流道22相连通;所述第二出样口21成对设置,一对第二出样口21之间通过Y流道22相连通;所述X流道10和Y流道22正交设置;所述X流道10和Y流道22的交汇处形成编码区域23;所述第二进样转接板18上设有若干第二样本进口24和若干第二样本出口25;所述第二样本进口24与第二进样口20一一对应;所述第二样本出口25与第二出样口21一一对应;所述第二上固定板19上设有若干第二开口26;所述第二开口26至少与一个第二样本进口24或第二样本出口25连通;所述第二开口26上设有第二密封盖板27;所述第一编码芯片4和第二编码芯片16上设有编码拍照区域28;所述编码拍照区域28设于第一编码芯片4和第二编码芯片16的中心位置;所述第一密封盖板14和第一开口13之间设有第一密封圈29;所述第二密封盖板27和第二开口26之间设有第二密封圈30;所述第一基底3和第一上固定板7之间通过螺栓(例如M3、M4等)固定;所述第二基底15和第二上固定板19之间通过螺栓固定;所述第一微流控芯片5、第一进样转接板6、第一上固定板7、第二微流控芯片17、第二进样转接板18和第二上固定板19采用柔性透光材料(例如氟橡胶、氯丁橡胶、PDMS等)。As shown in Figures 2 to 12, this embodiment provides a microfluidic device for implementing the oligonucleotide spatial coordinate encoding method described in Embodiment 1 (see Figure 1 for the process of synthesizing oligonucleotides using this device) ), the microfluidic device is composed of a first microfluidic module 1 and a second microfluidic module 2; the first microfluidic module 1 is sequentially provided with a first substrate 3 and a first coding chip from bottom to top 4. The first microfluidic chip 5, the first sample injection adapter plate 6 and the first upper fixing plate 7; the first microfluidic chip 5 is provided with a number of first injection ports 8, a number of first outlet The sample port 9 and several X flow channels 10; the first sample inlet ports 9 are arranged in pairs, and the pair of first sample inlet ports 9 are connected through the X flow channel 10; the first sample outlet ports 9 are in pairs A pair of first sample outlets 9 communicate with each other through the X flow channel 10; the first sample injection adapter plate 6 is provided with a number of first sample inlets 11 and a number of first sample outlets 12; The first sample inlet 11 corresponds to the first sample inlet 8 one-to-one; the first sample outlet 12 corresponds to the first sample outlet 9 one-to-one; an opening 13; the first opening 13 communicates with at least one first sample inlet 11 or a first sample outlet 12; the first opening 13 is provided with a first sealing cover plate 14; the second microfluidic The control module 2 is provided with a second base 15, a second coding chip 16, a second microfluidic chip 17, a second sample injection adapter plate 18 and a second upper fixing plate 19 in order from bottom to top; the second microfluidic The control chip 17 is provided with several second sample inlets 20, several second sample outlets 21 and several Y flow channels 22; the second sample inlets 20 are arranged in pairs, between the pair of second sample inlets 20 Connected through the Y flow channel 22; the second sample outlets 21 are arranged in pairs, and the pair of second sample outlets 21 are connected through the Y flow channel 22; the X flow channel 10 and the Y flow channel 22 are directly connected The intersection of the X flow channel 10 and the Y flow channel 22 forms a coding area 23; the second sample injection adapter plate 18 is provided with a number of second sample inlets 24 and a number of second sample outlets 25; The second sample inlet 24 corresponds to the second sample inlet 20 one-to-one; the second sample outlet 25 corresponds to the second sample outlet 21 one-to-one; the second upper fixing plate 19 is provided with a plurality of second openings 26; the second opening 26 communicates with at least one second sample inlet 24 or a second sample outlet 25; the second opening 26 is provided with a second sealing cover 27; the first coding chip 4 and the second The coding chip 16 is provided with a coding photographing area 28; the coding photographing area 28 is set at the center of the first coding chip 4 and the second coding chip 16; between the first sealing cover 14 and the first opening 13 There is a first sealing ring 29; a second sealing ring 30 is provided between the second sealing cover plate 27 and the second opening 26; bolts (eg M3 , M4, etc.) are fixed; the second base 15 and the second upper fixing plate 19 are fixed by bolts; the first microfluidic chip 5, the first sampling adapter plate 6, the first upper fixing plate 7 , The second microfluidic chip 17 , the second sample injection adapter plate 18 and the second upper fixing plate 19 are made of flexible light-transmitting materials (eg, fluororubber, neoprene, PDMS, etc.).

作为优选,X流道和Y流道宽度的尺寸为2μm~200μm;X流道和Y流道中心距的尺寸为4μm~500μm;X流道和Y流道高度的尺寸为2μm~200μm;第一进样口、第一出样口、第一样本进口、第一样本出口、第二进样口、第二出样口、第二样本进口和第二样本出口的数量为12~240,孔径为0.5mm~5.0mm;螺栓长度的尺寸为3mm~12mm。Preferably, the width of the X runner and the Y runner are 2 μm to 200 μm; the center distance between the X runner and the Y runner is 4 μm to 500 μm; the height of the X runner and the Y runner is 2 μm to 200 μm; The number of the first sample inlet, the first sample outlet, the first sample inlet, the first sample outlet, the second sample inlet, the second sample outlet, the second sample inlet and the second sample outlet is 12-240 , the hole diameter is 0.5mm ~ 5.0mm; the size of the bolt length is 3mm ~ 12mm.

实施例3:一种合成寡核苷酸的方法Example 3: A method of synthesizing oligonucleotides

本实施例提供了一种合成寡核苷酸的方法,所述方法使用实施例1的寡核苷酸空间坐标编码方法在实施例2的用于寡核苷酸合成的微流控装置上进行寡核苷酸的合成,合成目标为核苷酸序列如SEQ ID NO:1(AAGCAGTGGTATCAACGCAGAGTACGTCTCTTTCCCTACACACGACGCTCTTCCGATCTNNNNNNNNNNGAGTGATTGCTTGTGACGCCTTNNNNNNNNNNNNNNNNNNNNNNT30VN)所示的寡核苷酸,先按照实施例1的寡核苷酸空间坐标编码方法,预设核苷酸序列如SEQ IDNO:1所示的寡核苷酸由oligo1、oligo2和oligo3连接而成,其中,oligo1为核苷酸序列如SEQ ID NO:2(TTAAGCAGTGGTATCAACGCAGAGTACGTCTCTTTCCCTACAC)所示的通用头部序列,oligo2和oligo3则为编码序列,分别包括4组(即n=4)不同寡核苷酸序列片段X和4组(即i=4)不同寡核苷酸序列片段Y,并根据此预设,合成4组不同寡核苷酸序列片段X1~X4(核苷酸序列如SEQ ID NO:3~SEQ ID NO:6所示,ACGACGCTCTTCCGATCTGCTTACGCAGGAGTGATTGC、ACGACGCTCTTCCGATCTCTACAGAGCGGAGTGATTGC、ACGACGCTCTTCCGATCTGATCTGGTCCGAGTGATTGC、ACGACGCTCTTCCGATCTTACAGCGTTAGAGTGATTGC)和4组不同寡核苷酸序列片段Y1~Y4(核苷酸序列如SEQ ID NO:7~SEQ ID NO:10所示,TTGTGACGCCTTCCGATTGGATNNNNNNNNNNNNT30VN、TTGTGACGCCTTAGGCCTCATANNNNNNNNNNNNT30VN、TTGTGACGCCTTTTGTACGGCCNNNNNNNNNNNNT30VN、TTGTGACGCCTTTACTATCGGANNNNNNNNNNNNT30VN),然后使用实施例2的用于寡核苷酸合成的微流控装置进行寡核苷酸的连接(连接过程见图13),具体步骤如下:This example provides a method for synthesizing oligonucleotides, which is performed on the microfluidic device for oligonucleotide synthesis of Example 2 using the oligonucleotide spatial coordinate encoding method of Example 1 Synthesis of oligonucleotide, the synthetic target is an oligonucleotide whose nucleotide sequence is shown in SEQ ID NO: 1 (AAGCAGTGGTATCAACGCAGAGTACGTCTCTTTCCCTACACACGACGCTCTTCCGATCTNNNNNNNNNNGAGTGATTGCTTGTGACGCCTTNNNNNNNNNNNNNNNNNNNNT30VN), first according to the oligonucleotide spatial coordinate encoding method of Embodiment 1, preset nucleosides The oligonucleotide whose acid sequence is shown in SEQ ID NO: 1 is formed by connecting oligo1, oligo2 and oligo3, wherein, oligo1 is the general head sequence shown in nucleotide sequence as shown in SEQ ID NO: 2 (TTAAGCAGTGGTATCAACGCAGAGTACGTCTCTTTCCCTACAC), oligo2 and oligo3 are coding sequences, respectively including 4 groups (ie n=4) different oligonucleotide sequence fragments X and 4 groups (ie i=4) different oligonucleotide sequence fragments Y, and according to this preset, synthetic 4 groups of different oligonucleotide sequence fragments X1 to X4 (nucleotide sequences are shown in SEQ ID NO: 3 to SEQ ID NO: 6, ACGACGCTCTTCCGATCTGCTTACGCAGGAGTGATTGC, ACGACGCTCTTCCGATCTCTACAGAGCGGAGTGATTGC, ACGACGCTCTTCCGATCTGATCTGGTCCGAGTGATTGC, ACGACGCTCTTCCGATCTTACAGCGTTAGAGTGATTGC) and 4 groups of different oligonucleotide sequence fragments Y1 to Y4 (the nucleotide sequences are shown in SEQ ID NO: 7 to SEQ ID NO: 10, TGTGACGCCTTCCGATTGGATNNNNNNNNNNT30VN, TGTGACGCCTTAGGCCTCATANNNNNNNNNNNNT30VN, TGTGACGCCTTTTGTACGGCCNNNNNNNNNNNT30VN, TGTGACGCCTTTACTATCGGANNNNNNNNNNNNT30VN), and then the microfluidic device for oligonucleotide synthesis of Example 2 was used Carry out the connection of oligonucleotides (see Figure 13 for the connection process), and the specific steps are as follows:

1、准备基底,对基底进行表面处理,然后连接通用头部序列Oligo1;1. Prepare the substrate, perform surface treatment on the substrate, and then connect the universal head sequence Oligo1;

2、在基底上构建X方向微流道;2. Build X-direction microchannels on the substrate;

3、通过正压泵抽吸X方向微流道施加Oligo2编码序列,通过连接反应将寡核苷酸序列片段X1连接至头部序列后;3. Apply the Oligo2 coding sequence by pumping the X-direction microchannel by a positive pressure pump, and connect the oligonucleotide sequence fragment X1 to the head sequence through a ligation reaction;

4、拆卸X方向微流道,并重新构建新的Y方向微流道,新微流道与前序微流道的流体方向按照正交方向排布(第一微流控模块和第二微流控模块共用一块基底,通过螺栓实现X方向微流道和Y方向微流道在同一基底上的拆卸和重新构建);4. Disassemble the X-direction microfluidic channel and rebuild a new Y-direction microfluidic channel. The fluid direction of the new microfluidic channel and the previous microfluidic channel are arranged in an orthogonal direction (the first microfluidic module and the second microfluidic The fluid control module shares a base, and the disassembly and reconstruction of the X-direction micro-channel and the Y-direction micro-channel on the same base are realized by bolts);

5、通过微流道施加Oligo3编码序列,通过连接反应将寡核苷酸序列片段Y1连接至寡核苷酸序列片段X1后;5. Apply the Oligo3 coding sequence through the microfluidic channel, and connect the oligonucleotide sequence fragment Y1 to the oligonucleotide sequence fragment X1 through a ligation reaction;

6、重复步骤4、5,直至达到编码轮数要求,拆卸微流道,即得到在基底上的Oligo编码阵列;6. Repeat steps 4 and 5 until the number of coding rounds is reached, disassemble the micro-channel, and obtain the Oligo coding array on the substrate;

其中,Oligo1、Oligo2和Oligo3委托生工生物工程(上海)股份有限公司合成,寡核苷酸连接所用试剂为T4 DNALigase(诺唯赞,货号N103-01),寡核苷酸连接为室温(25℃);Among them, Oligo1, Oligo2 and Oligo3 were synthesized by Sangon Bioengineering (Shanghai) Co., Ltd. The reagent used for oligonucleotide ligation was T4 DNALigase (Novizan, Cat. No. N103-01), and the oligonucleotide ligation was room temperature (25 °C);

实施例2的用于寡核苷酸合成的微流控装置的具体参数为:X流道和Y流道宽度的尺寸为50μm;X流道和Y流道中心距的尺寸为100μm;X流道和Y流道高度的尺寸为50μm;第一进样口、第一出样口、第一样本进口、第一样本出口、第二进样口、第二出样口、第二样本进口和第二样本出口的数量为48,孔径为1.0mm;第一微流控芯片、第一进样转接板、第一上固定板、第二微流控芯片、第二进样转接板和第二上固定板采用PDMS材料;螺栓采用M4,长度的尺寸为8mm。The specific parameters of the microfluidic device for oligonucleotide synthesis of Example 2 are: the width of the X flow channel and the Y flow channel is 50 μm; the size of the center distance between the X flow channel and the Y flow channel is 100 μm; The dimensions of the channel and the Y channel height are 50 μm; the first inlet, the first outlet, the first sample inlet, the first sample outlet, the second inlet, the second outlet, the second sample The number of inlets and the second sample outlet is 48, and the aperture is 1.0mm; the first microfluidic chip, the first sampling adapter plate, the first upper fixing plate, the second microfluidic chip, the second sampling adapter The plate and the second upper fixing plate are made of PDMS material; the bolts are made of M4, and the length is 8mm.

在寡核苷酸的合成过程中,X流道和Y流道分别连续通4条寡核苷酸序列片段X和4条寡核苷酸序列片段Y,理论上有边界清晰的16个杂交点,因此,在Y流道通入荧光杂交探针后,通过共聚焦显微镜拍摄进行寡核苷酸合成后的局部编码拍照区域(即二分之一编码拍照区域),观察结果见图14。由图14可知,共聚焦显微镜在进行寡核苷酸合成后的局部编码拍照区域上拍到8个边界清晰的杂交点,结果符合预期。In the process of oligonucleotide synthesis, the X channel and the Y channel are respectively connected with 4 oligonucleotide sequence fragments X and 4 oligonucleotide sequence fragments Y, and theoretically there are 16 hybridization points with clear boundaries , therefore, after passing the fluorescent hybridization probe into the Y channel, the local coded photographing area (ie, one-half coded photographing area) after oligonucleotide synthesis is photographed by confocal microscope, and the observation results are shown in Figure 14. It can be seen from Fig. 14 that the confocal microscope captured 8 hybridization spots with clear boundaries on the local code photographed area after oligonucleotide synthesis, and the results were in line with expectations.

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.

序列表sequence listing

<110> 中国科学院苏州生物医学工程技术研究所<110> Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Sciences

<120> 一种寡核苷酸空间坐标编码方法及其微流控装置<120> An oligonucleotide spatial coordinate encoding method and its microfluidic device

<160> 10<160> 10

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 145<211> 145

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (60)..(69)<222> (60)..(69)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (92)..(113)<222> (92)..(113)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (145)..(145)<222> (145)..(145)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 1<400> 1

aagcagtggt atcaacgcag agtacgtctc tttccctaca cacgacgctc ttccgatctn 60aagcagtggt atcaacgcag agtacgtctc tttccctaca cacgacgctc ttccgatctn 60

nnnnnnnnng agtgattgct tgtgacgcct tnnnnnnnnn nnnnnnnnnn nnnttttttt 120nnnnnnnnng agtgattgct tgtgacgcct tnnnnnnnnn nnnnnnnnnn nnnttttttt 120

tttttttttt tttttttttt tttvn 145tttttttttt tttttttttt tttvn 145

<210> 2<210> 2

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 2<400> 2

ttaagcagtg gtatcaacgc agagtacgtc tctttcccta cac 43ttaagcagtg gtatcaacgc agagtacgtc tctttcccta cac 43

<210> 3<210> 3

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 3<400> 3

acgacgctct tccgatctgc ttacgcagga gtgattgc 38acgacgctct tccgatctgc ttacgcagga gtgattgc 38

<210> 4<210> 4

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 4<400> 4

acgacgctct tccgatctct acagagcgga gtgattgc 38acgacgctct tccgatctct acagagcgga gtgattgc 38

<210> 5<210> 5

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 5<400> 5

acgacgctct tccgatctga tctggtccga gtgattgc 38acgacgctct tccgatctga tctggtccga gtgattgc 38

<210> 6<210> 6

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 6<400> 6

acgacgctct tccgatctta cagcgttaga gtgattgc 38acgacgctct tccgatctta cagcgttaga gtgattgc 38

<210> 7<210> 7

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (23)..(34)<222> (23)..(34)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (66)..(66)<222> (66)..(66)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 7<400> 7

ttgtgacgcc ttccgattgg atnnnnnnnn nnnntttttt tttttttttt tttttttttt 60ttgtgacgcc ttccgattgg atnnnnnnnn nnnntttttt tttttttttt tttttttttt 60

ttttvn 66ttttvn 66

<210> 8<210> 8

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (23)..(34)<222> (23)..(34)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (66)..(66)<222> (66)..(66)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 8<400> 8

ttgtgacgcc ttaggcctca tannnnnnnn nnnntttttt tttttttttt tttttttttt 60ttgtgacgcc ttaggcctca tannnnnnnn nnnntttttt tttttttttt tttttttttt 60

ttttvn 66ttttvn 66

<210> 9<210> 9

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (23)..(34)<222> (23)..(34)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (66)..(66)<222> (66)..(66)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 9<400> 9

ttgtgacgcc ttttgtacgg ccnnnnnnnn nnnntttttt tttttttttt tttttttttt 60ttgtgacgcc ttttgtacgg ccnnnnnnnn nnnntttttt tttttttttt tttttttttt 60

ttttvn 66ttttvn 66

<210> 10<210> 10

<211> 66<211> 66

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<221> misc_feature<221> misc_feature

<222> (23)..(34)<222> (23)..(34)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<220><220>

<221> misc_feature<221> misc_feature

<222> (66)..(66)<222> (66)..(66)

<223> n is a, c, g, or t<223> n is a, c, g, or t

<400> 10<400> 10

ttgtgacgcc tttactatcg gannnnnnnn nnnntttttt tttttttttt tttttttttt 60ttgtgacgcc tttactatcg gannnnnnnn nnnntttttt tttttttttt tttttttttt 60

ttttvn 66ttttvn 66

Claims (10)

1. A method for encoding oligonucleotides in spatial coordinates, said method comprising the steps of:
the method comprises the following steps: presetting the whole sequence of the oligonucleotide to be coded as n + i segments of oligonucleotide sequence segments, and synthesizing n groups of different oligonucleotide sequence segments X and i groups of different oligonucleotide sequence segments Y according to the presetting;
step two: setting an oligonucleotide synthesis array formed by orthogonally setting an X flow channel and a Y flow channel, so that a coding region for connecting oligonucleotide sequence fragments is formed at the intersection of the X flow channel and the Y flow channel;
step three: respectively applying oligonucleotide sequence segments X and oligonucleotide sequence segments Y to each X flow channel and each Y flow channel of the oligonucleotide synthesis array by wheel pairs, so that the oligonucleotide sequence segments X and the oligonucleotide sequence segments Y are gradually connected in a coding region to obtain an oligonucleotide complete sequence to be coded;
wherein the number of the X runners is n; the number of the Y flow channels is i; when oligonucleotide sequence fragment X and oligonucleotide sequence fragment Y are applied in rounds, the same oligonucleotide sequence fragment is applied to the coding region in the same flow channel, and different oligonucleotide sequence fragments are applied to the coding region in different flow channels, so that multiple rows can be coded in each round.
2. A microfluidic device for oligonucleotide synthesis, comprising a first microfluidic chip and a second microfluidic chip; a plurality of X flow channels are arranged on the first micro-fluidic chip; a plurality of Y flow channels are arranged on the second micro-fluidic chip; the X runner and the Y runner are arranged orthogonally; and the intersection of the X runner and the Y runner forms a coding region.
3. The microfluidic device for oligonucleotide synthesis according to claim 2, wherein the microfluidic device comprises a first microfluidic module and a second microfluidic module; the first microfluidic module is sequentially provided with a first substrate, a first coding chip, a first microfluidic chip, a first sample introduction adapter plate and a first upper fixing plate from bottom to top; the first microfluidic chip is provided with a plurality of first sample inlets and a plurality of first sample outlets; the first sample inlets are arranged in pairs, and the pair of first sample inlets are communicated through an X flow channel; the first sample outlets are arranged in pairs, and the pair of first sample outlets are communicated through an X runner; the first sample introduction adapter plate is provided with a plurality of first sample inlets and a plurality of first sample outlets; the first sample inlets correspond to the first sample inlets one to one; the first sample outlets correspond to the first sample outlets one to one; a plurality of first openings are formed in the first upper fixing plate; the first opening is communicated with at least one first sample inlet or first sample outlet; a first sealing cover plate is arranged on the first opening; the second microfluidic module is sequentially provided with a second substrate, a second coding chip, a second microfluidic chip, a second sample introduction adapter plate and a second upper fixing plate from bottom to top; the second microfluidic chip is provided with a plurality of second sample inlets and a plurality of second sample outlets; the second sample inlets are arranged in pairs, and the pair of second sample inlets are communicated through a Y flow channel; the second sample outlets are arranged in pairs, and the pair of second sample outlets are communicated through a Y flow channel; the second sample introduction adapter plate is provided with a plurality of second sample inlets and a plurality of second sample outlets; the second sample inlets correspond to the second sample inlets one by one; the second sample outlets correspond to the second sample outlets one to one; a plurality of second openings are formed in the second upper fixing plate; the second opening is communicated with at least one second sample inlet or second sample outlet; and a second sealing cover plate is arranged on the second opening.
4. The microfluidic device according to claim 3, wherein the first coding chip and/or the second coding chip has a coded camera area.
5. The microfluidic device according to claim 4, wherein the encoded imaging region is located at the center of the first encoding chip and/or the second encoding chip.
6. The microfluidic device according to any of claims 3 to 5, wherein a first sealing ring is disposed between the first sealing cover plate and the first opening; and a second sealing ring is arranged between the second sealing cover plate and the second opening.
7. The microfluidic device according to any of claims 3 to 6, wherein the first substrate and the first upper fixing plate are fixed by bolts; the second base and the second upper fixing plate are fixed through bolts.
8. The microfluidic device according to any of claims 3 to 6, wherein the first microfluidic chip, the first sample adapter plate, the first upper fixing plate, the second microfluidic chip, the second sample adapter plate and the second upper fixing plate are made of a light-transmitting material.
9. A method for synthesizing oligonucleotides, wherein the method comprises performing oligonucleotide synthesis on the microfluidic device for oligonucleotide synthesis according to any one of claims 2 to 8 using the oligonucleotide spatial coordinate encoding method according to claim 1.
10. Use of the method for spatial coordinate encoding of oligonucleotides according to claim 1 or the microfluidic device for oligonucleotide synthesis according to any one of claims 1 to 8 or the method for oligonucleotide synthesis according to claim 9 for oligonucleotide synthesis.
CN202210383346.9A 2022-04-12 2022-04-12 A method for encoding oligonucleotide spatial coordinates and a microfluidic device thereof Active CN114621307B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210383346.9A CN114621307B (en) 2022-04-12 2022-04-12 A method for encoding oligonucleotide spatial coordinates and a microfluidic device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210383346.9A CN114621307B (en) 2022-04-12 2022-04-12 A method for encoding oligonucleotide spatial coordinates and a microfluidic device thereof

Publications (2)

Publication Number Publication Date
CN114621307A true CN114621307A (en) 2022-06-14
CN114621307B CN114621307B (en) 2024-12-13

Family

ID=81906543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210383346.9A Active CN114621307B (en) 2022-04-12 2022-04-12 A method for encoding oligonucleotide spatial coordinates and a microfluidic device thereof

Country Status (1)

Country Link
CN (1) CN114621307B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438324A (en) * 2003-03-10 2003-08-27 东南大学 Microarray chip of oligonucleotide and its preparing method
CN2604442Y (en) * 2003-01-28 2004-02-25 肖鹏峰 Assembling compound array chip
CN103228798A (en) * 2010-09-24 2013-07-31 斯坦福大学托管董事会 Direct capture, amplification and sequencing of target DNA using immobilized primers
CN105209475A (en) * 2013-03-15 2015-12-30 Gen9股份有限公司 Compositions and methods for multiplex nucleic acids synthesis
CN105473744A (en) * 2013-06-25 2016-04-06 普罗格诺西斯生物科学公司 Spatially encoded biological assays using a microfluidic device
CN106460232A (en) * 2014-05-23 2017-02-22 生捷科技控股公司 Oligonucleotide probe inversion process for in situ synthesized probe arrays
CN108883387A (en) * 2016-01-11 2018-11-23 瑞典仿生3000有限公司 Mobile solid phase reaction system and method
WO2019080704A1 (en) * 2017-10-25 2019-05-02 深圳华大生命科学研究院 Microfluidic chip for nucleic acid synthesis
CN111072729A (en) * 2019-12-13 2020-04-28 天津大学 Solid phase carrier device for oligonucleotide synthesis and selective modification method thereof
CN111770928A (en) * 2018-01-24 2020-10-13 埃万奈蒂克有限公司 Synthesis of oligonucleotides and nucleic acids
CN113262730A (en) * 2021-03-29 2021-08-17 上海迪赢生物科技有限公司 High-throughput automatic gene synthesis device based on cluster array

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604442Y (en) * 2003-01-28 2004-02-25 肖鹏峰 Assembling compound array chip
CN1438324A (en) * 2003-03-10 2003-08-27 东南大学 Microarray chip of oligonucleotide and its preparing method
CN103228798A (en) * 2010-09-24 2013-07-31 斯坦福大学托管董事会 Direct capture, amplification and sequencing of target DNA using immobilized primers
CN105209475A (en) * 2013-03-15 2015-12-30 Gen9股份有限公司 Compositions and methods for multiplex nucleic acids synthesis
CN105473744A (en) * 2013-06-25 2016-04-06 普罗格诺西斯生物科学公司 Spatially encoded biological assays using a microfluidic device
CN106460232A (en) * 2014-05-23 2017-02-22 生捷科技控股公司 Oligonucleotide probe inversion process for in situ synthesized probe arrays
CN108883387A (en) * 2016-01-11 2018-11-23 瑞典仿生3000有限公司 Mobile solid phase reaction system and method
WO2019080704A1 (en) * 2017-10-25 2019-05-02 深圳华大生命科学研究院 Microfluidic chip for nucleic acid synthesis
CN111246936A (en) * 2017-10-25 2020-06-05 深圳华大生命科学研究院 Microfluidic chip for nucleic acid synthesis
CN111770928A (en) * 2018-01-24 2020-10-13 埃万奈蒂克有限公司 Synthesis of oligonucleotides and nucleic acids
CN111072729A (en) * 2019-12-13 2020-04-28 天津大学 Solid phase carrier device for oligonucleotide synthesis and selective modification method thereof
CN113262730A (en) * 2021-03-29 2021-08-17 上海迪赢生物科技有限公司 High-throughput automatic gene synthesis device based on cluster array

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
徐华国: "芯片表面DNA分子机器的构建与 单碱基突变的检测", 《中国科学技术大学博士学位论文》, 31 December 2014 (2014-12-31) *
李文: "活版印刷基因芯片系统平台及启动子甲基化芯片的研究", 《中南大学博士学位论文》, 31 December 2010 (2010-12-31) *
陈学敏: "基于气动混合的快速微流控DNA阵列杂交的研究", 《东北大学硕士学位论文》, 31 December 2010 (2010-12-31) *

Also Published As

Publication number Publication date
CN114621307B (en) 2024-12-13

Similar Documents

Publication Publication Date Title
ES2134481T5 (en) Method and apparatus for producing microsets of biological samples
CN110520541B (en) High throughput single cell multicellular multigenetics
US7183406B2 (en) Method for the synthesis of DNA sequences
US5905024A (en) Method for performing site-specific affinity fractionation for use in DNA sequencing
CN103429754B (en) The parallel order-checking of natural extension
JP2006503586A (en) Array oligomer synthesis and use
US20110008775A1 (en) Sequencing of nucleic acids
US20100273679A1 (en) Methods for the preparation of dna microarrays with linear high density probes
CA2544041A1 (en) Optimization of gene expression analysis using immobilized capture probes
WO2014137193A1 (en) Heterogeneous dna barcoding method
EP2198000A1 (en) Supramolecular nanostamping printing device
EP1470252A2 (en) Method for assembly of a polynucleotide encoding a target polypeptide
JPH09504864A (en) Microfabricated flow-through porosity device to detect binding reactions separately
US20150232921A1 (en) Method for detecting nucleic acid
Shen et al. Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics
Schena et al. Genes, genomes, and chips
CN114621307A (en) An oligonucleotide spatial coordinate encoding method and its microfluidic device
US7955798B2 (en) Reusable substrate for DNA microarray production
Jaklevic et al. Instrumentation for the genome project
Tang et al. New tools for cost-effective DNA synthesis
CN117612599A (en) Apparatus and method for spatial histology analysis
US20030186301A1 (en) Constructing user-defined, long DNA sequences
Ramirez et al. Flow-pattern guided fabrication of high-density barcode antibody microarray
Ueno et al. Photoassisted Recovery of DNA Molecules for On-chip Directed Evolution
Stekel Microarrays: Making them and using them

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant