CN114488978A - An intelligent production line monitoring method and system based on digital twin - Google Patents
An intelligent production line monitoring method and system based on digital twin Download PDFInfo
- Publication number
- CN114488978A CN114488978A CN202210056802.9A CN202210056802A CN114488978A CN 114488978 A CN114488978 A CN 114488978A CN 202210056802 A CN202210056802 A CN 202210056802A CN 114488978 A CN114488978 A CN 114488978A
- Authority
- CN
- China
- Prior art keywords
- production
- model
- information
- production line
- alarm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 345
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012544 monitoring process Methods 0.000 title claims abstract description 30
- 230000002159 abnormal effect Effects 0.000 claims abstract description 21
- 238000012423 maintenance Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 abstract description 4
- 230000005856 abnormality Effects 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 description 15
- 238000003466 welding Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32252—Scheduling production, machining, job shop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明属于工业互联网领域,尤其涉及一种基于数字孪生的智能产线监控方法和系统。The invention belongs to the field of industrial Internet, and in particular relates to a digital twin-based intelligent production line monitoring method and system.
背景技术Background technique
现有的智能生产线中,一般是根据传感器对生产线中各个设备进行参数监测,再根据相应的参数对生产线的运行状态进行综合性的监测。但是现有的监测方式中,对生产线整体情况的展示不够直观,因此对于生产线的生产效率也难以进行直观展示;同时现有的智能生产线对于故障的报警也不够直观,导致许多故障发生时无法及时发现,从而影响生产线的生产效率。In the existing intelligent production line, the parameters of each equipment in the production line are generally monitored according to the sensors, and then the operation status of the production line is comprehensively monitored according to the corresponding parameters. However, in the existing monitoring method, the display of the overall situation of the production line is not intuitive enough, so it is difficult to visually display the production efficiency of the production line; at the same time, the existing intelligent production line is not intuitive enough for the alarm of faults, resulting in many failures. found, thereby affecting the production efficiency of the production line.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种基于数字孪生的智能产线监控方法和系统,以解决现有技术中智能生产线难以预测生产效率以及报警信息容易遗漏的问题。The present invention provides an intelligent production line monitoring method and system based on digital twins, so as to solve the problems in the prior art that the intelligent production line is difficult to predict the production efficiency and the alarm information is easily missed.
一种基于数字孪生的智能产线监控方法,包括步骤:A digital twin-based intelligent production line monitoring method, comprising the steps of:
获取生产区域的物理形状信息,根据所述物理形状信息生成生产模型;Obtain physical shape information of the production area, and generate a production model according to the physical shape information;
获取生产区域的历史生产信息,根据历史生产信息预测所述生产区域的当前生产效率,并将所述当前生产效率投射至所述生产模型中进行展示;Obtain historical production information of a production area, predict the current production efficiency of the production area according to the historical production information, and project the current production efficiency to the production model for display;
获取生产区域的运行属性;根据所述运行属性对所述生产区域的运行状态进行判断;判断为异常时,生成报警信息并投射至所述生产模型中进行展示;Obtaining the operation attribute of the production area; judging the operation state of the production area according to the operation attribute; when it is judged to be abnormal, generating alarm information and projecting it to the production model for display;
根据所述生产模型的展示信息对所述生产区域进行监控。The production area is monitored according to the display information of the production model.
可选地,所述生产模型包括物理子模型和空间子模型;所述生产区域包括生产设备、生产线和生产场所;Optionally, the production model includes a physical sub-model and a spatial sub-model; the production area includes production equipment, production lines and production sites;
所述物理子模型根据所述生产设备和所述生产线的物理形状进行等比缩放后建模生成;The physical sub-model is modeled and generated after proportional scaling according to the physical shape of the production equipment and the production line;
所述空间子模型根据所述生产场所的物理形状进行等比缩放后建模生成;The space sub-model is modeled and generated after proportional scaling according to the physical shape of the production site;
所述物理子模型以组件的方式在所述空间子模型中进行添加或者删除,生成所述生产模型。The physical sub-model is added or deleted in the spatial sub-model in a component manner to generate the production model.
可选地,所述方法还包括以下步骤:Optionally, the method further includes the following steps:
根据所述生产设备的运行属性和所述生产线的运行属性,生成属性模型;所述属性模型用于将所述生产设备的运行属性添加至所述物理子模型中,或者将所述生产线的运行属性添加至所述物理子模型中。An attribute model is generated according to the operation attribute of the production equipment and the operation attribute of the production line; the attribute model is used to add the operation attribute of the production equipment to the physical sub-model, or to add the operation attribute of the production line to the physical sub-model. properties are added to the physics submodel.
可选地,所述报警信息的生成包括以下步骤:Optionally, the generation of the alarm information includes the following steps:
获取所述生产设备的运行属性,将所述生产设备的运行属性对应的值与预设值进行对比根据对比结果判断所述生产设备的运行状态是否异常;Obtaining the operation attribute of the production equipment, and comparing the value corresponding to the operation attribute of the production equipment with a preset value to determine whether the operation state of the production equipment is abnormal according to the comparison result;
或者获取所述生产线的运行属性,将所述生产线的运行属性对应的值与预设值进行对比根据对比结果判断所述生产线的运行状态是否异常;Or obtain the operation attribute of the production line, and compare the value corresponding to the operation attribute of the production line with a preset value to determine whether the operation state of the production line is abnormal according to the comparison result;
当判断所述生产设备的运行状态异常时,或者判断所述生产线的运行状态异常时,通过报警模型生成所述报警信息,并以图形化色彩呈现。When it is judged that the running state of the production equipment is abnormal, or when it is judged that the running state of the production line is abnormal, the alarm information is generated through an alarm model and presented in graphical colors.
可选地,根据所述历史生产信息预测所述当前生产效率的步骤包括:Optionally, the step of predicting the current production efficiency according to the historical production information includes:
获取历史生产效率P;所述历史生产效率其中T1为单个产品的加工时间,N为生产区域的生产数量,T2为流水线作业工人的平均工作时长,M为流水线作业人数;Obtain historical production efficiency P; the historical production efficiency Among them, T1 is the processing time of a single product, N is the production quantity of the production area, T2 is the average working time of the assembly line workers, and M is the number of assembly line operators;
对所述历史生产效率P进行归一化处理,并利用滑动窗口平均算法预测出所述当前生产效率。The historical production efficiency P is normalized, and the current production efficiency is predicted by using a sliding window average algorithm.
可选地,所述报警信息包括空间位置内容和报警内容;所述空间位置内容表示所述报警信息显示在所述生产模型中的具体位置;所述报警内容包含颜色属性,所述报警内容通过颜色深浅表示严重程度,所述颜色越深表示越严重。Optionally, the alarm information includes spatial location content and alarm content; the spatial location content represents a specific location where the alarm information is displayed in the production model; the alarm content includes a color attribute, and the alarm content is Shades of color indicate severity, with darker colors indicating greater severity.
可选地,所述方法还包括以下步骤:Optionally, the method further includes the following steps:
获取所述生产设备的运转信息,并将所述生产设备的运转信息投射至所述生产模型中的对应位置进行展示,所述生产设备的运转信息包括运行时长、作业人员、生产批次和维修保养信息;Obtain the operation information of the production equipment, and project the operation information of the production equipment to the corresponding position in the production model for display. The operation information of the production equipment includes the operation time, the operator, the production batch and the maintenance. maintenance information;
获取所述生产线的运转信息,并将所述生产线的运转信息投射至所述生产模型中的对应位置进行展示,所述生产线的运转信息包括工作时长、产品的生产批次、各工艺段工作时长生产效率和当前订单预计完成时间。Obtain the operation information of the production line, and project the operation information of the production line to the corresponding position in the production model for display. The operation information of the production line includes the working time, the production batch of the product, and the working time of each process section. Production efficiency and estimated completion time for current orders.
可选地,所述方法还包括:Optionally, the method further includes:
获取订单信息;Get order information;
根据所述当前工作效率和所述订单信息计算订单的预计完成时间;Calculate the estimated completion time of the order according to the current work efficiency and the order information;
获取所述订单的实际完成时间;Get the actual completion time of said order;
将所述预计完成时间和所述实际完成时间投射至所述生产模型中进行展示。The projected completion time and the actual completion time are projected into the production model for presentation.
可选地,所述生产模型、所述报警信息、所述当前生产效率、所述生产设备的运转信息和所述生产线的运转信息均通过显示设备进行展示。Optionally, the production model, the alarm information, the current production efficiency, the operation information of the production equipment and the operation information of the production line are all displayed through a display device.
本发明还提供一种基于数字孪生的智能产线监控系统,包括:The present invention also provides a digital twin-based intelligent production line monitoring system, comprising:
采集模块,用于采集生产区域的物理形状信息、历史生产信息和运行属性;The collection module is used to collect the physical shape information, historical production information and operation attributes of the production area;
模型生成模块,与所述采集模块连接,用于根据所述物理形状信息生成生产模型;a model generation module, connected with the acquisition module, for generating a production model according to the physical shape information;
预测模块,与所述采集模块连接,用于根据所述历史生产信息预测所述生产区域的当前生产效率;a prediction module, connected to the acquisition module, for predicting the current production efficiency of the production area according to the historical production information;
报警模块,与所述采集模块连接,用于根据所述运行属性对所述生产区域的工作状态进行判断,且所述生产区域的工作状态异常时,生成报警信息;an alarm module, connected to the collection module, for judging the working state of the production area according to the running attribute, and generating alarm information when the working state of the production area is abnormal;
显示模块,与所述模型生成模块、所述预测模块、所述报警模块连接,用于显示所述生产模型、所述当前工作效率和所述报警信息;a display module, connected with the model generation module, the prediction module and the alarm module, for displaying the production model, the current work efficiency and the alarm information;
监控模块,与所述显示模块连接,用于根据所述显示模块显示的信息对所述生产区域进行监控。A monitoring module, connected with the display module, is used for monitoring the production area according to the information displayed by the display module.
发明提供一种基于数字孪生的智能产线监控方法和系统,具有以下有益效果:通过现有的生产信息化管理系统获取生产区域的物理形状信息,并生成三维化的生产模型;通过生产信息化管理系统获取生产区域的历史生产信息,然后根据历史生产信息预测当前生产效率并投射至生产模型中生产线的位置进行直观展示;通过生产信息化管理系统获取生产区域中生产设备的运行属性,并通过对比运行属性和预设值判断生产设备的运行状态是否存在异常,如果存在异常则投射至生产模型中对应生产设备的位置进行展示;本发明通过数字孪生技术建立生产模型,将生产效率和报警信息直观地展示在生成模型的对应位置,可以对生产过程进行有效辅助。The invention provides a digital twin-based intelligent production line monitoring method and system, which has the following beneficial effects: obtaining physical shape information of a production area through an existing production information management system, and generating a three-dimensional production model; The management system obtains the historical production information of the production area, and then predicts the current production efficiency according to the historical production information and projects it to the position of the production line in the production model for visual display; obtains the operation attributes of the production equipment in the production area through the production information management system Comparing the operation attributes and the preset value to determine whether the operation state of the production equipment is abnormal, and if there is abnormal, it is projected to the position of the corresponding production equipment in the production model for display; Intuitively displayed in the corresponding position of the generated model, it can effectively assist the production process.
附图说明Description of drawings
图1是本发明的一实施例中的监控方法的流程示意图;1 is a schematic flowchart of a monitoring method in an embodiment of the present invention;
图2是本发明的一实施例中的生产效率预测流程示意图;2 is a schematic flow chart of production efficiency prediction in an embodiment of the present invention;
图3是本发明的一实施例中的监控系统结构图。FIG. 3 is a structural diagram of a monitoring system in an embodiment of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the following embodiments and features in the embodiments may be combined with each other under the condition of no conflict.
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the drawings provided in the following embodiments are only used to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
在下文描述中,探讨了大量细节,以提供对本发明实施例的更透彻的解释,然而,对本领域技术人员来说,可以在没有这些具体细节的情况下实施本发明的实施例是显而易见的。In the following description, numerous details are discussed to provide a more thorough explanation of embodiments of the invention, however, it will be apparent to those skilled in the art that embodiments of the invention may be practiced without these specific details.
发明人发现,现有的智能生产线一般都会设置MES系统(生产信息化管理系统)对生产过程中的各种参数进行采集,然后利用一些运算方法将参数转化为生产效率、报警信息等现有的MES系统对于生产效率、报警信息等数据的展示一般都是列表展示或者陈列展示,展示效果不够直观,无法将信息与生产线进行对应,因此效果不佳。The inventor found that the existing intelligent production lines generally set up MES system (production information management system) to collect various parameters in the production process, and then use some computing methods to convert the parameters into existing production efficiency, alarm information, etc. The display of production efficiency, alarm information and other data in the MES system is generally a list display or display display, and the display effect is not intuitive enough to match the information with the production line, so the effect is not good.
为了解决上述问题,如图1所示,本发明中的提供的一种基于数字孪生的智能产线监控方法,包括步骤:In order to solve the above problems, as shown in Figure 1, a digital twin-based intelligent production line monitoring method provided in the present invention includes the steps:
S1.从生产信息化管理系统中获取生产区域的物理形状信息,具体包括生产设备、生产线和生产场所的物理形状信息,生成生产模型;具体地,从生产信息化管理系统中获取生产设备和生产线的物理形状,通过等比缩放建模生成物理子模型,物理子模型与生产线或者生产设备的关系一一对应,即每个生产线或者生产设备都进行对应建模;从生产信息化管理系统中获取生产场所的物理形状,等比缩放后建模生成空间子模型;将物理子模型按照坐标关系添加至空间子模型中,即可获得与实际生产线一致的生产模型;生产模型作为一个载体,用于直观展示生产线的各种参数;S1. Obtain the physical shape information of the production area from the production information management system, including the physical shape information of production equipment, production lines and production sites, and generate a production model; specifically, obtain production equipment and production lines from the production information management system The physical shape of the product is generated through proportional scaling modeling to generate a physical sub-model, and the relationship between the physical sub-model and the production line or production equipment is in one-to-one correspondence, that is, each production line or production equipment is modeled accordingly; obtained from the production information management system The physical shape of the production site is proportionally scaled to generate a spatial sub-model; the physical sub-model is added to the spatial sub-model according to the coordinate relationship, and a production model consistent with the actual production line can be obtained; the production model is used as a carrier for Visually display various parameters of the production line;
S2.从生产信息化管理系统中获取生产线的历史生产信息,根据历史生产信息预测生产线的当前生产效率,并将生产效率投射至生产模型中进行展示;S2. Obtain the historical production information of the production line from the production information management system, predict the current production efficiency of the production line according to the historical production information, and project the production efficiency to the production model for display;
具体地,需要获取的参数包括历史中为单个产品的加工时间T1,为生产线的生产数量N,为流水线作业工人的平均工作时长T2和为流水线作业人数M;通过公式即可算出历史生产效率P,在不同时间点下获取上述参数,即可计算出历史生产效率的序列;Specifically, the parameters to be acquired include the processing time T1 of a single product in the history, the production quantity N of the production line, the average working time T2 of the workers in the assembly line, and the number of workers in the assembly line M; through the formula The historical production efficiency P can be calculated, and the above parameters can be obtained at different time points to calculate the sequence of historical production efficiency;
如图2所示,具体建立预测模型进行预测的步骤如下:As shown in Figure 2, the specific steps for establishing a prediction model for prediction are as follows:
S201.获取历史生产效率并以时间为单元采集的历史生产效率形成序列;S201. Obtain historical production efficiency and form a sequence of historical production efficiency collected in units of time;
S202.对历史生产效率对应的序列进行min-max标准化的归一化处理,获得归一化的新序列,将新序列转化为矩阵;S202. Perform min-max normalization on the sequence corresponding to the historical production efficiency, obtain a new normalized sequence, and convert the new sequence into a matrix;
S203.建立预测模型,利用滑动窗口平均法进行预测;S203. Establish a prediction model, and use the sliding window average method for prediction;
具体包括:Specifically include:
设置窗口阈值,训练生产效率预测模型的参数;具体的生产效率模型为:Set the window threshold and train the parameters of the production efficiency prediction model; the specific production efficiency model is:
其中X'表示预测得到的某连续区间生产效率矩阵;C代表参数矩阵;是描述相应区间生产效率变化的特征向量矩阵;where X' represents the predicted production efficiency matrix in a continuous interval; C represents the parameter matrix; is the eigenvector matrix describing the change of production efficiency in the corresponding interval;
训练预测模型的具体计算过程如下:The specific calculation process of training the prediction model is as follows:
(1)定义窗口中M行ω列的数据为M*ω阶的矩阵,计作X;(1) The data of M rows and ω columns in the definition window is a matrix of M*ω order, which is counted as X;
(2)根据R=XTX求得矩阵X的协方差矩阵R(ω*ω);(2) Obtain the covariance matrix R(ω*ω) of the matrix X according to R=X T X;
(3)采用QR分解法求得协方差矩阵R的特征向量矩阵在特征向量矩阵中选取选取矩阵中前a行记为同理中后b行部分记为其中,k(1≤k<ω)表示阶数,即特征向量的数量,其中k值表示生产效率波动量;(3) Using the QR decomposition method to obtain the eigenvector matrix of the covariance matrix R Select from the eigenvector matrix selection matrix The first line a in the middle is recorded as Similarly The middle part after the b line is recorded as Among them, k (1≤k<ω) represents the order, that is, the number of eigenvectors, and the value of k represents the fluctuation of production efficiency;
(4)定义时间M+1中a列数据组成的矩阵记为X1’,与(3)中求得的一同带入至模型公式中,得到变换公式即得到时间M+1对应下的a列数据和窗口中M行a列数据之间关系的参数矩阵C1(1*k),也可作为时间M+1对应下未知b列数据和窗口中M行b列数据之间的参数矩阵;(4) The matrix composed of the data of column a in the definition time M+1 is denoted as X 1 ', which is the same as that obtained in (3) Bring it into the model formula together to get the transformation formula That is, the parameter matrix C 1 (1*k) of the relationship between the data in column a corresponding to time M+1 and the data in row a column in the window is obtained. It can also be used as the unknown data in column b corresponding to time M+1 and the The parameter matrix between M rows and b columns of data;
(5)将(4)中得到的参数矩阵C1和同时带入至预测模型公式中,即可预测时间M+1对应下的b列的工作效率。(5) The parameter matrix C1 obtained in (4) and Also brought into the prediction model formula , the work efficiency of column b corresponding to time M+1 can be predicted.
获得预测结果后,形成以订单为中心的预测信息,预测信息包括订单的预计完成时间,预计完成时间投射至生产模型中进行展示。After the forecast result is obtained, the forecast information centered on the order is formed. The forecast information includes the estimated completion time of the order, and the estimated completion time is projected to the production model for display.
S3.从生产信息化管理系统中获取生产设备的运行属性;根据运行属性对生产设备进行状态判断;判断生产设备运行状态异常时,生成报警信息并投射至生产模型中对应的生产设备的物理子模型中进行展示。S3. Obtain the operation attributes of the production equipment from the production information management system; judge the state of the production equipment according to the operation attributes; when it is judged that the operation state of the production equipment is abnormal, generate alarm information and project it to the physical sub-system of the corresponding production equipment in the production model displayed in the model.
在一些实施例中,报警模型的工作依赖于生产设备和生产线的运行属性,因此:从生产信息化管理系统中获取生产设备和生产线的运行属性,生成属性模型。运行属性包括但不限于:In some embodiments, the operation of the alarm model depends on the operation attributes of the production equipment and the production line. Therefore, the operation attributes of the production equipment and the production line are obtained from the production information management system to generate the attribute model. Run properties include but are not limited to:
机械臂焊接机器人的属性:焊接速度、焊接角度、焊接方向、电流、电压、焊接起始时间、故障参数;The properties of the robotic arm welding robot: welding speed, welding angle, welding direction, current, voltage, welding start time, fault parameters;
机床的属性:快速移动速度、换到速度、工作起始时间、故障参数。属性模型添加至对应生产设备的物理子模型中。The properties of the machine tool: rapid traverse speed, changeover speed, work start time, fault parameters. The attribute model is added to the physical submodel of the corresponding production equipment.
在一些实施例中,报警信息通过报警模型生成,报警模型通过将运行属性与预设值进行对比,并根据对比结果判断生产设备的运行状态是否异常。例如,将机械臂焊接机器人的电流值作为报警依据,因此报警模型中预先自定义一个电流参考范围,如果报警模型获取的该机械臂焊接机器人的电流值超出电流参考范围,则发出报警信息。In some embodiments, the alarm information is generated by an alarm model, and the alarm model compares the operation attribute with a preset value, and judges whether the operation state of the production equipment is abnormal according to the comparison result. For example, the current value of the robotic arm welding robot is used as the alarm basis, so a current reference range is pre-defined in the alarm model. If the current value of the robotic arm welding robot obtained by the alarm model exceeds the current reference range, an alarm message will be issued.
在一些实施例中,报警信息包括空间位置内容和报警内容;空间位置内容表示报警信息显示在生产模型中的具体位置;报警内容包含颜色属性,报警内容通过颜色的深浅来表示严重程度,颜色越深表示越严重。例如,报警模型发出关于机械臂焊接机器人的报警信息,那么其中的位置内容指向该机械臂焊接机器人。报警内容以红色、橙色、黄色作为严重度呈现,且对应的严重度依次减弱。In some embodiments, the alarm information includes spatial location content and alarm content; the spatial location content represents the specific location where the alarm information is displayed in the production model; the alarm content includes a color attribute, and the alarm content represents the severity through the depth of the color, and the higher the color Deeper means more serious. For example, if the alarm model sends out alarm information about the robotic arm welding robot, then the content of the location in it refers to the robotic arm welding robot. The alarm content is presented in red, orange, and yellow as the severity, and the corresponding severity decreases in turn.
显示在生产模型上的报警信息,可以更加直观地展示具体报警位置以及严重程度,一目了然,有效避免报警信息遗漏的问题。同时也不需要维护人员查找具体是哪个生产设备发出报警信息。从而可以提高发现速度和维护速度。The alarm information displayed on the production model can more intuitively display the specific alarm location and severity, which is clear at a glance, effectively avoiding the problem of missing alarm information. At the same time, there is no need for maintenance personnel to find out which production equipment sends out the alarm information. This results in faster discovery and faster maintenance.
S4.从生产信息化管理系统中获取生产设备的运行时长、作业人员、生产批次和维修保养信息,投射至生产模型中的对应生产设备的物理子模型中展示;从生产信息化管理系统中获取生产线的工作时长、产品的生产批次、各工艺段工作时长、生产效率和当前订单预计完成时间,投射至生产模型中的对应的生产线的物理子模型中进行展示。S4. Obtain the operating hours, operators, production batches and maintenance information of the production equipment from the production information management system, and project them to the physical sub-model of the corresponding production equipment in the production model for display; from the production information management system Obtain the working time of the production line, the production batch of the product, the working time of each process section, the production efficiency and the estimated completion time of the current order, and project them to the physical sub-model of the corresponding production line in the production model for display.
除了用于展示预测工作效率和报警信息以外,本实施例中还利用数字孪生体中的各个模型展示生产设备的工作状态,将相关信息,如生产设备的运行时长、作业人员、生产批次和维修保养信息等从MES系统中提取出,直观地展示在物理子模型中。In addition to displaying predicted work efficiency and alarm information, each model in the digital twin is used to display the working status of the production equipment, and related information such as the running time of the production equipment, operators, production batches and Maintenance information, etc. are extracted from the MES system and displayed in the physical sub-model intuitively.
本实施例中的一种基于数字孪生的智能产线监控方法,通过从生产线中现有的生产信息化管理系统获取生产线、生产设备和生产场所的物理信息,并生成三维化的生产模型;A digital twin-based intelligent production line monitoring method in this embodiment obtains physical information of the production line, production equipment and production site from an existing production information management system in the production line, and generates a three-dimensional production model;
通过生产信息化管理系统获取生产线的历史生产效率,然后根据历史生产效率预测生产效率并投射至生产模型中生产线的位置进行直观展示;Obtain the historical production efficiency of the production line through the production information management system, and then predict the production efficiency according to the historical production efficiency and project it to the position of the production line in the production model for visual display;
通过生产信息化管理系统获取生产设备的运行属性,并通过对比运行属性和预设值判断生产设备的运行状态是否存在异常,如果存在异常则生成报警信息并投射至生产模型中对应生产设备的位置进行展示;Obtain the operation attributes of the production equipment through the production information management system, and judge whether the operation status of the production equipment is abnormal by comparing the operation attributes with the preset values. to display;
本发明通过数字孪生技术建立生产模型,利用生产模型对实际的生产线的运行状态进行综合展示;将预测的生产效率和报警信息直观地展示在生产模型的对应位置进行直观展示,可以对生产过程进行有效辅助。The invention establishes a production model through the digital twin technology, and uses the production model to comprehensively display the actual production line operating state; the predicted production efficiency and alarm information are visually displayed in the corresponding position of the production model for intuitive display, and the production process can be displayed. Effective assistance.
如图3所示,本发明还提供一种基于数字孪生的智能产线监控系统,包括:As shown in Figure 3, the present invention also provides a digital twin-based intelligent production line monitoring system, including:
采集模块,用于采集生产区域的物理形状信息、历史生产信息和运行属性;具体地,采集模块与MES系统对接,利用现有的MES系统直接采集生产区域内各个生产设备的物理形状信息、生产区域内各条生产线的历史生产信息、生产区域内各个生产设备和各条生产线的运行属性;The acquisition module is used to collect the physical shape information, historical production information and operation attributes of the production area; specifically, the acquisition module is connected to the MES system, and the existing MES system is used to directly collect the physical shape information, production The historical production information of each production line in the area, the operation attributes of each production equipment and each production line in the production area;
模型生成模块,与采集模块连接,用于根据物理形状信息生成生产模型;模型生成模块利用三维建模将建立生产模型;The model generation module is connected with the acquisition module, and is used to generate a production model according to the physical shape information; the model generation module uses three-dimensional modeling to build a production model;
预测模块,与采集模块连接,用于根据历史生产信息预测当前生产效率;预测模块内部运行预测模型,利用前文中的预测方法对当前生产效率进行预测;The prediction module is connected with the acquisition module, and is used to predict the current production efficiency according to the historical production information; the prediction module runs the prediction model internally, and uses the prediction method in the previous article to predict the current production efficiency;
报警模块,与采集模块连接,用于根据运行属性对生产区域的工作状态进行判断,在判断生产区域工作状态异常时,生成报警信息;The alarm module, connected with the acquisition module, is used to judge the working state of the production area according to the operation attribute, and generate alarm information when it is judged that the working state of the production area is abnormal;
显示模块,与模型生成模块、预测模块、报警模块连接,用于显示生产模型、当前工作效率和报警信息;The display module is connected with the model generation module, prediction module and alarm module to display the production model, current work efficiency and alarm information;
监控模块,与显示模块连接,用于根据显示模块的显示信息对生产区域进行监控。The monitoring module is connected with the display module, and is used for monitoring the production area according to the display information of the display module.
本实施例中的一种基于数字孪生的智能产线监控系统,通过从生产线中现有的生产信息化管理系统获取生产线、生产设备和生产场所的物理信息,并生成三维化的生产模型;A digital twin-based intelligent production line monitoring system in this embodiment obtains physical information of the production line, production equipment and production site from an existing production information management system in the production line, and generates a three-dimensional production model;
通过MES系统获取生产线的历史生产效率,然后根据历史生产效率预测生产效率并投射至生产模型中生产线的位置进行直观展示;Obtain the historical production efficiency of the production line through the MES system, and then predict the production efficiency according to the historical production efficiency and project it to the position of the production line in the production model for visual display;
通过MES系统获取生产设备的运行属性,并通过对比运行属性和预设值判断生产设备的运行状态是否存在异常,如果存在异常则生成报警信息并投射至生产模型中对应生产设备的位置进行显示;Obtain the operation attributes of the production equipment through the MES system, and judge whether the operation status of the production equipment is abnormal by comparing the operation attributes with the preset values. If there is an abnormality, an alarm message will be generated and projected to the position of the corresponding production equipment in the production model for display;
本发明通过数字孪生技术建立生产模型,利用生产模型对实际的生产线的运行状态进行数字化综合展示;将预测的生产效率和报警信息直观地展示在生产模型的对应位置进行直观展示,可以对生产过程进行有效辅助。The invention establishes a production model through the digital twin technology, and uses the production model to digitally display the actual production line running state; the predicted production efficiency and alarm information are visually displayed in the corresponding position of the production model, and the production process can be visually displayed. provide effective assistance.
在上述实施例中,尽管已经结合了本发明的具体实施例对本发明进行了描述,但是根据前面的描述,这些实施例的很多替换、修改和变形对本领域普通技术人员来说将是显而易见的。本发明的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。In the above embodiments, although the present invention has been described in conjunction with specific embodiments thereof, many alternatives, modifications and variations of these embodiments will be apparent to those of ordinary skill in the art from the foregoing description. Embodiments of the present invention are intended to cover all such alternatives, modifications and variations that fall within the broad scope of the appended claims.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210056802.9A CN114488978A (en) | 2022-01-18 | 2022-01-18 | An intelligent production line monitoring method and system based on digital twin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210056802.9A CN114488978A (en) | 2022-01-18 | 2022-01-18 | An intelligent production line monitoring method and system based on digital twin |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114488978A true CN114488978A (en) | 2022-05-13 |
Family
ID=81471845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210056802.9A Pending CN114488978A (en) | 2022-01-18 | 2022-01-18 | An intelligent production line monitoring method and system based on digital twin |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114488978A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116014901A (en) * | 2023-03-24 | 2023-04-25 | 四川航洋电力工程设计有限公司 | Method for monitoring working state of power transmission and transformation equipment based on digital twin technology |
CN117391625A (en) * | 2023-10-18 | 2024-01-12 | 上海形拓科技有限公司 | Intelligent manufacturing management system and method based on digital twinning |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103745602A (en) * | 2014-01-16 | 2014-04-23 | 银江股份有限公司 | Traffic flow predicating method based on sliding window average |
CN109115262A (en) * | 2018-09-25 | 2019-01-01 | 郑州市泰科工控自动化有限公司 | A kind of stirring factory production line monitoring method and system |
CN109978403A (en) * | 2019-04-04 | 2019-07-05 | 北京理工大学 | A kind of quality management-control method, device and the equipment of Product Assembly process |
CN111368417A (en) * | 2020-03-02 | 2020-07-03 | 大连理工大学 | Shape-character integrated digital twinning method for important equipment or key components |
CN111562769A (en) * | 2019-02-14 | 2020-08-21 | 罗克韦尔自动化技术公司 | AI extension and intelligent model validation for industrial digital twinning |
CN111817880A (en) * | 2020-06-17 | 2020-10-23 | 安徽创米信息技术有限公司 | Oil and gas field production equipment health management system and implementation method |
CN112700032A (en) * | 2020-12-15 | 2021-04-23 | 国网上海能源互联网研究院有限公司 | Fault prediction system and method for low-voltage direct-current power distribution and utilization system |
CN112822463A (en) * | 2021-02-24 | 2021-05-18 | 北京计算机技术及应用研究所 | Three-dimensional monitoring system and method based on intelligent factory |
US20210157312A1 (en) * | 2016-05-09 | 2021-05-27 | Strong Force Iot Portfolio 2016, Llc | Intelligent vibration digital twin systems and methods for industrial environments |
-
2022
- 2022-01-18 CN CN202210056802.9A patent/CN114488978A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103745602A (en) * | 2014-01-16 | 2014-04-23 | 银江股份有限公司 | Traffic flow predicating method based on sliding window average |
US20210157312A1 (en) * | 2016-05-09 | 2021-05-27 | Strong Force Iot Portfolio 2016, Llc | Intelligent vibration digital twin systems and methods for industrial environments |
CN109115262A (en) * | 2018-09-25 | 2019-01-01 | 郑州市泰科工控自动化有限公司 | A kind of stirring factory production line monitoring method and system |
CN111562769A (en) * | 2019-02-14 | 2020-08-21 | 罗克韦尔自动化技术公司 | AI extension and intelligent model validation for industrial digital twinning |
CN109978403A (en) * | 2019-04-04 | 2019-07-05 | 北京理工大学 | A kind of quality management-control method, device and the equipment of Product Assembly process |
CN111368417A (en) * | 2020-03-02 | 2020-07-03 | 大连理工大学 | Shape-character integrated digital twinning method for important equipment or key components |
CN111817880A (en) * | 2020-06-17 | 2020-10-23 | 安徽创米信息技术有限公司 | Oil and gas field production equipment health management system and implementation method |
CN112700032A (en) * | 2020-12-15 | 2021-04-23 | 国网上海能源互联网研究院有限公司 | Fault prediction system and method for low-voltage direct-current power distribution and utilization system |
CN112822463A (en) * | 2021-02-24 | 2021-05-18 | 北京计算机技术及应用研究所 | Three-dimensional monitoring system and method based on intelligent factory |
Non-Patent Citations (2)
Title |
---|
QI ZHANG ET AL.: "Modeling of Digital Twin Workshop Based on Perception Data", INTELLIGENT ROBOTICS AND APPLICATIONS. ICIRA 2017, 6 August 2017 (2017-08-06) * |
张琦: "基于物理数据的数字孪生冲压生产线建模方法研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, vol. 2019, no. 07, 15 July 2019 (2019-07-15), pages 12 - 60 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116014901A (en) * | 2023-03-24 | 2023-04-25 | 四川航洋电力工程设计有限公司 | Method for monitoring working state of power transmission and transformation equipment based on digital twin technology |
CN117391625A (en) * | 2023-10-18 | 2024-01-12 | 上海形拓科技有限公司 | Intelligent manufacturing management system and method based on digital twinning |
CN117391625B (en) * | 2023-10-18 | 2024-04-02 | 上海形拓科技有限公司 | Intelligent manufacturing management system and method based on digital twinning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114488978A (en) | An intelligent production line monitoring method and system based on digital twin | |
CN108873830A (en) | A kind of production scene online data collection analysis and failure prediction system | |
CN112198812A (en) | Simulation and control method and system of micro-assembly production line based on digital twinning | |
CN114118673A (en) | A workshop intelligent fault diagnosis and early warning method based on digital twin technology | |
CN108036941B (en) | A Vibration Abnormal Analysis Method of Steam Turbine Bearing Based on Correlation Visual Analysis | |
WO2018142678A1 (en) | Method for visualizing manufacturing results, image processing device, and program | |
JP6899897B2 (en) | Condition monitoring device and equipment system | |
EP2816431A2 (en) | Information platform for industrial automation stream-based data processing | |
CN110247474B (en) | Statistical summary method and system based on D5000 system power grid operation state | |
CN114326517A (en) | Remote management method and system based on virtual reality | |
CN110487327A (en) | A kind of condition monitoring system of mechanical equipment electrical system | |
CN116561693A (en) | Abnormality determination method for injection molding machine, electronic device and storage medium | |
CN118801563B (en) | A power line fault early warning operation and maintenance monitoring system | |
CN116263734A (en) | Industrial robot state monitoring method, system and prompt terminal | |
CN117321524A (en) | Control system for technical installation with trend graph | |
CN117521084B (en) | Active safety early warning method for complex system | |
CN116310123A (en) | Transparent display method, device and equipment for factory data and storage medium | |
CN117639267A (en) | Power grid regulation and control system steady state information transmission abnormality detection method based on artificial intelligence technology | |
CN115616976A (en) | Health degree monitoring method and health degree monitoring system of numerical control system | |
CN117454752A (en) | Main water pump equipment comprehensive risk analysis based on predictive model | |
CN115407733A (en) | Event-driven aerospace manufacturing workshop real-time monitoring method | |
WO2022157985A1 (en) | Monitoring device and monitoring program | |
CN114415575A (en) | Real-time data-driven 3D virtual monitoring and intelligent early warning system for welding workshops | |
TWI647630B (en) | Producing efficiency monitoring system | |
CN107515596B (en) | A Statistical Process Control Method Based on Image Data Variable Window Defect Monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |