CN114323035A - Positioning method, device and system - Google Patents
Positioning method, device and system Download PDFInfo
- Publication number
- CN114323035A CN114323035A CN202011063252.0A CN202011063252A CN114323035A CN 114323035 A CN114323035 A CN 114323035A CN 202011063252 A CN202011063252 A CN 202011063252A CN 114323035 A CN114323035 A CN 114323035A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- moment
- current moment
- particles
- feature points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 230000001953 sensory effect Effects 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 328
- 238000013507 mapping Methods 0.000 claims description 28
- 230000015654 memory Effects 0.000 claims description 26
- 238000011156 evaluation Methods 0.000 claims description 22
- 238000004590 computer program Methods 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 11
- 230000007613 environmental effect Effects 0.000 abstract description 36
- 238000012545 processing Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000036544 posture Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
本申请提供一种定位方法、装置和系统,在车辆启动后,根据时间间隔获取车辆的传感信息,在车辆定位时,通过车载传感装置获取当前时刻对应的传感信息,并获取之前在关键时刻获得的传感信息,从而根据获得的传感信息和车辆所在区域的地图信息对车辆进行定位。由于本申请是从时间维度获取传感信息,使得获取传感信息的过程不受道路拥堵的影响,从而可以在车辆行驶时,根据时间间隔对用于定位的传感信息进行更新,提高定位的准确性。并且,从时间维度获取感信息,当车辆低速行驶时,可以在车辆之间的间隙采集到车辆周边的环境信息,此时,由于车速较慢,采集到的车辆周边的环境信息更清楚,进一步提高定位的准确性。
The present application provides a positioning method, device and system. After the vehicle is started, the sensing information of the vehicle is obtained according to the time interval. When the vehicle is positioned, the sensing information corresponding to the current moment is obtained through the vehicle-mounted sensing device, and the sensing information corresponding to the current moment is obtained at the time of the vehicle positioning. The sensor information obtained at the critical moment, so as to locate the vehicle according to the obtained sensor information and the map information of the area where the vehicle is located. Since the present application acquires the sensing information from the time dimension, the process of acquiring the sensing information is not affected by road congestion, so that the sensing information used for positioning can be updated according to the time interval when the vehicle is running, thereby improving the accuracy of positioning. accuracy. In addition, the sensory information is obtained from the time dimension. When the vehicle is running at a low speed, the environmental information around the vehicle can be collected in the gap between the vehicles. At this time, due to the slow speed of the vehicle, the collected environmental information around the vehicle is clearer. Further Improve positioning accuracy.
Description
技术领域technical field
本申请实施例涉及智能驾驶(intelligent driving)技术领域,尤其涉及一种定位方法、装置和系统。The embodiments of the present application relate to the technical field of intelligent driving, and in particular, to a positioning method, device, and system.
背景技术Background technique
激光雷达(lidar)作为无人驾驶(unmanned driving)汽车定位传感器,与图像识别等技术共同实现车辆对周围环境的感知及车辆的全局定位(gobal positioning)。其中,车辆上安装激光雷达(lidar)的方式有顶激光安装方式和前保安装方式。Lidar, as an unmanned driving vehicle positioning sensor, works with image recognition and other technologies to realize the perception of the surrounding environment and the global positioning of the vehicle. Among them, the methods of installing lidar on the vehicle include a roof laser installation method and a front protection installation method.
其中,前保安装方式将激光雷达(lidar)安装在车辆的前部以及两侧,安装位置较低,易受遮挡,导致感知范围小,导致用于定位的信息较少,导致定位不准确。因此,为了提高定位的准确性,控制激光雷达(lidar)在车辆每行驶预设距离时,采集一次车辆周边的环境信息。在车辆定位时,根据多次采集的车辆周边的环境信息进行定位,定位准确性较高。Among them, the front protection installation method installs the lidar on the front and both sides of the vehicle. The installation position is low and easily blocked, resulting in a small sensing range, resulting in less information for positioning, resulting in inaccurate positioning. Therefore, in order to improve the accuracy of positioning, the lidar is controlled to collect environmental information around the vehicle every time the vehicle travels a preset distance. During vehicle positioning, positioning is performed according to the environmental information around the vehicle collected multiple times, and the positioning accuracy is high.
但是,当道路拥堵时,车辆行驶缓慢,无法及时采集车辆周边的环境信息,导致车辆在定位时,用于定位的多次采集的车辆周边的环境信息没有得到更新,从而导致定位准确性差。However, when the road is congested, the vehicle travels slowly, and the environmental information around the vehicle cannot be collected in time. As a result, when the vehicle is positioned, the environmental information around the vehicle collected multiple times for positioning is not updated, resulting in poor positioning accuracy.
发明内容SUMMARY OF THE INVENTION
本申请提供一种定位方法、装置和系统,旨在解决由于障碍物遮挡、道路拥堵等造成的车辆定位不准确的问题。The present application provides a positioning method, device and system, aiming at solving the problem of inaccurate vehicle positioning caused by obstructions, road congestion and the like.
第一方面,本申请提供一种定位方法,该方法可以由车辆实现,也可以由车辆中的部件实现,如由车辆中的处理装置、电路、芯片等部件实现,或者为与车辆通过网关通信的云端服务器。所述方法包括:In a first aspect, the present application provides a positioning method, which can be implemented by a vehicle or a component in the vehicle, such as a processing device, circuit, chip and other components in the vehicle, or for communicating with the vehicle through a gateway. cloud server. The method includes:
在当前时刻,通过车载传感装置获取第一传感信息,所述第一传感信息包括所述车载传感装置在所述当前时刻采集的特征点在车体坐标系下的坐标以及车辆在所述当前时刻的里程计信息;At the current moment, the first sensing information is obtained through the vehicle-mounted sensing device, and the first sensing information includes the coordinates of the feature points in the vehicle body coordinate system and the vehicle position in the vehicle body coordinate system collected by the vehicle-mounted sensing device at the current moment. the odometer information at the current moment;
获取在关键时刻通过所述车载传感装置获取的第二传感信息,所述第二传感信息包括所述车载传感装置在所述关键时刻采集的特征点在车体坐标系下的坐标以及所述车辆在所述关键时刻的里程计信息,其中,所述关键时刻包括第一关键时刻,所述第一关键时刻为根据时间间隔获取第二传感信息的时刻,所述第一关键时刻与所述当前时刻之间的时间间隔小于或等于预设时长;Acquiring second sensing information obtained by the vehicle-mounted sensing device at a critical moment, where the second sensing information includes the coordinates of the feature points in the vehicle body coordinate system collected by the vehicle-mounted sensing device at the critical moment and the odometer information of the vehicle at the critical moment, wherein the critical moment includes a first critical moment, and the first critical moment is the moment when the second sensing information is acquired according to the time interval, and the first critical moment The time interval between the moment and the current moment is less than or equal to the preset duration;
根据所述车辆行驶区域的地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位置。The position of the vehicle at the current moment is determined according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information.
在一种可能的实施方式中,所述根据所述车辆行驶区域的地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位置,包括:In a possible implementation manner, the determining the position of the vehicle at the current moment according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information includes:
根据所述第一传感信息中的里程计信息和所述第二传感信息中的里程计信息,将所述关键时刻采集的特征点的坐标映射到所述当前时刻的车体坐标系下,获得所述关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标;According to the odometer information in the first sensing information and the odometer information in the second sensing information, the coordinates of the feature points collected at the critical moment are mapped to the vehicle body coordinate system at the current moment , obtain the coordinates of the feature points collected at the critical moment in the vehicle body coordinate system at the current moment;
根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述地图信息,确定所述车辆在所述当前时刻的位置。The position of the vehicle at the current moment is determined according to the feature points collected at the critical moment and the coordinates of the feature points collected at the current moment in the vehicle body coordinate system at the current moment, respectively, and the map information.
在一种可能的实施方式中,所述根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述地图信息,确定所述车辆在所述当前时刻的位置,包括:In a possible implementation manner, the determination of the The position of the vehicle at the current moment, including:
在所述当前时刻,针对所述车辆对应的M个粒子中的每个粒子,根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度,其中,所述M个粒子为上一次对所述车辆定位时采用的粒子,所述每个粒子的位置是根据上一次对所述车辆定位时的里程计信息、所述当前时刻的里程计信息以及在上一次对所述车辆定位时所述每个粒子的位置获得的,M为正整数;At the current moment, for each of the M particles corresponding to the vehicle, according to the feature points collected at the critical moment and the feature points collected at the current moment, respectively, under the vehicle body coordinate system at the current moment coordinates and the position of each particle to obtain the matching degree between the feature points collected at the current moment and the critical moment and the target object in the map information, wherein the M particles are the last time the vehicle was positioned The particle used, the position of each particle is based on the odometer information at the last time the vehicle was positioned, the odometer information at the current moment, and the position of each particle at the last time the vehicle was positioned. position obtained, M is a positive integer;
根据所述当前时刻所述M个粒子中每个粒子的匹配度和所述M个粒子,获得K个粒子,K为正整数;According to the matching degree of each of the M particles at the current moment and the M particles, obtain K particles, where K is a positive integer;
根据所述当前时刻车辆对应的所述K个粒子的位置,获得所述车辆在所述当前时刻的位置。The position of the vehicle at the current moment is obtained according to the positions of the K particles corresponding to the vehicle at the current moment.
在一种可能的实施方式中,所述根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度,包括:In a possible implementation manner, the coordinates of the feature points collected according to the critical moment and the feature points collected at the current moment are respectively the coordinates of the vehicle body coordinate system at the current moment and the position of each particle, Obtain the matching degree between the feature points collected at the current moment and the critical moment and the target object in the map information, including:
将所述当前时刻和所述关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标分别映射到以所述粒子为原点的粒子坐标系中;mapping the coordinates of the feature points collected at the current moment and the critical moment in the vehicle body coordinate system at the current moment to the particle coordinate system with the particle as the origin;
获取映射到所述粒子坐标系中的所述当前时刻和所述关键时刻采集的特征点构成的待匹配目标物与所述地图信息中相应目标物的匹配度。The matching degree between the target object to be matched and the corresponding target object in the map information, which is mapped to the current moment in the particle coordinate system and the feature points collected at the critical moment, is obtained.
在一种可能的实施方式中,所述根据所述当前时刻所述M个粒子中每个粒子的匹配度和所述M个粒子,获得K个粒子,包括:In a possible implementation manner, obtaining K particles according to the matching degree of each of the M particles at the current moment and the M particles, including:
获取所述M个粒子中匹配度大于或等于预设匹配度的L个粒子,所述L小于或等于M且小于或等于K;Acquire L particles whose matching degree is greater than or equal to a preset matching degree among the M particles, where L is less than or equal to M and less than or equal to K;
将所述L个粒子确定为所述K个粒子;或者,Determining the L particles as the K particles; or,
从所述L个粒子中获取至少一个粒子;obtaining at least one particle from the L particles;
根据所述L个粒子和所述至少一个粒子,获得所述K个粒子。The K particles are obtained from the L particles and the at least one particle.
在一种可能的实施方式中,所述根据所述L个粒子和所述至少一个粒子,获得所述K个粒子,包括:In a possible implementation manner, the obtaining the K particles according to the L particles and the at least one particle includes:
根据所述至少一个粒子中每个粒子的匹配度,对每个粒子进行至少一次复制;copying each particle at least once according to the matching degree of each particle in the at least one particle;
将所述L个粒子和所述复制后获得的粒子,确定为所述K个粒子。The L particles and the particles obtained after replication are determined as the K particles.
在一种可能的实施方式中,所述根据所述当前时刻车辆对应的所述K个粒子的位置,获得所述车辆在所述当前时刻的位置,包括:In a possible implementation manner, the obtaining the position of the vehicle at the current moment according to the positions of the K particles corresponding to the vehicle at the current moment includes:
根据所述K个粒子中每个粒子的位置,获取所述K个粒子的平均位置,将所述K个粒子的平均位置确定为所述车辆在所述当前时刻的位置。According to the position of each of the K particles, the average position of the K particles is obtained, and the average position of the K particles is determined as the position of the vehicle at the current moment.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
根据所述当前时刻车辆对应的所述K个粒子中每个粒子的位置以及所述车辆在所述当前时刻的位置,获得所述车辆在所述当前时刻的位置的评价值,所述评价值指示所述车辆在所述当前时刻的位置与所述车辆在所述当前时刻的真实位置信息之间的差异。According to the position of each of the K particles corresponding to the vehicle at the current moment and the position of the vehicle at the current moment, an evaluation value of the position of the vehicle at the current moment is obtained, and the evaluation value indicates the position of the vehicle at the current moment. The difference between the position of the vehicle at the current moment and the real position information of the vehicle at the current moment.
在一种可能的实施方式中,所述根据所述第二传感信息中的里程计信息和所述第二传感信息中的里程计信息,将所述关键时刻采集的特征点的坐标分别映射到所述当前时刻的车体坐标系下,获得所述关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标,包括:In a possible implementation manner, according to the odometer information in the second sensing information and the odometer information in the second sensing information, the coordinates of the feature points collected at the critical moment are respectively Map to the vehicle body coordinate system at the current moment, and obtain the coordinates of the feature points collected at the critical moment under the vehicle body coordinate system at the current moment, including:
根据所述第一传感信息中的里程信息以及所述第二传感信息中的里程信息,确定所述当前时刻对应的车体坐标系与所述第一关键时刻对应的车体坐标系的坐标映射关系;According to the mileage information in the first sensing information and the mileage information in the second sensing information, determine the difference between the vehicle body coordinate system corresponding to the current moment and the vehicle body coordinate system corresponding to the first critical moment Coordinate mapping relationship;
根据所述坐标映射关系,将所述第一关键时刻采集的特征点的坐标分别映射到所述当前时刻的车体坐标系下,获得所述第一关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标。According to the coordinate mapping relationship, the coordinates of the feature points collected at the first critical moment are respectively mapped to the vehicle body coordinate system at the current moment, and the feature points collected at the first critical moment are obtained at the current moment. The coordinates in the vehicle body coordinate system.
在一种可能的实施方式中,所述关键时刻还包括第二关键时刻,所述第二关键时刻为根据距离间隔获取第二传感信息的时刻,其中,所述车辆从所述第二关键时刻的位置行驶到所述当前时刻对应的位置的行驶距离小于或等于预设距离。In a possible implementation manner, the critical moment further includes a second critical moment, and the second critical moment is the moment at which the second sensing information is acquired according to the distance interval, wherein the vehicle receives the second critical moment from the second critical moment. The driving distance from the position at the moment to the position corresponding to the current moment is less than or equal to the preset distance.
在一种可能的实施方式中,所述根据所述车辆行驶区域的地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位置,包括:In a possible implementation manner, the determining the position of the vehicle at the current moment according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information includes:
根据所述地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位姿。According to the map information and the first sensing information and the second sensing information, the pose of the vehicle at the current moment is determined.
在一种可能的实施方式中,所述根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度之前,还包括:In a possible implementation manner, the coordinates of the feature points collected according to the critical moment and the feature points collected at the current moment are respectively the coordinates of the vehicle body coordinate system at the current moment and the position of each particle, Before obtaining the matching degree between the feature points collected at the current moment and the critical moment and the target object in the map information, the method further includes:
根据各关键时刻采集的特征点和所述当前时刻采集的特征点中各特征点的特征值,确定目标特征点;Determine the target feature point according to the feature points collected at each critical moment and the feature value of each feature point in the feature points collected at the current moment;
根据各关键时刻采集的特征点和所述当前时刻采集的特征点中除特征点集合所包含的特征点之外的各特征点的特征值,再次确定目标特征点,所述特征点集合所包含的特征点为位于上一次确定的目标特征点的预设距离范围内的特征点以及所述上一次确定的目标特征点;According to the feature points collected at each critical moment and the feature values of the feature points collected at the current moment except the feature points included in the feature point set, the target feature point is determined again, and the feature point set includes The feature points are the feature points located within the preset distance range of the target feature point determined last time and the target feature point determined last time;
所述目标特征点的个数满足预设个数时,获得N个目标特征点,所述N为等于预设个数;When the number of the target feature points satisfies the preset number, N target feature points are obtained, and the N is equal to the preset number;
所述根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度,包括:According to the coordinates of the feature points collected at the critical moment and the feature points collected at the current moment respectively in the vehicle body coordinate system at the current moment and the position of each particle, the current moment and the collection of the critical moment are obtained. The matching degree between the feature points of and the target object in the map information, including:
根据N个目标特征点在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得所述当前时刻和所述关键时刻采集的特征点与所述目标区域的地图信息中目标物的匹配度。According to the coordinates of the N target feature points in the vehicle body coordinate system at the current moment and the position of each particle, the feature points collected at the current moment and the critical moment and the map information of the target area are obtained the matching degree of the target.
在一种可能的实施方式中,所述特征点的特征值通过评价函数获得,所述特征值用于评价所述特征点的稳定性。In a possible implementation manner, the eigenvalues of the feature points are obtained through an evaluation function, and the eigenvalues are used to evaluate the stability of the feature points.
在一种可能的实施方式中,所述目标特征点为各特征点中特征值最大的特征点。In a possible implementation manner, the target feature point is the feature point with the largest feature value among the feature points.
在一种可能的实施方式中,车体坐标系的原点位于所处车辆上的任一位置。In a possible implementation, the origin of the vehicle body coordinate system is located at any position on the vehicle.
第二方面,本申请提供一种定位装置,包括:In a second aspect, the present application provides a positioning device, comprising:
获取模块,用于在当前时刻,通过车载传感装置获取第一传感信息,所述第一传感信息包括所述车载传感装置在所述当前时刻采集的特征点在车体坐标系下的坐标以及车辆在所述当前时刻的里程计信息;还用于获取在关键时刻通过所述车载传感装置获取的第二传感信息,所述第二传感信息包括所述车载传感装置在所述关键时刻采集的特征点在车体坐标系下的坐标以及所述车辆在所述关键时刻的里程计信息,其中,所述关键时刻包括第一关键时刻,所述第一关键时刻为根据时间间隔获取第二传感信息的时刻,所述第一关键时刻与所述当前时刻之间的时间间隔小于或等于预设时长;The acquisition module is used to acquire first sensing information through the vehicle-mounted sensing device at the current moment, where the first sensing information includes the feature points collected by the vehicle-mounted sensing device at the current moment in the vehicle body coordinate system The coordinates of the vehicle and the odometer information of the vehicle at the current moment; it is also used to acquire the second sensing information obtained by the vehicle-mounted sensing device at a critical moment, and the second sensing information includes the vehicle-mounted sensing device The coordinates of the feature points in the vehicle body coordinate system collected at the critical moment and the odometer information of the vehicle at the critical moment, wherein the critical moment includes a first critical moment, and the first critical moment is The moment when the second sensing information is acquired according to the time interval, the time interval between the first critical moment and the current moment is less than or equal to a preset duration;
定位模块,用于根据所述车辆行驶区域的地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位置。The positioning module is configured to determine the position of the vehicle at the current moment according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information.
在一种可能的实施方式中,所述定位模块根据所述车辆行驶区域的地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位置时,具体用于:In a possible implementation manner, when the positioning module determines the position of the vehicle at the current moment according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information, it specifically uses At:
根据所述第一传感信息中的里程计信息和所述第二传感信息中的里程计信息,将所述关键时刻采集的特征点的坐标映射到所述当前时刻的车体坐标系下,获得所述关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标;According to the odometer information in the first sensing information and the odometer information in the second sensing information, the coordinates of the feature points collected at the critical moment are mapped to the vehicle body coordinate system at the current moment , obtain the coordinates of the feature points collected at the critical moment in the vehicle body coordinate system at the current moment;
根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述地图信息,确定所述车辆在所述当前时刻的位置。The position of the vehicle at the current moment is determined according to the feature points collected at the critical moment and the coordinates of the feature points collected at the current moment in the vehicle body coordinate system at the current moment, respectively, and the map information.
在一种可能的实施方式中,所述定位模块根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述地图信息,确定所述车辆在所述当前时刻的位置时,具体用于:In a possible implementation manner, the positioning module determines, according to the feature points collected at a critical moment and the coordinates of the feature points collected at the current moment in the vehicle body coordinate system at the current moment, and the map information, respectively, When the vehicle is at the position of the current moment, it is specifically used for:
在所述当前时刻,针对所述车辆对应的M个粒子中的每个粒子,根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度,其中,所述M个粒子为上一次对所述车辆定位时采用的粒子,所述每个粒子的位置是根据上一次对所述车辆定位时的里程计信息、所述当前时刻的里程计信息以及在上一次对所述车辆定位时所述每个粒子的位置获得的,M为正整数;At the current moment, for each of the M particles corresponding to the vehicle, according to the feature points collected at the critical moment and the feature points collected at the current moment, respectively, under the vehicle body coordinate system at the current moment coordinates and the position of each particle to obtain the matching degree between the feature points collected at the current moment and the critical moment and the target object in the map information, wherein the M particles are the last time the vehicle was positioned The particle used, the position of each particle is based on the odometer information at the last time the vehicle was positioned, the odometer information at the current moment, and the position of each particle at the last time the vehicle was positioned. position obtained, M is a positive integer;
根据所述当前时刻所述M个粒子中每个粒子的匹配度和所述M个粒子,获得K个粒子,K为正整数;According to the matching degree of each of the M particles at the current moment and the M particles, obtain K particles, where K is a positive integer;
根据所述当前时刻车辆对应的所述K个粒子的位置,获得所述车辆在所述当前时刻的位置。The position of the vehicle at the current moment is obtained according to the positions of the K particles corresponding to the vehicle at the current moment.
在一种可能的实施方式中,所述定位模块根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度时,具体用于:In a possible implementation manner, the positioning module is based on the coordinates of the feature points collected at the critical moment and the feature points collected at the current moment in the vehicle body coordinate system at the current moment and the coordinates of each particle respectively. When obtaining the matching degree between the feature points collected at the current moment and the critical moment and the target object in the map information, it is specifically used for:
将所述当前时刻和所述关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标分别映射到以所述粒子为原点的粒子坐标系中;mapping the coordinates of the feature points collected at the current moment and the critical moment in the vehicle body coordinate system at the current moment to the particle coordinate system with the particle as the origin;
获取映射到所述粒子坐标系中的所述当前时刻和所述关键时刻采集的特征点构成的待匹配目标物与所述地图信息中相应目标物的匹配度。The matching degree between the target object to be matched and the corresponding target object in the map information, which is mapped to the current moment in the particle coordinate system and the feature points collected at the critical moment, is obtained.
在一种可能的实施方式中,所述定位模块根据所述当前时刻所述M个粒子中每个粒子的匹配度和所述M个粒子,获得K个粒子时,具体用于:In a possible implementation manner, when the positioning module obtains K particles according to the matching degree of each of the M particles and the M particles at the current moment, it is specifically used for:
获取所述M个粒子中匹配度大于或等于预设匹配度的L个粒子,所述L小于或等于M且小于或等于K;Acquire L particles whose matching degree is greater than or equal to a preset matching degree among the M particles, where L is less than or equal to M and less than or equal to K;
将所述L个粒子确定为所述K个粒子;或者,Determining the L particles as the K particles; or,
从所述L个粒子中获取至少一个粒子;obtaining at least one particle from the L particles;
根据所述L个粒子和所述至少一个粒子,获得所述K个粒子。The K particles are obtained from the L particles and the at least one particle.
在一种可能的实施方式中,所述定位模块根据所述L个粒子和所述至少一个粒子,获得所述K个粒子时,具体用于:In a possible implementation manner, when the positioning module obtains the K particles according to the L particles and the at least one particle, it is specifically used for:
根据所述至少一个粒子中每个粒子的匹配度,对每个粒子进行至少一次复制;copying each particle at least once according to the matching degree of each particle in the at least one particle;
将所述L个粒子和所述复制后获得的粒子,确定为所述K个粒子。The L particles and the particles obtained after replication are determined as the K particles.
在一种可能的实施方式中,根据定位模块根据所述当前时刻车辆对应的所述K个粒子的位置,获得所述车辆在所述当前时刻的位置时,具体用于:In a possible implementation manner, when obtaining the position of the vehicle at the current moment according to the positions of the K particles corresponding to the vehicle at the current moment, the positioning module is specifically used for:
根据所述K个粒子中每个粒子的位置,获取所述K个粒子的平均位置,将所述K个粒子的平均位置确定为所述车辆在所述当前时刻的位置。According to the position of each of the K particles, the average position of the K particles is obtained, and the average position of the K particles is determined as the position of the vehicle at the current moment.
在一种可能的实施方式中,所述定位模块还用于:In a possible implementation manner, the positioning module is further used for:
根据所述当前时刻车辆对应的所述K个粒子中每个粒子的位置以及所述车辆在所述当前时刻的位置,获得所述车辆在所述当前时刻的位置的评价值,所述评价值指示所述车辆在所述当前时刻的位置与所述车辆在所述当前时刻的真实位置信息之间的差异。According to the position of each of the K particles corresponding to the vehicle at the current moment and the position of the vehicle at the current moment, an evaluation value of the position of the vehicle at the current moment is obtained, and the evaluation value indicates the position of the vehicle at the current moment. The difference between the position of the vehicle at the current moment and the real position information of the vehicle at the current moment.
在一种可能的实施方式中,所述定位模块根据所述第二传感信息中的里程计信息和所述第二传感信息中的里程计信息,将所述关键时刻采集的特征点的坐标分别映射到所述当前时刻的车体坐标系下,获得所述关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标时,具体用于:In a possible implementation manner, the positioning module, according to the odometer information in the second sensing information and the odometer information in the second sensing information, The coordinates are respectively mapped to the vehicle body coordinate system at the current moment, and when the coordinates of the feature points collected at the critical moment under the vehicle body coordinate system at the current moment are obtained, it is specifically used for:
根据所述第一传感信息中的里程信息以及所述第二传感信息中的里程信息,确定所述当前时刻对应的车体坐标系与所述第一关键时刻对应的车体坐标系的坐标映射关系;According to the mileage information in the first sensing information and the mileage information in the second sensing information, determine the difference between the vehicle body coordinate system corresponding to the current moment and the vehicle body coordinate system corresponding to the first critical moment Coordinate mapping relationship;
根据所述坐标映射关系,将所述第一关键时刻采集的特征点的坐标分别映射到所述当前时刻的车体坐标系下,获得所述第一关键时刻采集的特征点在所述当前时刻的车体坐标系下的坐标。According to the coordinate mapping relationship, the coordinates of the feature points collected at the first critical moment are respectively mapped to the vehicle body coordinate system at the current moment, and the feature points collected at the first critical moment are obtained at the current moment. The coordinates in the vehicle body coordinate system.
在一种可能的实施方式中,所述关键时刻还包括第二关键时刻,所述第二关键时刻为根据距离间隔获取第二传感信息的时刻,其中,所述车辆从所述第二关键时刻的位置行驶到所述当前时刻对应的位置的行驶距离小于或等于预设距离。In a possible implementation manner, the critical moment further includes a second critical moment, and the second critical moment is the moment at which the second sensing information is acquired according to the distance interval, wherein the vehicle receives the second critical moment from the second critical moment. The driving distance from the position at the moment to the position corresponding to the current moment is less than or equal to the preset distance.
在一种可能的实施方式中,所述定位模块根据所述车辆行驶区域的地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位置时,具体用于:In a possible implementation manner, when the positioning module determines the position of the vehicle at the current moment according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information, it specifically uses At:
根据所述地图信息以及所述第一传感信息、第二传感信息,确定所述车辆在当前时刻的位姿。According to the map information and the first sensing information and the second sensing information, the pose of the vehicle at the current moment is determined.
在一种可能的实施方式中,所述定位模块根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度之前,还用于:In a possible implementation manner, the positioning module is based on the coordinates of the feature points collected at the critical moment and the feature points collected at the current moment in the vehicle body coordinate system at the current moment and the coordinates of each particle respectively. Before obtaining the matching degree between the feature points collected at the current moment and the critical moment and the target object in the map information, it is also used for:
根据各关键时刻采集的特征点和所述当前时刻采集的特征点中各特征点的特征值,确定目标特征点;Determine the target feature point according to the feature points collected at each critical moment and the feature value of each feature point in the feature points collected at the current moment;
根据各关键时刻采集的特征点和所述当前时刻采集的特征点中除特征点集合所包含的特征点之外的各特征点的特征值,再次确定目标特征点,所述特征点集合所包含的特征点为位于上一次确定的目标特征点的预设距离范围内的特征点以及所述上一次确定的目标特征点;According to the feature points collected at each critical moment and the feature values of the feature points collected at the current moment except the feature points included in the feature point set, the target feature point is determined again, and the feature point set includes The feature points are the feature points located within the preset distance range of the target feature point determined last time and the target feature point determined last time;
所述目标特征点的个数满足预设个数时,获得N个目标特征点,所述N为等于预设个数;When the number of the target feature points satisfies the preset number, N target feature points are obtained, and the N is equal to the preset number;
所述定位模块根据关键时刻采集的特征点和所述当前时刻采集的特征点分别在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得当前时刻和所述关键时刻采集的特征点与所述地图信息中目标物的匹配度时,具体用于:The positioning module obtains the current moment and the key according to the coordinates of the feature points collected at the critical moment and the feature points collected at the current moment respectively in the vehicle body coordinate system at the current moment and the position of each particle. When the matching degree between the feature points collected at all times and the target object in the map information, it is specifically used for:
根据N个目标特征点在所述当前时刻的车体坐标系下的坐标以及所述每个粒子的位置,获得所述当前时刻和所述关键时刻采集的特征点与所述目标区域的地图信息中目标物的匹配度。According to the coordinates of the N target feature points in the vehicle body coordinate system at the current moment and the position of each particle, the feature points collected at the current moment and the critical moment and the map information of the target area are obtained the matching degree of the target.
在一种可能的实施方式中,所述特征点的特征值通过评价函数获得,所述特征值用于评价所述特征点的稳定性。In a possible implementation manner, the eigenvalues of the feature points are obtained through an evaluation function, and the eigenvalues are used to evaluate the stability of the feature points.
在一种可能的实施方式中,所述目标特征点为各特征点中特征值最大的特征点。In a possible implementation manner, the target feature point is the feature point with the largest feature value among the feature points.
在一种可能的实施方式中,车体坐标系的原点位于所处车辆上的任一位置。In a possible implementation, the origin of the vehicle body coordinate system is located at any position on the vehicle.
第三方面,本申请提供一种定位装置,包括:存储器和至少一个处理器;In a third aspect, the present application provides a positioning device, comprising: a memory and at least one processor;
所述存储器,用于存储程序指令;the memory for storing program instructions;
所述处理器,用于调用所述存储器中的程序指令,执行如第一方面任一项所述的定位方法。The processor is configured to call the program instructions in the memory to execute the positioning method according to any one of the first aspect.
第四方面,本申请提供一种定位系统,包括车辆和车载传感装置;In a fourth aspect, the present application provides a positioning system, including a vehicle and a vehicle-mounted sensing device;
所述车载传感装置安装在所述车辆上;the vehicle-mounted sensing device is mounted on the vehicle;
所述车辆,用于执行如第一方面任一项所述的定位方法;或者,the vehicle, configured to execute the positioning method according to any one of the first aspects; or,
所述车载传感装置,用于执行第一方面任一项所述的定位方法。The in-vehicle sensing device is configured to execute the positioning method according to any one of the first aspects.
第五方面,本申请提供一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行第一方面任一项所述的定位方法。In a fifth aspect, the present application provides a non-transitory computer-readable storage medium storing computer instructions, where the computer instructions are used to cause the computer to execute the positioning method according to any one of the first aspects.
第六方面,本申请提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,定位装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得定位装置实施如第一方面任一项所述的定位方法。In a sixth aspect, the present application provides a program product, the program product includes a computer program, the computer program is stored in a readable storage medium, and at least one processor of the positioning device can read the data from the readable storage medium. The computer program is executed by the at least one processor so that the positioning apparatus implements the positioning method according to any one of the first aspects.
本申请提供一种定位方法、装置和系统,在车辆启动后,根据时间间隔获取车辆的传感信息,在车辆定位时,获取当前时刻对应的第一传感信息以及至少一个关键时刻对应的第二传感信息,根据第一传感信息、至少一个第二传感信息以及地图信息对车辆进行定位。由于从时间维度获取传感信息,使得获取传感信息的过程不受道路拥堵的影响,从而可以在车辆行驶时,根据时间间隔对用于定位的传感信息进行更新,提高定位的准确性。并且,从时间维度获取传感信息,当车辆低速行驶时,可以在车辆之间的间隙采集到车辆周边的环境信息,此时,由于车速较慢,采集到的车辆周边的环境信息更清楚,进一步提高定位的准确性。The present application provides a positioning method, device and system. After the vehicle is started, the sensing information of the vehicle is acquired according to the time interval, and when the vehicle is positioned, the first sensing information corresponding to the current moment and the first sensing information corresponding to at least one critical moment are acquired. Second sensing information, the vehicle is positioned according to the first sensing information, the at least one second sensing information and the map information. Since the sensing information is obtained from the time dimension, the process of obtaining the sensing information is not affected by road congestion, so that the sensing information used for positioning can be updated according to the time interval when the vehicle is running, thereby improving the accuracy of positioning. Moreover, the sensor information is obtained from the time dimension. When the vehicle is running at a low speed, the environmental information around the vehicle can be collected in the gap between the vehicles. At this time, due to the slow speed of the vehicle, the collected environmental information around the vehicle is clearer. To further improve the accuracy of positioning.
附图说明Description of drawings
图1为本申请一实施例提供的应用场景示意图;FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application;
图2为本申请一实施例提供的定位方法的流程图FIG. 2 is a flowchart of a positioning method provided by an embodiment of the present application
图3为本申请一实施例提供的车体坐标系的示意图;3 is a schematic diagram of a vehicle body coordinate system provided by an embodiment of the present application;
图4为本申请一实施例提供的对车辆定位的示意图;4 is a schematic diagram of positioning a vehicle according to an embodiment of the present application;
图5为本申请另一实施例提供的对车辆定位的示意图;5 is a schematic diagram of positioning a vehicle according to another embodiment of the present application;
图6为本申请另一实施例提供的对车辆定位的示意图;6 is a schematic diagram of positioning a vehicle according to another embodiment of the present application;
图7a为本申请一实施例提供的车辆朝向第一方向时的周边环境信息示意图;7a is a schematic diagram of surrounding environment information when a vehicle faces a first direction according to an embodiment of the application;
图7b为本申请一实施例提供的车辆朝向第二方向时的周边环境信息示意图;FIG. 7b is a schematic diagram of surrounding environment information when a vehicle faces a second direction according to an embodiment of the application;
图8为本申请另一实施例提供的定位方法的流程图;8 is a flowchart of a positioning method provided by another embodiment of the present application;
图9为本申请另一实施例提供的定位方法的流程图;9 is a flowchart of a positioning method provided by another embodiment of the present application;
图10为本申请一实施例提供的粒子初始化的示意图;FIG. 10 is a schematic diagram of particle initialization provided by an embodiment of the present application;
图11为本申请一实施例提供的分别在车体坐标系和粒子坐标系下周边环境信息示意图;11 is a schematic diagram of surrounding environment information in a vehicle body coordinate system and a particle coordinate system, respectively, provided by an embodiment of the application;
图12为本申请一实施例提供的定位装置的结构示意图;12 is a schematic structural diagram of a positioning device provided by an embodiment of the application;
图13为本申请一实施例提供的定位装置的结构示意图;13 is a schematic structural diagram of a positioning device provided by an embodiment of the application;
图14为本申请一实施例提供的定位系统的结构示意图。FIG. 14 is a schematic structural diagram of a positioning system according to an embodiment of the present application.
具体实施方式Detailed ways
为了便于理解本申请的实施例,首先对本申请实施例中涉及的概念进行介绍。To facilitate understanding of the embodiments of the present application, concepts involved in the embodiments of the present application are first introduced.
当前时刻:车辆在启动后,进行定位时刻。Current moment: The moment when the vehicle starts positioning.
关键时刻:车辆在启动后,通过传感器装置扫描车辆周边环境信息,且扫描到的车辆周边环境信息用于定位的时刻。Critical moment: After the vehicle is started, the sensor device scans the surrounding environment information of the vehicle, and the scanned surrounding environment information of the vehicle is used for positioning.
特征点:通过传感装置扫描到的车辆周边环境对应的点云中,能够反应周边环境中目标物的特征的点,因此,可以通过特征点来识别周边环境中目标物。Feature point: The point cloud corresponding to the surrounding environment of the vehicle scanned by the sensor device can reflect the characteristics of the target in the surrounding environment. Therefore, the target in the surrounding environment can be identified by the feature points.
图1为本申请一实施例提供的应用场景示意图。在车辆的智能驾驶模式下,车辆在启动后,例如,车辆正在行驶,或者由于拥堵、等待红绿灯等情况暂时处于停车状态,通过激光雷达感知车辆周围环境信息,对车辆进行定位。具体的:设置预设距离,车辆上的激光雷达在车辆每行驶预设距离后,向车辆周围发射激光信号。车辆周边环境中的目标物被激光扫描后,显示为点云(Cloud of points)。通过每次采集时获取到点云提取车辆周围的标志信息。在定位时,根据多次采集到的车辆周围的标志信息与地图信息进行匹配,实现车辆的定位。FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application. In the intelligent driving mode of the vehicle, after the vehicle is started, for example, the vehicle is driving, or temporarily stopped due to congestion, waiting for traffic lights, etc., the vehicle's surrounding environment information is sensed through lidar to locate the vehicle. Specifically: setting a preset distance, the lidar on the vehicle emits a laser signal around the vehicle every time the vehicle travels a preset distance. After the target in the surrounding environment of the vehicle is scanned by the laser, it is displayed as a cloud of points. The sign information around the vehicle is extracted by acquiring the point cloud at each acquisition. During positioning, the vehicle positioning is realized by matching the sign information around the vehicle collected multiple times with the map information.
但是,车辆在拥堵的道路上行驶时,行驶缓慢,使得车辆在定位时,无法及时更新采集到的周边的环境信息,导致定位不准确。However, when the vehicle is driving on a congested road, the driving is slow, so that the vehicle cannot update the collected surrounding environmental information in time when positioning the vehicle, resulting in inaccurate positioning.
例如,如图1所示,当车辆在拥堵的道路上行驶时,每间隔100米采集一次车辆周边的环境信息,例如,车辆分别在A点、B点、C点和D点采集车辆周边的环境信息,车辆行驶到E点,由于D点与E点之间的行驶距离小于100米,在E点需要进行定位时,根据A点、B点、C点和D点采集车辆周边的环境信息进行定位,此时,由于存在误差,车辆定位的位置位于点D的附近。For example, as shown in Figure 1, when the vehicle is driving on a congested road, the environmental information around the vehicle is collected every 100 meters. For example, the vehicle collects the surrounding information at points A, B, C and D respectively. Environmental information, when the vehicle travels to point E, since the driving distance between point D and point E is less than 100 meters, when point E needs to be positioned, the environmental information around the vehicle is collected according to point A, point B, point C and point D Positioning is performed. At this time, due to the existence of errors, the position of the vehicle positioning is located in the vicinity of point D.
由于道路拥堵,车辆行驶缓慢,导致车辆行驶到F点需要进行定位时,D点与F点之间的行驶距离仍小于100米,使得车辆采集到的车辆周边的环境信息仍然是在A点、B点、C点和D点采集到的。因此,在定位时,仍然根据A点、B点、C点和D点采集车辆周边的环境信息进行定位,导致通过定位获得的车辆的位置与车辆的真实位置之间存在较大差异,定位不准确。Due to road congestion, the vehicle travels slowly, and when the vehicle reaches point F and needs to be positioned, the driving distance between point D and point F is still less than 100 meters, so that the environmental information around the vehicle collected by the vehicle is still at point A, Collected at points B, C and D. Therefore, during positioning, the environment information around the vehicle is still collected according to points A, B, C and D for positioning, resulting in a large difference between the position of the vehicle obtained through positioning and the real position of the vehicle, and the positioning is not precise.
值得说明的是,上述示例只是用于示范性地说明本申请实施例可以适用的应用场景,而不能理解为对本申请实施例的应用场景的限定。It should be noted that the above examples are only used to illustrate the applicable application scenarios of the embodiments of the present application, and should not be construed as limitations on the application scenarios of the embodiments of the present application.
因此,为解决现有技术中存在的问题,本申请提出:时间维度具有连续性,因此,可以在时间维度上控制车载装置,例如,激光雷达,连采集车辆周边的环境信息,通过连续采集到的车辆周围的环境信息对车辆的当前时刻的位置进行定位。由于本申请中在时间维度上连续采集车辆周边的环境信息,而时间维度不受道路拥堵等情况的影响。因此,车辆启动后,可以及时更新采集到的车辆周围的环境信息,进而提高定位的准确性。Therefore, in order to solve the problems existing in the prior art, the present application proposes that the time dimension is continuous, and therefore, the vehicle-mounted device, such as a lidar, can be controlled in the time dimension to continuously collect environmental information around the vehicle, and by continuously collecting The environmental information around the vehicle locates the current position of the vehicle. Because the environmental information around the vehicle is continuously collected in the time dimension in this application, and the time dimension is not affected by conditions such as road congestion. Therefore, after the vehicle is started, the collected environmental information around the vehicle can be updated in time, thereby improving the accuracy of positioning.
应理解,在实际应用中,本申请的技术方案除了应用于车辆定位,也可以应用于飞机定位,例如,无人机的定位场景中,提高定位的准确性。其中,本申请以车辆定位为例进行说明,然而,这并不应理解为对本申请应用范围的限定。It should be understood that, in practical applications, the technical solutions of the present application can be applied not only to vehicle positioning, but also to aircraft positioning, for example, in a drone positioning scenario, to improve positioning accuracy. Wherein, the present application takes vehicle positioning as an example for description, however, this should not be construed as a limitation on the application scope of the present application.
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。The technical solutions of the present application and how the technical solutions of the present application solve the above-mentioned technical problems will be described in detail below with specific examples. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. The embodiments of the present application will be described below with reference to the accompanying drawings.
图2为本申请一实施例提供的定位方法的流程图。本实施例的执行主体例如为车辆,也可以由车辆中的部件实现,如由车辆中的处理装置、电路、芯片等部件实现,或者为与车辆通过网关通信的云端服务器,本申请对此不限制。如图2所示,本申请实施例的方法包括:FIG. 2 is a flowchart of a positioning method provided by an embodiment of the present application. The execution subject of this embodiment is, for example, a vehicle, and may also be implemented by components in the vehicle, such as a processing device, circuit, chip and other components in the vehicle, or a cloud server that communicates with the vehicle through a gateway. This application does not address this. limit. As shown in FIG. 2, the method of the embodiment of the present application includes:
S201、在当前时刻,通过车载传感装置获取第一传感信息。S201. At the current moment, acquire first sensing information through a vehicle-mounted sensing device.
其中,第一传感信息包括车载传感装置在当前时刻采集的特征点在车体坐标系下的坐标以及车辆在当前时刻的里程计信息。The first sensing information includes the coordinates of the feature points in the vehicle body coordinate system collected by the vehicle-mounted sensing device at the current moment and the odometer information of the vehicle at the current moment.
本步骤中,可选的,车体坐标系可以是平面坐标系,例如平面直角坐标系、极坐标系,或者为空间坐标系,例如空间直角坐标系、柱坐标系、球坐标系,本申请对此不限制。其中本实施例以空间直角坐标系为例进行说明。In this step, optionally, the vehicle body coordinate system may be a plane coordinate system, such as a plane Cartesian coordinate system, a polar coordinate system, or a space coordinate system, such as a space Cartesian coordinate system, a cylindrical coordinate system, or a spherical coordinate system. There is no restriction on this. The present embodiment is described by taking a space rectangular coordinate system as an example.
可选的,车体坐标系为空间直角坐标系,则车体坐标系的原点可以位于所处车辆上的任一位置,例如,如图3所示,以车辆的几何中心为原点,行驶方向为X轴,在水平面上与行驶方向垂直的方向为Y轴,在垂直面上与行驶方向垂直的方向为Z轴。Optionally, the vehicle body coordinate system is a space Cartesian coordinate system, and the origin of the vehicle body coordinate system can be located at any position on the vehicle. For example, as shown in FIG. It is the X axis, the direction perpendicular to the travel direction on the horizontal plane is the Y axis, and the direction perpendicular to the travel direction on the vertical plane is the Z axis.
需要说明的是,车体坐标系的原点是以车辆作为参照物确定的,但是,车辆行驶过程中,车辆的位置是发生变化的,因此,车辆在不同位置对应的车体坐标系的原点不同。It should be noted that the origin of the vehicle body coordinate system is determined with the vehicle as the reference object, but the position of the vehicle changes during the driving process of the vehicle. Therefore, the origin of the vehicle body coordinate system corresponding to different positions of the vehicle is different. .
在车辆启动后,通过车载传感装置获取车辆周边的环境信息以及车辆的里程计信息。其中,车载传感装置例如为多传感器(sensor)整合的系统,例如可以包括激光雷达和惯性检测单元,激光雷达用于对车辆周边环境进行扫描,获取车辆周边的环境信息,惯性检测单元用于获取车辆的里程计信息。After the vehicle is started, the environmental information around the vehicle and the odometer information of the vehicle are obtained through the vehicle-mounted sensing device. Wherein, the vehicle-mounted sensing device is, for example, a multi-sensor integrated system, which may include, for example, a lidar and an inertial detection unit. The lidar is used to scan the surrounding environment of the vehicle to obtain environmental information around the vehicle, and the inertial detection unit is used to scan the surrounding environment of the vehicle. Get the odometer information of the vehicle.
需要说明的是,在一些可能的设计中,还可以通过其他传感器获取车辆周边的环境信息的点云,例如,超声波传感器等。It should be noted that, in some possible designs, the point cloud of environmental information around the vehicle may also be obtained through other sensors, for example, ultrasonic sensors.
在当前时刻,车载传感装置中的激光雷达向外发射激光,获取车辆周围环境对应的点云,惯性检测单元获取当前时刻的里程计信息,以使车辆通过当前时刻车辆周围环境对应的点云以及里程计信息获取当前时刻的传感信息,即第一传感信息。其中,里程计信息例如可以包括:车辆在启动后的转向信息、车轮的转动圈数等。At the current moment, the lidar in the vehicle-mounted sensing device emits laser light to obtain the point cloud corresponding to the surrounding environment of the vehicle, and the inertial detection unit obtains the odometer information at the current moment, so that the vehicle can pass the point cloud corresponding to the surrounding environment of the vehicle at the current moment. And the odometer information obtains the sensing information at the current moment, that is, the first sensing information. The odometer information may include, for example, steering information of the vehicle after starting, the number of turns of the wheels, and the like.
可选的,车载传感装置在获取到当前时刻的车辆周围环境对应的点云以及里程计信息时,可以直接将获取到的车辆周围环境对应的点云以及里程计信息发送车辆处理装置,由车辆处理装置对车辆周围环境对应的点云以及里程计信息进行处理,获取第一传感信息。例如,车辆处理装置从车辆周围环境对应的点云中提取出至少一个特征点,将特征点在车载传感装置坐标系下的坐标映射到车体坐标系下,确定至少一个特征点在车体坐标系下的坐标。Optionally, when the vehicle-mounted sensing device acquires the point cloud and odometer information corresponding to the surrounding environment of the vehicle at the current moment, it can directly send the acquired point cloud and odometer information corresponding to the surrounding environment of the vehicle to the vehicle processing device, where The vehicle processing device processes the point cloud and odometer information corresponding to the surrounding environment of the vehicle to obtain the first sensing information. For example, the vehicle processing device extracts at least one feature point from the point cloud corresponding to the surrounding environment of the vehicle, maps the coordinates of the feature point in the coordinate system of the vehicle-mounted sensing device to the vehicle body coordinate system, and determines that the at least one feature point is located in the vehicle body. The coordinates in the coordinate system.
或者,车载传感装置对获取到车辆周围环境对应的点云以及里程计信息进行初步处理,例如,数据格式的转换、点云中特征点的提取等,将初步处理后的车辆周围环境对应的点云以及惯性检测单元获取当前时刻的里程计信息发送给车辆的处理装置。车辆处理装置根据初步处理后的车辆周围环境对应的点云以及惯性检测单元获取第一传感信息。Or, the vehicle-mounted sensing device performs preliminary processing on the acquired point cloud and odometer information corresponding to the surrounding environment of the vehicle, for example, data format conversion, extraction of feature points in the point cloud, etc. The point cloud and the inertial detection unit acquire the odometer information at the current moment and send it to the processing device of the vehicle. The vehicle processing device acquires the first sensing information according to the preliminarily processed point cloud corresponding to the surrounding environment of the vehicle and the inertial detection unit.
再或者,车载传感装置根据获取到的当前时刻的车辆周围环境对应的点云以及里程计信息获取第一传感信息,然后将第一传感信息发送给车辆的处理装置。这样,在车辆定位时,车辆处理装置可以直接使用第一传感信息,减少车辆处理装置的处理量,加快车辆处理装置的定位速度。Still alternatively, the vehicle-mounted sensing device obtains the first sensing information according to the obtained point cloud and odometer information corresponding to the surrounding environment of the vehicle at the current moment, and then sends the first sensing information to the processing device of the vehicle. In this way, when the vehicle is positioned, the vehicle processing device can directly use the first sensing information, thereby reducing the processing amount of the vehicle processing device and accelerating the positioning speed of the vehicle processing device.
S202、获取在关键时刻,通过车载传感装置获取的第二传感信息。S202: Acquire second sensing information obtained by the vehicle-mounted sensing device at a critical moment.
其中,第二传感信息包括车载传感装置在关键时刻采集的特征点在车体坐标系下的坐标以及车辆在关键时刻的里程计信息。The second sensing information includes the coordinates of the feature points in the vehicle body coordinate system collected by the vehicle-mounted sensing device at the critical moment and the odometer information of the vehicle at the critical moment.
关键时刻包括第一关键时刻,第一关键时刻为根据时间间隔获取第二传感信息的时刻,关键时刻与当前时刻之间的时间间隔小于或等于预设时长。The critical moment includes a first critical moment, the first critical moment is the moment at which the second sensing information is acquired according to the time interval, and the time interval between the critical moment and the current moment is less than or equal to a preset duration.
本步骤中,由于现有技术中,通过设置预设距离,在车辆每行驶预设距离时,通过车载传感装置采集车辆周边的环境信息以及里程计信息,以使车辆处理装置获取传感信息,根据多次获取的传感信息进行定位,但是,道路拥堵使车辆行驶缓慢,传感信息更新较慢。并且,由于道路拥堵,车辆周边的环境信息被周边的车辆等障碍物遮挡,本身就会造成感知范围较小,况且在一段拥堵的路段中,根据预设距离获取传感信息,只有在车辆每行驶预设距离时才会获得一次传感信息,导致感知信息中的有效信息更少,影响定位的准确性。其中,有效信息为感知信息中可以提高定位准确性的信息。In this step, because in the prior art, by setting a preset distance, every time the vehicle travels a preset distance, the on-board sensing device collects environmental information and odometer information around the vehicle, so that the vehicle processing device obtains the sensing information , according to the sensing information obtained many times, but the road congestion makes the vehicle travel slowly, and the sensing information is updated slowly. In addition, due to road congestion, the environmental information around the vehicle is blocked by obstacles such as surrounding vehicles, which will itself cause a small sensing range. Moreover, in a congested road section, sensing information is obtained according to the preset distance. The sensing information is only obtained once when the preset distance is traveled, resulting in less effective information in the sensing information, which affects the accuracy of positioning. The effective information is the information in the perception information that can improve the positioning accuracy.
因此,本申请中,在车辆启动后,在时间维度上使车载传感装置连续获取车辆周边环境对应的点云和里程计信息,例如,预先设置采集的时间周期,在采集的时间周期到达时,车载传感装置获取一次车辆周边环境对应的点云和里程计信息。或者,根据车辆的行驶速度,调整车载传感装置相邻两次获取一次车辆周边环境对应的点云和里程计信息的时间间隔。相应的,对应于每次车载传感装置获取车辆周边环境对应点云和里程计信息,车辆处理装置获取一次传感信息。Therefore, in this application, after the vehicle is started, the on-board sensing device is made to continuously obtain the point cloud and odometer information corresponding to the surrounding environment of the vehicle in the time dimension. For example, the collection time period is preset, and when the collection time period arrives , the vehicle-mounted sensing device obtains the point cloud and odometer information corresponding to the surrounding environment of the vehicle once. Or, according to the driving speed of the vehicle, adjust the time interval for obtaining the point cloud and odometer information corresponding to the surrounding environment of the vehicle twice by the vehicle-mounted sensing device. Correspondingly, corresponding to each time the vehicle-mounted sensing device obtains the corresponding point cloud and odometer information of the surrounding environment of the vehicle, the vehicle processing device obtains the sensing information once.
在当前时刻,车辆处理装置获取至少一个关键时刻对应的传感信息,即第二传感信息。其中,此处的关键时刻为根据时间间隔获取第二传感信息的时刻。每个关键时刻与当前时刻之间的时间间隔小于或等于预设时长。At the current moment, the vehicle processing apparatus acquires sensing information corresponding to at least one critical moment, that is, the second sensing information. The critical moment here is the moment at which the second sensing information is acquired according to the time interval. The time interval between each critical moment and the current moment is less than or equal to the preset duration.
例如,预设时长为5分钟,则当前时刻之前且与当前时刻间隔5分钟内传感装置采集车辆周边的环境信息和里程计信息的时刻为关键时刻。如图4所示,车辆在启动后,传感装置每间隔30S采集一次车辆周边的环境信息和里程计信息,这样,车辆每间隔30S获得一次传感信息。若当前时刻为10:00,则获取9:55之后,10:00之前的传感信息为关键时刻对应的传感信息。其中,车辆在9:55分时到达图4中的位置1,车辆到达图4中的位置2时的时刻距离上一次传感装置采集车辆周边的环境信息和里程计信息的时刻为关键时刻之间的时间间隔为30s,在图4中的位置2时,传感装置采集车辆周边的环境信息和里程计信息,车辆获得一传感信息。因此,在车辆在10:00到达图4中的位置3时,9:55之后,10:00之前的关键时刻为图4中标记为“☆”的时刻。For example, if the preset duration is 5 minutes, the moment before the current moment and within 5 minutes interval from the current moment when the sensor device collects the environmental information and odometer information around the vehicle is the critical moment. As shown in FIG. 4 , after the vehicle is started, the sensing device collects environmental information and odometer information around the vehicle every 30S, so that the vehicle obtains sensing information every 30S. If the current time is 10:00, the sensing information obtained after 9:55 and before 10:00 is the sensing information corresponding to the critical time. Among them, the vehicle arrives at
可选的,在车辆处理装置每次获得传感信息后,保存该传感信息,在当前时刻获取第二传感信息时,可以根据当前时刻以及保存的传感信息对应的传感装置采集车辆周边的环境信息和里程计信息时刻,从保存的传感信息中获取第二传感信息。Optionally, after the vehicle processing device obtains the sensing information each time, the sensing information is saved, and when the second sensing information is obtained at the current time, the vehicle may be collected according to the current time and the sensing device corresponding to the stored sensing information. At the time of the surrounding environment information and odometer information, the second sensing information is obtained from the stored sensing information.
可选的,在当前时刻获取第二传感信息时,可以从关键时刻列表中获取每个关键时刻对应的第二传感信息。例如,在车辆处理装置每次获得传感信息后,保存该传感信息,并根据该传感信息对应的关键时刻以及保存的每个传感信息对应的关键时刻,删除关键列表中与该传感信息对应的关键时刻之间的时间间隔大于预设时长的传感信息,对关键时刻列表进行更新。Optionally, when acquiring the second sensing information at the current moment, the second sensing information corresponding to each critical moment may be acquired from the list of critical moments. For example, after each acquisition of sensing information by the vehicle processing device, the sensing information is saved, and according to the critical moment corresponding to the sensing information and the critical moment corresponding to each stored sensing information, the information related to the sensor in the key list is deleted. The time interval between the critical moments corresponding to the sensing information is greater than the sensing information of the preset duration, and the list of critical moments is updated.
可选的,关键时刻还包括第二关键时刻,第二关键时刻为根据距离间隔获取第二传感信息的时刻,其中,车辆从第二关键时刻的位置行驶到当前时刻对应的位置的行驶距离小于或等于预设距离。Optionally, the critical moment further includes a second critical moment, where the second critical moment is the moment at which the second sensing information is obtained according to the distance interval, wherein the driving distance of the vehicle from the position at the second critical moment to the position corresponding to the current moment Less than or equal to the preset distance.
在车辆启动后,车载传感装置可以根据距离间隔连续获取车辆周边环境对应点云和里程计信息。例如,预先设置采集的距离间隔为100米,在车辆每行驶100米,车载传感装置获取一次车辆周边环境对应的点云和里程计信息。相应的,对应于每次车载传感装置获取车辆周边环境对应的点云和里程计信息,车辆处理装置获取一次传感信息。After the vehicle is started, the on-board sensing device can continuously obtain the corresponding point cloud and odometer information of the surrounding environment of the vehicle according to the distance interval. For example, the distance interval for collection is preset as 100 meters, and the vehicle-mounted sensing device obtains the point cloud and odometer information corresponding to the surrounding environment of the vehicle once every 100 meters of vehicle travel. Correspondingly, corresponding to each time the vehicle-mounted sensing device obtains the point cloud and odometer information corresponding to the surrounding environment of the vehicle, the vehicle processing device obtains the sensing information once.
这样,在当前时刻,车辆处理装置获取至少一个第二关键时刻对应的第二传感信息,例如,如图5所示,车辆启动后,车辆处理装置在车辆每行驶100米获得一次传感信息,车辆在车载传感装置获取车辆周边环境对应的点云和里程计信息时的位置分别对应图中的S1-S7。预设距离为500米,车辆从S7行驶50米到达图5中的S8处时,车辆进行定位,则当前时刻车辆位于图5中的S8处,则图5中的S3-S7对应第二关键时刻。In this way, at the current moment, the vehicle processing device obtains the second sensing information corresponding to at least one second critical moment. For example, as shown in FIG. 5 , after the vehicle is started, the vehicle processing device obtains the sensing information every 100 meters that the vehicle travels. , the positions of the vehicle when the vehicle-mounted sensing device obtains the point cloud and odometer information corresponding to the surrounding environment of the vehicle respectively correspond to S1-S7 in the figure. The preset distance is 500 meters, when the vehicle travels 50 meters from S7 to S8 in Figure 5, the vehicle is positioned, and the vehicle is located at S8 in Figure 5 at the current moment, then S3-S7 in Figure 5 corresponds to the second key time.
在车辆启动后,车载传感装置可以根据时间间隔和距离间隔连续获取车辆周边环境对应点云和里程计信息,例如,在图4和图5的基础上,车载传感器每间隔30s采集一次车辆周边的环境信息和里程计信息,这样,车辆每间隔30s获得一次传感信息,预设时长为5分钟。并且,车辆每行驶100米,车载传感器采集一次车辆周边的环境信息和里程计信息,这样,车辆每行驶100米获得一次传感信息,预设距离为500米。如图6所示,“○”表示根据时间间隔获取车辆周边环境对应点云和里程计信息的时刻,“●”根据距离间隔获取车辆周边环境对应点云和里程计信息的时刻。After the vehicle is started, the on-board sensor device can continuously obtain the corresponding point cloud and odometer information of the surrounding environment of the vehicle according to the time interval and distance interval. For example, on the basis of Figure 4 and Figure 5, the on-board sensor collects the surrounding environment of the vehicle every 30s. In this way, the vehicle obtains sensing information every 30s, and the preset duration is 5 minutes. In addition, every 100 meters the vehicle travels, the on-board sensor collects environmental information and odometer information around the vehicle, so that the vehicle obtains sensing information every 100 meters, and the preset distance is 500 meters. As shown in Figure 6, "○" indicates the time when the point cloud and odometer information corresponding to the surrounding environment of the vehicle are obtained according to the time interval, and "●" is the time when the point cloud and odometer information corresponding to the surrounding environment of the vehicle is obtained according to the distance interval.
可选的,在实际应用时,车载传感装置根据时间间隔获取车辆周边环境对应点云和里程计信息的时刻与车载传感装置根据距离间隔获取车辆周边环境对应点云和里程计信息的时刻可能为同一时刻,图6中,“□”表示车载传感装置同时根据时间间隔和距离间隔连续获取车辆周边环境对应点云和里程计信息的时刻。Optionally, in practical application, the time when the vehicle-mounted sensing device obtains the corresponding point cloud and odometer information of the surrounding environment of the vehicle according to the time interval and the time when the vehicle-mounted sensor device obtains the corresponding point cloud and odometer information of the surrounding environment of the vehicle according to the distance interval. It may be the same time. In Figure 6, "□" indicates the time when the vehicle-mounted sensing device continuously obtains the corresponding point cloud and odometer information of the surrounding environment of the vehicle according to the time interval and the distance interval.
对应图6,车辆在9:55:00行驶到图6中的位置1(即图4中的位置1),在图6中的位置2(即图4中的位置2)时,传感装置采集车辆周边的环境信息和里程计信息,车辆在10:55:00行驶到S8(即图4中的位置3)时,在当前时刻,第一关键时刻和第二关键时刻分别对应的时刻如图6所示,关键时刻为第一关键时刻和第二关键时刻的并集。Corresponding to Fig. 6, when the vehicle drives to
需要说明的是,在下文中提到的关键时刻可以为第一关键时刻,或者第二关键时刻,或者第一关键时刻和第二关键时刻的并集。It should be noted that the critical moment mentioned below may be the first critical moment, or the second critical moment, or a combination of the first critical moment and the second critical moment.
S203、根据车辆行驶区域的地图信息以及在第一传感信息、第二传感信息,确定车辆在当前时刻的位置。S203: Determine the position of the vehicle at the current moment according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information.
本步骤中,在获取到第一传感信息、至少一个第二传感信息后,根据第一传感信息、至少一个第二传感信息,获得当前设你时刻车辆周边环境的标志信息,将标志信息与车辆行驶区域的地图信息进行比对,获得车辆的在当前时刻的位置。In this step, after acquiring the first sensing information and the at least one second sensing information, according to the first sensing information and the at least one second sensing information, the sign information of the surrounding environment of the vehicle at the current setting time is obtained, and the The sign information is compared with the map information of the driving area of the vehicle to obtain the current position of the vehicle.
可选的,车辆行驶区域的地图信息是根据之前定位时的位置获取到的地图信息,例如,车辆行驶区域的地图信息是根据上一次定位时的位置获取到的地图信息。Optionally, the map information of the driving area of the vehicle is the map information obtained according to the position during the previous positioning. For example, the map information of the driving area of the vehicle is the map information obtained according to the position of the last positioning.
车辆在启动时,会对车辆的位置进行初始化,例如,通过GPS对车辆的初始位置进行定位,或者输入车辆的初始位置。对车辆的位置进行初始化后,根据车辆的初始位置,获取当前车辆当前所在区域的地图信息。When the vehicle is started, the position of the vehicle is initialized, for example, the initial position of the vehicle is positioned through GPS, or the initial position of the vehicle is input. After the position of the vehicle is initialized, the map information of the area where the current vehicle is currently located is acquired according to the initial position of the vehicle.
在车辆启动后,车辆的位置发生变化,其所在的区域地图也会发生变化,因此,对车辆进行定位后,需要根据定位的位置对地图信息进行更新,这样,与更新前的地图信息相比,更新后的地图信息与车辆所在区域的匹配度较高。因此,在下一次定位时,根据更新后的地图信息,车辆定位的位置能够更准确。After the vehicle is started, the location of the vehicle changes, and the map of the area where it is located will also change. Therefore, after locating the vehicle, the map information needs to be updated according to the location of the vehicle. In this way, compared with the map information before the update , the updated map information has a high degree of matching with the area where the vehicle is located. Therefore, in the next positioning, the position of the vehicle positioning can be more accurate according to the updated map information.
可选的,在S203中,根据车辆行驶区域的地图信息以及在第一传感信息、第二传感信息,确定车辆在当前时刻的位姿。Optionally, in S203, the pose of the vehicle at the current moment is determined according to the map information of the driving area of the vehicle and the first sensing information and the second sensing information.
具体的,对于同一目标物,车辆在同一位置的不同姿态,例如,车辆的朝向不同,其车体坐标系不同,通过车载传感装置,例如激光雷达对目标物进行激光扫描时,同一束激光射向目标物时,由于目标物在空间中的位置是固定的,因此,该束激光获得的特征点在不同车体坐标系下的坐标不同。因此,根据车辆行驶区域的地图信息以及在第一传感信息、至少一个第二传感信息,不仅可以确定车辆在当前时刻的位置,还可以确定车辆该位置的姿态。Specifically, for the same target, the different postures of the vehicle at the same position, for example, the orientation of the vehicle is different, and the coordinate system of the vehicle body is different. When shooting at the target, since the position of the target in space is fixed, the coordinates of the feature points obtained by the laser beam are different in different vehicle body coordinate systems. Therefore, according to the map information of the driving area of the vehicle and the first sensing information and at least one second sensing information, not only the position of the vehicle at the current moment, but also the posture of the vehicle at the position can be determined.
例如图7a和图7b所示,对于路边的同一广告牌,车辆位于同一位置的不同姿态采集的广告牌的信息。当车辆朝向第一方向通过激光雷达扫描广告牌时,根据采集到的广告牌的至少一个特征点在第一车体坐标系下的位置如图7a所示。当车辆朝向第二方向通过激光雷达扫描广告牌时,根据采集到的广告牌的至少一个特征点在第二车体坐标系下的位置如图7b所示。For example, as shown in FIG. 7a and FIG. 7b, for the same billboard on the roadside, the information of the billboard is collected from different postures of the vehicle at the same position. When the vehicle faces the first direction and scans the billboard through the lidar, the position of the collected at least one feature point of the billboard in the first vehicle body coordinate system is shown in Figure 7a. When the vehicle faces the second direction and scans the billboard through the lidar, the position of at least one feature point of the collected billboard in the second vehicle body coordinate system is shown in Figure 7b.
将第一车体坐标系下的广告牌、第二车体坐标系下的广告牌分别与地图信息中的广告牌匹配时,可以分别确定出第一车体坐标系、第二车体坐标系,根据第一车体坐标系和第二车体坐标系确定车量在该位置的姿态。When the billboards under the first vehicle body coordinate system and the billboards under the second vehicle body coordinate system are respectively matched with the billboards in the map information, the first vehicle body coordinate system and the second vehicle body coordinate system can be determined respectively. , according to the first vehicle body coordinate system and the second vehicle body coordinate system to determine the attitude of the vehicle at this position.
本实施例,在车辆启动后,根据时间间隔获取车辆的传感信息,在车辆定位时,获取当前时刻对应的第一传感信息以及至少一个关键时刻对应的第二传感信息,根据第一传感信息、至少一个第二传感信息以及地图信息对车辆进行定位。由于从时间维度获取传感信息,使得获取传感信息的过程不受道路拥堵的影响,从而可以在车辆行驶时,根据时间间隔对用于定位的传感信息进行更新,提高定位的准确性。并且,从时间维度获取传感信息,当车辆低速行驶时,可以在车辆之间的间隙采集到车辆周边的环境信息,此时,由于车速较慢,采集到的车辆周边的环境信息更清楚,进一步提高定位的准确性。In this embodiment, after the vehicle is started, the sensing information of the vehicle is acquired according to the time interval, and when the vehicle is positioned, the first sensing information corresponding to the current moment and the second sensing information corresponding to at least one critical moment are acquired. The sensor information, the at least one second sensor information, and the map information locate the vehicle. Since the sensing information is obtained from the time dimension, the process of obtaining the sensing information is not affected by road congestion, so that the sensing information used for positioning can be updated according to the time interval when the vehicle is running, thereby improving the accuracy of positioning. Moreover, the sensor information is obtained from the time dimension. When the vehicle is running at a low speed, the environmental information around the vehicle can be collected in the gap between the vehicles. At this time, due to the slow speed of the vehicle, the collected environmental information around the vehicle is clearer. To further improve the accuracy of positioning.
图8为本申请另一实施例提供的定位方法的流程图。在图2所示实施例的基础上,如图8所示,本申请实施例的方法包括:FIG. 8 is a flowchart of a positioning method provided by another embodiment of the present application. On the basis of the embodiment shown in FIG. 2 , as shown in FIG. 8 , the method of the embodiment of the present application includes:
S801、在当前时刻,通过车载传感装置获取第一传感信息。S801. At the current moment, obtain first sensing information through a vehicle-mounted sensing device.
本步骤中,S801的实现方式可参考S201,此处不再赘述。In this step, for the implementation of S801, reference may be made to S201, which will not be repeated here.
S802、获取在关键时刻,通过车载传感装置获取的第二传感信息。S802. Acquire second sensing information obtained by the vehicle-mounted sensing device at a critical moment.
本步骤中,S802的实现方式可参考S202,此处不再赘述。In this step, for the implementation of S802, reference may be made to S202, which will not be repeated here.
S803、根据第一传感信息中的里程计信息和第二传感信息中的里程计信息,将关键时刻采集的特征点的坐标分别映射到当前时刻的车体坐标系下,获得关键时刻采集的特征点在当前时刻的车体坐标系下的坐标。S803. According to the odometer information in the first sensing information and the odometer information in the second sensing information, map the coordinates of the feature points collected at the critical moment to the vehicle body coordinate system at the current moment, respectively, to obtain the information collected at the critical moment The coordinates of the feature point in the vehicle body coordinate system at the current moment.
本步骤中,在车辆上电时,获取车辆启动时车辆的位置并启动车载传感装置,例如惯性检测单元。在车辆启动后,通过惯性检测单元记录车辆行驶过程中的里程计信息,例如,车辆在启动后的转向信息、车轮的转动圈数、车辆的速度等。In this step, when the vehicle is powered on, the position of the vehicle when the vehicle is started is obtained and the vehicle-mounted sensing device, such as an inertial detection unit, is started. After the vehicle is started, the inertial detection unit records the odometer information during the driving of the vehicle, for example, the steering information of the vehicle after starting, the number of turns of the wheels, the speed of the vehicle, and the like.
因此,根据车辆的里程计信息可以确定记录里程计信息时车辆所在位置相对于车辆上电位置的相对位置信息。Therefore, according to the odometer information of the vehicle, the relative position information of the position of the vehicle relative to the power-on position of the vehicle can be determined when the odometer information is recorded.
因此,通过t1时的里程计信息和t2时的里程计信息可以确定车辆从t1所在位置行驶到t2所在位置的行驶距离以及转动角度。也就是通过t1时的里程计信息和t2时的里程计信息,确定车辆在t2时所在位置相对于车辆在t1时所在位置的相对位置信息。Therefore, through the odometer information at t1 and the odometer information at t2, the travel distance and the rotation angle of the vehicle from the position at t1 to the position at t2 can be determined. That is, through the odometer information at t1 and the odometer information at t2, the relative position information of the position of the vehicle at t2 relative to the position of the vehicle at t1 is determined.
因此,通过根据第一传感信息中的里程计信息和第二传感信息中的里程计信息,可以将关键时刻采集的至少一个特征点的坐标分别映射到当前时刻的车体坐标系下,获得关键时刻采集的至少一个特征点在当前时刻的车体坐标系下的坐标。Therefore, according to the odometer information in the first sensing information and the odometer information in the second sensing information, the coordinates of at least one feature point collected at the critical moment can be respectively mapped to the vehicle body coordinate system at the current moment, The coordinates of at least one feature point collected at the critical moment in the vehicle body coordinate system at the current moment are obtained.
可选的,S803的一种具体的实现方式为:Optionally, a specific implementation manner of S803 is:
S8031、根据第一传感信息中的里程信息以及第二传感信息中的里程信息,确定当前时刻对应的车体坐标系与关键时刻对应的车体坐标系的坐标映射关系。S8031. Determine the coordinate mapping relationship between the vehicle body coordinate system corresponding to the current moment and the vehicle body coordinate system corresponding to the critical moment according to the mileage information in the first sensing information and the mileage information in the second sensing information.
本步骤中,车辆从关键时刻所在位置行驶到当前时刻所在位置,车辆向左转弯,并且,车辆从关键时刻所在位置向左转弯行驶到当前时刻所在位置,记录在车辆的里程计信息中。因此,通过关键时刻的里程计信息和当前时刻的里程计信息可以获知车辆从关键时刻所在位置行驶到当前时刻所在位置的转弯方向,以及车辆从关键时刻所在位置向左转弯行驶到当前时刻所在位置的行驶距离。In this step, the vehicle travels from the location of the critical moment to the location of the current moment, the vehicle turns left, and the vehicle turns left from the location of the critical moment to the location of the current moment, which is recorded in the odometer information of the vehicle. Therefore, through the odometer information at the critical moment and the odometer information at the current moment, it is possible to know the turning direction of the vehicle from the position at the critical moment to the position at the current moment, and the vehicle turning left from the position at the critical moment to the position at the current moment. driving distance.
因此,通过当前时刻时的里程计信息和关键时刻时的里程计信息,可以计算车辆在t1时车体坐标系与车辆在关键时刻时车体坐标系的映射矩阵,计算公式例如公式一:Therefore, through the odometer information at the current moment and the odometer information at the critical moment, the mapping matrix of the vehicle body coordinate system at t1 and the vehicle body coordinate system at the critical moment can be calculated. The calculation formula is for example Formula 1:
Tkey×Tkey→cur=Tcur 公式一T key ×T key→cur =T cur Formula 1
其中,Tkey表示其中任一关键时刻车辆的车体坐标系相对于车辆上电位置的坐标矩阵,Tcur表示当前时刻时车辆的车体坐标系相对于车辆上电位置的坐标矩阵,Tkey→cur表示车辆在关键时刻车体坐标系相对于车辆在当前时刻车体坐标系的映射矩阵。Among them, T key represents the coordinate matrix of the body coordinate system of the vehicle relative to the power-on position of the vehicle at any critical moment, T cur represents the coordinate matrix of the vehicle body coordinate system of the vehicle relative to the power-on position of the vehicle at the current moment, and T key →cur represents the mapping matrix of the vehicle body coordinate system at the critical moment relative to the vehicle body coordinate system at the current moment.
因此,根据关键时刻的里程计信息和当前时刻的里程计信息确定当前时刻对应的车体坐标系与关键时刻对应的车体坐标系的坐标映射关系。Therefore, the coordinate mapping relationship between the vehicle body coordinate system corresponding to the current moment and the vehicle body coordinate system corresponding to the critical moment is determined according to the odometer information at the critical moment and the odometer information at the current moment.
S8032、根据坐标映射关系,将第一关键时刻采集的特征点的坐标分别映射到当前时刻的车体坐标系下,获得第一关键时刻采集的特征点在当前时刻的车体坐标系下的坐标。S8032. According to the coordinate mapping relationship, map the coordinates of the feature points collected at the first critical moment to the vehicle body coordinate system at the current moment respectively, and obtain the coordinates of the feature points collected at the first critical moment under the vehicle body coordinate system at the current moment. .
本步骤中,根据公式一可知,映射矩阵对于其中一个关键时刻的特征点,映射到当前时刻的车体坐标系下的坐标通过公式二获得:In this step, according to
Pcur=Tkey→cur×Pkey 公式二P cur =T key→cur ×P key Formula 2
其中,Pcur表示其中一个关键时刻的特征点在当前时刻的车体坐标系下的坐标,Pkey表示其中一个关键时刻的特征点在关键时刻的车体坐标系下的坐标。Among them, P cur represents the coordinates of one of the feature points at the critical moment in the vehicle body coordinate system at the current moment, and P key represents the coordinates of one of the feature points at the critical moment in the vehicle body coordinate system at the critical moment.
S804、根据各关键时刻采集的特征点和当前时刻采集的特征点分别在当前时刻的车体坐标系下的坐标以及地图信息,确定车辆在当前时刻的位置。S804: Determine the position of the vehicle at the current moment according to the coordinates and map information of the feature points collected at each critical moment and the feature points collected at the current moment respectively in the vehicle body coordinate system at the current moment.
本步骤中,对于任一关键时刻的传感信息,将该关键时刻采集的至少一个特征点的坐标根据对应的映射矩阵均映射到当前时刻的车体坐标系下,从而根据当前时刻车体坐标系下的特征点(包括各关键时刻采集的至少一个特征点映射在当前时刻车体坐标系下获得的特征点和当前时刻采集的至少一个特征点)以及地图信息,确定车辆在当前时刻的位置。In this step, for the sensing information at any critical moment, the coordinates of at least one feature point collected at the critical moment are mapped to the vehicle body coordinate system at the current moment according to the corresponding mapping matrix, so that the vehicle body coordinates at the current moment are mapped according to the corresponding mapping matrix. feature points under the system (including at least one feature point collected at each critical moment mapped to the feature point obtained under the vehicle body coordinate system at the current moment and at least one feature point collected at the current moment) and map information to determine the position of the vehicle at the current moment .
其中,由于将关键时刻采集的至少一个特征点的坐标根据对应的映射矩阵均映射到当前时刻的车体坐标系下,可以增加当前时刻的特征点的数量。这样,通过特征点提取车辆周围的目标物的轮廓更清楚更接近其真实轮廓,从而在根据地图信息进行定位时,通过特征点提取的目标物的轮廓与地图信息中的目标物的轮廓的契合度更高,从而提高了定位的准确性。Wherein, since the coordinates of at least one feature point collected at the critical moment are all mapped to the vehicle body coordinate system at the current moment according to the corresponding mapping matrix, the number of feature points at the current moment can be increased. In this way, the contour of the target object around the vehicle extracted through the feature points is clearer and closer to its real contour, so that when positioning according to the map information, the contour of the target object extracted through the feature points matches the contour of the target object in the map information. higher, thereby improving the accuracy of positioning.
图9为本申请另一实施例提供的定位方法的流程图。在图8所示实施例的基础上,本申请实施例的方法包括:FIG. 9 is a flowchart of a positioning method provided by another embodiment of the present application. On the basis of the embodiment shown in FIG. 8 , the method of the embodiment of the present application includes:
S901、在当前时刻,通过车载传感装置获取第一传感信息。S901. At the current moment, obtain first sensing information through a vehicle-mounted sensing device.
本步骤中,S901的实现方式可参考S201,此处不再赘述。In this step, for the implementation of S901, reference may be made to S201, which will not be repeated here.
S902、获取在关键时刻,通过车载传感装置获取的第二传感信息。S902. Acquire second sensing information obtained by the vehicle-mounted sensing device at a critical moment.
本步骤中,S902的实现方式可参考S202,此处不再赘述。In this step, for the implementation of S902, reference may be made to S202, which will not be repeated here.
S903、根据第二传感信息中的里程计信息和第二传感信息中的里程计信息,将关键时刻采集的特征点的坐标映射到当前时刻的车体坐标系下,获得关键时刻采集的特征点在当前时刻的车体坐标系下的坐标。S903. According to the odometer information in the second sensing information and the odometer information in the second sensing information, map the coordinates of the feature points collected at the critical moment to the vehicle body coordinate system at the current moment, and obtain the data collected at the critical moment. The coordinates of the feature point in the vehicle body coordinate system at the current moment.
本步骤中,S903的实现方式可参考S803,此处不再赘述。In this step, for the implementation of S903, reference may be made to S803, which will not be repeated here.
S904、在当前时刻,针对车辆对应的M个粒子中的每个粒子,根据关键时刻采集的特征点和当前时刻采集的特征点分别在当前时刻的车体坐标系下的坐标以及每个粒子的位置,获得当前时刻和关键时刻采集的特征点与地图信息中目标物的匹配度。S904, at the current moment, for each particle in the M particles corresponding to the vehicle, according to the feature points collected at the critical moment and the feature points collected at the current moment, the coordinates of the vehicle body coordinate system at the current moment and the coordinates of each particle respectively position, to obtain the matching degree between the feature points collected at the current moment and the key moment and the target object in the map information.
其中,M个粒子为上一次对车辆定位时采用的粒子,每个粒子的位置为根据上一次对车辆定位时的里程计信息、当前时刻的里程计信息以及在上一次对车辆定位时每个粒子的位置获得的,M为正整数。Among them, the M particles are the particles used when positioning the vehicle last time, and the position of each particle is based on the odometer information when the vehicle was positioned last time, the odometer information at the current moment, and the position of each particle when the vehicle was positioned last time. The position of the particle is obtained, where M is a positive integer.
本步骤中,在对车辆定位时,可以粒子滤波的框架。具体的为:In this step, when locating the vehicle, the framework of particle filtering can be used. Specifically:
如图10所示,在车辆刚刚启动时,获取车辆的初始位置,在车辆周围布置一些粒子,即初始化粒子,例如,初始化粒子的位置满足正态分布。其中,每个粒子用于模拟车辆,粒子的位置模拟车辆的位置,记录每个粒子的位置。此时,粒子的位置为初始化位置As shown in FIG. 10 , when the vehicle is just started, the initial position of the vehicle is obtained, and some particles are arranged around the vehicle, that is, initialization particles. For example, the positions of the initialization particles satisfy a normal distribution. Among them, each particle is used to simulate the vehicle, the position of the particle simulates the position of the vehicle, and the position of each particle is recorded. At this point, the position of the particle is the initialization position
在车辆启动后,每个粒子的运动过程与车辆的运动过程保持一致。通过车辆的里程计信息可以确定车辆从一个位置行驶到另一个位置的运动信息,例如,车辆行驶的距离、行驶过程中转弯的方向等。因此,根据车辆的里程计信息可以预测粒子的运动过程,从而预测粒子的位置。After the vehicle is started, the motion process of each particle is consistent with the motion process of the vehicle. The odometer information of the vehicle can determine the motion information of the vehicle from one location to another, for example, the distance traveled by the vehicle, the direction of turning during the driving process, and the like. Therefore, the motion process of the particles can be predicted according to the odometer information of the vehicle, thereby predicting the position of the particles.
对于当前时刻的M个粒子,其中,该M个粒子为上一次对车辆定位时所采用的粒子,根据上一次对车辆定位时M个粒子中每个粒子的位置、上一次定位时车辆的里程计信息以及当前时刻的里程计信息,确定当前时刻每个粒子的位置。For the M particles at the current moment, the M particles are the particles used in the last vehicle positioning, according to the position of each particle in the M particles during the last vehicle positioning, and the mileage of the vehicle during the last positioning. The odometer information and the odometer information at the current moment are used to determine the position of each particle at the current moment.
在当前时刻,根据当前时刻车体坐标系下的特征点(包括各关键时刻采集的至少一个特征点映射在当前时刻车体坐标系下获得的特征点和当前时刻采集的至少一个特征点),可以确定当前时刻车辆周边的环境信息,即根据当前时刻车体坐标系下的特征点可以提取车辆周边的标志信息,例如车辆周边的待匹配目标物,以及待匹配目标物相对车辆的位置。At the current moment, according to the feature points under the vehicle body coordinate system at the current moment (including at least one feature point collected at each critical moment mapped to the feature point obtained under the vehicle body coordinate system at the current moment and at least one feature point collected at the current moment), The environmental information around the vehicle at the current moment can be determined, that is, the sign information around the vehicle can be extracted according to the feature points in the vehicle body coordinate system at the current moment, such as the target object to be matched around the vehicle, and the position of the target object to be matched relative to the vehicle.
其中,当前时刻车体坐标系下的特征点实际上是车辆在真实位置通过激光雷达采集到的特征点,因此,根据当前时刻车体坐标系下的特征点获得的车辆周边待匹配目标物,实际上是以车辆的真实位置观看到的待匹配目标物,待匹配目标物在车体坐标下的坐标实际上是待匹配目标物相对车辆真实位置的相对位置。因此,最优情况下,当前时刻车体坐标系下的特征点提取的待匹配目标物与地图信息中目标物完全匹配。Among them, the feature points under the vehicle body coordinate system at the current moment are actually the feature points collected by the laser radar at the real position of the vehicle. Therefore, the target objects to be matched around the vehicle obtained according to the feature points under the vehicle body coordinate system at the current moment, In fact, the target object to be matched is viewed from the real position of the vehicle, and the coordinates of the target object to be matched under the vehicle body coordinates are actually the relative position of the target object to be matched relative to the real position of the vehicle. Therefore, in the optimal case, the target object to be matched extracted from the feature points in the vehicle body coordinate system at the current moment completely matches the target object in the map information.
因此,由于每个粒子是模拟车辆的真实位置,并且,车辆中记录的里程计信息并不能如实反映车辆真实的运动过程,例如,根据里程计信息获得的车辆的行驶距离与车辆实际的行驶距离有一定差异。因此,根据里程计信息确定粒子在当前时刻的位置时,粒子的位置与车辆的真实位置之间存在差异。Therefore, since each particle is the real position of the simulated vehicle, and the odometer information recorded in the vehicle cannot faithfully reflect the actual motion process of the vehicle, for example, the driving distance of the vehicle obtained from the odometer information is the actual driving distance of the vehicle. There are some differences. Therefore, when the position of the particle at the current moment is determined according to the odometer information, there is a difference between the position of the particle and the real position of the vehicle.
因此,对于每个粒子,根据当前时刻车体坐标系下的特征点以及粒子在当前时刻的位置,可以通过从当前时刻车体坐标系下的特征点提取的待匹配目标物与地图信息中目标物的匹配度,确定粒子的位置与车辆真实位置的差异。Therefore, for each particle, according to the feature points under the vehicle body coordinate system at the current moment and the position of the particle at the current moment, the target object to be matched and the target in the map information can be extracted from the feature points under the vehicle body coordinate system at the current moment. The matching degree of the object determines the difference between the position of the particle and the real position of the vehicle.
可选的,S904得一种具体实现方式为:Optionally, a specific implementation manner of S904 is:
S9041、将当前时刻和关键时刻采集的特征点在当前时刻的车体坐标系下的坐标分别映射到以粒子为原点的粒子坐标系中。S9041. Map the coordinates of the feature points collected at the current moment and at the critical moment in the vehicle body coordinate system at the current moment to the particle coordinate system with the particle as the origin, respectively.
具体的,逐个选取每个粒子,对于每个粒子,以该粒子为坐标原点的粒子坐标系替换当前时刻的车体坐标系,将当前时刻车体坐标系下的特征点映射到粒子坐标系中,获取映射到粒子坐标系的所述当前时刻车体坐标系下的特征点的坐标。Specifically, each particle is selected one by one, and for each particle, the particle coordinate system with the particle as the coordinate origin replaces the vehicle body coordinate system at the current moment, and the feature points under the vehicle body coordinate system at the current moment are mapped to the particle coordinate system. , to obtain the coordinates of the feature points in the vehicle body coordinate system at the current moment mapped to the particle coordinate system.
其中,粒子坐标系可以是平面坐标系,例如平面直角坐标系、极坐标系,或者为空间坐标系,例如空间直角坐标系、柱坐标系、球坐标系,本申请对此不限制。其中,本实施例以空间直角坐标系为例进行说明。The particle coordinate system may be a plane coordinate system, such as a plane rectangular coordinate system, a polar coordinate system, or a space coordinate system, such as a space rectangular coordinate system, a cylindrical coordinate system, or a spherical coordinate system, which is not limited in this application. In this embodiment, the space rectangular coordinate system is used as an example for description.
可选的,车体坐标系和粒子坐标系可以为同一类型的坐标系,例如,车体坐标系和粒子坐标系均为空间直角坐标系,或者,车体坐标系和粒子坐标系可以为不同类型的坐标系,例如,车体坐标系为空间直角坐标系,粒子坐标系均为球坐标系,本申请实施例对此不做限制。Optionally, the vehicle body coordinate system and the particle coordinate system may be the same type of coordinate system. For example, the vehicle body coordinate system and the particle coordinate system are both space rectangular coordinate systems, or the vehicle body coordinate system and the particle coordinate system may be different. The type of coordinate system, for example, the vehicle body coordinate system is a space rectangular coordinate system, and the particle coordinate system is a spherical coordinate system, which is not limited in this embodiment of the present application.
S9042、获取映射到粒子坐标系中的当前时刻和关键时刻采集的特征点构成的待匹配目标物与地图信息中相应目标物的匹配度。S9042: Obtain the matching degree between the target object to be matched and the corresponding target object in the map information, which is formed by the feature points that are mapped to the current moment in the particle coordinate system and the feature points collected at the critical moment.
具体的,根据映射到粒子坐标系的当前时刻和至少一个关键时刻采集的特征点,提取从当前时刻车辆周边的待匹配目标物,将粒子的位置对应的地图信息中,确定在地图信息中粒子的位置,以地图信息中粒子的位置为坐标原点,将待匹配目标物与地图信息中相应目标物进行匹配,根据待匹配目标物与地图信息中相应目标物的重合度,确定待匹配目标物与地图信息中相应目标物的匹配度。Specifically, according to the current moment mapped to the particle coordinate system and the feature points collected at at least one critical moment, the target objects to be matched around the vehicle from the current moment are extracted, and the map information corresponding to the position of the particle is determined to determine the particle in the map information. The position of the particle in the map information is taken as the coordinate origin, the target object to be matched is matched with the corresponding target object in the map information, and the target object to be matched is determined according to the degree of coincidence between the target object to be matched and the corresponding target object in the map information. Matching degree with the corresponding target in the map information.
由于粒子的运动与车辆的运动保持一致,因此,如果粒子的位置越接近车辆的真实位置,映射到粒子坐标系的当前时刻车体坐标系下的特征点构成的待匹配目标物与地图信息中相应目标物的匹配度越高。Since the motion of the particle is consistent with the motion of the vehicle, if the position of the particle is closer to the real position of the vehicle, it is mapped to the target object to be matched and the map information composed of the feature points in the vehicle body coordinate system at the current moment of the particle coordinate system. The higher the matching degree of the corresponding target.
如图11所示,车辆坐标系和粒子坐标系为空间直角坐标系(在图11中没有示出空间直角坐标系),在地图信息中,车辆的真实位置为O点,其中一个粒子的位置为O1点,对于路边的广告牌,根据当前时刻车体坐标系下的特征点构成的该广告牌和位置如图11中的实线所示。其中,实线所示的广告牌与地图信息中的广告牌重合。As shown in Figure 11, the vehicle coordinate system and the particle coordinate system are the space rectangular coordinate system (the space rectangular coordinate system is not shown in Figure 11), in the map information, the real position of the vehicle is point O, and the position of one particle is is point O1. For a roadside billboard, the billboard and its position are formed according to the feature points in the vehicle body coordinate system at the current moment, as shown by the solid line in Figure 11 . Among them, the billboard shown by the solid line coincides with the billboard in the map information.
将当前时刻车体坐标系下的特征点映射到粒子坐标系中后,特征点构成的该广告牌和位置如图11中的虚线所示。After the feature points under the vehicle body coordinate system at the current moment are mapped to the particle coordinate system, the billboard and the position formed by the feature points are shown as dotted lines in Figure 11 .
如果粒子的位置就是车辆的真实位置,则图11中,实线所示的广告牌位置与虚线所示的广告牌的位置重合。根据实线所示的广告牌的位置与虚线所示的广告牌的位置的距离确定粒子的匹配度,距离越小,匹配度越高。If the position of the particle is the real position of the vehicle, in FIG. 11 , the position of the billboard indicated by the solid line coincides with the position of the billboard indicated by the dotted line. The matching degree of the particles is determined according to the distance between the position of the billboard indicated by the solid line and the position of the billboard indicated by the dotted line. The smaller the distance, the higher the matching degree.
可选的,将各关键时刻采集的至少一个特征点均映射到当前时刻的车体坐标系下,导致当前时刻车体坐标系下的特征点较多。并且,在不同关键时刻采集车辆周边的环境信息时,会采集到重复的特征点,从而增加计算量,影响定位效率。因此,在S904之前,还包括:Optionally, at least one feature point collected at each critical moment is mapped to the vehicle body coordinate system at the current moment, resulting in more feature points in the vehicle body coordinate system at the current moment. In addition, when the environmental information around the vehicle is collected at different critical moments, repeated feature points will be collected, thereby increasing the amount of calculation and affecting the positioning efficiency. Therefore, before S904, also include:
S1001、根据各关键时刻采集的至少一个特征点和当前时刻采集的特征点中各特征点的特征值,确定目标特征点。S1001. Determine a target feature point according to at least one feature point collected at each critical moment and the feature value of each feature point in the feature points collected at the current moment.
本步骤中,从当前时刻的车体坐标系下的特征点(包括各关键时刻采集的至少一个特征点映射在当前时刻车体坐标系下获得的特征点和当前时刻采集的至少一个特征点)中选择稳定的、有代表性的目标特征点,并保存目标特征点。在减少特征点数量的基础上,使通过目标特征点提取到的车辆周边的环境信息接近通过当前时刻的车体坐标系下的特征点提取到的车辆周边的环境信息。In this step, from the feature points under the vehicle body coordinate system at the current moment (including at least one feature point collected at each critical moment mapped to the feature point obtained under the vehicle body coordinate system at the current moment and at least one feature point collected at the current moment) Select stable and representative target feature points from the , and save the target feature points. On the basis of reducing the number of feature points, the environment information around the vehicle extracted through the target feature points is made close to the environment information around the vehicle extracted through the feature points in the vehicle body coordinate system at the current moment.
可选的,根据评价函数计算当前时刻的车体坐标系下的特征点中每个特征点的特征值,根据每个特征点的特征值选择出一个或多个特征点作为目标特征点。Optionally, the feature value of each feature point in the feature points in the vehicle body coordinate system at the current moment is calculated according to the evaluation function, and one or more feature points are selected as the target feature point according to the feature value of each feature point.
可选的,根据评价函数计算当前时刻的车体坐标系下的特征点中每个特征点的特征值,根据特征值的大小,选择特征值最大的一个或多个特征点作为目标特征点。Optionally, the feature value of each feature point in the feature points in the vehicle body coordinate system at the current moment is calculated according to the evaluation function, and one or more feature points with the largest feature value are selected as the target feature point according to the size of the feature value.
S1002、根据各关键时刻采集的特征点和当前时刻采集的特征点中除特征点集合所包含的特征点之外的各特征点的特征值,再次确定目标特征点。S1002: Determine the target feature point again according to the feature points collected at each critical moment and the feature values of each feature point except the feature points included in the feature point set among the feature points collected at the current moment.
其中,特征点集合所包含的特征点为位于上一次确定的目标特征点的预设距离范围内的特征点以及上一次确定的目标特征点。The feature points included in the feature point set are the feature points located within the preset distance range of the last determined target feature point and the last determined target feature point.
本步骤中,通过S1001确定目标特征点后,由于该目标特征点具有稳定性和代表性,因此,为减少特征点的数量,可以在当前时刻的车体坐标系下的特征点中,删除距离目标特征点预设距离范围内的特征点以及该目标特征点,获得特征点集合。In this step, after the target feature point is determined through S1001, since the target feature point is stable and representative, in order to reduce the number of feature points, the distance can be deleted from the feature points in the vehicle body coordinate system at the current moment. A feature point set is obtained from the feature points within the preset distance range of the target feature point and the target feature point.
然后,重复S1001和S1002,从特征点集合中再次确定目标特征点,并根据再次确定的目标特征点,获得新的特征点集合。Then, repeat S1001 and S1002, re-determine target feature points from the feature point set, and obtain a new feature point set according to the re-determined target feature points.
S1003、目标特征点的个数满足预设个数时,获得N个目标特征点,N为等于预设个数。S1003. When the number of target feature points meets the preset number, obtain N target feature points, where N is equal to the preset number.
本步骤中,在目标特征点的个数满足预设个数时,停止获得新的目标特征点,根据当前获得的目标特征点,对车辆进行定位。In this step, when the number of target feature points meets the preset number, the acquisition of new target feature points is stopped, and the vehicle is positioned according to the currently obtained target feature points.
S905、根据当前时刻M个粒子中每个粒子的匹配度和M个粒子,获得K个粒子。S905. Obtain K particles according to the matching degree of each of the M particles at the current moment and the M particles.
其中,K为正整数。Among them, K is a positive integer.
本步骤中,虽然粒子的运动过程与车辆的运动过程保持一致,但是,车辆中记录的里程计信息并不能如实反映车辆真实的运动过程,例如,根据里程计信息获得的车辆的行驶距离与车辆实际的行驶距离有一定差异。因此,根据里程计信息确定粒子在当前时刻的位置时,粒子在当前时刻相对车辆的位置与粒子在上一次定位时相对车辆的位置不同。因此,粒子的匹配度随着车辆的运动会发生变化。也就是说,上一次匹配度高的粒子,在当前时刻的匹配度有可能降低。In this step, although the motion process of the particles is consistent with the motion process of the vehicle, the odometer information recorded in the vehicle cannot faithfully reflect the real motion process of the vehicle. Actual driving distances may vary. Therefore, when the position of the particle at the current moment is determined according to the odometer information, the position of the particle relative to the vehicle at the current moment is different from the position of the particle relative to the vehicle at the last positioning. Therefore, the matching degree of the particles changes as the vehicle moves. That is to say, particles with a high matching degree last time may have a lower matching degree at the current moment.
因此,需要根据M个粒子中每个粒子的匹配度,对粒子进行重采样,即重新确定用于车辆定位的K个粒子。Therefore, it is necessary to resample the particles according to the matching degree of each of the M particles, that is, to re-determine the K particles used for vehicle positioning.
可选的,粒子的匹配度表示粒子的位置与车辆真实位置的接近程度,匹配度越高,粒子的位置与车辆真实位置越接近。因此,选取M个粒子较高的粒子,确定为K个粒子,例如,设置预设匹配度,获取M个粒子中匹配度大于或等于预设匹配度的L个粒子,确定为K个粒子。Optionally, the matching degree of the particle indicates the closeness of the position of the particle to the real position of the vehicle, and the higher the matching degree, the closer the position of the particle is to the real position of the vehicle. Therefore, M particles with higher particles are selected and determined as K particles. For example, a preset matching degree is set, and L particles whose matching degree is greater than or equal to the preset matching degree among the M particles are obtained, and are determined as K particles.
可选的,获取M个粒子中匹配度大于或等于预设匹配度的L个粒子后,可以从L个粒子中挑选出至少一个粒子,根据L个粒子和挑选出的至少一个粒子,获得K个粒子。Optionally, after obtaining L particles whose matching degree is greater than or equal to the preset matching degree among the M particles, at least one particle may be selected from the L particles, and K is obtained according to the L particles and the selected at least one particle. particles.
可选的,在从L个粒子中挑选出至少一个粒子后,可以根据至少一个粒子中每个粒子的匹配度,对粒子进行至少一次复制,即增加粒子的数量,例如,粒子的匹配度越高,增加后该粒子的数量越多,根据L个粒子和增加获得的粒子,获得K个粒子。Optionally, after at least one particle is selected from the L particles, the particles may be copied at least once according to the matching degree of each particle in the at least one particle, that is, the number of particles is increased. High, the more the number of particles after the increase, K particles are obtained according to the L particles and the particles obtained by the increase.
S906、根据当前时刻车辆对应的K个粒子的位置,获得车辆在当前时刻的位置。S906: Obtain the position of the vehicle at the current moment according to the positions of the K particles corresponding to the vehicle at the current moment.
本步骤中,由于每个粒子的位置模拟的是车辆的真实位置,因此,在当前时刻,根据K个粒子的位置可以确定车辆在当前时刻的位置。In this step, since the position of each particle simulates the real position of the vehicle, at the current moment, the position of the vehicle at the current moment can be determined according to the positions of the K particles.
可选的,根据K个粒子的位置,获取K个粒子的平均位置,将K个粒子的平均位置确定为车辆在当前时刻的位置。Optionally, according to the positions of the K particles, the average position of the K particles is obtained, and the average position of the K particles is determined as the position of the vehicle at the current moment.
可选的,根据K个粒子的位置个每个粒子的匹配度,获取K个粒子的加权平均位置,将K个粒子的加权平均位置确定为车辆在当前时刻的位置。Optionally, according to the position of the K particles and the matching degree of each particle, the weighted average position of the K particles is obtained, and the weighted average position of the K particles is determined as the position of the vehicle at the current moment.
在车辆下一次定位时,当前时刻确定的K个粒子替换S1004中的M个粒子,重复上述步骤,对车辆进行定位。When the vehicle is positioned next time, the K particles determined at the current moment replace the M particles in S1004, and the above steps are repeated to position the vehicle.
可选的,根据K个粒子的位置,获得的车辆在当前时刻的位置并不是车辆在当前时刻的真实位置。因此,如果根据K个粒子的位置,获得的车辆在当前时刻的位置与车辆在当前时刻的真实位置之间的差异较大,会存在安全隐患。因此,本申请实施例的方法还包括:Optionally, according to the positions of the K particles, the obtained position of the vehicle at the current moment is not the real position of the vehicle at the current moment. Therefore, if there is a large difference between the obtained position of the vehicle at the current moment and the real position of the vehicle at the current moment according to the positions of the K particles, there will be potential safety hazards. Therefore, the method of the embodiment of the present application also includes:
S907、根据当前时刻车辆对应的K个粒子中每个粒子的位置以及车辆在当前时刻的位置,获得车辆在当前时刻的位置的评价值。S907: Obtain an evaluation value of the position of the vehicle at the current moment according to the position of each of the K particles corresponding to the vehicle at the current moment and the position of the vehicle at the current moment.
其中,评价值表示对车辆在当前时刻的位置与车辆在当前时刻的真实位置信息之间的差异。The evaluation value represents the difference between the position of the vehicle at the current moment and the real position information of the vehicle at the current moment.
本步骤中,根据当前时刻车辆对应的K个粒子中每个粒子的位置以及车辆在当前时刻的位置计算K个粒子的分布方差,根据分布方差获得车辆在当前时刻的位置的评价值。例如,将分布方差确定为车辆在当前时刻的位置的评价值。分布方差越大,说明车辆在当前时刻的位置与车辆的真实位置之间的差异越大。因此,根据评价值例如可以确定是否对车辆远程控制,或启动其他定位装置对车辆进行定位。In this step, the distribution variance of the K particles is calculated according to the position of each particle in the K particles corresponding to the vehicle at the current moment and the position of the vehicle at the current moment, and the evaluation value of the position of the vehicle at the current moment is obtained according to the distribution variance. For example, the distribution variance is determined as an evaluation value of the position of the vehicle at the current time. The greater the distribution variance, the greater the difference between the vehicle's position at the current moment and the vehicle's true position. Therefore, according to the evaluation value, it can be determined, for example, whether to remotely control the vehicle, or activate other positioning devices to locate the vehicle.
图12为本申请一实施例提供的定位装置的结构示意图。如图12所示,该定位装置可以是如上的车辆,也可以是车辆的部件(例如,集成电路,芯片等等)。该定位装置还可以是服务器,例如,云服务器,也可以是服务器的部件(例如,集成电路,芯片等等)。该定位装置还可以是其他通信模块,用于实现本申请方法实施例中的方法以及上述各可选实施例。该定位装置可以包括:获取模块1201和定位模块1202。FIG. 12 is a schematic structural diagram of a positioning device according to an embodiment of the present application. As shown in FIG. 12 , the positioning device may be the vehicle as described above, or may be a component of the vehicle (eg, an integrated circuit, a chip, etc.). The positioning device may also be a server, such as a cloud server, or a component of the server (eg, an integrated circuit, a chip, etc.). The positioning device may also be other communication modules, which are used to implement the methods in the method embodiments of the present application and the above-mentioned optional embodiments. The positioning apparatus may include: an
获取模块1201,用于执行:The
图2所示实施例中的S201、S202以及S201、S202中的任一可选的实施例,图8所示实施例中的S801、S802以及S801、S802中的任一可选的实施例,具体参见方法示例中的详细描述,此处不做赘述。Any optional embodiment of S201, S202, and S201, S202 in the embodiment shown in FIG. 2, and any optional embodiment of S801, S802, and S801, S802 in the embodiment shown in FIG. 8, For details, refer to the detailed description in the method example, which is not repeated here.
定位模块1202,用于执行:A
图2所示实施例中的S203以及其中任一可选的实施例,图8所示实施例中的S803、S804以及S803、S804中的任一可选的实施例,图9所示实施例中的S903-S907以及S903-S907中的任一可选的实施例。具体参见方法示例中的详细描述,此处不做赘述。S203 in the embodiment shown in FIG. 2 and any optional embodiments thereof, S803, S804, and any optional embodiments of S803 and S804 in the embodiment shown in FIG. 8, and the embodiment shown in FIG. 9 Any optional embodiment of S903-S907 and S903-S907 in . For details, refer to the detailed description in the method example, which is not repeated here.
其中,获取模块1201,用于在当前时刻,通过车载传感装置获取第一传感信息,其中,第一传感信息包括该车载传感装置在当前时刻采集的特征点在车体坐标系下的坐标以及车辆在当前时刻的里程计信息。The
获取模块1201,还用于获取在关键时刻通过车载传感装置获取的第二传感信息,其中,第二传感信息包括车载传感装置在关键时刻采集的特征点在车体坐标系下的坐标以及车辆在该关键时刻的里程计信息。其中,关键时刻包括第一关键时刻,第一关键时刻为根据时间间隔获取第二传感信息的时刻,第一关键时刻与当前时刻之间的时间间隔小于或等于预设时长。The
定位模块1202,用于根据车辆行驶区域的地图信息以及第一传感信息、第二传感信息,确定车辆在当前时刻的位置。The
应理解的是,本申请实施例中的定位装置可以由软件实现,例如,具有上述功能的计算机程序或指令来实现,相应计算机程序或指令可以存储在终端内部的存储器中,通过处理器读取该存储器内部的相应计算机程序或指令来实现上述功能。It should be understood that the positioning device in this embodiment of the present application may be implemented by software, for example, a computer program or instruction having the above-mentioned functions, and the corresponding computer program or instruction may be stored in a memory inside the terminal, and read by a processor. Corresponding computer programs or instructions inside the memory implement the above functions.
或者,本申请实施例中的定位装置还可以由硬件来实现。其中获取模块1201和定位模块1202为处理器(如NPU、GPU、系统芯片中的处理器)。Alternatively, the positioning device in the embodiment of the present application may also be implemented by hardware. The acquiring
或者,本申请实施例中的定位装置还可以由处理器和软件模块的结合实现。Alternatively, the positioning apparatus in this embodiment of the present application may also be implemented by a combination of a processor and a software module.
可选的,定位模块1202,还用于根据第一传感信息中的里程计信息和第二传感信息中的里程计信息,将关键时刻采集的特征点的坐标映射到当前时刻的车体坐标系下,获得关键时刻采集的特征点在当前时刻的车体坐标系下的坐标。Optionally, the
根据关键时刻采集的特征点和当前时刻采集的特征点分别在当前时刻的车体坐标系下的坐标以及地图信息,确定车辆在当前时刻的位置。The position of the vehicle at the current moment is determined according to the coordinates and map information of the feature points collected at the critical moment and the feature points collected at the current moment respectively in the vehicle body coordinate system at the current moment.
可选的,定位模块1202,还用于在当前时刻,针对车辆对应的M个粒子中的每个粒子,根据关键时刻采集的特征点和当前时刻采集的特征点分别在当前时刻的车体坐标系下的坐标以及每个粒子的位置,获得当前时刻和关键时刻采集的特征点与地图信息中目标物的匹配度,其中,上述M个粒子为上一次对车辆定位时采用的粒子,每个粒子的位置是根据上一次对车辆定位时的里程计信息、当前时刻的里程计信息以及在上一次对车辆定位时每个粒子的位置获得的,M为正整数;Optionally, the
根据当前时刻M个粒子中每个粒子的匹配度和M个粒子,获得K个粒子,K为正整数;According to the matching degree of each of the M particles at the current moment and the M particles, K particles are obtained, where K is a positive integer;
根据当前时刻车辆对应的K个粒子的位置,获得车辆在当前时刻的位置。According to the positions of the K particles corresponding to the vehicle at the current moment, the position of the vehicle at the current moment is obtained.
可选的,定位模块1202,还用于将当前时刻和关键时刻采集的特征点在当前时刻的车体坐标系下的坐标分别映射到以每个粒子为原点的粒子坐标系中;Optionally, the
获取映射到每个粒子坐标系中的当前时刻和关键时刻采集的特征点构成的待匹配目标物与地图信息中相应目标物的匹配度。The matching degree of the target object to be matched composed of the feature points collected at the current moment and the key moment mapped to each particle coordinate system and the corresponding target object in the map information is obtained.
可选的,定位模块1202,还用于获取M个粒子中匹配度大于或等于预设匹配度的L个粒子,其中,L小于或等于M且小于或等于K;Optionally, the
将L个粒子确定为K个粒子;或者,Determine L particles as K particles; or,
从L个粒子中获取至少一个粒子;Get at least one particle from L particles;
根据L个粒子和至少一个粒子,获得K个粒子。From L particles and at least one particle, K particles are obtained.
可选的,定位模块1202,还用于根据至少一个粒子中每个粒子的匹配度,对每个粒子进行至少一次复制;Optionally, the
将L个粒子和复制后获得的粒子,确定为K个粒子。The L particles and the particles obtained after replication are determined as K particles.
可选的,定位模块1202,还用于根据所述K个粒子中每个粒子的位置,获取K个粒子的平均位置,将K个粒子的平均位置确定为车辆在当前时刻的位置。Optionally, the
可选的,定位模块1202,还用于根据当前时刻车辆对应的K个粒子中每个粒子的位置以及车辆在当前时刻的位置,获得车辆在当前时刻的位置的评价值。其中,评价值指示所述车辆在所述当前时刻的位置与所述车辆在所述当前时刻的真实位置信息之间的差异。Optionally, the
可选的,定位模块1202,还用于根据第一传感信息中的里程信息以及第二传感信息中的里程信息,确定当前时刻对应的车体坐标系与第一关键时刻对应的车体坐标系的坐标映射关系;Optionally, the
根据坐标映射关系,将第一关键时刻采集的特征点的坐标分别映射到当前时刻的车体坐标系下,获得第一关键时刻采集的特征点在当前时刻的车体坐标系下的坐标。According to the coordinate mapping relationship, the coordinates of the feature points collected at the first critical moment are respectively mapped to the vehicle body coordinate system at the current moment, and the coordinates of the feature points collected at the first critical moment under the vehicle body coordinate system at the current moment are obtained.
可选的,关键时刻还包括第二关键时刻,第二关键时刻为根据距离间隔获取第二传感信息的时刻,其中,车辆从第二关键时刻的位置行驶到当前时刻对应的位置的行驶距离小于或等于预设距离。Optionally, the critical moment further includes a second critical moment, where the second critical moment is the moment at which the second sensing information is obtained according to the distance interval, wherein the driving distance of the vehicle from the position at the second critical moment to the position corresponding to the current moment Less than or equal to the preset distance.
可选的,定位模块1202,还用于根据地图信息以及在第一传感信息、第二传感信息,确定车辆在当前时刻的位姿。Optionally, the
可选的,定位模块1202,还用于根据各关键时刻采集的特征点和当前时刻采集的特征点中各特征点的特征值,确定目标特征点;Optionally, the
根据各关键时刻采集的特征点和当前时刻采集的特征点中除特征点集合所包含的特征点之外的各特征点的特征值,再次确定目标特征点,特征点集合所包含的特征点为位于上一次确定的目标特征点的预设距离范围内的特征点以及上一次确定的目标特征点;According to the feature points collected at each critical moment and the feature values of the feature points collected at the current moment except the feature points included in the feature point set, the target feature point is determined again, and the feature points included in the feature point set are: The feature points located within the preset distance range of the last determined target feature point and the last determined target feature point;
目标特征点的个数满足预设个数时,获得N个目标特征点,N为等于预设个数;When the number of target feature points meets the preset number, N target feature points are obtained, where N is equal to the preset number;
相应的,定位模块1202,还用于根据N个目标特征点在当前时刻的车体坐标系下的坐标以及每个粒子的位置,获得当前时刻和关键时刻采集的特征点与目标区域的地图信息中目标物的匹配度。Correspondingly, the
可选的,特征点的特征值通过评价函数获得,特征值用于评价特征点的稳定性。Optionally, the eigenvalues of the feature points are obtained through an evaluation function, and the eigenvalues are used to evaluate the stability of the feature points.
可选的,所述目标特征点为各特征点中特征值最大的特征点。Optionally, the target feature point is the feature point with the largest feature value among the feature points.
可选的,车体坐标系的原点位于所处车辆上的任一位置。Optionally, the origin of the vehicle body coordinate system is located at any position on the vehicle.
本实施例的装置,可以用于执行上述方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。The apparatus of this embodiment can be used to execute the technical solutions in the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and are not repeated here.
图13为本申请一实施例提供的定位装置的结构示意图。本实施例的定位装置可以是如上的车辆,还可以是服务器。该定位装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。FIG. 13 is a schematic structural diagram of a positioning device according to an embodiment of the present application. The positioning device in this embodiment may be the above vehicle, or may be a server. The positioning device can be used to implement the methods described in the foregoing method embodiments. For details, reference may be made to the descriptions in the foregoing method embodiments.
所述定位装置可以包括一个或多个处理器1301,所述处理器1301也可以称为处理单元,可以实现一定的控制功能。所述处理器1301可以是通用处理器或者专用处理器等。The positioning apparatus may include one or
可选的,处理器1301也可以存有指令和/或数据1303,所述指令和/或数据1303可以被所述处理器运行,使得所述定位装置执行上述方法实施例中描述的方法。Optionally, the
可选的,所述定位装置中可以包括一个或多个存储器1302,其上可以存有指令1304,所述指令可在所述处理器上被运行,使得所述定位装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。Optionally, the positioning apparatus may include one or
本实施例中描述的处理器和收发器可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channelmetal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。The processors and transceivers described in this embodiment can be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS) ), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc. .
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digitalsignal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。It should be understood that the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability. In the implementation process, each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software. The above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components.
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rateSDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(directrambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。It can be understood that the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory. The non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory. Volatile memory may be random access memory (RAM), which acts as an external cache. By way of example and not limitation, many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) And direct memory bus random access memory (directrambus RAM, DR RAM). It should be noted that the memory of the systems and methods described herein is intended to include, but not be limited to, these and any other suitable types of memory.
本申请实施例中描述的定位装置的范围并不限于此,而且定位装置的结构可以不受图13的限制。本申请实施例中描述的定位装置可以是独立的设备或者可以是较大设备的一部分。The scope of the positioning device described in the embodiments of the present application is not limited thereto, and the structure of the positioning device may not be limited by FIG. 13 . The positioning apparatus described in the embodiments of the present application may be an independent device or may be a part of a larger device.
图14为本申请一实施例提供的定位系统的结构示意图。如图14所示,定位系统包括:车辆1401和车载传感装置1402。FIG. 14 is a schematic structural diagram of a positioning system according to an embodiment of the present application. As shown in FIG. 14 , the positioning system includes: a
车载传感装置1402安装在所述车辆1401上,与车辆1401进行通信。The in-
可选的,车载传感装置1402,用于采集车辆1401周边的环境信息和里程计信息,并将车辆1401周边的环境信息和里程计信息发送给车辆1401。Optionally, the in-
车辆1401,用于执行上述方法实施例中描述的方法。The
可选的,车载传感装置1402,用于采集车辆1401周边的环境信息和里程计信息,并将车辆1401周边的环境信息和里程计信息发送给车辆1401,并执行上述方法实施例中描述的方法,以对车辆1401进行定位。Optionally, the in-
本实施例的系统可以用于执行上述任一方法实施例中的技术方案,其实现原理和技术效果类似,此处不再赘述。The system in this embodiment can be used to execute the technical solutions in any of the above method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时,实现上述任一方法实施例所示的方法。The present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the method shown in any of the above method embodiments.
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例所示的方法。The present application also provides a computer program product, which implements the method shown in any of the above method embodiments when the computer program product is executed by a computer.
在上述实施例使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。When the above-described embodiments are implemented using software, they may be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.). The computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media. The available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
Claims (33)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011063252.0A CN114323035A (en) | 2020-09-30 | 2020-09-30 | Positioning method, device and system |
PCT/CN2021/101620 WO2022068274A1 (en) | 2020-09-30 | 2021-06-22 | Positioning method, apparatus and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011063252.0A CN114323035A (en) | 2020-09-30 | 2020-09-30 | Positioning method, device and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114323035A true CN114323035A (en) | 2022-04-12 |
Family
ID=80949680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011063252.0A Pending CN114323035A (en) | 2020-09-30 | 2020-09-30 | Positioning method, device and system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114323035A (en) |
WO (1) | WO2022068274A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114659531B (en) * | 2022-05-16 | 2022-09-23 | 苏州挚途科技有限公司 | Map positioning method and device of vehicle and electronic equipment |
CN114719867B (en) * | 2022-05-24 | 2022-09-02 | 北京捷升通达信息技术有限公司 | Vehicle navigation method and system based on sensor |
CN115847427B (en) * | 2023-02-07 | 2024-07-16 | 成都秦川物联网科技股份有限公司 | Dual-identification cooperative robot industrial Internet of things monitoring system and control method thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004117017A (en) * | 2002-09-24 | 2004-04-15 | Mitsubishi Electric Corp | Target position determination method for sensor bias error estimation |
JP2017181476A (en) * | 2016-03-31 | 2017-10-05 | 株式会社デンソーアイティーラボラトリ | Vehicle location detection device, vehicle location detection method and vehicle location detection-purpose computer program |
CN108007451A (en) * | 2017-11-10 | 2018-05-08 | 未来机器人(深圳)有限公司 | Detection method, device, computer equipment and the storage medium of cargo carrying device pose |
CN109186625A (en) * | 2018-10-24 | 2019-01-11 | 北京奥特贝睿科技有限公司 | Intelligent vehicle carries out pinpoint method and system using mixing sampling filter |
CN109932713A (en) * | 2019-03-04 | 2019-06-25 | 北京旷视科技有限公司 | Positioning method, apparatus, computer equipment, readable storage medium and robot |
CN110673115A (en) * | 2019-09-25 | 2020-01-10 | 杭州飞步科技有限公司 | Combined calibration method, device, equipment and medium for radar and integrated navigation system |
JP2020038360A (en) * | 2018-08-31 | 2020-03-12 | 株式会社デンソー | Vehicle-side device, method, and storage medium |
CN111006655A (en) * | 2019-10-21 | 2020-04-14 | 南京理工大学 | Multi-scene autonomous navigation positioning method for airport inspection robot |
CN111158035A (en) * | 2019-12-31 | 2020-05-15 | 广东科学技术职业学院 | Unmanned vehicle positioning method and unmanned vehicle |
CN111220154A (en) * | 2020-01-22 | 2020-06-02 | 北京百度网讯科技有限公司 | Vehicle positioning method, device, equipment and medium |
CN111240331A (en) * | 2020-01-17 | 2020-06-05 | 仲恺农业工程学院 | Intelligent trolley positioning and navigation method and system based on laser radar and odometer SLAM |
CN111351493A (en) * | 2018-12-24 | 2020-06-30 | 上海欧菲智能车联科技有限公司 | Positioning method and system |
CN111539305A (en) * | 2020-04-20 | 2020-08-14 | 肇庆小鹏汽车有限公司 | Map construction method and system, vehicle and storage medium |
CN111595333A (en) * | 2020-04-26 | 2020-08-28 | 武汉理工大学 | Modular unmanned vehicle positioning method and system based on visual-inertial laser data fusion |
CN111666797A (en) * | 2019-03-08 | 2020-09-15 | 深圳市速腾聚创科技有限公司 | Vehicle positioning method and device and computer equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106123890A (en) * | 2016-06-14 | 2016-11-16 | 中国科学院合肥物质科学研究院 | A kind of robot localization method of Fusion |
JP6654977B2 (en) * | 2016-07-04 | 2020-02-26 | 株式会社Soken | Own vehicle position specifying device and own vehicle position specifying method |
CN110398765B (en) * | 2018-04-25 | 2022-02-01 | 北京京东乾石科技有限公司 | Positioning method and device and unmanned equipment |
CN109556611B (en) * | 2018-11-30 | 2020-11-10 | 广州高新兴机器人有限公司 | Fusion positioning method based on graph optimization and particle filtering |
CN110530368B (en) * | 2019-08-22 | 2021-06-15 | 浙江华睿科技有限公司 | Robot positioning method and equipment |
-
2020
- 2020-09-30 CN CN202011063252.0A patent/CN114323035A/en active Pending
-
2021
- 2021-06-22 WO PCT/CN2021/101620 patent/WO2022068274A1/en active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004117017A (en) * | 2002-09-24 | 2004-04-15 | Mitsubishi Electric Corp | Target position determination method for sensor bias error estimation |
JP2017181476A (en) * | 2016-03-31 | 2017-10-05 | 株式会社デンソーアイティーラボラトリ | Vehicle location detection device, vehicle location detection method and vehicle location detection-purpose computer program |
CN108007451A (en) * | 2017-11-10 | 2018-05-08 | 未来机器人(深圳)有限公司 | Detection method, device, computer equipment and the storage medium of cargo carrying device pose |
JP2020038360A (en) * | 2018-08-31 | 2020-03-12 | 株式会社デンソー | Vehicle-side device, method, and storage medium |
CN109186625A (en) * | 2018-10-24 | 2019-01-11 | 北京奥特贝睿科技有限公司 | Intelligent vehicle carries out pinpoint method and system using mixing sampling filter |
CN111351493A (en) * | 2018-12-24 | 2020-06-30 | 上海欧菲智能车联科技有限公司 | Positioning method and system |
CN109932713A (en) * | 2019-03-04 | 2019-06-25 | 北京旷视科技有限公司 | Positioning method, apparatus, computer equipment, readable storage medium and robot |
CN111666797A (en) * | 2019-03-08 | 2020-09-15 | 深圳市速腾聚创科技有限公司 | Vehicle positioning method and device and computer equipment |
CN110673115A (en) * | 2019-09-25 | 2020-01-10 | 杭州飞步科技有限公司 | Combined calibration method, device, equipment and medium for radar and integrated navigation system |
CN111006655A (en) * | 2019-10-21 | 2020-04-14 | 南京理工大学 | Multi-scene autonomous navigation positioning method for airport inspection robot |
CN111158035A (en) * | 2019-12-31 | 2020-05-15 | 广东科学技术职业学院 | Unmanned vehicle positioning method and unmanned vehicle |
CN111240331A (en) * | 2020-01-17 | 2020-06-05 | 仲恺农业工程学院 | Intelligent trolley positioning and navigation method and system based on laser radar and odometer SLAM |
CN111220154A (en) * | 2020-01-22 | 2020-06-02 | 北京百度网讯科技有限公司 | Vehicle positioning method, device, equipment and medium |
CN111539305A (en) * | 2020-04-20 | 2020-08-14 | 肇庆小鹏汽车有限公司 | Map construction method and system, vehicle and storage medium |
CN111595333A (en) * | 2020-04-26 | 2020-08-28 | 武汉理工大学 | Modular unmanned vehicle positioning method and system based on visual-inertial laser data fusion |
Also Published As
Publication number | Publication date |
---|---|
WO2022068274A1 (en) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11594011B2 (en) | Deep learning-based feature extraction for LiDAR localization of autonomous driving vehicles | |
US11531110B2 (en) | LiDAR localization using 3D CNN network for solution inference in autonomous driving vehicles | |
CN111076732B (en) | Track marking based on vehicle driving and marking scheme for generating high-definition map | |
US11364931B2 (en) | Lidar localization using RNN and LSTM for temporal smoothness in autonomous driving vehicles | |
CN109937343B (en) | Evaluation framework for prediction trajectories in automated driving vehicle traffic prediction | |
CN108387241B (en) | Method and system for updating positioning map of automatic driving vehicle | |
CN111351493B (en) | Positioning method and system | |
CN110895147B (en) | Image data acquisition logic for capturing image data with a camera of an autonomous vehicle | |
CN112740268B (en) | Object detection method and device | |
WO2022068274A1 (en) | Positioning method, apparatus and system | |
CN111476079B (en) | Comprehensive and efficient method of merging map features for object detection with LIDAR | |
US20160210382A1 (en) | Autonomous driving refined in virtual environments | |
CN110390240B (en) | Lane post-processing in an autonomous vehicle | |
WO2020043081A1 (en) | Positioning technique | |
CN114838723B (en) | Method, apparatus, device and medium for detecting environmental changes | |
CN111259712B (en) | Representation of compression environment characteristics for vehicle behavior prediction | |
US20210323577A1 (en) | Methods and systems for managing an automated driving system of a vehicle | |
CN114556419B (en) | Three-dimensional point cloud segmentation method and device, and movable platform | |
JP7629288B2 (en) | Dynamic map generation with focus on building and location technology areas | |
US20220028262A1 (en) | Systems and methods for generating source-agnostic trajectories | |
US11908095B2 (en) | 2-D image reconstruction in a 3-D simulation | |
KR102744220B1 (en) | Method and apparatus of gernerating contours of stationary target | |
CN113128361B (en) | A positioning method, device and electronic device based on scene semantic analysis | |
US12147232B2 (en) | Method, system and computer program product for the automated locating of a vehicle | |
US20240092375A1 (en) | Autonomous vehicle sensor calibration algorithm evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20241113 Address after: 518129 Huawei Headquarters Office Building 101, Wankecheng Community, Bantian Street, Longgang District, Shenzhen, Guangdong Applicant after: Shenzhen Yinwang Intelligent Technology Co.,Ltd. Country or region after: China Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen Applicant before: HUAWEI TECHNOLOGIES Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right |