CN103872951B - Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer - Google Patents
Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer Download PDFInfo
- Publication number
- CN103872951B CN103872951B CN201410116544.4A CN201410116544A CN103872951B CN 103872951 B CN103872951 B CN 103872951B CN 201410116544 A CN201410116544 A CN 201410116544A CN 103872951 B CN103872951 B CN 103872951B
- Authority
- CN
- China
- Prior art keywords
- psi
- beta
- alpha
- flux linkage
- omega
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004907 flux Effects 0.000 title claims abstract description 133
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004364 calculation method Methods 0.000 claims abstract description 24
- 230000003068 static effect Effects 0.000 claims abstract description 10
- 230000009466 transformation Effects 0.000 claims abstract description 6
- 239000013598 vector Substances 0.000 claims description 13
- 230000003044 adaptive effect Effects 0.000 abstract description 9
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical class C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开了一种基于滑模磁链观测器的永磁同步电机转矩控制方法,通过3/2坐标变换模块、滑模磁链观测器、电磁转矩计算模块、转速PI调节器、转矩PI调节器、磁链自适应模块、预期电压计算模块、SVPWM模块和逆变器对永磁同步电机进行直接转矩控制。采用滑模磁链观测器模块估算定子磁链的大小和相位以及转子速度,给定转矩经磁链自适应模块得到定子磁链的给定值,定子磁链大小和相位估计值、定子磁链给定值以及转矩PI调节器的输出量经预期电压计算,得到两相静止坐标系上的两相交流电压参考值,再经SVPWM变换,得到开关信号以驱动电压源逆变器,实现对永磁同步电机的直接转矩控制。
The invention discloses a permanent magnet synchronous motor torque control method based on a sliding mode flux observer, through a 3/2 coordinate transformation module, a sliding mode flux observer, an electromagnetic torque calculation module, a rotational speed PI regulator, a rotational speed The torque PI regulator, the flux linkage adaptive module, the expected voltage calculation module, the SVPWM module and the inverter perform direct torque control on the permanent magnet synchronous motor. Using the sliding mode flux observer module to estimate the magnitude and phase of the stator flux and the rotor speed, the given torque is obtained by the flux adaptive module to obtain the given value of the stator flux, the estimated value of the stator flux magnitude and phase, and the The given value of the chain and the output of the torque PI regulator are calculated by the expected voltage to obtain the reference value of the two-phase AC voltage on the two-phase static coordinate system, and then transformed by SVPWM to obtain the switching signal to drive the voltage source inverter to realize Direct torque control of permanent magnet synchronous motors.
Description
技术领域technical field
本发明属于永磁电机控制领域,尤其涉及一种基于滑模磁链观测器的永磁同步电机转矩控制系统。The invention belongs to the field of permanent magnet motor control, in particular to a permanent magnet synchronous motor torque control system based on a sliding mode flux observer.
背景技术Background technique
永磁同步电机具有体积小、效率高、便于维护以及对环境适应性强等优点,在许多高性能驱动领域中得到广泛的应用。直接转矩控制具有转矩响应快、系统结构简单以及对参数变化鲁棒性强等优点而倍受人们的关注。在永磁同步电机直接转矩控制中需要获取定子磁链,且磁链信号准确与否决定着系统的控制性能。因此,对于高性能的永磁同步电机直接转矩控制调速系统,如何准确观测定子磁链尤为重要。在传统的直接转矩控制中,一般采用电压模型或电流模型以计算定子磁链。然而,在电压模型中,由于是对定子绕组反电势的积分,当电机低速运行时,定子磁链估算精度严重下降,甚至导致系统不能工作;在电流模型中,需要知道转子位置,增加了额外的位置传感器,这将增加控制系统的成本,降低系统的可靠性,同时还会限制永磁同步电机的使用场合。另外,在传统滞环比较的直接控制中,还存在着转矩和磁链脉动大,开关频率不固定等缺点,并且,电机运行于空载时引入了无功电流,从而导致电机功率因数下降。因此,为解决上述问题,有必要在提高开关频率和降低空载时直轴电流的前提下,提出一种新的磁链观测方法,以提高永磁同步电机直接转矩控制系统的动静态性能、可靠性、鲁棒性和抗干扰能力。Permanent magnet synchronous motors have the advantages of small size, high efficiency, easy maintenance and strong adaptability to the environment, and are widely used in many high-performance drive fields. Direct torque control has attracted much attention because of its fast torque response, simple system structure and strong robustness to parameter changes. The stator flux linkage needs to be obtained in the direct torque control of the permanent magnet synchronous motor, and the accuracy of the flux linkage signal determines the control performance of the system. Therefore, how to accurately observe the stator flux linkage is particularly important for the high-performance permanent magnet synchronous motor direct torque control speed regulation system. In traditional direct torque control, the voltage model or current model is generally used to calculate the stator flux linkage. However, in the voltage model, due to the integration of the back EMF of the stator winding, when the motor is running at low speed, the estimation accuracy of the stator flux linkage is seriously reduced, and even the system cannot work; in the current model, the rotor position needs to be known, adding additional position sensor, which will increase the cost of the control system, reduce the reliability of the system, and also limit the use of permanent magnet synchronous motors. In addition, in the direct control of the traditional hysteresis comparison, there are still shortcomings such as large torque and flux linkage fluctuations, and the switching frequency is not fixed. Moreover, when the motor is running at no load, reactive current is introduced, which leads to a decrease in the power factor of the motor. . Therefore, in order to solve the above problems, it is necessary to propose a new flux linkage observation method under the premise of increasing the switching frequency and reducing the direct axis current at no-load, so as to improve the dynamic and static performance of the permanent magnet synchronous motor direct torque control system , reliability, robustness and anti-interference ability.
发明内容Contents of the invention
技术问题:针对上述现有技术存在的不足,提供一种基于滑模磁链观测器的永磁同步电机转矩控制方法,在提高开关频率和降低空载时直轴电流的前提下,提高永磁同步电机直接转矩控制鲁棒性和抗干扰能力。Technical problem: Aiming at the deficiencies of the above-mentioned existing technologies, a permanent magnet synchronous motor torque control method based on a sliding mode flux observer is provided. On the premise of increasing the switching frequency and reducing the direct axis current at no-load, the permanent Robustness and anti-disturbance ability of direct torque control of magnetic synchronous motor.
技术方案:基于滑模磁链观测器的永磁同步电机转矩控制方法,通过3/2坐标变换模块、滑模磁链观测器、电磁转矩计算模块、转速PI调节器、转矩PI调节器、磁链自适应模块、预期电压计算模块、SVPWM模块和逆变器对永磁同步电机进行直接转矩控制,包括如下具体步骤:Technical solution: permanent magnet synchronous motor torque control method based on sliding mode flux observer, through 3/2 coordinate transformation module, sliding mode flux observer, electromagnetic torque calculation module, speed PI regulator, torque PI adjustment The inverter, the flux linkage adaptive module, the expected voltage calculation module, the SVPWM module and the inverter perform direct torque control on the permanent magnet synchronous motor, including the following specific steps:
步骤1),检测永磁同步电机的三相电流ia、ib、ic和三相电压ua、ub、uc,经3/2坐标变换后得到两相静止交流坐标下的电流分量iα、iβ和电压分量uα、uβ,然后将所述电流分量iα、iβ和电压分量uα、uβ送至滑模磁链观测器,并将电流分量iα、iβ送至电磁转矩计算模块;Step 1), detect the three-phase current ia , ib , ic and the three-phase voltage u a , ub , uc of the permanent magnet synchronous motor, and obtain the current in the two-phase static AC coordinate after the 3/2 coordinate transformation components i α , i β and voltage components u α , u β , and then send the current components i α , i β and voltage components u α , u β to the sliding mode flux observer, and send the current components i α , i β is sent to the electromagnetic torque calculation module;
步骤2),根据所述电流分量iα、iβ和电压分量uα、uβ,所述滑模磁链观测器模块估算定子磁链大小估算值和定子磁链相位估算值以及转子速度估算值 Step 2), according to the current components i α , i β and voltage components u α , u β , the sliding mode flux linkage observer module estimates the estimated value of the stator flux linkage and stator flux phase estimates and the rotor speed estimate
步骤3),将给定转速ω*与所述转子速度估算值作差后,经转速PI调节器后得到给定转矩Te*;Step 3), compare the given rotational speed ω * with the rotor speed estimate After making a difference, the given torque Te * is obtained after the speed PI regulator;
步骤4),根据所述定子磁链大小估算值以及所述电流分量iα、iβ,所述电磁转矩计算模块得到电机实际转矩Te;Step 4), according to the estimated value of the stator flux linkage size As well as the current components i α and i β , the electromagnetic torque calculation module obtains the actual torque Te of the motor;
步骤5),所述给定转矩Te*经磁链自适应模块得到定子磁链给定值ψsref;Step 5), the given torque Te * obtains the stator flux linkage given value ψ sref through the flux linkage adaptive module;
步骤6),将所述给定转矩Te*与所述电机实际转矩Te作差后,经转矩PI调节器后得到输出量Δδ;Step 6), after making a difference between the given torque Te * and the actual torque Te of the motor, the output value Δδ is obtained after the torque PI regulator;
步骤7),所述输出量Δδ、定子磁链给定值ψs.ref、定子磁链大小估算值以及定子磁链相位估算值经预期电压计算模块,得到两相静止坐标系上的两相交流电压参考值 Step 7), the output Δδ, the given value of stator flux linkage ψ s.ref , and the estimated value of stator flux linkage and stator flux phase estimates Through the expected voltage calculation module, the two-phase AC voltage reference value on the two-phase stationary coordinate system is obtained
步骤8),根据定子磁链矢量位置以及所述两相交流电压参考值从开关状态表中选择相应的空间电压矢量后,经所述SVPWM模块输出调制信号到逆变器,通过所述逆变器实现永磁同步电机的直接转矩控制。Step 8), according to the stator flux vector position and the two-phase AC voltage reference value After selecting the corresponding space voltage vector from the switch state table, the modulation signal is output to the inverter through the SVPWM module, and the direct torque control of the permanent magnet synchronous motor is realized through the inverter.
作为本发明的优选方案,所述步骤2)包括如下具体步骤:As a preferred version of the present invention, said step 2) includes the following specific steps:
步骤2.1),根据所述电流分量iα、iβ和电压分量uα、uβ,构建滑模观测器得到电机的反电动势eα、eβ;Step 2.1), according to the current components i α , i β and voltage components u α , u β , construct a sliding mode observer to obtain the back electromotive force e α , e β of the motor;
步骤2.2),根据所述反电动势eα、eβ,通过转子位置计算模块得到转子估算位置 Step 2.2), according to the counter electromotive force e α and e β , obtain the estimated position of the rotor through the rotor position calculation module
步骤2.3),根据所述转子估算位置通过定子磁链估算模块得到当前定子磁链矢量ψα、ψβ;Step 2.3), according to the estimated position of the rotor Obtain the current stator flux vectors ψ α and ψ β through the stator flux estimation module;
步骤2.4),根据所述当前定子磁链矢量ψα、ψβ,通过磁链观测器得到定子磁链大小估算值以及转子速度估算值 Step 2.4), according to the current stator flux vectors ψ α and ψ β , obtain the estimated value of the stator flux through the flux observer and the rotor speed estimate
步骤2.5),根据所述定子磁链大小估算值通过磁链位置计算模块得到定子磁链相位估算值 Step 2.5), according to the estimated value of the stator flux linkage Obtain the stator flux linkage phase estimation value through the flux linkage position calculation module
作为本发明的改进,步骤2.1)中所述滑模观测器的变结构函数为sigmoid函数。As an improvement of the present invention, the variable structure function of the sliding mode observer in step 2.1) is a sigmoid function.
有益效果:本发明运用滑模控制算法估算定子磁链和转子位置,能够精确地实时控制定子磁链,并实现了基于无位置传感器控制的永磁同步电机直接转矩控制,具有如下有益效果:Beneficial effects: the present invention uses sliding mode control algorithm to estimate stator flux linkage and rotor position, can accurately control stator flux linkage in real time, and realizes direct torque control of permanent magnet synchronous motor based on position sensorless control, and has the following beneficial effects:
(1)本方法结合SVPWM技术和磁链自适应法,因此可减小直接转矩控制中转矩和磁链脉动,极大提高开关频率,以改善电流波形,同时也减小了电机空载或突加负载时直轴电流分量,从而可降低电机损耗,提高电机效率;(1) This method combines SVPWM technology and flux linkage adaptive method, so it can reduce the torque and flux linkage ripple in direct torque control, greatly increase the switching frequency to improve the current waveform, and also reduce the motor no-load Or the direct axis current component when the load is suddenly added, so as to reduce the loss of the motor and improve the efficiency of the motor;
(2)构造滑模磁链观测器估算定子磁链和转子速度,提高了低速时定子磁链的估算精度,从而提高了系统低速性能,同时省去了位置传感器,从而降低了控制系统的成本,提高了系统的可靠性,简化了系统结构;(2) Construct a sliding mode flux observer to estimate the stator flux and rotor speed, which improves the estimation accuracy of the stator flux at low speed, thereby improving the low-speed performance of the system, while eliminating the need for a position sensor, thereby reducing the cost of the control system , which improves the reliability of the system and simplifies the system structure;
(3)本方法首次将磁链自适应法、滑模磁链观测器和SVPWM三者结合运用于永磁同步电机直接转矩控制系统中,使控制系统不但保留滑模控制中的良好动静态性能、抗干扰能力和鲁棒性,还拓宽了系统的运行范围;(3) For the first time, this method combines the flux adaptive method, the sliding mode flux observer and SVPWM in the direct torque control system of the permanent magnet synchronous motor, so that the control system not only retains the good dynamic and static state in the sliding mode control Performance, anti-interference ability and robustness, and also broaden the operating range of the system;
(4)所用方法计算量小,易于实现,有利于新理论的工程化和实用化。(4) The method used has a small amount of calculation and is easy to implement, which is beneficial to the engineering and practical application of the new theory.
附图说明Description of drawings
图1为本发明基于滑模磁链观测器的永磁同步电机转矩控制系统的结构框图;Fig. 1 is the structural block diagram of the permanent magnet synchronous motor torque control system based on the sliding mode flux observer of the present invention;
图2为滑模磁链观测器原理结构框图。Figure 2 is a block diagram of the principle structure of the sliding mode flux observer.
具体实施方式detailed description
下面结合图1、图2对本发明的技术方案作进一步详细说明。The technical solution of the present invention will be described in further detail below in conjunction with FIG. 1 and FIG. 2 .
如图1所示,本发明基于滑模磁链观测器的永磁同步电机转矩控制系统包括永磁同步电机、3/2坐标变换、滑模磁链观测器、电磁转矩计算、转速PI调节器、转矩PI调节器、磁链自适应、预期电压计算、SVPWM模块和逆变器。As shown in Figure 1, the permanent magnet synchronous motor torque control system based on sliding mode flux observer in the present invention includes permanent magnet synchronous motor, 3/2 coordinate transformation, sliding mode flux observer, electromagnetic torque calculation, speed PI Regulator, Torque PI Regulator, Flux Adaptation, Expected Voltage Calculation, SVPWM Module and Inverter.
本发明基于滑模磁链观测器的永磁同步电机转矩控制方法的具体实施步骤如下:The specific implementation steps of the permanent magnet synchronous motor torque control method based on the sliding mode flux observer in the present invention are as follows:
步骤1),检测永磁同步电机的三相电流ia、ib、ic和三相电压ua、ub、uc,经3/2坐标变换后得到两相静止交流坐标下的电流分量iα、iβ和电压分量uα、uβ,然后将电流分量iα、iβ和电压分量uα、uβ送至滑模磁链观测器,并将电流分量iα、iβ送至电磁转矩计算模块;Step 1), detect the three-phase current ia , ib , ic and the three-phase voltage u a , ub , uc of the permanent magnet synchronous motor, and obtain the current in the two-phase static AC coordinate after the 3/2 coordinate transformation components i α , i β and voltage components u α , u β , then send current components i α , i β and voltage components u α , u β to the sliding mode flux observer, and send current components i α , i β Send to the electromagnetic torque calculation module;
步骤2),根据电流分量iα、iβ和电压分量uα、uβ,运用滑模磁链观测器模块估算定子磁链大小估算值和定子磁链相位估算值以及转子速度估算值其原理框图如图2所示,具体算法如下:Step 2), according to the current components i α , i β and voltage components u α , u β , use the sliding mode flux observer module to estimate the estimated value of the stator flux linkage and stator flux phase estimates and the rotor speed estimate Its principle block diagram is shown in Figure 2, and the specific algorithm is as follows:
步骤2.1),根据电流分量iα、iβ和电压分量uα、uβ,构建滑模观测器得到电机的反电动势eα、eβ;其中,构造滑模电流观测器,具体如下:Step 2.1), according to the current components i α , i β and voltage components u α , u β , construct a sliding mode observer to obtain the back electromotive force e α , e β of the motor; among them, construct a sliding mode current observer, as follows:
永磁同步电机数学模型在αβ坐标系下表示为:The mathematical model of the permanent magnet synchronous motor is expressed in the αβ coordinate system as:
其中,Ls为电机的同步电感;ψf为永磁磁链;ω为电机转子电角速度;Rs为定子电阻;eα和eβ为电机反电势的α、β轴分量;Among them, L s is the synchronous inductance of the motor; ψ f is the permanent magnet flux linkage; ω is the electrical angular velocity of the motor rotor; R s is the stator resistance; e α and e β are the α and β axis components of the motor’s back EMF;
根据滑模变结构控制理论,当系统在滑模面上滑动时,有:According to the sliding mode variable structure control theory, when the system slides on the sliding mode surface, there are:
其中,为电流估算值;is=[iαiβ]T为电流实际值;in, is the estimated value of the current; i s =[i α i β ] T is the actual value of the current;
为减小系统抖振,采用sigmoid函数代替传统滑模变结构的开关函数,作为滑模变结构函数,则:In order to reduce system chattering, the sigmoid function is used instead of the switching function of the traditional sliding mode variable structure as the sliding mode variable structure function, then:
其中,k为滑模系数;H为sigmoid函数;和为估算定子电流的α、β轴分量;Among them, k is the sliding mode coefficient; H is the sigmoid function; with To estimate the α and β axis components of the stator current;
定义变结构函数如下:Define the variable structure function as follows:
其中,S为估算电流和实际电流的差值;a为大于零的实数,可根据实际情况调节;Among them, S is the difference between the estimated current and the actual current; a is a real number greater than zero, which can be adjusted according to the actual situation;
将式(3)与式(1)相减,可得到滑模观测器的动态方程:Subtracting formula (3) from formula (1), the dynamic equation of the sliding mode observer can be obtained:
其中,Sα(X)和Sβ(X)为估算电流和实际电流之差的α、β轴分量;Among them, S α (X) and S β (X) are the α and β axis components of the difference between the estimated current and the actual current;
根据滑模运动的存在性和稳定性条件,电机的转子位置可以顺利估算的前提是必须满足:According to the existence and stability conditions of sliding mode motion, the premise that the rotor position of the motor can be estimated smoothly must meet:
则:but:
k>max(|eα|,|eβ|) (6)k>max(|e α |, |e β |) (6)
因此,k取足够大,可保证滑模运动的渐近稳定性,当系统达到滑模面时,有:Therefore, k is large enough to ensure the asymptotic stability of the sliding mode motion. When the system reaches the sliding mode surface, there are:
将上式代入式(5)可得电机的反电动势eα、eβ:Substituting the above formula into formula (5) can get the counter electromotive force e α and e β of the motor:
步骤2.2),根据反电动势eα、eβ,通过转子位置计算模块得到电机的转子估算位置为:Step 2.2), according to the counter electromotive force e α and e β , the estimated rotor position of the motor is obtained through the rotor position calculation module for:
步骤2.3),根据转子估算位置并结合两相静止坐标系下电流分量iα和iβ,通过定子磁链估算模块初步计算得到当前定子磁链矢量ψα、ψβ:Step 2.3), estimate the position from the rotor Combined with the current components i α and i β in the two-phase static coordinate system, the current stator flux vectors ψ α and ψ β are initially calculated by the stator flux estimation module:
由于步骤2.1)中所构造的滑模电流观测器中含有高频分量,因此估算出的定子磁链也含有高频分量,需要采用低通滤波器进行滤波,但低通滤波器的使用会带来相位延迟,影响磁链估算的精度,为提高磁链的估算精度,本发明构造了一种新型磁链观测器;Since the sliding mode current observer constructed in step 2.1) contains high-frequency components, the estimated stator flux linkage also contains high-frequency components, which need to be filtered by a low-pass filter, but the use of a low-pass filter will bring The phase delay affects the accuracy of flux linkage estimation. In order to improve the estimation accuracy of flux linkage, the present invention constructs a novel flux linkage observer;
步骤2.4),根据当前定子磁链矢量ψα、ψβ,通过磁链观测器得到定子磁链大小估算值以及转子速度估算值具体步骤如下:Step 2.4), according to the current stator flux vectors ψ α , ψ β , obtain the estimated value of the stator flux through the flux observer and the rotor speed estimate Specific steps are as follows:
构造磁链观测器,以提高磁链的估算精度,并使用Lyapunov定理分析磁链观测器的稳定性,具体如下:Construct a flux observer to improve the estimation accuracy of flux linkage, and use the Lyapunov theorem to analyze the stability of the flux observer, as follows:
对式(10)求导,可得:Taking the derivative of formula (10), we can get:
其中,ω为电机转子电角速度;Among them, ω is the electrical angular velocity of the motor rotor;
根据上式,可构造磁链观测器:According to the above formula, the flux observer can be constructed:
其中,l为磁链观测器增益,其值大于零;为估算磁链在αβ坐标系中的分量;为转子估算电角速度;Among them, l is the gain of the flux linkage observer, and its value is greater than zero; To estimate the component of the flux linkage in the αβ coordinate system; Estimate the electrical angular velocity for the rotor;
将式(7)代入式(12)中,可得:Substituting formula (7) into formula (12), we can get:
将式(13)与式(11)作差,得到磁链观测器的误差方程为:By making the difference between formula (13) and formula (11), the error equation of the flux linkage observer is obtained as:
其中,ω为电机转子电角速度;l为磁链观测器增益,其值大于零;为估算磁链在αβ坐标系中的分量;为转子估算电角速度; Among them, ω is the electrical angular velocity of the motor rotor; l is the gain of the flux observer, and its value is greater than zero; To estimate the component of the flux linkage in the αβ coordinate system; Estimate the electrical angular velocity for the rotor;
利用Lyapunov定理证明磁链观测器的稳定性,有:Using the Lyapunov theorem to prove the stability of the flux observer, there are:
对式(15)求导有:The derivative of formula (15) is:
将式(14)代入式(16)整理可得:Substituting formula (14) into formula (16), we can get:
由式(17)可以看出,该磁链观测器是渐近稳定的,因此,根据式(14)可计算得到定子磁链估算值和转速估算值 It can be seen from formula (17) that the flux linkage observer is asymptotically stable, therefore, the estimated value of stator flux linkage can be calculated according to formula (14) and speed estimates
步骤2.5),根据定子磁链大小估算值通过磁链位置计算模块得到定子磁链相位估算值 Step 2.5), according to the estimated value of the stator flux linkage Obtain the stator flux linkage phase estimation value through the flux linkage position calculation module
步骤3),将给定转速ω*与转子速度估算值作差后,经转速PI调节器后得到给定转矩Te*;Step 3), compare the given rotational speed ω * with the estimated rotor speed After making a difference, the given torque Te * is obtained after the speed PI regulator;
步骤4),根据定子磁链大小估算值以及两相静止坐标下的电流分量iα、iβ,经电磁转矩计算模块得到电机实际转矩Te,具体如下:Step 4), according to the estimated value of the stator flux linkage As well as the current components i α and i β under the two-phase static coordinates, the actual torque Te of the motor is obtained through the electromagnetic torque calculation module, as follows:
其中,p0为电机的极对数;Among them, p 0 is the number of pole pairs of the motor;
步骤5),给定转矩Te*经磁链自适应模块得到定子磁链给定值ψs.ref,具体如下:Step 5), the given torque Te * is obtained through the flux linkage adaptive module to obtain the given value ψ s.ref of the stator flux linkage, as follows:
永磁同步电机定子磁链交直轴分量ψsq、ψsd为:The direct-axis components ψ sq and ψ sd of the permanent magnet synchronous motor stator flux linkage are:
其中,Ld和Lq为定子电感的dq轴分量,id和iq为定子电流的dq轴分量;Among them, L d and L q are the dq axis components of the stator inductance, and i d and i q are the dq axis components of the stator current;
电机转矩和定子磁链分量之间的关系如下:The relationship between motor torque and stator flux components is as follows:
其中,ψs为定子磁链,δ为负载角;Among them, ψ s is the stator flux linkage, δ is the load angle;
在式(20)中,令id=0,再结合式(21),可得定子磁链给定的参考值ψsref为:In formula (20), let i d =0, combined with formula (21), the given reference value ψ sref of the stator flux linkage can be obtained as:
步骤6),将给定转矩Te*与所述电机实际转矩Te作差后,经转矩PI调节器后得到输出量Δδ;Step 6), after making a difference between the given torque Te * and the actual torque Te of the motor, the output value Δδ is obtained after the torque PI regulator;
步骤7),输出量Δδ、定子磁链给定值ψs.ref、定子磁链大小估算值以及定子磁链相位估算值经预期电压计算模块,得到两相静止坐标系上的两相交流电压参考值 Step 7), output Δδ, given value of stator flux linkage ψ s.ref , estimated value of stator flux linkage and stator flux phase estimates Through the expected voltage calculation module, the two-phase AC voltage reference value on the two-phase stationary coordinate system is obtained
步骤8),根据定子磁链矢量位置以及所述两相交流电压参考值从开关状态表中选择相应的空间电压矢量后,经SVPWM模块输出调制信号到逆变器,通过逆变器实现永磁同步电机的直接转矩控制。Step 8), according to the stator flux vector position and the two-phase AC voltage reference value After selecting the corresponding space voltage vector from the switch state table, the modulation signal is output to the inverter through the SVPWM module, and the direct torque control of the permanent magnet synchronous motor is realized through the inverter.
本发明中,定子磁链矢量的估算以及转子速度采用滑模磁链观测器,不仅具有滑模算法简单、鲁棒性强等优点,而且,相对于传统的电压模型,低速时定子磁链的估算精度大大提高,改善了电机低速运行性能;相对于传统的电流模型,无需额外的位置传感器,控制系统成本降低,系统的可靠性提高;由磁链自适应法得到定子磁链给定值,其值根据负载的大小而变化,因此,降低了电机运行于空载或突加重载时的直轴电流,提高了电机效率。本发明能实时观测和控制定子磁链并结合磁链自适应法和SVPWM技术,可有效减小转矩和磁链脉动,提高开关频率和电机效率,拓宽系统的运行范围,同时,还具有良好的动静态性能、可靠性、鲁棒性和抗干扰能力。In the present invention, the estimation of the stator flux vector and the rotor speed adopt the sliding mode flux observer, which not only has the advantages of simple sliding mode algorithm and strong robustness, but also, compared with the traditional voltage model, the stator flux at low speed The estimation accuracy is greatly improved, and the low-speed operation performance of the motor is improved; compared with the traditional current model, no additional position sensor is needed, the cost of the control system is reduced, and the reliability of the system is improved; the given value of the stator flux linkage is obtained by the flux linkage adaptive method, Its value changes according to the size of the load, therefore, it reduces the direct axis current when the motor is running at no load or suddenly loaded with heavy load, and improves the efficiency of the motor. The invention can observe and control the stator flux linkage in real time and combine the flux linkage adaptive method and SVPWM technology, which can effectively reduce the torque and flux linkage pulsation, improve the switching frequency and motor efficiency, and broaden the operating range of the system. At the same time, it also has good Dynamic and static performance, reliability, robustness and anti-interference ability.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410116544.4A CN103872951B (en) | 2014-04-23 | 2014-04-23 | Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410116544.4A CN103872951B (en) | 2014-04-23 | 2014-04-23 | Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103872951A CN103872951A (en) | 2014-06-18 |
CN103872951B true CN103872951B (en) | 2017-04-19 |
Family
ID=50911153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410116544.4A Expired - Fee Related CN103872951B (en) | 2014-04-23 | 2014-04-23 | Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103872951B (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104601076B (en) * | 2015-02-15 | 2017-08-25 | 电子科技大学 | For electric automobile motor without sensor Design of Sliding Mode Observer method |
FR3033640B1 (en) * | 2015-03-11 | 2017-03-24 | Renault Sas | TORQUE ESTIMATOR PROVIDED BY AN ELECTRIC MACHINE FOR PROPULSION OF A MOTOR VEHICLE AND ASSOCIATED METHOD |
CN104935232B (en) * | 2015-04-30 | 2017-10-13 | 广东美的制冷设备有限公司 | The Direct Torque Control of permagnetic synchronous motor, control system |
CN104868815B (en) * | 2015-05-26 | 2018-06-19 | 广西大学 | A kind of High-reliability Control device and method of asynchronous machine |
CN104935233B (en) * | 2015-06-09 | 2019-04-30 | 北京天诚同创电气有限公司 | Electromagnetic torque control method and device for permanent magnet direct-drive wind driven generator |
CN105915147B (en) * | 2016-04-20 | 2018-12-18 | 同济大学 | A kind of cage type induction motor control system and method based on direct character control |
CN106019148B (en) * | 2016-05-16 | 2019-11-12 | 安徽大学 | A Fault Diagnosis Method for Turn-to-turn Short Circuit of Permanent Magnet Synchronous Motor Based on Flux Linkage Observation |
CN107040181B (en) * | 2017-03-14 | 2020-06-05 | 中南大学 | Direct torque control method and device of three-level converter |
CN107276460B (en) * | 2017-06-09 | 2019-05-03 | 常州机电职业技术学院 | Method and system for synchronously controlling rotating speeds of two permanent magnet synchronous motors based on flux linkage following |
CN107093971B (en) * | 2017-06-14 | 2019-05-07 | 安徽工业大学 | A torque control system and control method of a permanent magnet synchronous motor |
CN107425763B (en) * | 2017-07-07 | 2019-12-27 | 西北工业大学 | Method for suppressing torque fluctuation of aviation multistage electrically-excited synchronous motor |
CN107994834B (en) * | 2017-10-16 | 2020-01-10 | 浙江工业大学 | Sliding mode synchronous control method for multi-motor system self-adaptive fast terminal |
CN107749727B (en) * | 2017-10-18 | 2019-11-19 | 浙江大学 | Field Weakening Control Method of Built-in Permanent Magnet Synchronous Motor Based on Torque Feedforward Control Technology |
CN108282057B (en) * | 2018-02-02 | 2023-07-25 | 卧龙电气驱动集团股份有限公司 | ECM motor and method for constant torque control based on accurate flux linkage table look-up method |
CN108258967B (en) * | 2018-02-27 | 2020-03-31 | 江苏大学 | A positionless direct torque control method for permanent magnet motor based on a novel flux linkage observer |
CN108667372A (en) * | 2018-05-16 | 2018-10-16 | 华南理工大学 | A Direct Torque Control Method Based on Space Voltage Vector Modulation of Permanent Magnet Synchronous Motor Based on Time-Varying Flux Amplitude |
CN108809180A (en) * | 2018-07-02 | 2018-11-13 | 沈阳新松智能驱动股份有限公司 | The method for controlling servo-driver based on pre- estimation and sliding formwork observation method |
CN110061669A (en) * | 2019-05-10 | 2019-07-26 | 上海应用技术大学 | Direct torque control method for permanent magnetic synchronous electric machine |
FR3097090B1 (en) | 2019-06-04 | 2021-05-21 | Renault Sas | Method for estimating the electromagnetic torque of a synchronous electric machine |
CN110212835A (en) * | 2019-06-26 | 2019-09-06 | 北京机械设备研究所 | A kind of velocity estimation and device based on sliding mode observer |
FR3106894B1 (en) | 2020-02-04 | 2021-12-24 | Renault Sas | Method for estimating the electromagnetic torque of a synchronous electric machine |
CN111682804A (en) * | 2020-04-30 | 2020-09-18 | 深圳市吉胜华力科技有限公司 | Special controller for oil pump permanent magnet synchronous motor without position sensor |
CN113078851B (en) * | 2021-04-09 | 2022-10-21 | 东南大学 | Finite position set position-free control method based on permanent magnet flux linkage observer |
CN113098347A (en) * | 2021-04-12 | 2021-07-09 | 山东理工大学 | Multi-motor speed synchronous control method |
CN113285641A (en) * | 2021-04-12 | 2021-08-20 | 山东理工大学 | Motor speed tracking control method |
EP4156500B1 (en) * | 2021-08-13 | 2025-02-12 | Contemporary Amperex Technology (Hong Kong) Limited | Torque acquisition method and apparatus, motor controller, readable storage medium |
CN115664295B (en) * | 2022-12-27 | 2023-03-28 | 北京科技大学 | Constant speed control method and system for high-power asynchronous traction motor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103414423A (en) * | 2013-08-22 | 2013-11-27 | 东南大学 | Surface-mounted permanent magnet synchronous motor sensorless direct torque control method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001020751A2 (en) * | 1999-09-17 | 2001-03-22 | Delphi Technologies, Inc. | Brushless machines using optimal phase angle control |
JP3546862B2 (en) * | 2001-06-21 | 2004-07-28 | 日産自動車株式会社 | Control device and control method for permanent magnet type brushless motor |
-
2014
- 2014-04-23 CN CN201410116544.4A patent/CN103872951B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103414423A (en) * | 2013-08-22 | 2013-11-27 | 东南大学 | Surface-mounted permanent magnet synchronous motor sensorless direct torque control method |
Non-Patent Citations (2)
Title |
---|
The Improved Direct Torque Control of a NEW Self-decelerating Permagnet In-Wheel Motor for Electric Vehicles;Ying Fan,et al;《Vehicle Power and Propulsion Conference (VPPC), 2013 IEEE》;20131018;第349-353页 * |
基于有效磁链概念的永磁同步电动机新型定子磁链滑模观测器;周扬忠等;《中国电机工程学报》;20130425;第33卷(第12期);第152-158、S20页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103872951A (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103872951B (en) | Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer | |
CN111431460B (en) | Permanent magnet synchronous motor sensorless model prediction flux linkage control method | |
CN103607155B (en) | Based on the permagnetic synchronous motor method for controlling position-less sensor of rotatory current vector | |
WO2019218389A1 (en) | Virtual voltage injection-based speed sensor-less driving control method for induction motor | |
CN104901600B (en) | The method for controlling position-less sensor of wide speed range interior permanent-magnet synchronous motor | |
CN103501146B (en) | Commutation method for suppressing torque ripple and the system of BLDCM Drive System | |
CN102684592B (en) | Torque and flux linkage control method for permanent synchronous motor | |
CN105227010B (en) | A kind of permagnetic synchronous motor position-sensor-free position detection error harmonic pulse removing method | |
CN108155838A (en) | A kind of rotating speed method for tracing based on permanent magnet synchronous motor open loop | |
CN113114080B (en) | A method for direct torque control of permanent magnet synchronous motor without magnetic link | |
CN104967382B (en) | A kind of permagnetic synchronous motor method for controlling position-less sensor | |
CN114465543B (en) | Permanent magnet synchronous motor sensorless control method | |
CN102790575A (en) | Control method and system for permanent magnet synchronous motor based on current prediction | |
CN104104301A (en) | Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor | |
CN111181458A (en) | Surface-mounted permanent magnet synchronous motor rotor flux linkage observation method based on extended Kalman filter | |
CN102647134A (en) | An efficiency optimization control method for permanent magnet synchronous motor without angle sensor | |
CN111769779A (en) | PMSM direct torque control method based on improved Luenberger observer | |
CN203151429U (en) | Sensorless control device for permanent magnet synchronous motor | |
CN111245328A (en) | Permanent magnet synchronous motor control method combining table look-up method with regulator | |
CN107863915A (en) | Based on the synchronous magnetic resistance motor of power back-off without sensor direct Torque Control | |
CN111726048A (en) | Rotor position and speed estimation method for permanent magnet synchronous motor based on sliding mode observer | |
CN102340278A (en) | Estimation Method of Motor Stator Flux Linkage in Vector Frequency Converter | |
CN103117702A (en) | Without-speed sensor estimation method for high-accuracy permanent magnet synchronous motor | |
CN110098772B (en) | Function switching-based direct-current magnetic modulation type memory motor position-free control method and system | |
CN106533294B (en) | A kind of permanent magnet synchronous motor field weakening control method based on line voltage modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170419 |