CN114014360B - Sillin-Aurivillius layered structure material Bi 4 SbO 8 Cl and synthesis method - Google Patents
Sillin-Aurivillius layered structure material Bi 4 SbO 8 Cl and synthesis method Download PDFInfo
- Publication number
- CN114014360B CN114014360B CN202111306971.5A CN202111306971A CN114014360B CN 114014360 B CN114014360 B CN 114014360B CN 202111306971 A CN202111306971 A CN 202111306971A CN 114014360 B CN114014360 B CN 114014360B
- Authority
- CN
- China
- Prior art keywords
- sbo
- temperature solid
- aurivillius
- reaction
- layered structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 20
- 238000001308 synthesis method Methods 0.000 title abstract description 4
- 238000003746 solid phase reaction Methods 0.000 claims abstract description 23
- 238000010671 solid-state reaction Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001257 hydrogen Substances 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 11
- 230000035484 reaction time Effects 0.000 claims description 9
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 3
- 238000010532 solid phase synthesis reaction Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 238000010189 synthetic method Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 2
- 239000001569 carbon dioxide Substances 0.000 abstract description 2
- 239000000975 dye Substances 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G29/00—Compounds of bismuth
- C01G29/006—Compounds containing bismuth, with or without oxygen or hydrogen, and containing two or more other elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种Sillen‑Aurivillius层状结构材料Bi4SbO8Cl及其合成方法。其微观结构为:—Cl—Bi2O2—SbO4—Bi2O2—Cl—。合成步骤如下:将Sb2O4与含Bi、Cl化合物,按一定比例混合并充分研磨;进一步通过高温固相反应得到Sillen‑Aurivillius层状结构材料Bi4SbO8Cl,可以吸收波长小于500 nm的可见光和紫外光,且导带位置满足H2/H+电位要求。该材料可应用于染料、二氧化碳还原、分解水制氢、固氮等领域。
The invention discloses a Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl and a synthesis method thereof. Its microstructure is: —Cl—Bi 2 O 2 —SbO 4 —Bi 2 O 2 —Cl—. The synthesis steps are as follows: mix Sb 2 O 4 with Bi and Cl-containing compounds in a certain proportion and grind them thoroughly; further obtain the Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl through high-temperature solid-state reaction, which can absorb wavelengths less than 500 nm Visible light and ultraviolet light, and the conduction band position meets the H 2 /H + potential requirement. The material can be used in dyes, carbon dioxide reduction, hydrogen production from water splitting, nitrogen fixation and other fields.
Description
技术领域technical field
本发明涉及一种层状结构窄带隙半导体材料,属于纳米材料的制备领域。The invention relates to a layered structure narrow band gap semiconductor material, which belongs to the field of preparation of nanometer materials.
背景技术Background technique
Sillen-Aurivillius层状结构材料是一类复合氧化铋的层状材料,由—Bi2O2—层和—MOx—类钙钛矿层叠加而成(其中M为其它金属元素),具有优异的光电性能,应用领域广泛,具有显著的经济和社会效益。目前已成功合成的Sillen-Aurivillius层状结构材料有Bi4NbO8Cl、Bi4TaO8Cl等,其中—MOx—类钙钛矿层中M元素包括Nb、Ta、V、W、Pb等,但这些材料主要存在禁带宽度较宽,电子空穴复合率高,导带位置不满足满足H2/H+还原电位要求,或者M元素昂贵等问题,亟待解决。Sillen-Aurivillius layered structure material is a kind of composite bismuth oxide layered material, composed of -Bi 2 O 2 -layer and -MO x -type perovskite layer (where M is other metal elements), with excellent Photoelectric properties, wide application fields, have significant economic and social benefits. Sillen-Aurivillius layered structure materials that have been successfully synthesized include Bi 4 NbO 8 Cl, Bi 4 TaO 8 Cl, etc., among which the M elements in the -MO x -type perovskite layer include Nb, Ta, V, W, Pb, etc. However, these materials mainly have problems such as wide band gap, high electron-hole recombination rate, conduction band position that does not meet the requirements of H 2 /H + reduction potential, or expensive M element, etc., which need to be solved urgently.
发明内容Contents of the invention
本发明目的在于克服以上技术问题的不足,提出了一种Sillen-Aurivillius层状结构材料Bi4SbO8Cl及其合成方法。The purpose of the present invention is to overcome the shortcomings of the above technical problems, and propose a Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl and a synthesis method thereof.
为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
一种Sillen-Aurivillius层状结构材料Bi4SbO8Cl,其微观结构为—Cl—Bi2O2—SbO4—Bi2O2—Cl—,能够吸收波长小于500 nm的可见光和紫外光,且导带位置满足H2/H+电位要求。A Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl, whose microstructure is —Cl—Bi 2 O 2 —SbO 4 —Bi 2 O 2 —Cl—, can absorb visible light and ultraviolet light with a wavelength less than 500 nm, And the conduction band position meets the H 2 /H + potential requirement.
本发明还提出了一种Sillen-Aurivillius层状结构材料Bi4SbO8Cl的合成方法,包括以下步骤:The present invention also proposes a synthesis method of Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl, comprising the following steps:
(1)将Sb2O4以及含有Bi和Cl的氧化物或其盐类进行研磨,所得混合物进行高温固相反应;(1) Sb 2 O 4 and oxides containing Bi and Cl or their salts are ground, and the resulting mixture is subjected to high-temperature solid-state reaction;
(2)将步骤(1)所得反应物继续研磨一段时间,再次进行高温固相反应。(2) Continue to grind the reactants obtained in step (1) for a period of time, and carry out high-temperature solid-phase reaction again.
较佳的,步骤(1)中,Sb2O4采用高温固相法制备,其步骤为:将Sb2O5研磨一段时间,然后进行高温固相反应得到Sb2O4。Preferably, in step (1), Sb 2 O 4 is prepared by a high-temperature solid-phase method, the steps of which are: grinding Sb 2 O 5 for a period of time, and then performing a high-temperature solid-state reaction to obtain Sb 2 O 4 .
具体的,研磨5min~30min。Specifically, grind for 5 minutes to 30 minutes.
具体的,高温固相反应条件为:煅烧温度为700~1000ºC,反应时间为1h~6h,升温速率为3~7 ºC/min。Specifically, the high-temperature solid-state reaction conditions are as follows: the calcination temperature is 700-1000°C, the reaction time is 1h-6h, and the heating rate is 3-7°C/min.
较佳的,步骤(1)中,Sb2O4采用水热法制备,其步骤为:将SbCl3和尿素溶解在水里,调节pH至10,水热反应一段时间得到Sb2O4。Preferably, in step (1), Sb 2 O 4 is prepared by hydrothermal method, the steps are: dissolving SbCl 3 and urea in water, adjusting the pH to 10, and hydrothermally reacting for a period of time to obtain Sb 2 O 4 .
具体的,SbCl3和尿素的摩尔比为1:1。Specifically, the molar ratio of SbCl 3 and urea is 1:1.
具体的,水热反应温度为150 ℃,水热反应时间为18h。Specifically, the hydrothermal reaction temperature is 150°C, and the hydrothermal reaction time is 18h.
较佳的,步骤(1)中,研磨5min~30min。Preferably, in step (1), grind for 5 minutes to 30 minutes.
较佳的,步骤(1)中,Bi和Cl的氧化物或其盐类,包括Bi2O3,NH4Cl,BiOCl和BiCl3。Preferably, in step (1), the oxides of Bi and Cl or their salts include Bi 2 O 3 , NH 4 Cl, BiOCl and BiCl 3 .
较佳的,步骤(1)中,高温固相反应条件为:煅烧温度为700~900ºC,反应时间为1h~20h,升温速率为3~7 ºC/min。Preferably, in step (1), the high-temperature solid-state reaction conditions are: the calcination temperature is 700-900ºC, the reaction time is 1h-20h, and the heating rate is 3-7ºC/min.
较佳的,步骤(2)中,研磨5min~30min。Preferably, in step (2), grind for 5 minutes to 30 minutes.
较佳的,步骤(2)中,高温固相反应条件为:煅烧温度800~1000ºC,反应时间为1h~20h,升温速率为3~7 ºC/min。Preferably, in step (2), the high-temperature solid-state reaction conditions are: calcination temperature 800-1000ºC, reaction time 1h-20h, heating rate 3-7ºC/min.
较佳的,步骤(2)中,再次进行高温固相反应1~3次。Preferably, in step (2), the high-temperature solid-state reaction is carried out again for 1 to 3 times.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明所提供的Sillen-Aurivillius层状结构材料Bi4SbO8Cl的微观结构为—Cl—Bi2O2—SbO4—Bi2O2—Cl—,可以吸收波长小于500 nm的可见光和紫外光,且导带位置满足H2/H+电位要求。该材料可应用于染料、二氧化碳还原、分解水制氢、固氮等领域。The microstructure of the Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl provided by the present invention is —Cl—Bi 2 O 2 —SbO 4 —Bi 2 O 2 —Cl—, which can absorb visible light and ultraviolet light with a wavelength less than 500 nm light, and the conduction band position meets the H 2 /H + potential requirements. The material can be used in dyes, carbon dioxide reduction, hydrogen production from water splitting, nitrogen fixation and other fields.
附图说明Description of drawings
图1 为本发明Bi4SbO8Cl微观结构图。Fig. 1 is a microstructure diagram of Bi 4 SbO 8 Cl of the present invention.
图2 为本发明所制备的Sb2O4的X射线衍射图。Fig. 2 is an X-ray diffraction pattern of Sb 2 O 4 prepared in the present invention.
图3 为本发明所制备的Bi4SbO8Cl的X射线衍射图。Fig. 3 is an X-ray diffraction pattern of Bi 4 SbO 8 Cl prepared in the present invention.
图4 为本发明所制备的Bi4SbO8Cl的紫外可见光吸收谱图。Fig. 4 is the ultraviolet-visible light absorption spectrum of Bi 4 SbO 8 Cl prepared in the present invention.
图5 为本发明所制备的Bi4SbO8Cl的分解水制氢性能图。Fig. 5 is a graph showing the water splitting hydrogen production performance of Bi 4 SbO 8 Cl prepared in the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行进一步阐述。The present invention will be further elaborated below in conjunction with the accompanying drawings and embodiments.
本发明的创新点体现在于:1)在能带结构上,利用Sb取代Nb,Bi4SbO8Cl导带位置满足了H2/H+还原电位要求。2)在合成方面,Sb源必须使用Sb2O4,如Sb2O5经过950℃,4h的高温固相反应或者将SbCl3 在碱性条件下150 ℃水热反应18h转变为Sb2O4之后,才能进一步与含Bi、Cl化合物混合反应制得Sillen-Aurivillius层状结构材料Bi4SbO8Cl。The innovations of the present invention are as follows: 1) In terms of energy band structure, Sb is used to replace Nb, and the conduction band position of Bi 4 SbO 8 Cl satisfies the requirement of H 2 /H + reduction potential. 2) In terms of synthesis, the Sb source must use Sb 2 O 4 , such as Sb 2 O 5 undergoing a high-temperature solid-state reaction at 950°C for 4 hours or converting SbCl 3 into Sb 2 O by hydrothermal reaction at 150°C for 18 hours under alkaline conditions After 4 , the Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl can be further mixed and reacted with compounds containing Bi and Cl.
实施例1Example 1
通过高温固相合成Sb2O4进而制备光催化剂Bi4SbO8Cl的过程如下:The process of preparing photocatalyst Bi 4 SbO 8 Cl by high temperature solid phase synthesis of Sb 2 O 4 is as follows:
(1)称取2 g的Sb2O5研磨10 min,然后经过950℃,4h的高温固相反应得到Sb2O4,X射线衍射图见图2。(1) Weigh 2 g of Sb 2 O 5 and grind for 10 min, then undergo a high-temperature solid-state reaction at 950°C for 4 hours to obtain Sb 2 O 4 , the X-ray diffraction diagram is shown in Figure 2.
(2)将Sb2O4(0.312 g)与Bi2O3(0.932 g)、NH4Cl(0.108 g)量取研磨10 min,在马弗炉经过800 ℃,6 h高温固相反应。(2) Measure and grind Sb 2 O 4 (0.312 g), Bi 2 O 3 (0.932 g), and NH 4 Cl (0.108 g) for 10 min, and react in a muffle furnace at 800 °C for 6 h at high temperature for solid-state reaction.
(3)将得混合物再次经过10 min研磨,然后在马弗炉经过850℃,6h的高温固相反应得到最终产物Bi4SbO8Cl,其微观结构图见图1,X射线衍射图见图3。所得Bi4SbO8Cl的紫外可见光吸收谱见附图4,光催化分解水制氢性能见图5。(3) Grind the obtained mixture again for 10 minutes, and then undergo a high-temperature solid-state reaction at 850°C for 6 hours in a muffle furnace to obtain the final product Bi 4 SbO 8 Cl. The microstructure is shown in Figure 1, and the X-ray diffraction diagram is shown in Figure 1. 3. The ultraviolet-visible light absorption spectrum of the obtained Bi 4 SbO 8 Cl is shown in Fig. 4 , and the hydrogen production performance of photocatalytic water splitting is shown in Fig. 5 .
实施例2Example 2
通过水热法合成Sb2O4进而制备光催化剂Bi4SbO8Cl的过程如下:The process of synthesizing Sb 2 O 4 by hydrothermal method and then preparing photocatalyst Bi 4 SbO 8 Cl is as follows:
(1)称取0.005 mol的SbCl3和0.005 mol的尿素溶解在50 mL水里,用氨水调节pH至10,将混合溶液移至反应釜里,反应温度150 ℃,反应时间18h,待反应结束,用去离子水洗涤离心烘干,得到Sb2O4,X射线衍射图见图2。(1) Weigh 0.005 mol of SbCl 3 and 0.005 mol of urea and dissolve them in 50 mL of water, adjust the pH to 10 with ammonia water, move the mixed solution to the reaction kettle, the reaction temperature is 150 ℃, the reaction time is 18 hours, and the reaction is completed , washed with deionized water, centrifuged and dried to obtain Sb 2 O 4 , and the X-ray diffraction diagram is shown in FIG. 2 .
(2)将Sb2O4(0.312 g)与Bi2O3(1.864 g)、NH4Cl(0.108 g)量取研磨10 min,在马弗炉经过800 ℃,6 h高温固相反应。(2) Measure and grind Sb 2 O 4 (0.312 g), Bi 2 O 3 (1.864 g), NH 4 Cl (0.108 g) for 10 min, and react in a muffle furnace at 800 °C for 6 h at high temperature for solid-state reaction.
(3)将得混合物再次经过10 min研磨,然后在马弗炉经过850℃,6h的高温固相反应得到最终产物Bi4SbO8Cl,其X射线衍射图见图3,光催化分解水制氢性能见图5。从图5可知,实施例1制备的Bi4SbO8Cl光催化分解水制氢性能比实施例2的高十几倍,可能是用两种方法合成出来的Sb2O4微观特性(颗粒尺寸,表面缺陷等)有区别,导致最终合成的Bi4SbO8Cl的微观特性有所不同。(3) The obtained mixture was ground again for 10 minutes, and then subjected to a high-temperature solid-state reaction at 850°C for 6 hours in a muffle furnace to obtain the final product Bi 4 SbO 8 Cl, whose X-ray diffraction pattern is shown in Figure 3. Photocatalytic water splitting Hydrogen properties are shown in Figure 5. It can be seen from Figure 5 that the photocatalytic water splitting hydrogen production performance of Bi 4 SbO 8 Cl prepared in Example 1 is more than ten times higher than that in Example 2, which may be due to the microscopic characteristics of Sb 2 O 4 synthesized by the two methods (particle size , surface defects, etc.) are different, resulting in different microscopic properties of the final synthesized Bi 4 SbO 8 Cl.
对比例1Comparative example 1
Sb2O5未经高温煅烧直接与含Bi、Cl化合物混合反应。Sb 2 O 5 reacts directly with compounds containing Bi and Cl without high-temperature calcination.
(1)将Sb2O5(0.167 g)与Bi2O3(0.932 g)、NH4Cl(0.054 g)量取研磨10 min,在马弗炉经过800 ℃,6 h高温固相反应。(1) Measure and grind Sb 2 O 5 (0.167 g), Bi 2 O 3 (0.932 g), NH 4 Cl (0.054 g) for 10 min, and react in a muffle furnace at 800 °C for 6 h at high temperature for solid-state reaction.
(2)将得混合物再次经过10 min研磨,然后在马弗炉经过850℃,6h的高温固相反应,所得产物主要成分是BiSbO4,其X射线衍射图见图3,与实施例1和2对比可知,Sb2O5未经高温煅烧直接与含Bi、Cl化合物混合反应未能得到Sillen-Aurivillius层状结构材料Bi4SbO8Cl。与实施例1和2相同的光催化分解水制氢测试条件下,未检测到氢气的生成。(2) The obtained mixture was ground again for 10 minutes, and then subjected to a high-temperature solid-state reaction at 850°C for 6 hours in a muffle furnace. The main component of the obtained product was BiSbO 4 . 2 The comparison shows that the Sillen-Aurivillius layered structure material Bi 4 SbO 8 Cl could not be obtained by directly mixing and reacting Sb 2 O 5 with compounds containing Bi and Cl without high-temperature calcination. Under the same photocatalytic water splitting hydrogen production test conditions as in Examples 1 and 2, no hydrogen generation was detected.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111306971.5A CN114014360B (en) | 2021-11-05 | 2021-11-05 | Sillin-Aurivillius layered structure material Bi 4 SbO 8 Cl and synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111306971.5A CN114014360B (en) | 2021-11-05 | 2021-11-05 | Sillin-Aurivillius layered structure material Bi 4 SbO 8 Cl and synthesis method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114014360A CN114014360A (en) | 2022-02-08 |
CN114014360B true CN114014360B (en) | 2023-05-16 |
Family
ID=80061572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111306971.5A Active CN114014360B (en) | 2021-11-05 | 2021-11-05 | Sillin-Aurivillius layered structure material Bi 4 SbO 8 Cl and synthesis method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114014360B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117443417A (en) * | 2023-09-12 | 2024-01-26 | 桂林理工大学 | Preparation method of a new Bi-based material CaBinOn+1Cln |
CN118759192B (en) * | 2024-09-06 | 2024-11-05 | 南部县人民医院 | Tumor marker detection kit and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105366720A (en) * | 2015-12-04 | 2016-03-02 | 新疆大学 | Method for synthesizing carbonate bismuth oxide nanosheets through solid-phase chemical reaction at room temperature |
JP2017124365A (en) * | 2016-01-13 | 2017-07-20 | 国立大学法人京都大学 | Water splitting method under irradiation of visible light using silene-aurillius layered acid halide as photocatalyst |
CN109603864A (en) * | 2019-01-14 | 2019-04-12 | 青岛科技大学 | A method for preparing Sillén-Aurivillius phase Bi4NbO8Br nanosheets |
CN110694650A (en) * | 2019-11-13 | 2020-01-17 | 青岛科技大学 | A kind of preparation method of Bi-supported Bi4NbO8Cl composite visible light catalyst |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012066545A2 (en) * | 2010-11-16 | 2012-05-24 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Bismuth oxyhalide compounds useful as photocatalysts |
-
2021
- 2021-11-05 CN CN202111306971.5A patent/CN114014360B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105366720A (en) * | 2015-12-04 | 2016-03-02 | 新疆大学 | Method for synthesizing carbonate bismuth oxide nanosheets through solid-phase chemical reaction at room temperature |
JP2017124365A (en) * | 2016-01-13 | 2017-07-20 | 国立大学法人京都大学 | Water splitting method under irradiation of visible light using silene-aurillius layered acid halide as photocatalyst |
CN109603864A (en) * | 2019-01-14 | 2019-04-12 | 青岛科技大学 | A method for preparing Sillén-Aurivillius phase Bi4NbO8Br nanosheets |
CN110694650A (en) * | 2019-11-13 | 2020-01-17 | 青岛科技大学 | A kind of preparation method of Bi-supported Bi4NbO8Cl composite visible light catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN114014360A (en) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Bismuth-based photocatalysts for solar energy conversion | |
CN114014360B (en) | Sillin-Aurivillius layered structure material Bi 4 SbO 8 Cl and synthesis method | |
CN107282077A (en) | A kind of preparation method and applications of photocatalysis fixed nitrogen catalyst | |
Wang et al. | Role of Ce in manipulating the photoluminescence of Tb doped Y2Zr2O7 | |
CN105800686B (en) | One kind prepares Bi5O7I method | |
CN102010012B (en) | Method for preparing bismuth ferrite material by two-step solid-phase reaction | |
KR101214896B1 (en) | Novel method of preparing vanadosilicate molecular sieves and novel vanadosilicate molecular sieves | |
CN114772640A (en) | Preparation method of lead-free stable double perovskite nanocrystalline and product and application thereof | |
CN109382088B (en) | SnO2/α~Bi2O3/β~Bi2O3 composite material and preparation method thereof | |
CN110339843B (en) | A kind of preparation method of magnetic bismuth oxide/bismuth vanadate composite photocatalyst | |
CN105289577A (en) | Vanadium tantalum/niobate photocatalyst and preparation method and application of vanadium tantalum/niobate photocatalyst | |
CN110721718A (en) | Preparation method of graphite-phase carbon nitride-doped bismuth molybdate binary photocatalyst with good performance | |
CN109678204A (en) | Titanic oxide material and preparation method thereof | |
CN106881118B (en) | A kind of method of ion-exchange synthesis heterojunction photocatalyst | |
CN110302812B (en) | Iodine vacancy BiO1.2I0.6/WO3Composite material and preparation method and application thereof | |
CN107352521A (en) | A kind of wire phosphatization tin compound and preparation method thereof | |
CN113333009B (en) | A kind of preparation method of nitrogen-doped γ-Bi2MoO6 photocatalyst | |
CN112892562B (en) | Z-type Bi3O4Cl/Bi2MoO6 composite photocatalyst based on in situ synthesis and its application | |
CN108273522A (en) | A kind of Z-type semiconductor light-catalyst and its preparation method and application with trapezium structure | |
CN113578368A (en) | g-C3N4/Ag3PO4/BiFeO3Preparation method and application of composite visible-light-driven photocatalyst | |
CN109046395B (en) | Bismuth tellurate/bismuth oxide heterojunction material, preparation method and application thereof | |
CN106975485A (en) | Cr (VI) catalyst and its preparation method and application in a kind of Efficient Conversion water | |
CN101774638A (en) | Method for preparing self-assembly Bi12TiO20 nano-wires by solution method | |
CN109160489A (en) | A kind of method of solid state reaction synthesis acid iodide oxygen bismuth nanometer sheet | |
CN111137922A (en) | Preparation method of tantalum-oxygen nanosheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |