Nothing Special   »   [go: up one dir, main page]

CN114540356A - 一种红冬孢酵母启动子及其应用 - Google Patents

一种红冬孢酵母启动子及其应用 Download PDF

Info

Publication number
CN114540356A
CN114540356A CN202210174477.6A CN202210174477A CN114540356A CN 114540356 A CN114540356 A CN 114540356A CN 202210174477 A CN202210174477 A CN 202210174477A CN 114540356 A CN114540356 A CN 114540356A
Authority
CN
China
Prior art keywords
rhodosporidium
promoter
dna
sequence
rhodosporidium toruloides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210174477.6A
Other languages
English (en)
Other versions
CN114540356B (zh
Inventor
张琦
郭锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210174477.6A priority Critical patent/CN114540356B/zh
Publication of CN114540356A publication Critical patent/CN114540356A/zh
Application granted granted Critical
Publication of CN114540356B publication Critical patent/CN114540356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种红冬孢酵母启动子,其核苷酸序列如SEQ ID NO:1和SEQ ID NO:2所示;本发明将从红冬孢酵母中获得的2个U6基因启动子应用于红冬孢酵母CRISPR/Cas9基因编辑系统中,指导该系统中gRNA的表达,实现高效定点基因敲除,本发明为红冬孢酵母提供了一套高效遗传操作工具,具有重要的研究意义与应用价值。

Description

一种红冬孢酵母启动子及其应用
技术领域
本发明属于生物技术领域,具体涉及两个红冬孢酵母启动子及其应用。
背景技术
红冬孢酵母(Rhodosporidiumkratochvilovae)YM25235是一株分离自云南程海湖的具有低温适应性的产油红酵母,可在15℃条件下生长,同时可产类胡萝卜素和多不饱和脂肪酸(PUFA)。因此,红冬孢酵母可以认为是类胡萝卜素和PUFA工业产品的替代来源,具有巨大的工业前景。
CRISPR/Cas9(Clustered regulatory interspaced shortpalindromicrepeats/Crispr-associated protein 9)基因编辑系统作为一种对基因定向修饰的技术,具有简便高效的特点,正得到越来越广泛的关注。该机制是首先在细菌体内发现的,是细菌为抵御外源DNA入侵进化形成的获得性免疫系统。CRISPR/Cas9基因簇由Cas9蛋白的编码基因和CRISPR基因序列组成,研究者只需根据目的基因序列设计相对应的gRNA即可利用CRISPR/Cas9系统在含有PAM元件的靶位点造成DNA双链断裂,进而诱导DNA通过非同源末端连接(Non-homologous end joining, NHEJ)方式进行修复,随机引入碱基的缺失或插入,或者通过同源重组(Homology-directed repair, HDR)方式进行自我修复,实现准确的基因敲入,达到基因编辑的目的。迄今为止,CRISPR/Cas9基因编辑系统已成功应用于大多模式和准模式酵母,而作为具有重大工业前景的红冬孢酵母中还未见报道。
U6启动子作为RNA聚合酶Ⅲ型启动子,在真核生物体内驱动小RNA高水平表达。随着基因编辑技术的兴起,U6启动子也被开始广泛用于CRISPR/Cas9系统中gRNA序列的启动表达。U6启动子具有种属特异性,在转基因技术中,使用转化物种本身或接近物种的U6启动子能取得更高的的启动效率。至今,已报道U6启动子在一些不同生物的CRISPR/Cas9系统中成功应用于同源修复、基因敲除等,但针对红冬孢酵母的U6启动子相关应用还未见报道。
发明内容
本发明提供了一种来源于(Rhodosporidiumkratochvilovae)YM25235的DNA分子,其核苷酸序列如SEQIDNO:1或SEQIDNO:2所示,该DNA分子具有启动子活性;
本发明启动子通过以褐色腐朽菌(Coniophoraputeana)、变孔异担子菌(Heterobasidionirregulare)、拟南芥(Arabidopsis)、果蝇(Drosophila melanogaster)、小鼠(Mus musculus)、粟酒裂殖酵母(Schizosaccharomyces pombe)、总状横梗霉(Lichtheimiaramosa)、圆红冬孢酵母(Rhodospordiumtoruloides)、宾地瘤黑粉菌(Melanopsichiumpennsylvanicum)、丝轴黑粉菌(Sporisoriumreilianum)等物种的U6基因为参考序列,通过序列比对,从红冬孢酵母菌株YM25235中克隆得到2个U6启动子PRkU6a和PRkU6b
本发明另一目的是将上述DNA分子应用在CRISPR/Cas9基因编辑质粒中或应用在启动RNA聚合酶Ⅲ转录产物中。
本发明首次从红冬孢酵母YM25235中扩增得到PRkU6a和PRkU6b基因,二者均能够在红冬孢酵母YM25235中有效驱动gRNA的表达,能够高效用于CRISPR/Cas9基因编辑系统,实现基因定点敲除;本发明从庞大的红冬孢酵母基因组中克隆具有高效转录活性的内源U6启动子,在此基础上开发成熟的红冬孢酵母CRISPR/Cas9基因组编辑技术,具有重要的研究意义与应用价值。
附图说明
图1为两个U6基因上游序列示意图;
图2为构建的Cas9表达载体酶切验证(NcoI/EcoRV)琼脂糖凝胶电泳图,其中M为Marker;
图3为Cas9表达载体结构示意图;
图4为含有PRKU6a序列(A)和含有PRKU6b序列(B)的gRNA重组载体的酶切验证(A:AflII/BpmI,B:AflII/AgeI)琼脂糖凝胶电泳图,其中M:Marker;
图5为含有PRKU6a序列的gRNA重组载体的结构示意图;
图6为含有PRKU6b序列的gRNA重组载体的结构示意图;
图7为本发明实施例提供的红冬孢酵母Cas9蛋白WesternBlot验证,其中M:Marker,泳道1:野生型红冬孢酵母YM25235,泳道2为重组Cas9表达载体转化的红冬孢酵母YM25235;
图8为本发明实施例提供的基因编辑表型,白色菌落为正确基因编辑克隆,红色为未编辑克隆;
图9为本发明实施例提供的红冬孢酵母基因编辑修复类型图,包含碱基插入、缺失和突变。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中使用的试剂和方法,如无特殊说明,均采用常规试剂,使用常规方法;
实施例中红冬孢酵母(R. kratochvilovae)YM25235菌株采用YPD培养基培养:酵母膏10.0 g/L、胰蛋白胨20.0 g/L、葡萄糖20.0g/L。
实施例1:gRNA启动子PRkU6a、PRkU6b的获取
1、gRNA启动子预测
以褐色腐朽菌(Coniophoraputeana)、变孔异担子菌(Heterobasidionirregulare)、拟南芥(Arabidopsis)、果蝇(Drosophila melanogaster)、小鼠(Mus musculus)、粟酒裂殖酵母(Schizosaccharomyces pombe)、总状横梗霉(Lichtheimiaramosa)、圆红冬孢酵母(Rhodospordiumtoruloides)、宾地瘤黑粉菌(Melanopsichiumpennsylvanicum)、丝轴黑粉菌(Sporisoriumreilianum)等物种的U6基因为参考序列进行比对,得到一条高度同源序列AGAGAAGATTAGCATGGCCCCTGCACAAGGATGACAC,使用BLAST将该高度同源序列与红冬孢酵母YM25235全基因组序列进行比对,获得2条序列,并成功定位到U6启动序列TATA框(见图1),取TATA框上游250bp左右序列并命名为PRKU6a和PRKU6b,核苷酸序列如SEQIDNO:1或SEQIDNO:2所示。
2、基因编辑靶序列设计
利用在线网站CRISPOR(http://crispor.tefor.net/),使用红冬孢酵母中类胡萝卜素途径中关键基因---八氢番茄红素合成酶/番茄红素环化酶(RKCrtYB)的基因组序列,设计一条针对RKCrtYB基因的gRNA靶向序列。根据网站评分结果,选择一条位于编码区的gRNA:ACGTTCTTCTTGTGGGAGTG,用于后续实验分析。
3、载体构建
(1)Cas9表达载体构建
分别将Cas9基因和核定位序列NLS根据红冬孢酵母物种使用密码子的偏好性进行密码子优化,使Cas9的C端与核定位序列NLS进行融合并在末尾添加6×His标签,送北京擎科生物科技有限公司合成,其核苷酸序列如SEQ ID NO:3所示。
使用ClonExpress II One Step Cloning Kit将片段插入被NcoⅢ和EcoRⅤ线性化的载体pRH2034上,置于启动子Pgdp1之后,连接体系(20μL)如下:Exnase ™Ⅱ,2µL;线性化载体,0.03pmol;插入片段,0.06pmol;5×CEII Buffer,4µL;ddH2O补足至20μL。37℃反应30min,反应结束后,取10μL转化大肠杆菌DH5α化学感受态细胞(购自南京诺唯赞生物科技有限公司),涂至含壮观霉素(100 µg/mL)的LB固体平板上过夜培养。使用OMEGA PlasmidMini Kit I提取阳性克隆质粒DNA。随后使用NcoI/EcoRV酶切验证,获得9985bp和4207bp两条正确带(图2),送至北京擎科生物科技有限公司测序,测序引物为PH-F和PH-R(见表1),获得构建正确的重组载体,载体图谱如图3;
表1:引物序列
Figure DEST_PATH_IMAGE002
(2)含有PRKU6a和PRKU6b启动子的gRNA载体
以红冬孢酵母DNA为模板,使用引物PRKU6a-F和PRKU6a-R以及PRKU6b-F和PRKU6b-R扩增PRKU6a和PRKU6b序列,PCR扩增体系(50μL)如下:模板DNA,1μL;引物(10μM)各2μL;dNTP Mix(10mM each),1μL;2×Phanta Max Buffer,25μL;Phanta Max Super-Fidelity DNAPolymerase,1μL;ddH2O补足至50μL。PCR扩增条件如下:95℃预变性5 min;95℃变性15s;62℃退火30s;72℃延伸按照1000 bp/min进行;进行30个循环;最后72℃延伸10min。
将步骤2设计的gRNA序列和gRNA scaffold送北京擎科生物科技有限公司合成并连接;然后按照PRKU6a(PRKU6b)-gRNA-gRNA scaffold的顺序,使用ClonExpressMultiS OneStep Cloning Kit将序列插入被双EcoRI线性化的pRG2034中,连接体系(20 μL)如下:ExnaseMultiS,2µL;连接的各片段,0.03pmol;5×CEMultiS Buffer,4µL;ddH2O补足至20μL。37℃反应30min,反应结束后,取10μL转化大肠杆菌DH5α化学感受态细胞(购自南京诺唯赞生物科技有限公司),涂至含壮观霉素(100 µg/mL)的LB固体平板上过夜培养。使用OMEGAPlasmid Mini Kit I提取阳性克隆质粒DNA。使用AflII/BpmI酶切验证含有PRKU6a启动子的gRNA载体以及使用AflII/AgeI酶切验证含有PRKU6b启动子的gRNA载体,分别获得7416 bp/1455 bp以及5264 bp/3607 bp的正确条带(图4),分别送至北京擎科生物科技有限公司测序验证,测序引物为PG-F和PG-R;获得构建正确的重组载体,载体图谱如图5。
4、转化
利用PEG介导的原生质体法将步骤3(1)的重组Cas9表达载体转化至红冬孢酵母YM25235中,以含终浓度为150 µg/mL潮霉素B(Hygromycin B)的YPD培养基筛选转化子,随机挑选部分转化子,接种至YPD培养基30℃培养24h,培养结束后,将菌液转移至离心管,4500 rpm下离心5 min,去除培养基,收集菌体。按照上海生工生物工程股份有限公司的酵母蛋白提取试剂盒说明书中步骤提取红冬孢酵母总蛋白,使用ProteinFind® Anti-HisMouse Monoclonal Antibody以及ProteinFind® Goat Anti-Mouse IgG (H+L), HRPConjugate进行WesternBlot验证,获得一条162.3kDa的正确蛋白条带(图6)。随后分别将含有PRKU6a或PRKU6b序列的gRNA载体用相同的方法,转化至前一步验证成功的含有重组Cas9表达载体的酵母转化子中,以含终浓度为150 µg/mL潮霉素B(Hygromycin B)和30 µg/mL遗传霉素(G418)的YPD培养基筛选转化子。由于作为靶点的RKCrtYB基因的破坏将导致红冬孢酵母菌株颜色由正常的红色变为白色,因此可通过转化子菌落红白颜色差异,筛选CRISPR/Cas9基因编辑转化子,即菌落颜色为白色的转化子为正确编辑克隆(图7)。
5、gRNA启动子PRKU6a和PRKU6b功能分析
随机挑选部分正确编辑克隆,接种至YPD培养基30℃培养24h,培养结束后,将菌液转移至离心管中,4500rpm下离心5min,去除培养基,收集菌体。按照上海生工生物工程股份有限公司DNA提取试剂盒说明书中步骤提取酵母转化子的基因组DNA,以野生型红冬孢酵母基因组DNA为对照,使用YB1和YB2引物(表1)进行PCR扩增,扩增体系及扩增条件按照步骤3(2)进行,将PCR产物送至北京擎科生物科技有限公司进行测序,测序引物为YB1和YB2,通过对不同酵母转化子基因组靶向切割位点附近序列与野生型红冬孢酵母基因组DNA进行比对,检验基因编辑效果,结果显示,酵母转化子基因组切割位点附近存在多种突变类型,包括:缺失突变(图9方框标出)、插入突变(图9椭圆标出)和替换突变(图9横线标出),说明U6启动子PRKU6a和PRKU6b能够有效驱动gRNA的转录,发挥gRNA识别靶向序列的能力,并通过Cas9蛋白进行切割,诱发红冬孢酵母进行自我修复,随机引入碱基的缺失或插入,从而达到对目标基因进行编辑的目的。即本发明所提供的U6启动子PRKU6a和PRKU6b能够有效用于红冬孢酵母CRISPR/Cas9基因编辑系统。
序列表
<110> 昆明理工大学
<120> 一种红冬孢酵母启动子及其应用
<160> 13
<170> SIPOSequenceListing 1.0
<210> 2
<211> 250
<212> DNA
<213> 红冬孢酵母YM25235(RhodosporidiumkratochvilovaeYM25235)
<400> 2
tctgttcagt ccatgtagct cgtcagtaag cgccaagcca gctcttcgag tcggtcgaac 60
tgggacggac acctcgctga gccgggacga gggaggagac gggttacaag gtgccacagc 120
ccacctcgcc atccacgctc aaatgctacc gtttcttgct cgcgctgctt cgtactttct 180
gcgatcgtca aaaccatcca ccctacgggg tgtgatatac ataaaattgg aacgatacag 240
gcgagctcct 250
<210> 2
<211> 250
<212> DNA
<213> 红冬孢酵母YM25235(RhodosporidiumkratochvilovaeYM25235)
<400> 2
ctccgttcag tctgtgcagc tagccattca gcgccaaccc agttcttcga gttggtcgag 60
ctggaacgga cacctcgctg agccgggacg aggtagcagc tgggctacaa gccgcgacaa 120
cctgcctcgc cgtccgcgct caaatgctac cgtttcttgt ttgcactggt ttgtactttc 180
tgcgatcgtc aaaaccatcc accctacggg gtgtgatata cataaaattg gaacgataca 240
ggcgagctcc 250
<210> 3
<211> 4203
<212> DNA
<213> 人工序列(Artificial)
<400> 3
atggacaaga agtactcgat cggcctcgac atcggcacca actcggtcgg ctgggccgtc 60
atcaccgacg agtacaaggt cccgtcgaag aagttcaagg tcctcggcaa caccgaccgc 120
cactcgatca agaagaacct catcggcgcc ctcctcttcg actcgggcga gaccgccgag 180
gccacccgcc tcaagcgcac cgcccgccgc cgctacaccc gccgcaagaa ccgcatctgc 240
tacctccagg agatcttctc gaacgagatg gccaaggtcg acgactcgtt cttccaccgc 300
ctcgaggagt cgttcctcgt cgaggaggac aagaagcacg agcgccaccc gatcttcggc 360
aacatcgtcg acgaggtcgc ctaccacgag aagtacccga ccatctacca cctccgcaag 420
aagctcgtcg actcgaccga caaggccgac ctccgcctca tctacctcgc cctcgcgcac 480
atgatcaagt tccgcggcca cttcctcatc gagggcgacc tcaaccccga caactcggac 540
gtcgacaagc tcttcatcca gctcgtccag acctacaacc agctcttcga ggagaacccg 600
atcaacgcct cgggcgtcga cgccaaggcc atcctctcgg cccgcctctc gaagtcgcgc 660
cgcctcgaga acctcatcgc ccagctcccc ggcgagaaga agaacggcct cttcggcaac 720
ctcatcgcgc tctcgctcgg cctcaccccc aacttcaagt cgaacttcga cctcgccgag 780
gacgccaagc tccagctctc gaaggacacc tacgacgacg acctcgacaa cctcctcgcc 840
cagatcggcg accagtacgc cgacctcttc ctcgccgcca agaacctctc ggacgccatc 900
ctcctctcgg acatcctccg cgtcaacacc gagatcacca aggcccccct ctcggcctcg 960
atgatcaagc gctacgacga gcaccaccag gacctcaccc tcctcaaggc cctcgtccgc 1020
cagcagctcc ccgagaagta caaggagatc ttcttcgacc agtcgaagaa cggctacgcc 1080
ggctacatcg acggcggcgc ctcgcaggag gagttctaca agttcatcaa gccgatcctc 1140
gagaagatgg acggcaccga ggagctcctc gtcaagctca accgcgagga cctcctccgc 1200
aagcagcgca ccttcgacaa cggctcgatc ccgcaccaga tccacctcgg cgagctccac 1260
gccatcctcc gccgccagga ggacttctac ccgttcctca aggacaaccg cgagaagatc 1320
gagaagatcc tcaccttccg catcccctac tacgtcggcc cgctcgcgcg cggcaactcg 1380
cgcttcgcct ggatgacccg caagtcggag gagaccatca ccccctggaa cttcgaggag 1440
gtcgtcgaca agggcgcctc ggcccagtcg ttcatcgagc gcatgaccaa cttcgacaag 1500
aacctcccga acgagaaggt cctcccgaag cactcgctcc tctacgagta cttcaccgtc 1560
tacaacgagc tcaccaaggt caagtacgtc accgagggca tgcgcaagcc ggccttcctc 1620
tcgggcgagc agaagaaggc catcgtcgac ctcctcttca agaccaaccg caaggtcacc 1680
gtcaagcagc tcaaggagga ctacttcaag aagatcgagt gcttcgactc ggtcgagatc 1740
tcgggcgtcg aggaccgctt caacgcctcg ctcggcacct accacgacct cctcaagatc 1800
atcaaggaca aggacttcct cgacaacgag gagaacgagg acatcctcga ggacatcgtc 1860
ctcaccctca ccctcttcga ggaccgcgag atgatcgagg agcgcctcaa gacgtacgcc 1920
cacctcttcg acgacaaggt catgaagcag ctcaagcgcc gccgctacac gggctggggc 1980
cgcctctcgc gcaagctcat caacggcatc cgcgacaagc agtcgggcaa gaccatcctc 2040
gacttcctca agtcggacgg cttcgccaac cgcaacttca tgcagctcat ccacgacgac 2100
tcgctcacct tcaaggagga catccagaag gcccaggtct cgggccaggg cgactcgctc 2160
cacgagcaca tcgccaacct cgccggctcg ccggccatca agaagggcat cctccagacc 2220
gtcaaggtcg tcgacgagct cgtcaaggtc atgggccgcc acaagccgga gaacatcgtc 2280
atcgagatgg cccgcgagaa ccagaccacc cagaagggcc agaagaactc gcgcgagcgc 2340
atgaagcgca tcgaggaggg catcaaggag ctcggctcgc agatcctcaa ggagcacccc 2400
gtcgagaaca cccagctcca gaacgagaag ctctacctct actacctcca gaacggccgc 2460
gacatgtacg tcgaccagga gctcgacatc aaccgcctct cggactacga cgtcgaccac 2520
atcgtccccc agtcgttcct caaggacgac tcgatcgaca acaaggtcct cacccgctcg 2580
gacaagaacc gcggcaagtc ggacaacgtc ccctcggagg aggtcgtcaa gaagatgaag 2640
aactactggc gccagctcct caacgccaag ctcatcaccc agcgcaagtt cgacaacctc 2700
accaaggccg agcgcggcgg cctctcggag ctcgacaagg ccggcttcat caagcgccag 2760
ctcgtcgaga cccgccagat caccaagcac gtcgcccaga tcctcgactc gcgcatgaac 2820
accaagtacg acgagaacga caagctcatc cgcgaggtca aggtcatcac cctcaagtcg 2880
aagctcgtct cggacttccg caaggacttc cagttctaca aggtccgcga gatcaacaac 2940
taccaccacg cccacgacgc ctacctcaac gcggtcgtcg gcaccgccct catcaagaag 3000
tacccgaagc tcgagtcgga gttcgtctac ggcgactaca aggtctacga cgtccgcaag 3060
atgatcgcca agtcggagca ggagatcggc aaggccaccg ccaagtactt cttctactcg 3120
aacatcatga acttcttcaa gaccgagatc acgctcgcca acggcgagat ccgcaagcgc 3180
cccctcatcg agaccaacgg cgagaccggc gagatcgtct gggacaaggg ccgcgacttc 3240
gccaccgtcc gcaaggtcct ctcgatgccc caggtcaaca tcgtcaagaa gaccgaggtc 3300
cagaccggcg gcttctcgaa ggagtcgatc ctcccgaagc gcaactcgga caagctcatc 3360
gcccgcaaga aggactggga cccgaagaag tacggcggct tcgactcgcc cacggtcgcc 3420
tactcggtcc tcgtcgtcgc caaggtcgag aagggcaagt cgaagaagct caagtcggtc 3480
aaggagctcc tcggcatcac catcatggag cgctcgtcgt tcgagaagaa cccgatcgac 3540
ttcctcgagg cgaagggcta caaggaggtc aagaaggacc tcatcatcaa gctcccgaag 3600
tactcgctct tcgagctcga gaacggccgc aagcgcatgc tcgcctcggc cggcgagctc 3660
cagaagggca acgagctcgc cctcccgtcg aagtacgtca acttcctcta cctcgcctcg 3720
cactacgaga agctcaaggg ctcgcccgag gacaacgagc agaagcagct cttcgtcgag 3780
cagcacaagc actacctcga cgagatcatc gagcagatct cggagttctc gaagcgcgtc 3840
atcctcgccg acgcgaacct cgacaaggtc ctctcggcct acaacaagca ccgcgacaag 3900
cccatccgcg agcaggccga gaacatcatc cacctcttca ccctcaccaa cctcggcgcc 3960
ccggccgcct tcaagtactt cgacaccacc atcgaccgca agcgctacac ctcgaccaag 4020
gaggtcctcg acgccaccct catccaccag tcgatcaccg gcctctacga gacccgcatc 4080
gacctctcgc agctcggcgg cgacgagatc cgcgagctca agcgccgcct cggcgagtgc 4140
gaggccggcg acgccggcac ccgcaagcgc gtcaagtacg agcaccacca ccaccaccac 4200
tag 4203
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 4
ggaagccgca tcgacaagtt 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 5
gagcgaaacc ctataggaac 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 6
tctgttcagt ccatgtagct 20
<210> 7
<211> 17
<212> DNA
<213> 人工序列(Artificial)
<400> 7
aggagctcgc ctgtatc 17
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 8
ctccgttcag tctgtgcagc 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 9
ggagctcgcc tgtatcgttc 20
<210> 10
<211> 21
<212> DNA
<213> 人工序列(Artificial)
<400> 10
aattcaattc ggcgttaatt c 21
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 11
gcggtgtcat ctatgttact 20
<210> 12
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 12
gacctacctc gcccttatcg 20
<210> 13
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 13
ggccgttgag gtatatcgcg 20

Claims (2)

1.一种DNA分子,来源于红冬孢酵母,其核苷酸序列如SEQIDNO:1或SEQIDNO:2所示,该DNA分子具有启动子活性。
2.权利要求1所述的DNA分子在CRISPR/Cas9基因编辑质粒中的应用。
CN202210174477.6A 2022-02-25 2022-02-25 一种红冬孢酵母启动子及其应用 Active CN114540356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210174477.6A CN114540356B (zh) 2022-02-25 2022-02-25 一种红冬孢酵母启动子及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210174477.6A CN114540356B (zh) 2022-02-25 2022-02-25 一种红冬孢酵母启动子及其应用

Publications (2)

Publication Number Publication Date
CN114540356A true CN114540356A (zh) 2022-05-27
CN114540356B CN114540356B (zh) 2023-09-01

Family

ID=81679416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210174477.6A Active CN114540356B (zh) 2022-02-25 2022-02-25 一种红冬孢酵母启动子及其应用

Country Status (1)

Country Link
CN (1) CN114540356B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107340A (zh) * 2021-08-11 2022-03-01 昆明理工大学 一种甲羟戊酸激酶基因rkmk及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536518A (zh) * 2018-10-31 2019-03-29 昆明理工大学 一种八氢番茄红素脱氢酶基因RKcrtI及其应用
CN109666683A (zh) * 2019-02-27 2019-04-23 昆明理工大学 乙酰辅酶A乙酰转移酶基因RKAcaT2及其应用
CN110747206A (zh) * 2019-11-05 2020-02-04 昆明理工大学 3-羟基-3-甲基戊二酸单酰辅酶a还原酶基因rkhmgr及其应用
US20200377877A1 (en) * 2015-12-18 2020-12-03 The Scripps Research Institute Production of unnatural nucleotides using a crispr/cas9 system
CN112410355A (zh) * 2020-11-23 2021-02-26 昆明理工大学 一种酰基辅酶a氧化酶2基因rkacox2及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200377877A1 (en) * 2015-12-18 2020-12-03 The Scripps Research Institute Production of unnatural nucleotides using a crispr/cas9 system
CN109536518A (zh) * 2018-10-31 2019-03-29 昆明理工大学 一种八氢番茄红素脱氢酶基因RKcrtI及其应用
CN109666683A (zh) * 2019-02-27 2019-04-23 昆明理工大学 乙酰辅酶A乙酰转移酶基因RKAcaT2及其应用
CN110747206A (zh) * 2019-11-05 2020-02-04 昆明理工大学 3-羟基-3-甲基戊二酸单酰辅酶a还原酶基因rkhmgr及其应用
CN112410355A (zh) * 2020-11-23 2021-02-26 昆明理工大学 一种酰基辅酶a氧化酶2基因rkacox2及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107340A (zh) * 2021-08-11 2022-03-01 昆明理工大学 一种甲羟戊酸激酶基因rkmk及其应用

Also Published As

Publication number Publication date
CN114540356B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Hashimoto et al. Efficient multiplex genome editing induces precise, and self-ligated type mutations in tomato plants
Michno et al. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme
CN110747187B (zh) 识别TTTV、TTV双PAM位点的Cas12a蛋白、植物基因组定向编辑载体及方法
Jia et al. Targeted genome editing of sweet orange using Cas9/sgRNA
Sun et al. Site‐S pecific Gene Targeting Using Transcription Activator‐L ike Effector (TALE)‐B ased Nuclease in Brassica oleracea
CN107858346A (zh) 一种敲除酿酒酵母染色体的方法
CN103382468B (zh) 一种水稻基因组定点改造方法
CN113728098A (zh) 具有ruvc结构域的酶
CN105821075A (zh) 一种茶树咖啡因合成酶CRISPR/Cas9基因组编辑载体的构建方法
Ma et al. Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases
CN110358767B (zh) 一种基于CRISPR-Cas12a系统的运动发酵单胞菌基因组编辑方法及其应用
CN105132451A (zh) 一种CRISPR/Cas9单一转录单元定向修饰骨架载体及其应用
WO2019153902A1 (zh) 植物基因组定点替换的方法
CN110607320A (zh) 一种植物基因组定向碱基编辑骨架载体及其应用
CN113528408B (zh) 一种基于CRISPR-nCas3系统的高效基因组大片段删除方法及应用
Kopischke et al. TALEN-mediated genome-editing approaches in the liverwort Marchantia polymorpha yield high efficiencies for targeted mutagenesis
Li et al. TALEN utilization in rice genome modifications
Li et al. Targeted transcriptional activation in plants using a potent dead Cas9–derived synthetic gene activator
CN114540356B (zh) 一种红冬孢酵母启动子及其应用
CN112481309B (zh) Ago蛋白的用途及组合物和基因编辑方法
Li et al. Creating large chromosomal deletions in rice using CRISPR/Cas9
CN114317493A (zh) 适用于假单胞菌的基因组编辑系统及其构建方法与应用
CN106978438B (zh) 提高同源重组效率的方法
CN108588102A (zh) 一种前t载体及其组成的t载体和应用
CN105543195A (zh) 植物Cas9变体蛋白VQR及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant