一种生物质原料的综合利用工艺
技术领域
本发明涉及一种综合利用生物质原料的方法,具体地说是一种提取生物质原料中纤维素、半纤维素和木质素的方法。
背景技术
木质纤维素生物质以植物体的形式存在,主要成分为纤维素、半纤维素和木质素,其中,纤维素占40%左右,半纤维素占25%左右,木质素占20%左右,地球上每年由光合作用生成的木质纤维素生物质总量超过2000亿吨,因此木质纤维素生物质是地球上最丰富、最廉价的可再生资源。
纤维素是植物细胞壁的主要成分。全世界用于纺织造纸的纤维素,每年达800万吨。此外,用分离纯化的纤维素做原料,可以制造人造丝,赛璐玢以及硝酸酯、醋酸酯等酯类衍生物和甲基纤维素、乙基纤维素、羧甲基纤维素钠等醚类衍生物,用于石油钻井、食品、陶瓷釉料、日化、合成洗涤、石墨制品、铅笔制造、电池、涂料、建筑建材、装饰、蚊香、烟草、造纸、橡胶、农业、胶粘剂、塑料、炸药、电工及科研器材等方面。
在自然界中,木质素的储量仅次于纤维素,而且每年都以500亿吨的速度再生。制浆造纸工业每年要从植物中分离出大约1.4亿吨纤维素,同时得到5000万吨左右的木质素副产品,但迄今为止,超过95%的木质素仍以“黑液”直接排入江河或浓缩后烧掉,很少得到有效利用。
事实上,木质素是一种很有价值的化工原料,高纯度的无硫木素可用做酚类树脂、聚氨酯泡沫、环氧树脂等聚合物添加剂以及土壤改良剂、农药缓释剂等,木素应用在这些方面可使其附加值远高于作为燃料燃烧后回收热量的附加值。目前,木素主要是作为制浆造纸副产品生产的,例如木素磺酸盐、硫酸盐木素等。但这些木素含有硫元素同时木素纯度较低、成分复杂、分子量分布广、粘度低、分散度高、加工性能差、几乎没有热塑性能,因而大大限制了其工业应用。
因此选用合适的工艺在不破坏纤维素、半纤维素和木质素活力的前提下,最大限度的将三者分离且提取已经成为了该工艺研究的最大热点。
目前,对木质纤维素生物质中三种主要成分的提取主要是使用蒸煮提出半纤维素、通过碱解提出木质素、所剩的纤维素再通过纤维素酶生成所需的乙醇等目标产物。但整个工艺步骤繁琐,期间要经过蒸煮和碱解的分解作用,也会一定程度的损失所需产物。
中国专利CN101864683A公开了一种木质纤维原料的预处理方法,该专利将木质素原料与有机酸溶液和催化剂的混合液混合后,进行第一步处理,得到液固混合物并进行固液分离,得到预处理液和纤维素固体;采用有机酸溶液洗涤得到纤维素固体;得到的预处理黑液与得到的洗涤黑液混合后循环用于第一步处理过程;然后将循环使用至少3次的混合黑液进行有机酸、木素产品和糖浆溶液回收。将收集的黑液进行闪蒸或蒸发,得到有机酸和浓缩黑液,向黑液中添加2-10倍体积的水得到木素产品和糖浆溶液,而回收的有机酸则回流用于第一步处理,从而实现木质纤维原料的高值化利用。但该专利也存在以下缺点:1、从说明书中的描述可以看出,该工艺是采用有机酸与以硫酸为代表的催化剂混合进行第一步催化,反应过程中需要添加硫酸进行催化,不可避免的使后续得到的木质素中含硫;2、该工艺采用有机酸和以硫酸为代表的催化剂共同蒸煮生物质,在蒸馏有机酸步骤中,若有机酸蒸馏不完全,则木质素无法完全析出,若将有机酸完全蒸馏出后,则加入其中的硫酸浓度上升,会使得其中的木质素炭化,影响木质素的提取率;3、虽然整个工艺中提取和洗涤纤维素均使用相同的有机酸,且将收集的预处理液和洗涤液直接用于循环至第一步的反应釜中,但整个混合液内也大量积聚了溶解其中的木质素和戊糖溶液,鉴于有机酸萃取的饱和度限制,其混合黑液提取木质素的有效程度会大幅降低,因此,该步骤虽然是循环反应,但对于整体的提取效率作用并不大;4、收集的预处理液和洗涤液中由于溶解有大量半纤维素蒸煮生成的戊糖,而戊糖随着混合液多次循环过程中会不断的与有机酸相接触,发生酯化反应生成酯类,该专利是以木质纤维素生物质的综合利用为目的,因此对于整条工艺是否可以单独得到戊糖并不在意,但对于以分离得到戊糖为目的的工艺而言,该工艺并不适用;5、混合得到的黑液需要循环3次以上再进行蒸发处理以分离出有机酸,并稀释得到的浓缩液使得木质素析出,会使得一次性处理的黑液和浓缩液的数量极大,不仅影响处理效率而且也难以实现工艺的连续性;6、从说明书中可以看出,该工艺中纤维素的提取率仅为38-55%、木质素提取率为6-16%,整个工艺的提取率相对比较低;7、采用该工艺提取的纤维素纯度低,不能满足纺织应用。
中国专利CN1170031C公开了一种用甲酸和乙酸的混合物作为蒸煮化学剂生产纸浆的方法。该专利在以甲酸蒸煮草本植物和阔叶树生产纸浆时,添加乙酸作为附加的蒸煮化学剂,即可得到含有半纤维素和纤维素的纸浆,并且使用过的蒸煮液蒸馏出甲酸和乙酸的混合酸液进行循环利用。该方法虽然解决了蒸煮生物质的过程中需要添加催化剂的问题,但由于该方法主要用于制备纸浆,其目的是最大限度的保留纤维素以及部分的半纤维素,其整个工艺设计均是以此为目的,而对于其中木质素及戊糖的损失与否并未予以考虑,,因此该工艺虽然将纤维素从木质纤维素生物质中分离利用,但却并不能实现纤维素、木质素和半纤维素的分离,并且采用该工艺得到的纸浆中纤维素纯度低,只能用于造纸,不能满足更高的工业要求。
中国专利CN101514349A公开了一种由竹材纤维制备燃料乙醇的方法。该专利也是以甲酸和乙酸的混合酸液蒸煮水解半纤维素,并直接向脱出的滤液中加水析出木质素沉淀以此分离出木质素加以利用。该专利虽然在一条工艺线路中将纤维素、半纤维素和木质素相分离,该工艺的设计也是以提取纤维素作为最终目的的,整条工艺的设计并没有考虑木质素和戊糖的损失,其在分离木质素一步中加水提取沉淀的步骤中,会因为溶液中大量含有甲酸和乙酸而使得木质素难以全部脱出,即便大量加水也会因为甲酸和乙酸溶解其中而无法保证木质素完全析出,造成木质素损失,显然,该工艺仅重点考虑了最大限度提取纤维素的工艺,对于综合提取三种物质提取高纯度的纤维素并无指导作用。
发明内容
为此,本发明所要解决的技术问题在于现有技术中木质纤维素生物质的综合提取工艺路线,得到的各组分得率低、纯度低的问题,进而提供一种通过合理的参数调整能够高效分离木素、纤维素和半纤维的综合利用工艺;
为解决上述技术问题,本发明所述的生物质原料的综合利用工艺,包括如下步骤:
(1)将生物质原料粉碎后,在过氧化氢的催化作用下,使用由甲酸、乙酸形成的有机酸液对所述原料进行蒸煮,控制蒸煮温度125-155℃,固液质量比为1:5-1:10,反应时间20-50min,并将得到的反应液进行第一次固液分离;所述有机酸液中,总酸浓为70-95%,所述乙酸与甲酸的质量比为1:1-1:12,余量为水,过氧化氢占生物质原料的1-8%;
(2)收集所述第一次固液分离得到的固体,在过氧化氢的催化作用下,采用甲酸、乙酸形成的混合酸液对所述固体进行酸洗,控制酸洗温度20-100℃,固液质量比为1:4-1:20,并将得到的反应液进行第二次固液分离;本步骤中过氧化氢用量占生物质原料的4-8%;所述混合酸液中,总酸浓为60-70%,所述乙酸与甲酸的质量比为1:3-1:12,余量为水;
(3)收集所述第二次固液分离得到的固体,并进行水洗,控制水洗温度为25-90℃,浆浓为3-7%,并将得到的水洗浆进行第三次固液分离;
(4)收集所述第三次固液分离得到的固体并筛选得到细浆纤维素,所述细浆纤维素经漂白得到所需的纤维素。
(5)收集第一次和第二次固液分离得到的液体,于60-110℃,101-301kpa下进行蒸发,得到甲酸和乙酸蒸汽和浓缩液,所述浓缩液的固体含量为70-95wt%;
(6)将步骤(5)中所得的浓缩液加有机溶剂,搅拌,并进行第四次固液分离,其中,所述有机溶剂的加入质量是所述浓缩液质量的1-10倍;
(7)收集第四次固液分离后得到的固体加水稀释搅拌,并进行第五次固液分离后得到的固体经水洗即为所需的木质素;
(8)所述第五次固液分离后,得到的液体经脱色、过滤和浓缩结晶处理后得到木糖。
上述的生物质原料的综合利用工艺中,所述漂白包括:碱处理,所述碱用量占所述细浆纤维素质量的2-3%,温度为70-100℃,抽提时间0.5-3h,浆浓5-15%;螯合剂预处理,所述螯合剂的质量占所述细浆纤维素质量的0.5-1.5%,pH值控制在2-4之间,温度50-80℃,时间0.5-3h,浆浓3-5%;碱性过氧化氢漂白,过氧化氢的质量占所述细浆纤维素质量的1-10%,pH值控制在10-12之间,温度80-95℃,漂白时间1-6h,浆浓5-15%;和酸处理,所述酸的质量占所述细浆纤维素质量的1-2%,pH值控制在2-4之间,温度30-55℃,时间0.5-2h,浆浓3-6%。
优选地,所述碱处理的步骤中,抽提时间1-2h,浆浓6-12%;所述碱处理过程选用的碱试剂为氢氧化钠和/或氢氧化钾;所述螯合剂预处理的步骤中,所述螯合剂的质量占所述细浆纤维素质量的1-1.5%,温度50-65℃,时间0.5-2h;所述螯合剂预处理过程中,选用的螯合剂为乙二胺四乙酸二钠EDTA、二亚乙基三胺五醋酸DTPA、六偏磷酸钠中的一种或几种;所述碱性过氧化氢漂白的步骤中,碱性过氧化氢的质量占所述细浆纤维素质量的1-5%,浆浓5-10%;所述酸处理的步骤中,温度30-45℃,时间0.5-1.5h;所述酸处理采用的酸试剂为硫酸、盐酸、硝酸中的一种或几种。
优选地,所述步骤(5)中还包括将蒸发得到的甲酸和乙酸蒸汽冷凝,并回流至步骤(1)的反应釜中,用于步骤(1)的蒸煮的步骤。
优选地,所述步骤(3)中还包括将第三次固液分离得到的液体进行水酸精馏,得到的甲酸和乙酸的混合酸液回流至步骤(1)的反应釜中,用于步骤(1)的蒸煮的步骤,并将得到的水回用于步骤(3)作为水洗水。
优选地,所述步骤(6)中还包括将第四次固液分离得到的液体进行提纯,得到的提纯液作为有机溶剂回用于步骤(6),得到的杂质与所述步骤(8)中第五次固液分离得到的液体相混合。
优选地,所述步骤(1)中,所述有机酸液的总酸浓为85%-95%,乙酸与甲酸的质量比为1:1-1:8,加入过氧化氢的质量占生物质原料质量的1-6%。
优选地,所述步骤(2)中,酸洗温度为30-90℃,固液质量比为1:8-1:10。
优选地,所述步骤(3)中,水洗温度为60-90℃;所述步骤(3)的水洗过程为逆流水洗过程。
优选地,所述浓缩液的固体含量为80-90wt%;
所述有机溶剂的加入质量是所述浓缩液质量的2-5倍。
所述纤维素为溶解浆和/或工业纤维素。
所述生物质原料为芦苇、豆秸秆、小麦秸秆、稻草、玉米秸秆、瓜子壳、竹片、瓜子杆等木类或草类原料中的一种或几种。
本发明的上述技术方案相比现有技术具有以下优点:
1、本发明所述的工艺将收集的第一次和第二次固液分离得到的液体直接进行蒸发得到甲酸、乙酸蒸气,并使其冷凝后直接回流至第一步的反应釜中用于循环使用,而且由于甲酸和乙酸作为原料重新利用,对生物质的蒸煮效率较高,相对于利用蒸煮后的蒸煮液循环的工艺而言,虽然省去了这一循环的步骤,但却实现了在相同的工艺时间内,对各个组分的提取效率更高;
2、本发明所述工艺第一步蒸煮后以及酸洗涤后收集到的戊糖溶液直接进行蒸发,蒸发出甲酸和乙酸,一方面可用于原料的循环,同时也尽量减少戊糖溶液中的酸含量,避免发生酯化反应,最大限度保留蒸煮得到戊糖溶液;
3、本发明的蒸煮过程在密闭的反应容器中进行,由于甲酸、乙酸和过氧化氢的部分蒸发,使得容器中具有一定的压力,从而缩短了原料的蒸煮时间,减少了对纤维素的破坏。
4、本发明所述的工艺选用甲酸、乙酸共同蒸煮生物质原料,甲酸作为一种强有机酸,催作降解原料中的木质素,由于单独使用甲酸会破坏纤维素中的α-纤维素,所以加入适量的乙酸不仅保护了α-纤维素不被破坏,而且利用甲酸和乙酸形成的有机溶剂溶解木质素分子,还利用其酸性蒸煮其中的半纤维素,并以此将纤维素、半纤维素和木质素分离。
5、本发明的蒸煮液中加入过氧化氢为催化剂,使得生物质原料中浅层的木质素和半纤维素与HO+离子反应,不断被溶解,而HO+对纤维素的影响不大,一段时间后,HO+离子消耗完全,H+离子的活性大大增加,使得半纤维素和易溶于酸的木质素迅速脱除。从而提高了木质素的提取率。
5、第一次蒸煮得到纤维素后,继续采用甲酸、乙酸和过氧化氢组成的有机酸液对纤维素进行酸洗,一方面将纤维素内部残余的半纤维素和木质素分解及溶出,同时保证纤维素的纯度;
6、在加入助剂析出木质素之前蒸发出甲酸和乙酸,一方面蒸出的甲酸和乙酸可用于蒸煮步骤的循环反应以节约原料,同时除去甲酸、乙酸浓度后,保证以最小剂量的助剂使得木质素全部析出,节约能耗。
7、该工艺步骤将固液分离得到的液体进行蒸发和提纯大大减少了直接回用时溶解其中的木质素和戊糖溶液,提高了木质素的纯度。
8、向浓缩液中加入的助剂,是一种与甲酸互溶但与水不互溶的低极性助剂,加入所述助剂后,浓缩液中的木素和木糖一起析出,再利用水分离带有木糖的木素分别得到高纯度的木素和高纯度的木糖液。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明所述工艺的流程图。
具体实施方式
下面将通过具体实施例对本发明作进一步的描述。
本申请中,除有特殊说明外,所用百分含量均表示质量百分含量,即“%”表示“wt%”;所述有机酸液或混合酸液中除了一定量的甲酸、乙酸外,余量为水,有机酸液的总酸浓指甲酸和乙酸的总质量占所述有机酸液质量的百分数,混合酸液的总酸浓指酸洗步骤中加入的甲酸和乙酸的总质量占所述混合酸液质量的百分数,
各步骤中所述的浆浓=本步骤中固体的质量/本步骤中固体与液体的质量和×100%
各实施例中过氧化氢H2O2以质量浓度为27%的过氧化氢水溶液的形式加入。例如经计算需要加入2.7g过氧化氢,则对应的应该是加入10g(2.7÷0.27=10)所述过氧化氢水溶液。
纤维素的白度测定方法参照FZ/T50010.7-1998,α-纤维素含量测定方法参照FZ/T50010.4-1998,聚合度测定采用Fz/T50010.3-1998方法,灰分测定采用FZ/T50010.5-1998方法,吸碱值测定采用FZ/T50010.9-1998方法。固体含量采用卤素快速水分测定仪(梅特勒-托利多,型号:HB43-S)在115℃下进行测定。戊糖或木糖溶液的浓度采用高效液相色仪(型号:U-3000,厂家:ThermoFisher戴安公司)进行测定。
各实施例中,
纤维素的产率=纤维素的质量/原料的质量×100%。
木糖提取率%=木糖质量/(原料质量×原料中半纤维素含量)×100%。
木质素提取率=木质素质量/(原料质量×原料中木质素的含量)×100%。
实施例1
在本实施例中,所述生物质原料为芦苇(成分组成:纤维素49.5%、半纤维素含量22.7%、木质素18.9%),首先将芦苇打碎,用水洗涤除尘并粉碎至粒径为0.5-20cm。
本实施例从所述生物质原料的综合利用工艺,包括如下步骤:
(1)将生物质原料粉碎预处理后,使用总酸浓度为70%的甲酸和乙酸的有机酸液对处理后的生物质原料进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1:1,并在加入生物质原料前加入占生物质原料3%的过氧化氢(H2O2)作为催化剂,控制反应温度130℃,反应20min,固液质量比为1:5,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓度为60%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓度为60%的有机酸液中加入了占生物质原料4%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1:3,控制温度为70℃,洗涤时间1h,固液质量比为1:4,并将反应液进行第二次固液分离;
(3)收集步骤(1)和步骤(2)中两次固液分离得到的液体,在60℃,101kpa下进行减压蒸馏,得到甲酸和乙酸的蒸气以及固体含量为70%浓缩液,并将甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液;
(4)收集所述第二次固液分离得到的固体,并进行水洗,控制水洗温度为55℃,浆浓为3%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(4)作用水洗用水;
(6)收集第三次固液分离得到的固体并筛选得到细浆纤维素,将得到的细浆纤维素进行漂白得到纤维素;经测定采用本实施例的方法得到的纤维素其白度为90%ISO,α-纤维素含量94%,灰分0.06%,聚合度750,吸碱值600,产率35%。
(7)将步骤(3)中所得的浓缩液加入占浓缩液质量2倍的有机溶剂甲基叔丁基醚,可提高木糖与木质素的得率,并且提高木糖液的纯度,并进行第四次固液分离,所述第四次固液分离得到的液体进行提纯,得到浓度为5%的提纯液作为有机溶剂回用于步骤(7)。
(8)所述第四次固液分离得到的固体加水稀释,并进行第五次固液分离,得到的固体为木质素,其木质素的提取率为85%。
(9)第五次固液分离得到的液体为戊糖溶液,所述戊糖溶液与步骤(7)提纯后得到的杂质相混合,经过脱色、过滤和浓缩结晶得到木糖晶体,木糖提取率77%。
本实施例中所述漂白包括以下步骤:
(1)将经过筛选的细浆纤维素首先利用占其质量2%的氢氧化钠进行碱处理,控制温度为70℃,抽提时间0.5h,浆浓5%;
(2)经碱处理后进行螯合剂预处理,本实施例中螯合剂采用EDTA,其用量占细浆纤维素质量的1%,Ph值控制在2-4之间,温度60℃,时间0.5h,浆浓5%;
(3)经EDTA预处理后再进行碱性过氧化氢漂白,过氧化氢的用量为细浆纤维素质量1%,并利用氢氧化钾控制pH值在10-12之间,温度80℃,漂白时间2h,浆浓8%;和
(4)酸处理,本步骤中采用的酸为硫酸,其用量为细浆纤维素质量的1%,pH值控制在2-4之间,温度50℃,时间1.5h,浆浓3%。
实施例2
在本实施例中,首先将稻草(成分组成:纤维素35.8%、半纤维素28.6%、木质素14.3%)打碎,用水洗涤除尘并粉碎至粒径为0.5-20cm。
本实施例从所述稻草的综合利用工艺,包括如下步骤:
(1)将稻草粉碎预处理后,使用总酸浓度为95%的甲酸和乙酸的有机酸液对处理后的稻草进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1:7,并在加入稻草原料前加入占稻草原料1%的过氧化氢(H2O2)作为催化剂,控制反应温度135℃,反应40min,固液质量比为1:6,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓度为65%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓度为65%的有机酸液中加入了占稻草原料5%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1:9,控制温度为20℃,洗涤时间40min,固液质量比为1:8,并将反应液进行第二次固液分离;
(3)收集步骤(1)和步骤(2)中两次固液分离得到的液体,在70℃,150kpa下进行减压蒸馏,得到甲酸和乙酸的蒸气以及固体含量为80%浓缩液,并将甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为90℃,浆浓为5%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(4)作用水洗用水;
(6)收集第三次固液分离得到的固体并筛选得到细浆纤维素,将得到的细浆纤维素进行漂白得到纤维素;经测定采用本实施例的方法得到的纤维素其白度为91%ISO,α-纤维素含量96%,灰分0.06%,聚合度730,吸碱值630,产率24%。
(7)将步骤(3)中所得的浓缩液加入占浓缩液质量3倍的有机溶剂乙醚,并进行第四次固液分离,所述第四次固液分离得到的液体进行提纯,得到浓度为1%的提纯液作为有机溶剂回用于步骤(7)。
(8)所述第四次固液分离得到的固体加水稀释,并进行第五次固液分离,得到的固体为木质素,其木质素的提取率为86%。
(9)第五次固液分离得到的液体为戊糖溶液,所述戊糖溶液与步骤(7)中提纯后得到的杂质相混合,经过脱色、过滤和浓缩结晶得到木糖晶体,其木糖提取率为76%。
本实施例中所述漂白工艺包括以下步骤:
(1)将经过筛选的细浆纤维素首先利用占绝干细浆纤维素2.4%的氢氧化钾进行碱处理,控制温度80℃,抽提时间1h,浆浓6%;
(2)经碱处理后进行螯合剂预处理,本实施例中螯合剂采用DTPA,其用量占绝干浆的1.5%,Ph值控制在2-4之间,温度50℃,时间1h,浆浓3%;
(3)经DTPA预处理后再进行碱性过氧化氢漂白,过氧化氢的用量为3%,并有氢氧化钠控制pH值在10-12之间,温度85℃,漂白时间1h,浆浓5%;和
(4)酸处理,本步骤中采用的酸为1.2%的硫酸,余量为水,Ph值控制在2-4之间,温度55℃,时间0.5h,浆浓4%。
实施例3
在本实施例中,所述生物质原料为竹片(成分组成:纤维素47.3%、半纤维素24.6%、木质素25.8%),首先将打碎,用水洗涤除尘并粉碎至粒径为0.5-20cm。
本实施例所述竹片的综合利用工艺,包括如下步骤:
(1)将竹片粉碎预处理后,使用总酸浓度为80%的甲酸和乙酸的有机酸液对处理后的竹片进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1:6,并在加入稻草原料前加入占稻草原料6%的过氧化氢(H2O2)作为催化剂,控制反应温度150℃,反应45min,固液质量比为1:7,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓度为70%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓度为70%的有机酸液中加入了占竹片原料6%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1:5控制温度为30℃,洗涤时间1h,固液质量比为1:10,并将反应液进行第二次固液分离;
(3)收集步骤(1)和步骤(2)中两次固液分离得到的液体,在80℃,180kpa下进行减压蒸馏,得到甲酸和乙酸的蒸气以及固体含量为90%浓缩液,并将甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为75℃,浆浓为4%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(4)作用水洗用水;
(6)收集第三次固液分离得到的固体并筛选得到细浆纤维素,将得到的细浆纤维素进行漂白得到纤维素;经测定采用本实施例的方法得到的纤维素其白度为92%ISO,α-纤维素含量95%,灰分0.07%,聚合度720,吸碱值625,产率35%。
(7)将步骤(3)中所得的浓缩液加入占浓缩液质量5倍的有机溶剂三叔丁基胺,并进行第四次固液分离,所述第四次固液分离得到的液体进行提纯,得到浓度为8%的提纯液作为有机溶剂回用于步骤(7)。
(8)所述第四次固液分离得到的固体加水稀释,并进行第五次固液分离,得到的固体为木质素,其木质素的提取率为87.5%。
(9)第五次固液分离得到的液体为戊糖溶液,所述戊糖溶液与所述步骤(7)提纯后得到的杂质相混合,经过脱色、过滤和浓缩结晶得到木糖晶体,其木糖提取率为75%。
本实施例中所述EQPA漂白工艺包括以下步骤:
(1)将经过筛选的细浆纤维素首先利用占其质量2.8%的氢氧化钾进行碱处理,控制温度为90℃,抽提时间2h,浆浓12%;
(2)经碱处理后进行螯合剂预处理,本实施例中螯合剂采用六偏磷酸钠,其用量占细浆纤维素的0.5%,pH值控制在2-4之间,温度65℃,时间1.5h,浆浓4%;
(3)经六偏磷酸钠预处理后,再进行碱性过氧化氢漂白,过氧化氢的用量为细浆纤维素5%,并利用氢氧化钾控制pH值在10-12之间,温度90℃,漂白时间5h,浆浓15%;和
(4)酸处理,本步骤中采用的酸为盐酸,其用量为细浆纤维素的1.4%,pH值控制在2-4之间,温度50℃,时间80min,浆浓6%。
实施例4
在本实施例中,所述生物质原料为小麦秸杆(成分组成:纤维素40.5%、半纤维素31.9%、木质素15.4%),首先将打碎,用水洗涤除尘并粉碎至粒径为0.5-20cm。
本实施例从所述小麦秸杆的综合利用工艺,包括如下步骤:
(1)将小麦秸杆粉碎预处理后,使用总酸浓度为85%的甲酸和乙酸的有机酸液对处理后的竹片进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1:9,并在加入原料前加入占小麦秸杆原料7%的过氧化氢(H2O2)作为催化剂,控制反应温度140℃,反应25min,固液质量比为1:8,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓度为68%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓度为68%的有机酸液中加入了占小麦秸杆原料7%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1:7,控制温度为40℃,洗涤时间55min,固液质量比为1:13,并将反应液进行第二次固液分离;
(3)收集步骤(1)和步骤(2)中两次固液分离得到的液体,在90℃,210kpa进行减压蒸馏,得到甲酸和乙酸的蒸气以及固体含量为95%浓缩液,并将甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为35℃,浆浓为6%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(4)作用水洗用水;
(6)收集第三次固液分离得到的固体并筛选得到细浆纤维素,将得到的细浆纤维素进行漂白得到纤维素;经测定采用本实施例的方法得到的纤维素其白度为93%ISO,α-纤维素含量94.5%,灰分0.08%,聚合度710,吸碱值630,产率28%。
(7)将步骤(3)中所得的浓缩液加入占浓缩液质量7倍的有机溶剂四丁基脲,并进行第四次固液分离,所述第四次固液分离得到的液体进行提纯,得到浓度为12%的提纯液作为有机溶剂回用于步骤(7)。
(8)所述第四次固液分离得到的固体加水稀释,并进行第五次固液分离,得到的固体为木质素,其木质素的提取率为88.3%。
(9)第五次固液分离得到的液体为戊糖溶液,所述戊糖溶液与所述步骤(7)提纯后得到的杂质相混合,经过脱色、过滤和浓缩结晶得到木糖晶体,其木糖提取率为78%。
本实施例中所述EQPA漂白工艺包括以下步骤:
(1)将经过筛选的细浆纤维素首先利用占其质量2.6%的氢氧化钠进行碱处理,控制温度为100℃,抽提时间2.5h,浆浓15%;
(2)经碱处理后进行螯合剂预处理,本实施例中螯合剂采用六偏磷酸钠,其用量占细浆纤维素的0.8%,pH值控制在2-4之间,温度75℃,时间2h,浆浓3.5%;
(3)经六偏磷酸钠预处理后,再进行碱性过氧化氢漂白,过氧化氢的用量为细浆纤维素的7%,并采用氢氧化钾控制pH值在10-12之间,温度95℃,漂白时间4h,浆浓10%;和
(4)酸处理,本步骤中采用的酸为硫酸,其用量为细浆纤维素的1.6%,pH值控制在2-4之间,温度40℃,时间2h,浆浓4.5%。
实施例5
在本实施例中,所述生物质原料为瓜子杆(成分组成:半纤维素31.91%,木质素23.94%、纤维素44.15%),首先将打碎,用水洗涤除尘并粉碎至粒径为0.5-20cm。
本实施例从所述瓜子杆的综合利用工艺,包括如下步骤:
(1)将瓜子杆粉碎预处理后,使用总酸浓度为75%的甲酸和乙酸的有机酸液对处理后的竹片进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1:11,并在加入原料前加入占瓜子杆原料8%的过氧化氢(H2O2)作为催化剂,控制反应温度155℃,反应50min,固液质量比为1:9,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓度为62%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓度为62%的有机酸液中加入了占瓜子杆原料8%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1:11,控制温度为90℃,洗涤时间45min,固液质量比为1:20,并将反应液进行第二次固液分离;
(3)收集步骤(1)和步骤(2)中两次固液分离得到的液体,100℃,270kpa下进行减压蒸馏,得到甲酸和乙酸的蒸气以及固体含量为85%浓缩液,并将甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为60℃,浆浓为7%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(4)作用水洗用水;
(6)收集第三次固液分离得到的固体并筛选得到细浆纤维素,将得到的细浆纤维素进行漂白得到高纯度纤维素;经测定采用本实施例的方法得到的纤维素其白度为91.5%ISO,α-纤维素含量95.5%,灰分0.09%,聚合度690,吸碱值635,产率30%。
(7)将步骤(3)中所得的浓缩液加入占原料质量9倍的有机溶剂甲基叔丁基醚,并进行第四次固液分离,所述第四次固液分离得到的液体进行提纯,得到浓度为15%的提纯液作为有机溶剂回用于步骤(7)。
(8)所述第四次固液分离得到的固体加水稀释,并进行第五次固液分离,得到的固体为木质素,其木质素的提取率为89%。
(9)第五次固液分离得到的液体为戊糖溶液,所述戊糖溶液与所述步骤(7)提纯后得到的杂质相混合,经过脱色、过滤和浓缩结晶得到木糖晶体,其木糖提取率为70%。
本实施例中所述漂白工艺包括以下步骤:
(1)将经过筛选的细浆纤维素首先利用占其质量3%的氢氧化钠进行碱处理,控制温度为95℃,抽提时间3h,浆浓14%;
(2)经碱处理后进行螯合剂预处理,本实施例中螯合剂采用EDTA(乙二胺四乙酸二钠),其用量占细浆纤维素的1.2%,pH值控制在2-4之间,温度80℃,时间2.5h,浆浓4.5%;
(3)经六偏磷酸钠预处理后,再进行碱性过氧化氢漂白,过氧化氢的用量为细浆纤维素的9%,并采用氢氧化钠控制pH值在10-12之间,温度83℃,漂白时间6h,浆浓11%;和
(4)酸处理,本步骤中采用的酸为盐酸,其用量为细浆纤维素的1.8%,pH值控制在2-4之间,温度45℃,时间100min,浆浓5.5%。
实施例6
在本实施例中,所述生物质原料为棉花杆(质量成分组成:半纤维素22.1%,木质素23.3%、纤维素54.5%),首先将打碎,用水洗涤除尘并粉碎至粒径为0.5-20cm。
本实施例所述棉花杆的综合利用工艺,包括如下步骤:
(1)将棉花杆粉碎预处理后,使用总酸浓度为90%的甲酸和乙酸的有机酸液对处理后的竹片进行蒸煮,本实施例的有机酸液中乙酸与甲酸的质量比为1:12,并在加入原料前加入占棉花杆原料5%的过氧化氢(H2O2)作为催化剂,控制反应温度125℃,反应35min,固液质量比为1:10,并将得到的反应液进行第一次固液分离;
(2)将第一次固液分离得到的固体加入总酸浓度为60%的甲酸和乙酸的有机酸液进行酸洗涤,其中上述总酸浓度为60%的有机酸液中加入了占棉花杆原料5.5%的过氧化氢(H2O2)作为催化剂且乙酸与甲酸的质量比为1:12,控制温度为100℃,洗涤时间70min,固液质量比为1:5,并将反应液进行第二次固液分离;
(3)收集步骤(1)和步骤(2)中两次固液分离得到的液体,110℃,301kpa进行减压蒸馏,得到甲酸和乙酸的蒸气以及固体含量为75%浓缩液,并将甲酸和乙酸蒸气冷凝回流至步骤(1)的反应釜中作为蒸煮液;
(4)收集第二次固液分离得到的固体,并进行水洗,控制水洗温度为25℃,浆浓为4.5%,并将得到的水洗浆进行第三次固液分离;
(5)收集第三次固液分离得到的液体,进行水、酸精馏,得到的混合酸液回用于步骤(1)的反应釜中作为蒸煮液用于步骤(1)的蒸煮,得到的水回用于步骤(4)作用水洗用水;
(6)收集第三次固液分离得到的固体并筛选得到细浆纤维素,将得到的细浆纤维素进行漂白得到纤维素;经测定采用本实施例的方法得到的纤维素其白度为92.5%ISO,α-纤维素含量95%,灰分0.09%,聚合度695,吸碱值650,产率34%。
(7)将步骤(3)中所得的浓缩液加入占浓缩液质量10倍的有机溶剂石油醚,并进行第四次固液分离,所述第四次固液分离得到的液体进行提纯,得到10%的提纯液作为有机溶剂回用于步骤(7)。
(8)所述第四次固液分离得到的固体加水稀释,并进行第五次固液分离,得到的固体为木质素,其木质素的提取率为88.6%。
(9)第五次固液分离得到的液体为戊糖溶液,所述戊糖溶液与所述步骤(7)中提纯后剩余杂质相混合,经过脱色、过滤和浓缩结晶得到木糖晶体,其木糖提取率为76.5%。
本实施例中所述漂白包括以下步骤:
(1)将经过筛选的细浆纤维素首先利用占细浆纤维素2.2%的氢氧化钠进行碱处理,控制温度为85℃,抽提时间1.5h,浆浓8%;
(2)经碱处理后进行螯合剂预处理,本实施例中螯合剂采用六偏磷酸钠,其用量占细浆纤维素的1%,pH值控制在2-4之间,温度70℃,时间3h,浆浓5%;
(3)经六偏磷酸钠预处理后,再进行碱性过氧化氢漂白,过氧化氢的用量为细浆纤维素的10%,并利用氢氧化钾控制pH值在10-12之间,温度92℃,漂白时间3h,浆浓7%;和
(4)酸处理,本步骤中采用的酸为盐酸,其用量为细浆纤维素的2%,pH值控制在2-4之间,温度30℃,时间40min,浆浓3.5%。
对比例1
本实施例中所用到的原料及工艺步骤和工艺参数与实施例3基本一致,其区别在于,步骤(1)的蒸煮过程是在过氧化氢的催化作用下,采用的有机酸液由80wt%的甲酸和20wt%水组成。其步骤(2)的酸洗步骤是在过氧化氢的催化作用下,采用的是由70wt%的甲酸和30wt%水组成的有机酸液进行酸洗,各步骤中过氧化氢的添加比例与实施例3一致,经测定采用本实施例的方法得到的纤维素其白度为65%ISO,α-纤维素含量86wt%,木质素的提取率60%,木糖提取率48.2%。
对比例2
本实施例中所用到的原料及工艺步骤和工艺参数与实施例3基本一致,其区别在于,除漂白工艺的工艺步骤外,各步骤中均未加入过氧化氢作为催化剂。经测定采用本实施例的方法得到的纤维素其白度为60%ISO,α-纤维素含量60wt%,木质素的提取率59%,木糖提取率50.2%。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。