CN114372230A - Photovoltaic module EL test evaluation system and method based on battery efficiency - Google Patents
Photovoltaic module EL test evaluation system and method based on battery efficiency Download PDFInfo
- Publication number
- CN114372230A CN114372230A CN202111532151.8A CN202111532151A CN114372230A CN 114372230 A CN114372230 A CN 114372230A CN 202111532151 A CN202111532151 A CN 202111532151A CN 114372230 A CN114372230 A CN 114372230A
- Authority
- CN
- China
- Prior art keywords
- cell
- image
- module
- test
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 179
- 238000011156 evaluation Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title abstract description 11
- 230000002950 deficient Effects 0.000 claims abstract description 88
- 230000007547 defect Effects 0.000 claims abstract description 75
- 238000004458 analytical method Methods 0.000 claims abstract description 66
- 238000007781 pre-processing Methods 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000008439 repair process Effects 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims 1
- 239000006185 dispersion Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Optimization (AREA)
- Data Mining & Analysis (AREA)
- Operations Research (AREA)
- Geometry (AREA)
- Algebra (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及光伏领域,具体是一种基于电池效率的光伏组件EL测试评估系统及方法。The invention relates to the field of photovoltaics, in particular to an EL test and evaluation system and method for photovoltaic components based on cell efficiency.
背景技术Background technique
近年来跟着光伏职业的迅猛发展,光伏组件质量操控环节中测试手法的不断增强,本来的外观和电功能测试现已远远不能满意职业的需求。现在一种能够测试品体硅太阳电池及组件潜在缺陷的办法为职业界广泛选用为EL测试,现在EL测试技能现已被许多晶体硅太阳电池及组件出产厂家使用,用于晶体硅太阳电池及组件的制品查验或在线产品质量操控。In recent years, with the rapid development of the photovoltaic industry and the continuous enhancement of testing methods in the quality control of photovoltaic modules, the original appearance and electrical function tests are far from meeting the needs of the industry. At present, a method that can test the potential defects of product silicon solar cells and modules is widely used in the industry as EL testing. Now EL testing technology has been used by many crystalline silicon solar cell and module manufacturers for crystalline silicon solar cells and Product inspection of components or online product quality control.
在太阳电池中,少子的分散长度远远大于势垒宽度,因此电子和空穴经过势垒区时因复合而消失的几率很小,持续向分散区别散。在正向偏置电压下,p-n结势垒区和分散区注入了少量载流子,这些非平衡少量载流子不断与大都载流子复合而发光,这就是太阳电池电致发光的基本原理。发光成像有用地使用了太阳电池间带中激起电子裁流子的辐射复合效应。在太阳能电池两头参加正向偏压其宣布的光子能够被灵敏的ccd相机取得,即得到太阳电池的辐射复合散布图画。可是电致发光强度十分低而且波长在近红外区域,要求相机必须在900-1100nm具有很高的灵敏度和十分小的噪声。In solar cells, the dispersion length of minority carriers is much larger than the barrier width, so electrons and holes have a small probability of disappearing due to recombination when passing through the barrier region, and continue to disperse toward the dispersion region. Under the forward bias voltage, a small number of carriers are injected into the p-n junction barrier region and the dispersion region, and these non-equilibrium small number of carriers continue to recombine with most of the carriers to emit light. This is the basic principle of solar cell electroluminescence. . Luminescence imaging usefully exploits the effect of radiative recombination in the interbands of solar cells that excite electrons. The photons released by applying forward bias at both ends of the solar cell can be acquired by a sensitive CCD camera, that is, to obtain a radiation recombination pattern of the solar cell. However, the electroluminescence intensity is very low and the wavelength is in the near-infrared region, so the camera must have high sensitivity and very little noise at 900-1100nm.
EL测试的进程即晶体硅太阳电池外加正向偏置电压,直流电源向晶体硅太阳电池注入很多非平衡裁流子,太阳电池依托从分散区注入的很多非平衡戴流子不断地复合发光,放出光子,也就是光伏效应的逆进程;再使用ccd相机捕捉到这些光子经过计算机进行处理后以图画的方式显现出来,整个进程都在暗室中进行。The process of the EL test is that the crystalline silicon solar cell is applied with a forward bias voltage, and the DC power supply injects a lot of unbalanced electrons into the crystalline silicon solar cell. The photons are emitted, which is the reverse process of the photovoltaic effect; these photons are captured by a CCD camera and processed by a computer, and then displayed in the form of pictures. The whole process is carried out in a dark room.
EL测试的图画亮度与电池片的少子寿数和电流密度成正比,太阳电池中有缺陷的当地,少子分散长度较低,然后显现出来的图画亮度较暗。经过EL测试图画的剖析能够明晰的发现太阳电池及组件存在的隐性缺陷,这些缺陷包含硅资料缺陷分散缺陷印刷缺陷、烧结缺陷以及组件封装进程中的裂纹等。The image brightness of the EL test is proportional to the minority carrier lifetime and current density of the cell. Where there are defects in the solar cell, the minority carrier dispersion length is lower, and the resulting image appears darker. Through the analysis of EL test images, hidden defects in solar cells and modules can be clearly found, including silicon material defects, dispersion defects, printing defects, sintering defects, and cracks in the packaging process of components.
EL测试常见的缺陷为破片、隐裂、断栅、烧结缺陷、黑芯片等,但存在这些缺陷往往需要人工进行识别,人力成本较高,且人为识别无法对电池片的缺陷类别和是否失效精准把握,本申请旨在系统化对电池片EL测试图像进行精准化识别,对EL测试存在缺陷原因类别程序化进行分析,多次对每一电池片进行缺陷判别,提高电池片EL图像检测效率。Common defects in EL testing are fragments, cracks, broken gates, sintering defects, black chips, etc. However, these defects often require manual identification, the labor cost is high, and manual identification cannot determine the defect type of the cell and whether it fails accurately. To be sure, the purpose of this application is to systematically and accurately identify the EL test images of cells, to programmatically analyze the causes of defects in the EL test, and to discriminate the defects of each cell many times, so as to improve the efficiency of cell EL image detection.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于电池效率的光伏组件EL测试评估系统及方法,以解决现有技术中的问题。The purpose of the present invention is to provide a photovoltaic module EL test and evaluation system and method based on cell efficiency, so as to solve the problems in the prior art.
为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种基于电池效率的光伏组件EL测试评估系统,包括EL测试仪,该系统包括待测试电池片参数获取模块、EL测试图像问题预处理识别模块、缺陷电池片EL图像性能分析模块、同一批次电池片EL图像失效原因分析模块和不同EL图像程序控制模块,其中,待测试电池片参数获取模块、EL测试图像问题预处理识别模块、缺陷电池片EL图像性能分析模块依次通过内网连接,且分别和不同EL图像程序控制模块通过内网连接,EL测试图像问题预处理识别模块、缺陷电池片EL图像性能分析模块与不同EL图像程序控制模块分别和同一批次电池片EL图像失效原因分析模块通过内网连接;A photovoltaic module EL test and evaluation system based on cell efficiency, including an EL tester, the system includes a parameter acquisition module of the cell to be tested, an EL test image problem preprocessing identification module, a defective cell EL image performance analysis module, the same batch of The failure reason analysis module of the EL image of the cell and the control module of different EL image programs, wherein the parameter acquisition module of the cell to be tested, the preprocessing identification module of the EL test image problem, and the EL image performance analysis module of the defective cell are sequentially connected through the intranet, and Respectively connect with different EL image program control modules through the intranet, EL test image problem preprocessing identification module, defective cell EL image performance analysis module and different EL image program control modules respectively and the same batch of cells EL image failure cause analysis module connected via the intranet;
待测试电池片参数获取模块用于对待测试的电池片和EL测试仪的特征参数进行监测,判定待测试环境是否合适,EL测试图像问题预处理识别模块用于对电池片EL测试图像进行预处理,智能化检测每一EL图像的缺陷和失真,对存在缺陷的电池片EL图像进行二次测试,缺陷电池片EL图像性能分析模块根据EL图像存在缺陷原因判定电池片是否失效,分析未全部失效的电池片电池效率,同一批次电池片EL图像失效原因分析模块用于对同一批次的电池片失效原因进行统计,分析电池片失效原因占比数据,将存在缺陷的电池片进行标记返修,不同EL图像程序控制模块用于对不同时刻的EL图像进行存储后实时调用,人工干预。The parameter acquisition module of the cell to be tested is used to monitor the characteristic parameters of the cell to be tested and the EL tester to determine whether the environment to be tested is suitable. The EL test image problem preprocessing identification module is used to preprocess the EL test image of the cell. , intelligently detect the defects and distortions of each EL image, conduct secondary tests on the EL images of defective cells, and the EL image performance analysis module of defective cells determines whether the cells fail according to the reasons for the defects in the EL images, and the analysis does not all fail. The failure cause analysis module of the EL image of the same batch of cells is used to count the failure reasons of the same batch of cells, analyze the data of the proportion of failure reasons of the cells, and mark the defective cells for repair. Different EL image program control modules are used to store EL images at different times and call them in real time, with manual intervention.
进一步设置:待测试电池片参数获取模块包括测试件特征参数标记子模块和EL测试仪多位置参数标记子模块,测试件特征参数标记子模块用于对待测试电池片的长宽、厚度进行检测,对待测试电池片环境进行光线强度检测,将检测数据进行统计,EL测试仪多位置参数标记子模块包括主EL测试仪和若干备用EL测试仪,以待测试电池片的长、宽、距EL测试仪高度形成三维坐标系对不同EL测试仪位置信息参数进行标记,统计主EL测试仪和若干备用EL测试仪的三维坐标点,将统计的数据发送至不同EL图像程序控制模块进行数据备份。Further settings: the parameter acquisition module of the cell to be tested includes a sub-module for marking the characteristic parameters of the test piece and a sub-module for marking the multi-position parameters of the EL tester. The sub-module for marking the characteristic parameters of the test piece is used to detect the length, width and thickness of the cell to be tested. Detect the light intensity of the cell environment to be tested, and count the detection data. The multi-position parameter marking sub-module of the EL tester includes the main EL tester and several backup EL testers to measure the length, width and distance of the cell to be tested. The height of the instrument forms a three-dimensional coordinate system to mark the position information parameters of different EL testers, count the three-dimensional coordinate points of the main EL tester and several standby EL testers, and send the statistical data to different EL image program control modules for data backup.
进一步设置:EL测试图像问题预处理识别模块包括电池片EL测试图片处理判定子模块和备用EL测试仪二次测试调用子模块,电池片EL测试图片处理判定子模块用于对EL测试仪检测的电池片图像进行预处理,识别不同EL图像是否存在缺陷或是否存在失真,对EL图像存在的缺陷进行识别标记,对图像失真进行实时预警,备用EL测试仪二次测试调用子模块用于将被识别标记的电池片,调用备用EL测试仪对该电池片进行二次EL测试,将测试的EL图像重新发送至电池片EL测试图片处理判定子模块进行缺陷判别,当二次检测的EL图像与首次检测的EL图像不一致,调用备用EL测试仪进行三次检测后重新进行缺陷判别。Further settings: The EL test image problem preprocessing identification module includes a cell EL test image processing and determination sub-module and a secondary test calling sub-module of the standby EL tester. The cell EL test image processing and determination sub-module is used to detect the EL tester. The cell image is preprocessed to identify whether there are defects or distortions in different EL images, identify and mark the defects in the EL images, and give real-time early warning of image distortion. The secondary test of the standby EL tester calls the sub-module to Identify the marked cell, call the backup EL tester to perform a secondary EL test on the cell, and re-send the tested EL image to the cell EL test image processing and judgment sub-module for defect determination. If the EL images detected for the first time are inconsistent, the backup EL tester is called for three inspections and then the defect identification is performed again.
进一步设置:缺陷电池片EL图像性能分析模块包括缺陷电池片暗部面积占比分析子模块和缺陷电池片电池效率估计分析子模块,缺陷电池片暗部面积占比分析子模块用于对每一电池片EL图像阴影进行虚拟标记,根据EL测试图像问题预处理识别模块判定的电池片阴影面产生原因,对每一电池片的阴影原因进行分类,剔除直接判定失效的电池片EL测试图像,对剩余电池片EL测试图像内部的阴影面积占比进行分析存在阴影EL测试图像的电池片是否失效,缺陷电池片电池效率估计分析子模块用于对未失效电池片分析估计其电池效率。Further settings: The EL image performance analysis module of defective cells includes an analysis sub-module of the dark part area ratio of defective cells and a cell efficiency estimation and analysis sub-module of defective cells. The shadow of the EL image is virtually marked. According to the cause of the shadow surface of the cell determined by the EL test image problem preprocessing identification module, the shadow cause of each cell is classified, and the EL test image of the cell that directly determines the failure is eliminated. The shadow area ratio inside the EL test image of the cell is analyzed to determine whether the cell with the shadow EL test image fails. The cell efficiency estimation and analysis sub-module of the defective cell is used to analyze and estimate the cell efficiency of the non-failed cell.
进一步设置:缺陷电池片暗部面积占比分析子模块判定电池片EL测试图像内部阴影面积形状,测量阴影中心点位置向阴影最外侧任意三点的距离,其中,每一点与中心点连接直线和另外一点与中心点连接直线之间的角度大于90度,设定阴影的中心点位置与阴影最外侧任意三点的距离为rn-1、rn、rn+1,对标记的EL图像内部的阴影面积根据公式进行估计:Further settings: The analysis sub-module of the dark part of the defective cell determines the shape of the shadow area inside the EL test image of the cell, and measures the distance from the shadow center point to any three points on the outermost side of the shadow. The angle between one point and the line connecting the center point is greater than 90 degrees. Set the distance between the center point of the shadow and any three points on the outermost side of the shadow as r n-1 , rn , and r n +1 . The shadow area of is estimated according to the formula:
当rn-1=rn=rn+1,n的取值为1,当rn-1≠rn≠rn+1,n的取值为2,计算得出每一标记电池片EL图像内部的阴影面积,设定标记电池片EL图像内部不同阴影面积为S1、S2、S3、...、Sn-1、Sn,设定标记电池片长宽分别为ln、lm,设定电池片EL测试图像内部的阴影面积占比满足以下公式:When r n-1 =r n =r n+1 , the value of n is 1; when r n-1 ≠r n ≠r n+1 , the value of n is 2, and each marked cell is calculated. The shadow area inside the EL image, set the different shadow areas inside the EL image of the marked cell as S 1 , S 2 , S 3 , . n , lm , set the shadow area ratio inside the cell EL test image to satisfy the following formula:
当电池片EL测试图像内部的阴影面积满足上述公式时,判定当前阴影面积对电池片功率影响不大,不会造成该电池片失效,当电池片EL测试图像内部的阴影面积不满足上述公式时,判定当前EL测试图像内部的阴影面积会导致该电池片失效,对该电池片进行失效标记。When the shadow area inside the EL test image of the cell satisfies the above formula, it is determined that the current shadow area has little effect on the power of the cell and will not cause the cell to fail. When the shadow area inside the cell EL test image does not satisfy the above formula , determine that the shadow area inside the current EL test image will cause the cell to fail, and mark the cell for failure.
进一步设置:缺陷电池片电池效率估计分析子模块对标记存在EL图像阴影但未失效的电池片进行EL图像提取,筛查EL图像阴影部分的位置结构,将EL图像阴影位置结构分为平行于主栅线位置、倾斜于主栅线位置、垂直于主栅线位置三类,当某一电池片EL图像阴影部分的位置结构平行于主栅线位置,判定该缺陷电池片电池效率为正常电池片电池效率的50%,当某一电池片EL图像阴影部分的位置结构倾斜于主栅线位置,判定该缺陷电池片电池效率为正常电池片电池效率的80%,当某一电池片EL图像阴影部分的位置结构垂直于主栅线位置,判定该EL图像阴影不会导致电池片电池效率损耗。Further settings: The cell efficiency estimation and analysis sub-module of defective cells extracts the EL image of the cells marked with EL image shadows but not failed, screens the position structure of the shadow part of the EL image, and divides the shadow position structure of the EL image into parallel with the main structure. There are three types of grid line position, inclined to the main grid line position, and perpendicular to the main grid line position. When the position structure of the shadow part of the EL image of a certain cell is parallel to the position of the main grid line, the cell efficiency of the defective cell is judged as a normal cell. 50% of the cell efficiency, when the position structure of the shadow part of the EL image of a cell is inclined to the position of the main grid line, the cell efficiency of the defective cell is determined to be 80% of the cell efficiency of the normal cell. When the shadow of the EL image of a cell is Part of the position structure is perpendicular to the position of the busbar line, and it is determined that the shadow of the EL image will not lead to loss of cell efficiency of the cell.
进一步设置:同一批次电池片失效原因分析模块包括缺陷电池片失效分析统计子模块和缺陷电池片返修标记子模块,缺陷电池片失效分析统计子模块用于对同一批次的电池片组件中导致电池片缺陷的原因进行汇总,分析每一缺陷原因导致的电池片数量在总缺陷电池片数量中的占比,对不同导致缺陷原因进行标记反馈给不同EL图像程序控制模块,缺陷电池片返修标记子模块用于对存在缺陷的电池片进行二次返修标记,EL测试图像问题预处理识别模块对存在二次返修标记的电池片进行多次EL测试。Further settings: The failure cause analysis module of the same batch of cells includes a sub-module of failure analysis and statistics of defective cells and a sub-module of repairing and marking of defective cells. Summarize the causes of cell defects, analyze the proportion of the number of cells caused by each defect cause in the total number of defective cells, mark different causes of defects and feed them back to different EL image program control modules, and mark defective cells for repair. The sub-module is used to mark the defective cells for secondary repair, and the EL test image problem preprocessing identification module performs multiple EL tests on the cells with secondary repair marks.
进一步设置:不同EL图像程序控制模块包括EL图像储存汇总平台和人工干预平台,EL图像储存汇总平台用于对多个EL测试仪测试的图像进行存储后实时调用,人工干预平台能够对EL测试每一步骤进行人工干预,实时监控。Further settings: Different EL image program control modules include an EL image storage and summary platform and a manual intervention platform. The EL image storage and summary platform is used to store and call images tested by multiple EL testers in real time. The manual intervention platform can One-step manual intervention and real-time monitoring.
一种基于电池效率的光伏组件EL测试评估方法:An EL test evaluation method for photovoltaic modules based on cell efficiency:
A1:利用待测试电池片参数获取模块对待测试的电池片和EL测试仪的特征参数进行监测,判定待测试环境是否合适;A1: Use the parameter acquisition module of the cell to be tested to monitor the characteristic parameters of the cell to be tested and the EL tester to determine whether the environment to be tested is suitable;
A2:利用EL测试图像问题预处理识别模块对电池片EL测试图像进行预处理,智能化检测每一EL图像的缺陷和失真,对存在缺陷的电池片EL图像进行二次测试;A2: Use the EL test image problem preprocessing identification module to preprocess the cell EL test image, intelligently detect the defects and distortions of each EL image, and perform a secondary test on the defective cell EL image;
A3:利用缺陷电池片EL图像性能分析模块根据EL图像存在缺陷原因判定电池片是否失效,分析未全部失效的电池片电池效率;A3: Use the EL image performance analysis module of the defective cell to determine whether the cell fails according to the cause of the defect in the EL image, and analyze the cell efficiency of the cell that has not all failed;
A4:利用同一批次电池片EL图像失效原因分析模块对同一批次的电池片失效原因进行统计,分析电池片失效原因占比数据,将存在缺陷的电池片进行标记返修;A4: Use the failure cause analysis module of the EL image of the same batch of cells to count the failure reasons of the same batch of cells, analyze the data of the failure reasons of the cells, and mark the defective cells for repair;
A5:利用不同EL图像程序控制模块对不同时刻的EL图像进行存储后实时调用,人工干预。A5: Use different EL image program control modules to store EL images at different times and call them in real time, with manual intervention.
进一步设置:Further settings:
A-1:利用测试件特征参数标记子模块对待测试电池片的长宽、厚度进行检测,对待测试电池片环境进行光线强度检测,将检测数据进行统计,EL测试仪多位置参数标记子模块包括主EL测试仪和若干备用EL测试仪,以待测试电池片的长、宽、距EL测试仪高度形成三维坐标系对不同EL测试仪位置信息参数进行标记,统计主EL测试仪和若干备用EL测试仪的三维坐标点,将统计的数据发送至不同EL图像程序控制模块进行数据备份;A-1: Use the characteristic parameter marking sub-module of the test piece to detect the length, width and thickness of the cell to be tested, perform light intensity detection on the environment of the cell to be tested, and count the detection data. The multi-position parameter marking sub-module of the EL tester includes: The main EL tester and several backup EL testers form a three-dimensional coordinate system based on the length, width and height of the cell to be tested to mark the location information parameters of different EL testers, and count the main EL tester and some backup EL testers. The three-dimensional coordinate point of the tester sends the statistical data to different EL image program control modules for data backup;
A-2:利用电池片EL测试图片处理判定子模块对EL测试仪检测的电池片图像进行预处理,识别不同EL图像是否存在缺陷或是否存在失真,对EL图像存在的缺陷进行识别标记,对图像失真进行实时预警,备用EL测试仪二次测试调用子模块将被识别标记的电池片,调用备用EL测试仪对该电池片进行二次EL测试,将测试的EL图像重新发送至电池片EL测试图片处理判定子模块进行缺陷判别,当二次检测的EL图像与首次检测的EL图像不一致,调用备用EL测试仪进行三次检测后重新进行缺陷判别;A-2: Use the cell EL test image processing and judgment sub-module to preprocess the cell images detected by the EL tester to identify whether there are defects or distortions in different EL images, and identify and mark the defects in the EL images. Real-time early warning of image distortion, the secondary test of the standby EL tester calls the sub-module to identify the marked cell, calls the standby EL tester to perform the secondary EL test on the cell, and resends the tested EL image to the cell EL The test image processing and judging sub-module is used for defect judgment. When the EL image of the second test is inconsistent with the EL image of the first test, the backup EL tester is called to carry out the third test and then the defect judgment is carried out again;
A-3:利用缺陷电池片暗部面积占比分析子模块对每一电池片EL图像阴影进行虚拟标记,根据EL测试图像问题预处理识别模块判定的电池片阴影面产生原因,对每一电池片的阴影原因进行分类,剔除直接判定失效的电池片EL测试图像,对剩余电池片EL测试图像内部的阴影面积占比进行分析存在阴影EL测试图像的电池片是否失效,缺陷电池片电池效率估计分析子模块对未失效电池片分析估计其电池效率;A-3: Use the dark area ratio analysis sub-module of defective cells to virtually mark the shadow of each cell’s EL image, according to the cause of the shadow of the cell determined by the EL test image problem preprocessing and identification module, for each cell The shadow causes are classified, the EL test images of cells that directly determine failure are excluded, the shadow area ratio in the remaining cell EL test images is analyzed, whether the cells with shadow EL test images fail, and the battery efficiency of defective cells is estimated and analyzed. The sub-module analyzes and estimates the cell efficiency of the non-failed cells;
A-4:利用缺陷电池片失效分析统计子模块对同一批次的电池片组件中导致电池片缺陷的原因进行汇总,分析每一缺陷原因导致的电池片数量在总缺陷电池片数量中的占比,对不同导致缺陷原因进行标记反馈给不同EL图像程序控制模块,缺陷电池片返修标记子模块对存在缺陷的电池片进行二次返修标记,EL测试图像问题预处理识别模块对存在二次返修标记的电池片进行多次EL测试;A-4: Use the defective cell failure analysis and statistics sub-module to summarize the causes of cell defects in the same batch of cell modules, and analyze the proportion of the number of cells caused by each defect cause in the total number of defective cells Compare, mark different causes of defects and feed them back to different EL image program control modules. The defective cell repair mark sub-module carries out secondary repair marks for defective cells, and the EL test image problem preprocessing identification module is used for secondary repairs. The marked cells are subjected to multiple EL tests;
A-5:利用EL图像储存汇总平台对多个EL测试仪测试的图像进行存储后实时调用,人工干预平台对EL测试每一步骤进行人工干预,实时监控。A-5: Use the EL image storage and aggregation platform to store and call the images tested by multiple EL testers in real time, and the manual intervention platform manually intervenes and monitors each step of the EL test in real time.
与现有技术相比,本发明的有益效果是:本发明利用待测试电池片参数获取模块对待测试的电池片和EL测试仪的特征参数进行监测,判定待测试环境是否合适,利用EL测试图像问题预处理识别模块对电池片EL测试图像进行预处理,智能化检测每一EL图像的缺陷和失真,对存在缺陷的电池片EL图像进行二次测试,利用缺陷电池片EL图像性能分析模块根据EL图像存在缺陷原因判定电池片是否失效,分析未全部失效的电池片电池效率,利用同一批次电池片EL图像失效原因分析模块对同一批次的电池片失效原因进行统计,分析电池片失效原因占比数据,将存在缺陷的电池片进行标记返修,利用不同EL图像程序控制模块对不同时刻的EL图像进行存储后实时调用,人工干预;Compared with the prior art, the beneficial effects of the present invention are as follows: the present invention utilizes the battery slice parameter acquisition module to be tested to monitor the characteristic parameters of the battery slice to be tested and the EL tester, to determine whether the environment to be tested is suitable, and to use the EL test image The problem preprocessing identification module preprocesses the cell EL test images, intelligently detects the defects and distortions of each EL image, conducts a secondary test for the defective cell EL images, and uses the defective cell EL image performance analysis module according to the The EL image has defects to determine whether the cells fail, analyze the cell efficiency of the cells that have not all failed, and use the EL image failure cause analysis module of the same batch of cells to count the failure causes of the same batch of cells, and analyze the failure causes of the cells Proportion data, mark defective cells for repair, use different EL image program control modules to store EL images at different times and call them in real time, with manual intervention;
旨在系统化对电池片EL测试图像进行精准化识别,对EL测试存在缺陷原因类别程序化进行分析,多次对每一电池片进行缺陷判别,提高电池片EL图像检测效率。The purpose is to systematically and accurately identify the EL test images of cells, to programmatically analyze the causes of defects in the EL test, and to discriminate the defects of each cell many times, so as to improve the efficiency of cell EL image detection.
附图说明Description of drawings
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。In order to make the content of the present invention easier to understand clearly, the present invention will be described in further detail below according to specific embodiments and in conjunction with the accompanying drawings.
图1为本发明一种基于电池效率的光伏组件EL测试评估系统的结构示意图;1 is a schematic structural diagram of a photovoltaic module EL test and evaluation system based on cell efficiency of the present invention;
图2为本发明一种基于电池效率的光伏组件EL测试评估方法的步骤示意图;FIG. 2 is a schematic diagram of steps of a method for EL test and evaluation of photovoltaic modules based on cell efficiency of the present invention;
图3为本发明一种基于电池效率的光伏组件EL测试评估方法的具体步骤示意图;3 is a schematic diagram of the specific steps of a photovoltaic module EL test and evaluation method based on cell efficiency of the present invention;
图4为本发明一种基于电池效率的光伏组件EL测试评估方法的实施过程示意图。FIG. 4 is a schematic diagram of the implementation process of a photovoltaic module EL test and evaluation method based on cell efficiency of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1~4,本发明实施例中,一种基于电池效率的光伏组件EL测试评估系统,包括EL测试仪,该系统包括待测试电池片参数获取模块、EL测试图像问题预处理识别模块、缺陷电池片EL图像性能分析模块、同一批次电池片EL图像失效原因分析模块和不同EL图像程序控制模块,其中,待测试电池片参数获取模块、EL测试图像问题预处理识别模块、缺陷电池片EL图像性能分析模块依次通过内网连接,且分别和不同EL图像程序控制模块通过内网连接,EL测试图像问题预处理识别模块、缺陷电池片EL图像性能分析模块与不同EL图像程序控制模块分别和同一批次电池片EL图像失效原因分析模块通过内网连接;Referring to FIGS. 1 to 4 , in an embodiment of the present invention, a photovoltaic module EL test and evaluation system based on battery efficiency includes an EL tester, the system includes a parameter acquisition module for the cell to be tested, and an EL test image problem preprocessing and identification module , Defective cell EL image performance analysis module, the same batch of cell EL image failure cause analysis module and different EL image program control modules, among which, the parameter acquisition module of the cell to be tested, the EL test image problem preprocessing identification module, the defective cell The chip EL image performance analysis module is sequentially connected through the intranet, and is respectively connected with different EL image program control modules through the intranet, the EL test image problem preprocessing identification module, the defective cell EL image performance analysis module and different EL image program control modules They are respectively connected with the failure cause analysis module of EL images of the same batch of cells through the intranet;
待测试电池片参数获取模块用于对待测试的电池片和EL测试仪的特征参数进行监测,判定待测试环境是否合适,EL测试图像问题预处理识别模块用于对电池片EL测试图像进行预处理,智能化检测每一EL图像的缺陷和失真,对存在缺陷的电池片EL图像进行二次测试,缺陷电池片EL图像性能分析模块根据EL图像存在缺陷原因判定电池片是否失效,分析未全部失效的电池片电池效率,同一批次电池片EL图像失效原因分析模块用于对同一批次的电池片失效原因进行统计,分析电池片失效原因占比数据,将存在缺陷的电池片进行标记返修,不同EL图像程序控制模块用于对不同时刻的EL图像进行存储后实时调用,人工干预。The parameter acquisition module of the cell to be tested is used to monitor the characteristic parameters of the cell to be tested and the EL tester to determine whether the environment to be tested is suitable. The EL test image problem preprocessing identification module is used to preprocess the EL test image of the cell. , intelligently detect the defects and distortions of each EL image, conduct secondary tests on the EL images of defective cells, and the EL image performance analysis module of defective cells determines whether the cells fail according to the reasons for the defects in the EL images, and the analysis does not all fail. The failure cause analysis module of the EL image of the same batch of cells is used to count the failure reasons of the same batch of cells, analyze the data of the proportion of failure reasons of the cells, and mark the defective cells for repair. Different EL image program control modules are used to store EL images at different times and call them in real time, with manual intervention.
进一步设置:待测试电池片参数获取模块包括测试件特征参数标记子模块和EL测试仪多位置参数标记子模块,测试件特征参数标记子模块用于对待测试电池片的长宽、厚度进行检测,对待测试电池片环境进行光线强度检测,将检测数据进行统计,EL测试仪多位置参数标记子模块包括主EL测试仪和若干备用EL测试仪,以待测试电池片的长、宽、距EL测试仪高度形成三维坐标系对不同EL测试仪位置信息参数进行标记,统计主EL测试仪和若干备用EL测试仪的三维坐标点,将统计的数据发送至不同EL图像程序控制模块进行数据备份。Further settings: the parameter acquisition module of the cell to be tested includes a sub-module for marking the characteristic parameters of the test piece and a sub-module for marking multi-position parameters of the EL tester. The sub-module for marking the characteristic parameters of the test piece is used to detect the length, width and thickness of the cell to be tested. Detect the light intensity of the cell environment to be tested, and count the detected data. The multi-position parameter marking sub-module of the EL tester includes the main EL tester and several backup EL testers to measure the length, width and distance of the cell to be tested. The height of the instrument forms a three-dimensional coordinate system to mark the position information parameters of different EL testers, count the three-dimensional coordinate points of the main EL tester and several standby EL testers, and send the statistical data to different EL image program control modules for data backup.
进一步设置:EL测试图像问题预处理识别模块包括电池片EL测试图片处理判定子模块和备用EL测试仪二次测试调用子模块,电池片EL测试图片处理判定子模块用于对EL测试仪检测的电池片图像进行预处理,识别不同EL图像是否存在缺陷或是否存在失真,对EL图像存在的缺陷进行识别标记,对图像失真进行实时预警,备用EL测试仪二次测试调用子模块用于将被识别标记的电池片,调用备用EL测试仪对该电池片进行二次EL测试,将测试的EL图像重新发送至电池片EL测试图片处理判定子模块进行缺陷判别,当二次检测的EL图像与首次检测的EL图像不一致,调用备用EL测试仪进行三次检测后重新进行缺陷判别。Further settings: The EL test image problem preprocessing identification module includes a cell EL test image processing and determination sub-module and a secondary test calling sub-module of the standby EL tester. The cell EL test image processing and determination sub-module is used to detect the EL tester. The cell image is preprocessed to identify whether there are defects or distortions in different EL images, identify and mark the defects in the EL images, and give real-time early warning of image distortion. The secondary test of the standby EL tester calls the sub-module to Identify the marked cell, call the backup EL tester to perform a secondary EL test on the cell, and re-send the tested EL image to the cell EL test image processing and judgment sub-module for defect determination. If the EL images detected for the first time are inconsistent, the backup EL tester is called for three inspections and then the defect identification is performed again.
进一步设置:缺陷电池片EL图像性能分析模块包括缺陷电池片暗部面积占比分析子模块和缺陷电池片电池效率估计分析子模块,缺陷电池片暗部面积占比分析子模块用于对每一电池片EL图像阴影进行虚拟标记,根据EL测试图像问题预处理识别模块判定的电池片阴影面产生原因,对每一电池片的阴影原因进行分类,剔除直接判定失效的电池片EL测试图像,对剩余电池片EL测试图像内部的阴影面积占比进行分析存在阴影EL测试图像的电池片是否失效,缺陷电池片电池效率估计分析子模块用于对未失效电池片分析估计其电池效率。Further settings: The EL image performance analysis module of defective cells includes an analysis sub-module of the dark part area ratio of defective cells and a cell efficiency estimation and analysis sub-module of defective cells. The shadow of the EL image is virtually marked. According to the cause of the shadow surface of the cell determined by the EL test image problem preprocessing identification module, the shadow cause of each cell is classified, and the EL test image of the cell that directly determines the failure is eliminated. The shadow area ratio inside the EL test image of the cell is analyzed to determine whether the cell with the shadow EL test image fails. The cell efficiency estimation and analysis sub-module of the defective cell is used to analyze and estimate the cell efficiency of the non-failed cell.
缺陷电池片暗部面积占比分析子模块判定电池片EL测试图像内部阴影面积形状,测量阴影中心点位置向阴影最外侧任意三点的距离,其中,每一点与中心点连接直线和另外一点与中心点连接直线之间的角度大于90度,设定阴影的中心点位置与阴影最外侧任意三点的距离为rn-1、rn、rn+1,对标记的EL图像内部的阴影面积根据公式进行估计:The shadow area ratio analysis sub-module of the defective cell determines the shape of the shadow area inside the EL test image of the cell, and measures the distance from the shadow center point to any three points on the outermost side of the shadow, where each point is connected to the center point by a straight line and another point is connected to the center The angle between the lines connecting the points is greater than 90 degrees, and the distance between the center point of the shadow and any three points on the outermost side of the shadow is set as r n-1 , rn , and r n +1 . Estimate according to the formula:
当rn-1=rn=rn+1,n的取值为1,当rn-1≠rn≠rn+1,n的取值为2,计算得出每一标记电池片EL图像内部的阴影面积,设定标记电池片EL图像内部不同阴影面积为S1、S2、S3、...、Sn-1、Sn,设定标记电池片长宽分别为ln、lm,设定电池片EL测试图像内部的阴影面积占比满足以下公式:When r n-1 =r n =r n+1 , the value of n is 1; when r n-1 ≠r n ≠r n+1 , the value of n is 2, and each marked cell is calculated. The shadow area inside the EL image, set the different shadow areas inside the EL image of the marked cell as S 1 , S 2 , S 3 , . n , lm , set the shadow area ratio inside the cell EL test image to satisfy the following formula:
当电池片EL测试图像内部的阴影面积满足上述公式时,判定当前阴影面积对电池片功率影响不大,不会造成该电池片失效,当电池片EL测试图像内部的阴影面积不满足上述公式时,判定当前EL测试图像内部的阴影面积会导致该电池片失效,对该电池片进行失效标记。When the shadow area inside the EL test image of the cell satisfies the above formula, it is determined that the current shadow area has little effect on the power of the cell and will not cause the cell to fail. When the shadow area inside the cell EL test image does not satisfy the above formula , determine that the shadow area inside the current EL test image will cause the cell to fail, and mark the cell for failure.
缺陷电池片电池效率估计分析子模块对标记存在EL图像阴影但未失效的电池片进行EL图像提取,筛查EL图像阴影部分的位置结构,将EL图像阴影位置结构分为平行于主栅线位置、倾斜于主栅线位置、垂直于主栅线位置三类,当某一电池片EL图像阴影部分的位置结构平行于主栅线位置,判定该缺陷电池片电池效率为正常电池片电池效率的50%,当某一电池片EL图像阴影部分的位置结构倾斜于主栅线位置,判定该缺陷电池片电池效率为正常电池片电池效率的80%,当某一电池片EL图像阴影部分的位置结构垂直于主栅线位置,判定该EL图像阴影不会导致电池片电池效率损耗。The cell efficiency estimation and analysis sub-module of defective cells extracts the EL image of the cells marked with the shadow of the EL image but has not failed, screened the position structure of the shadow part of the EL image, and divided the shadow position structure of the EL image into the position parallel to the busbar line There are three types: the position inclined to the main grid line, and the position perpendicular to the main grid line. When the position structure of the shadow part of the EL image of a cell is parallel to the position of the main grid line, the cell efficiency of the defective cell is judged to be the same as that of the normal cell. 50%, when the position structure of the shadow part of the EL image of a certain cell is inclined to the position of the main grid line, the cell efficiency of the defective cell is judged to be 80% of the cell efficiency of the normal cell. When the position of the shadow part of the EL image of a cell is The structure is perpendicular to the busbar line position, and it is determined that the shadow of the EL image will not lead to loss of cell efficiency of the cell.
进一步设置:同一批次电池片失效原因分析模块包括缺陷电池片失效分析统计子模块和缺陷电池片返修标记子模块,缺陷电池片失效分析统计子模块用于对同一批次的电池片组件中导致电池片缺陷的原因进行汇总,分析每一缺陷原因导致的电池片数量在总缺陷电池片数量中的占比,对不同导致缺陷原因进行标记反馈给不同EL图像程序控制模块,缺陷电池片返修标记子模块用于对存在缺陷的电池片进行二次返修标记,EL测试图像问题预处理识别模块对存在二次返修标记的电池片进行多次EL测试。Further settings: The failure cause analysis module of the same batch of cells includes a sub-module for failure analysis and statistics of defective cells and a sub-module for repairing and marking of defective cells. Summarize the causes of cell defects, analyze the proportion of the number of cells caused by each defect cause to the total number of defective cells, mark different causes of defects and feed them back to different EL image program control modules, and mark defective cells for repair. The sub-module is used to mark the defective cells for secondary repair, and the EL test image problem preprocessing identification module performs multiple EL tests on the cells with secondary repair marks.
进一步设置:不同EL图像程序控制模块包括EL图像储存汇总平台和人工干预平台,EL图像储存汇总平台用于对多个EL测试仪测试的图像进行存储后实时调用,人工干预平台能够对EL测试每一步骤进行人工干预,实时监控。Further settings: Different EL image program control modules include an EL image storage and summary platform and a manual intervention platform. The EL image storage and summary platform is used to store and call images tested by multiple EL testers in real time. The manual intervention platform can One-step manual intervention and real-time monitoring.
一种基于电池效率的光伏组件EL测试评估方法:An EL test evaluation method for photovoltaic modules based on cell efficiency:
A1:利用待测试电池片参数获取模块对待测试的电池片和EL测试仪的特征参数进行监测,判定待测试环境是否合适;A1: Use the parameter acquisition module of the cell to be tested to monitor the characteristic parameters of the cell to be tested and the EL tester to determine whether the environment to be tested is suitable;
A2:利用EL测试图像问题预处理识别模块对电池片EL测试图像进行预处理,智能化检测每一EL图像的缺陷和失真,对存在缺陷的电池片EL图像进行二次测试;A2: Use the EL test image problem preprocessing identification module to preprocess the cell EL test image, intelligently detect the defects and distortions of each EL image, and perform a secondary test on the defective cell EL image;
A3:利用缺陷电池片EL图像性能分析模块根据EL图像存在缺陷原因判定电池片是否失效,分析未全部失效的电池片电池效率;A3: Use the EL image performance analysis module of the defective cell to determine whether the cell fails according to the cause of the defect in the EL image, and analyze the cell efficiency of the cell that has not all failed;
A4:利用同一批次电池片EL图像失效原因分析模块对同一批次的电池片失效原因进行统计,分析电池片失效原因占比数据,将存在缺陷的电池片进行标记返修;A4: Use the failure cause analysis module of the EL image of the same batch of cells to count the failure reasons of the same batch of cells, analyze the data of the failure reasons of the cells, and mark the defective cells for repair;
A5:利用不同EL图像程序控制模块对不同时刻的EL图像进行存储后实时调用,人工干预。A5: Use different EL image program control modules to store EL images at different times and call them in real time, with manual intervention.
进一步设置:Further settings:
A-1:利用测试件特征参数标记子模块对待测试电池片的长宽、厚度进行检测,对待测试电池片环境进行光线强度检测,将检测数据进行统计,EL测试仪多位置参数标记子模块包括主EL测试仪和若干备用EL测试仪,以待测试电池片的长、宽、距EL测试仪高度形成三维坐标系对不同EL测试仪位置信息参数进行标记,统计主EL测试仪和若干备用EL测试仪的三维坐标点,将统计的数据发送至不同EL图像程序控制模块进行数据备份;A-1: Use the characteristic parameter marking sub-module of the test piece to detect the length, width and thickness of the cell to be tested, perform light intensity detection on the environment of the cell to be tested, and count the detection data. The multi-position parameter marking sub-module of the EL tester includes: The main EL tester and several backup EL testers form a three-dimensional coordinate system based on the length, width and height of the cell to be tested to mark the location information parameters of different EL testers, and count the main EL tester and some backup EL testers. The three-dimensional coordinate point of the tester sends the statistical data to different EL image program control modules for data backup;
A-2:利用电池片EL测试图片处理判定子模块对EL测试仪检测的电池片图像进行预处理,识别不同EL图像是否存在缺陷或是否存在失真,对EL图像存在的缺陷进行识别标记,对图像失真进行实时预警,备用EL测试仪二次测试调用子模块将被识别标记的电池片,调用备用EL测试仪对该电池片进行二次EL测试,将测试的EL图像重新发送至电池片EL测试图片处理判定子模块进行缺陷判别,当二次检测的EL图像与首次检测的EL图像不一致,调用备用EL测试仪进行三次检测后重新进行缺陷判别;A-2: Use the cell EL test image processing and judgment sub-module to preprocess the cell images detected by the EL tester to identify whether there are defects or distortions in different EL images, and identify and mark the defects in the EL images. Real-time early warning of image distortion, the secondary test of the standby EL tester calls the sub-module to identify the marked cell, calls the standby EL tester to perform the secondary EL test on the cell, and resends the tested EL image to the cell EL The test image processing and judging sub-module is used for defect judgment. When the EL image of the second test is inconsistent with the EL image of the first test, the backup EL tester is called to carry out the third test and then the defect judgment is carried out again;
A-3:利用缺陷电池片暗部面积占比分析子模块对每一电池片EL图像阴影进行虚拟标记,根据EL测试图像问题预处理识别模块判定的电池片阴影面产生原因,对每一电池片的阴影原因进行分类,剔除直接判定失效的电池片EL测试图像,对剩余电池片EL测试图像内部的阴影面积占比进行分析存在阴影EL测试图像的电池片是否失效,缺陷电池片电池效率估计分析子模块对未失效电池片分析估计其电池效率;A-3: Use the dark area ratio analysis sub-module of defective cells to virtually mark the shadow of each cell’s EL image, according to the cause of the shadow of the cell determined by the EL test image problem preprocessing and identification module, for each cell The shadow causes are classified, the EL test images of cells that directly determine failure are excluded, the shadow area ratio in the remaining cell EL test images is analyzed, whether the cells with shadow EL test images fail, and the battery efficiency of defective cells is estimated and analyzed. The sub-module analyzes and estimates the cell efficiency of the non-failed cells;
A-4:利用缺陷电池片失效分析统计子模块对同一批次的电池片组件中导致电池片缺陷的原因进行汇总,分析每一缺陷原因导致的电池片数量在总缺陷电池片数量中的占比,对不同导致缺陷原因进行标记反馈给不同EL图像程序控制模块,缺陷电池片返修标记子模块对存在缺陷的电池片进行二次返修标记,EL测试图像问题预处理识别模块对存在二次返修标记的电池片进行多次EL测试;A-4: Use the defective cell failure analysis and statistics sub-module to summarize the causes of cell defects in the same batch of cell modules, and analyze the proportion of the number of cells caused by each defect cause in the total number of defective cells Compare, mark different causes of defects and feed them back to different EL image program control modules. The defective cell repair mark sub-module carries out secondary repair marks for defective cells, and the EL test image problem preprocessing identification module is used for secondary repairs. The marked cells are subjected to multiple EL tests;
A-5:利用EL图像储存汇总平台对多个EL测试仪测试的图像进行存储后实时调用,人工干预平台对EL测试每一步骤进行人工干预,实时监控。A-5: Use the EL image storage and aggregation platform to store and call the images tested by multiple EL testers in real time, and the manual intervention platform manually intervenes and monitors each step of the EL test in real time.
实施例1:限定条件,设定阴影的中心点位置与阴影最外侧任意三点的距离为12mm、7mm、11mm,当rn-1≠rn≠rn+1,n的取值为2,对标记的EL图像内部的阴影面积根据公式进行估计:Example 1: Restricted conditions, set the distance between the center point of the shadow and any three points on the outermost side of the shadow to be 12mm, 7mm, and 11mm. When r n-1 ≠r n ≠r n+1 , the value of n is 2 , the shadow area inside the marked EL image is estimated according to the formula:
(单位:mm2) (unit: mm 2 )
计算得出每一标记电池片EL图像内部的阴影面积为50πmm2。It is calculated that the shadow area inside the EL image of each marked cell is 50πmm 2 .
实施例2:限定条件,设定阴影的中心点位置与阴影最外侧任意三点的距离为3.11mm、3.11mm、3.11mm,当rn-1=rn=rn+1,n的取值为1,对标记的EL图像内部的阴影面积根据公式进行估计:Example 2: Restricted conditions, set the distance between the center point of the shadow and any three points on the outermost side of the shadow as 3.11mm, 3.11mm, and 3.11mm. When r n-1 =r n =r n+1 , the value of n is With a value of 1, the shadow area inside the marked EL image is estimated according to the formula:
Sn=π[3.11]2≈9.7π(单位:mm2)S n =π[3.11] 2 ≈9.7π (unit: mm 2 )
计算得出每一标记电池片EL图像内部的阴影面积为9.7πmm2。It is calculated that the shadow area inside the EL image of each marked cell is 9.7πmm 2 .
实施例3:限定条件,设定标记电池片EL图像内部不同阴影面积为9.7π、6.1π、11π、17π(单位:mm2),设定标记电池片长宽分别为100mm、120mm,设定电池片EL测试图像内部的阴影面积占比满足以下公式:Example 3: Limiting conditions, set the different shadow areas inside the EL image of the marked cell to be 9.7π, 6.1π, 11π, 17π (unit: mm 2 ), set the length and width of the marked cell to be 100mm and 120mm respectively, set The shadow area ratio inside the cell EL test image satisfies the following formula:
电池片EL测试图像内部的阴影面积满足上述公式时,判定当前阴影面积对电池片功率影响不大,不会造成该电池片失效。When the shadow area inside the EL test image of the cell satisfies the above formula, it is determined that the current shadow area has little effect on the power of the cell and will not cause the cell to fail.
实施例4:限定条件,设定标记电池片EL图像内部不同阴影面积为41.7π、53.31π、27π、31.1π(单位:mm2),设定标记电池片长宽分别为50mm、90mm,设定电池片EL测试图像内部的阴影面积占比满足以下公式:Example 4: Limiting conditions, set the different shadow areas inside the EL image of the marked cell to be 41.7π, 53.31π, 27π, and 31.1π (unit: mm 2 ), set the length and width of the marked cell to be 50 mm and 90 mm, respectively, and set the The shadow area ratio inside the EL test image of a given cell satisfies the following formula:
电池片EL测试图像内部的阴影面积不满足上述公式时,判定当前EL测试图像内部的阴影面积会导致该电池片失效,对该电池片进行失效标记。When the shadow area inside the EL test image of the cell does not satisfy the above formula, it is determined that the shadow area inside the current EL test image will cause the cell to fail, and the cell is marked with failure.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, but that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the embodiments are to be regarded in all respects as illustrative and not restrictive, and the scope of the invention is to be defined by the appended claims rather than the foregoing description, which are therefore intended to fall within the scope of the claims. All changes within the meaning and range of the equivalents of , are included in the present invention. Any reference signs in the claims shall not be construed as limiting the involved claim.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111532151.8A CN114372230A (en) | 2021-12-15 | 2021-12-15 | Photovoltaic module EL test evaluation system and method based on battery efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111532151.8A CN114372230A (en) | 2021-12-15 | 2021-12-15 | Photovoltaic module EL test evaluation system and method based on battery efficiency |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114372230A true CN114372230A (en) | 2022-04-19 |
Family
ID=81140229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111532151.8A Pending CN114372230A (en) | 2021-12-15 | 2021-12-15 | Photovoltaic module EL test evaluation system and method based on battery efficiency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114372230A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117318620A (en) * | 2023-10-25 | 2023-12-29 | 晶科能源(上饶)有限公司 | Battery chip detection method and battery chip detection system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590222A (en) * | 2012-03-06 | 2012-07-18 | 英利能源(中国)有限公司 | Photovoltaic component defect detection method and system |
CN107727662A (en) * | 2017-09-28 | 2018-02-23 | 河北工业大学 | A kind of cell piece EL black patch detection methods based on algorithm of region growing |
CN108462470A (en) * | 2018-04-23 | 2018-08-28 | 河海大学常州校区 | A kind of solar cell local voltage current capability test and validation method |
-
2021
- 2021-12-15 CN CN202111532151.8A patent/CN114372230A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590222A (en) * | 2012-03-06 | 2012-07-18 | 英利能源(中国)有限公司 | Photovoltaic component defect detection method and system |
CN107727662A (en) * | 2017-09-28 | 2018-02-23 | 河北工业大学 | A kind of cell piece EL black patch detection methods based on algorithm of region growing |
CN108462470A (en) * | 2018-04-23 | 2018-08-28 | 河海大学常州校区 | A kind of solar cell local voltage current capability test and validation method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117318620A (en) * | 2023-10-25 | 2023-12-29 | 晶科能源(上饶)有限公司 | Battery chip detection method and battery chip detection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5243785B2 (en) | Solar cell inspection apparatus and solar cell defect determination method | |
AU2018101283A4 (en) | Determining the Condition of Photovoltaic Modules | |
Zafirovska et al. | Detection of finger interruptions in silicon solar cells using line scan photoluminescence imaging | |
JP4235685B1 (en) | Solar cell inspection apparatus and solar cell defect determination method | |
US8483476B2 (en) | Photovoltaic cell manufacturing | |
KR101182822B1 (en) | Inspection apparatus and method of light emitting device | |
US20120126120A1 (en) | Solar cell evaluation method, evaluation device, maintenance method, maintenance system, and method of manufacturing solar cell module | |
US20180159469A1 (en) | Determining the condition of photovoltaic modules | |
US7733099B2 (en) | Monitoring pattern for detecting a defect in a semiconductor device and method for detecting a defect | |
CN106004137B (en) | The method that control silk-screen printing quality and production process are detected based on EL | |
US20180159468A1 (en) | Determining the condition of photovoltaic modules | |
WO2010064720A1 (en) | Apparatus and method for inspecting solar cell, and recording medium having program of the method recorded thereon | |
Köntges et al. | Quantitative analysis of PV-modules by electroluminescence images for quality control | |
CN115565902A (en) | Solar cell semi-finished product state evaluation method | |
CN104067512A (en) | Qualification of silicon wafers for photovoltaic cells by optical imaging | |
CN114372230A (en) | Photovoltaic module EL test evaluation system and method based on battery efficiency | |
JP3203781U (en) | Solar simulator | |
CN110931382B (en) | A method for detecting optoelectronic properties of LED die | |
CN115639214A (en) | Battery string detection method | |
WO2018079657A1 (en) | Solar cell inspection method and inspection device, method for manufacturing solar cell, method for manufacturing solar cell module, inspection program, and storage medium | |
JP6104112B2 (en) | Solar cell inspection apparatus and solar cell inspection method | |
JP5922429B2 (en) | Solar simulator and solar cell defect determination method | |
CN116046789A (en) | Method and system for detecting quality of square wafer crystal particles | |
CN115692391A (en) | Optical detection method, optical detection device and electronic equipment | |
CN113921411A (en) | Method for improving single crystal photovoltaic group string false soldering recognition rate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 221000 South side of Kunming Road, Peixian Economic Development Zone, Xuzhou City, Jiangsu Province Applicant after: Zhongrun Solar Technology (Xuzhou) Co.,Ltd. Address before: 221611 south side of Kunming Road, Peixian Economic Development Zone, Xuzhou City, Jiangsu Province Applicant before: Jiangsu Yuhui Photovoltaic Technology Co.,Ltd. |