Disclosure of Invention
The invention provides a thermal deformation prediction method of a heavy machine tool with consideration of ambient temperature, which considers the combined effect of reflecting the influence of the nonlinear hysteresis of the ambient temperature and the influence of an internal heat source on the heavy machine tool and can realize real-time effective prediction of thermal deformation errors under any ambient conditions and machining conditions.
In order to solve the technical problems, the invention adopts the technical scheme that:
a method for predicting thermal deformation of a heavy machine tool by considering environmental temperature specifically comprises the following steps: predicting machine tool thermal deformation delta L caused by machine tool internal heat sourceinAnd predicting the thermal deformation amount DeltaL of the machine tool caused by the external heat source of the machine toolextThe amount of thermal deformation Δ L of the machine tool caused by internal and external heat sourcesin、ΔLextSuperposing to obtain the final thermal deformation of the machine tool;
the thermal deformation quantity Delta L of the machine tool caused by the external heat source of the machine toolextThe prediction is as follows:
real-time prediction of ambient temperature t of machine toole(x) And determining the surface temperature t of the machine tool according to the heat exchange balance relationship between the environment temperature and the surface temperature of the machine toolb(x) X represents a time variable; calculating the time x1To time x2Machine tool thermal deformation amount Delta L caused by external heat sourceext=αLX(tb(x2)-tb(x1) Alpha is machine tool materialCoefficient of thermal expansion, LXThe nominal size of the machine tool in the direction to be measured;
the thermal deformation quantity Delta L of the machine tool caused by the heat source in the machine toolinThe prediction is as follows:
firstly, measuring the comprehensive thermal deformation error Delta L of the machine toolXCombined with the amount of thermal deformation Δ L of the machine tool caused by the external heat source of the machine toolextCalculating thermal deformation error Delta L caused by internal heat source of machine toolin′=ΔLX+ΔLextWill calculate Δ LinThe temperature of a measuring point on the surface of the machine tool is used as an input, and a least square regression method is adopted to fit to obtain a prediction formula of thermal deformation error caused by a heat source in the machine tool
<math>
<mrow>
<mi>Δ</mi>
<msub>
<mi>L</mi>
<mi>in</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>m</mi>
</munderover>
<msub>
<mi>k</mi>
<mi>i</mi>
</msub>
<mi>Δ</mi>
<msub>
<mi>t</mi>
<mi>i</mi>
</msub>
<mo>+</mo>
<mi>C</mi>
</mrow>
</math>
Wherein, Δ LinPredicted value of thermal deformation error, delta t, caused by heat source inside machine tooliIs the temperature difference of the distribution point temperature, kiAnd C are the coefficients and constants determined by the fitting, respectively.
Further, the ambient temperature t at which the machine tool is locatede(x) The prediction formula of (c) is:
<math>
<mrow>
<msub>
<mi>t</mi>
<mi>e</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mo>∞</mo>
</munderover>
<msub>
<mi>β</mi>
<mi>n</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>nω</mi>
<mn>0</mn>
</msub>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>φ</mi>
<mrow>
<mn>0</mn>
<mi>n</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a</mi>
<mi>n</mi>
</msub>
<mo>·</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1,2,3</mn>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</mrow>
</math>
determining the surface temperature of the machine tool according to the heat exchange balance relationship between the environment temperature and the surface temperature of the machine tool
Wherein,
(x) The average value of the sampling environment temperature in one period is obtained;
Tmax(x) The maximum value of the environmental temperature obtained by sampling and measuring in one period is obtained;
βnthe weight is the contribution component of the temperature wave of different frequency components to the total temperature change;
ω0is the fundamental frequency;
φ0ninitial phases of temperature waves of different frequency components;
αnis a lag time coefficient between the seasonal temperature and a phase component transformed with the seasonal temperature in the phases of the temperature waves of different frequency components;
τris a time constant;
omega is the fundamental frequency of the temperature wave;
the phase angles of the respective orders are lags between the machine tool surface temperature response and the ambient temperature. The invention has the beneficial effects that:
in the current thermal error comprehensive prediction, the model input variables comprise the ambient temperature, the machine tool body temperature, machine tool coordinate parameters and the like. The environment temperature is measured in real time, and does not contain historical temperature information and thermal information, and the thermal deformation error of the machine tool is influenced by the current environment temperature and is also related to the past machine tool state and the past environment state. Therefore, the technical problems to be solved at present are as follows: how to establish the high-robustness comprehensive prediction model, the model can reflect the combined effect of the environment temperature nonlinear hysteresis influence and the internal heat source influence on the heavy machine tool, and the method is used for predicting the thermal deformation error of any processing condition under any environment condition in real time.
The invention provides a thermal error prediction comprehensive model modeling method for a heavy machine tool under combined action of an internal heat source and an external heat source. According to the method, time-lag thermal deformation errors caused by the environment temperature are analyzed and modeled, and thermal deformation caused by an internal heat source is subjected to multivariate regression modeling based on the least square principle.
Furthermore, the invention considers the periodicity and the non-periodicity of the environmental temperature fluctuation and the characteristics of the fluctuation changing along with seasons and years, simultaneously considers the objective fact that the current thermal state of the machine tool is influenced by the current environmental temperature and the historical temperature state, provides a new research idea, realizes the Fourier series decomposition of the environmental temperature by combining time series analysis, uses the predicted temperature with the analysis form of definite time, frequency and phase information for thermal error modeling to replace the actually measured temperature data, and is beneficial to more accurately and quantitatively describing the time lag response characteristic of the thermal error of the machine tool, thereby improving the accuracy and the robustness of the prediction of the thermal error of the machine tool. The model can effectively predict the thermal deformation error in any environment and any working condition. The comprehensive model is beneficial to solving the problem that the traditional model is poor in robustness along with seasonal temperature change.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. In addition, the technical features involved in the embodiments of the present invention described below may be combined with each other as long as they do not conflict with each other.
The invention relates to a technical idea.
The thermal deformation error of the machine tool is decomposed into superposition influenced by an external environment and an internal heat source, X represents a specified thermal deformation direction to be measured, and can be an X coordinate, a y coordinate and a z coordinate in a machine tool coordinate system.
ΔLX=ΔLin+ΔLext(1)
Wherein Δ LinDenotes the thermal deformation, Δ L, caused by the influence of an internal heat sourceextIndicating deformation caused by an external heat source.
The modeling method of the thermal error caused by the external heat source comprises the following steps:
the deformation caused by the external heat source alone is linear with the variation of the response temperature tb (x) of the machine tool under the influence of the ambient temperature, i.e.:
ΔLext=αLX(tb(x2)-tb(x1))(2)
wherein L isXAlpha represents the thermal expansion coefficient of the machine tool body for the nominal size of the thermal deformation direction to be measured of the machine tool, the response temperature of the surface of the machine tool is obtained not directly but by establishing a temperature response model of the machine tool body based on the lumped heat capacity principle and solving and calculating the model.
Furthermore, the environment temperature of the machine tool is obtained through analysis model prediction, and the actually measured discrete temperature is replaced by the continuously time-varying predicted temperature. Obtaining t by analytic modele(x) Then, the response temperature t of the machine tool body can be obtainedb(x) Further, the solution of the equation (2) is obtained, that is, the thermal error caused by the external heat source can be obtained.
The thermal error modeling method of the influence of the internal heat source comprises the following steps: and determining an optimal temperature measuring point through temperature measuring point selection, grouping and optimization of the machine tool body, and establishing a multi-element linear regression model between the thermal deformation influenced by the internal heat source and the optimal measuring point.
And finally, superposing the models acted by the internal heat source and the ambient temperature to form a comprehensive prediction model.
Second, technical scheme
Based on the technical idea, the invention provides a heavy machine tool thermal error modeling method considering the environmental temperature, which is shown in fig. 1 and comprises the following specific steps:
1) ambient temperature prediction
And combining time sequence analysis and a Fourier series decomposition method, expressing the actually measured ambient temperature in a Fourier trigonometric series form, and acquiring information such as a time sequence, a fluctuation frequency, a fluctuation amplitude, a phase and the like of the ambient temperature. And measuring the updated temperature data and the current time signal in real time as input to realize real-time prediction of the temperature, and replacing the actually measured temperature to be used for thermal error response prediction modeling.
1.1) ambient temperature Fourier series decomposition
The ambient temperature expansion is in the form of a fourier series, i.e.:
<math>
<mrow>
<msub>
<mi>t</mi>
<mi>e</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
<mo>+</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mo>∞</mo>
</munderover>
<msub>
<mi>A</mi>
<mi>n</mi>
</msub>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>nω</mi>
<mn>0</mn>
</msub>
<mi>x</mi>
<mo>+</mo>
<msub>
<mi>φ</mi>
<mi>n</mi>
</msub>
<mo>)</mo>
</mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1,2,3</mn>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</mrow>
</math>
wherein x represents time in minutes, which is determined by a time reference starting point and a current time; fundamental frequency omega0=2π/T0,T0Is a period, pi is a circumferential ratio, A0Is the mean term of temperature, AnIs the amplitude of the temperature wave of each order, n =1,2, …, phinIs a phase angle, the physical meaning of which is a lag time of each orderBelow pair A0,An,φnAdjusting and replacing various parameters;
1.2) mean term A0
Mean value term A
0Is the average of the period over which the current temperature point is located, here by the running average of the historical temperatures
Instead, it is derived from the formula:
<math>
<mrow>
<msub>
<mi>A</mi>
<mn>0</mn>
</msub>
<mo>=</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mo>[</mo>
<mi>x</mi>
<mo>]</mo>
<mo>-</mo>
<mi>N</mi>
<mo>+</mo>
</mrow>
</msub>
<msub>
<mi>t</mi>
<mrow>
<mo>[</mo>
<mi>x</mi>
<mo>]</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mi>N</mi>
<mo>-</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
</msub>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
<mo>+</mo>
<msub>
<mi>t</mi>
<mrow>
<mo>[</mo>
<mi>x</mi>
<mo>]</mo>
<mo>-</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
<mi>N</mi>
</mfrac>
<mo>[</mo>
<mi>x</mi>
<mo>]</mo>
<mo>≥</mo>
<mi>N</mi>
</mrow>
</math>
wherein, [ x ]]Is to take integer of x at any time, N is the number of sampling points in one period, t[x]Is the measured temperature at time x, the ambient temperature is slowly varying information, and the time x is considered]≤x<[x]The ambient temperature during +1 is equal to t[x](ii) a In the moving average method, historical data of N sampling points in at least one period is required to predict the current temperature; new measured value t[x]-1Introduction of old t[x]-NExit, then predicted mean A0Can be updated online. The moving average method reserves all fluctuation information below the fundamental frequency;
1.3) amplitude term An
AnThe amplitude term of each order of temperature fluctuation after decomposition is the maximum value T of fluctuation in the considered periodmaxWith the average value A0The difference is proportional, i.e.:
<math>
<mrow>
<msub>
<mi>A</mi>
<mi>n</mi>
</msub>
<mo>=</mo>
<msub>
<mi>β</mi>
<mi>n</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1,2,3</mn>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</mrow>
</math>
wherein:
βnthe weight is the contribution component of the temperature waves with different frequency components to the total temperature change, and the weight represents the inherent characteristics of the workshop; (T)max(x)-A0 (1)(x) Is variable over different observation periods, but the observed value is determined for a known ambient temperature history;
1.4) phase
Phase position
Expressed as:
<math>
<mrow>
<msub>
<mi>φ</mi>
<mi>n</mi>
</msub>
<mo>=</mo>
<msub>
<mi>φ</mi>
<mrow>
<mn>0</mn>
<mi>n</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a</mi>
<mi>n</mi>
</msub>
<mo>·</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1,2,3</mn>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</mrow>
</math>
where alpha isnA lag time coefficient representing a seasonal change, representing an inherent thermal characteristic of a particular plant, which is a particular value; phi is a0n is the initial phase of each order frequency component of the temperature wave;
1.5) Total temperature prediction model
In summary, the analytical model for the prediction of the ambient temperature at any time x can be expressed as:
<math>
<mrow>
<msub>
<mi>t</mi>
<mi>e</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mo>∞</mo>
</munderover>
<msub>
<mi>β</mi>
<mi>n</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>nω</mi>
<mn>0</mn>
</msub>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>φ</mi>
<mrow>
<mn>0</mn>
<mi>n</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a</mi>
<mi>n</mi>
</msub>
<mo>·</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
<mo>=</mo>
<mn>1,2,3</mn>
<mo>,</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</mrow>
</math>
in the formula, the mean value A0 (1)And maximum value Tmax(x) Calculated from historical measurements over at least one period, and updated in real time, the fundamental frequency ω0It is known that beta in the analytical model can be identified from measured temperature data using the nonlinear least squares principlen,φ0nAnd alphanAnd the parameters are equal, so that the online prediction of the environment temperature is realized.
2) Analytic modeling of transient temperature response of machine tool body
For a heavy numerical control machine tool meeting the lumped heat capacity condition, the surface of the machine tool exchanges heat with the ambient temperature according to the Newton's law of cooling, and then the heat balance differential equation is as follows:
<math>
<mrow>
<mfrac>
<msub>
<mi>dt</mi>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
</msub>
<mi>dx</mi>
</mfrac>
<mo>=</mo>
<mo>-</mo>
<mfrac>
<mn>1</mn>
<msub>
<mi>τ</mi>
<mi>r</mi>
</msub>
</mfrac>
<mrow>
<mo>(</mo>
<msub>
<mi>t</mi>
<mi>b</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>t</mi>
<mi>e</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>4</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
in the formula: tau isrIs a constant of time, and is,
<math>
<mrow>
<msub>
<mi>τ</mi>
<mi>r</mi>
</msub>
<mo>=</mo>
<mfrac>
<mi>ρcV</mi>
<mi>hA</mi>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
wherein
Rho-density of the heat conductor, kg/m3;
c is specific heat capacity, J/(kg. k);
h-surface Heat transfer coefficient, unit W/(m 2).k);
V-volume of heat conductor, m3;
A-heat transfer area of heat conductor and fluid, m2;
Solving the equations (3) and (4) to obtain the response temperature t of the machine toolb(x):
Wherein
Is the lagging phase angle between the machine tool surface temperature response and the ambient temperature.
From equation (5), it can be seen that the temperature response of the machine tool is composed of three parts: mean term, exponential decay term, harmonic response term. Time constant τrFor a constant value, the exponential decay term will approach 0 when time x is long enough. Starting from the machine tool being put into the shop, the slowly changing ambient temperature starts to affect the machine tool, indicating that the time of influence x is sufficiently long, so the exponential decay term can be considered to be 0. Equation (5) can thus be expressed as:
3) transient thermal deformation error model of heavy machine tool caused by external heat source
Combining the equations (2) and (7), the thermal deformation in the designated direction caused by the external heat source at any two times x1 and x2 can be calculated as:
for a heavy numerically controlled machine tool placed in a given workshop, the parameters α, τ are taken into account when considering the thermal deformation error in a given direction
rAnd ω are both known parameters and can be calculated as, α
nLX and
the parameter is a fixed parameter, shows the inherent thermal characteristic of the environment where the machine tool is located, and can be obtained through system identification. The thermal deformation of the machine tool is therefore dependent on the measured ambient temperature andtime is two variables.
4) Prediction model for transient thermal deformation error of heavy machine tool caused by internal heat source
The thermal deformation error DeltaL caused by the external heat source can be obtained by the formula (8)extPredicted value of (d), and the overall thermal deformation error Δ L of the machine toolXCan be obtained through measurement, so that the corresponding thermal deformation error Delta L caused by the internal heat source can be calculated and obtained through the formula (1)in。
For machine tool thermal deformation error Delta L caused by internal heat sourceinThe selected temperature distribution point can be determined through thermal error testing, temperature variable grouping, distribution point optimization and the like. The temperature of the measuring point determined after optimization is taken as input, and the delta L is calculated by the formula (1)inAs output, a multiple linear regression prediction model is established based on the least square principle, and the model form is as follows:
<math>
<mrow>
<mi>Δ</mi>
<msub>
<mi>L</mi>
<mi>in</mi>
</msub>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mi>m</mi>
</munderover>
<msub>
<mi>k</mi>
<mi>i</mi>
</msub>
<mi>Δ</mi>
<msub>
<mi>t</mi>
<mi>i</mi>
</msub>
<mo>+</mo>
<mi>C</mi>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>9</mn>
<mo>)</mo>
</mrow>
</mrow>
</math>
wherein, Δ ti(i =1,2, … m) temperature difference measured for the determined point after optimization, kiIs a model coefficient, C is a constant, kiAnd C is obtained by a least squares regression method.
5) Thermal error prediction comprehensive model of heavy machine tool under combined action of internal and external heat sources
The thermal deformation prediction model in the specified direction of the machine tool is obtained by combining the formula (1), the formula (8) and the formula (9):
third, example
The invention is explained in detail by a predictive modeling implementation process of thermal deformation error of an XK2650 planer boring and milling machine under the combined action of an internal heat source and an external heat source in combination with the attached drawings. FIG. 2 is a schematic diagram of a machine tool sensor unknown site, and Table 1 defines the layout of the sensor.
TABLE 1 temperature sensor layout definition
1. Ambient temperature prediction and effect verification
Predicting the environmental temperature of the workshop:
and respectively selecting data of 30 days in four seasons to compare the predicted effects of the identified model formula (3). The comparison shows that the analytic model can well predict and reproduce the current temperature in the temperature range of 0-40 ℃ in different seasons, the residual between the predicted value and the measured value is less than 1 ℃, and the prediction model is a variable coefficient analytic model and can be conveniently applied to time lag and nonlinear thermal deformation response analysis of a machine tool. The comparative effect is shown in fig. 2.
2. Modeling of thermal deformation errors caused by ambient temperature
The environmental temperature and machine tool X thermal offset error data obtained by measurement for 30 days are selected, parameters of the formula (8) are identified based on a nonlinear least square principle and the combination formula (11), and partial parameter models are obtained and shown in the table (2).
Table 2 identified thermal error prediction model partial parameters
3. Integrated model identification
The total thermal error of the machine tool is the additive effect of the combined action of the internal heat source and the external heat source, and the deformation caused by the internal heat source can be considered to be the total deformation minus the deformation caused by the external heat source. For deformation caused by an internal heat source, a linear relation between the optimal temperature distribution point and the thermal deformation of the machine tool is established based on the most linear strategy through a large number of distribution points, variable grouping and distribution point optimization of the temperature sensor. The thermal deformation error prediction model caused by the internal heat source of the XK2650 planer type boring and milling machine established in the embodiment is as follows:
ΔLin=0.039Δt3+0.009Δt23-0.007Δt16+0.01(12)
wherein t is3、t23、t16Milling planer with separate indicationThe cross beam, the front end of the main shaft and the ambient temperature change.
The comprehensive prediction model of the thermal error of the machine tool obtained by integrating the formula (11), the table (2) and the formula (12) is as follows:
<math>
<mfenced open='' close=''>
<mtable>
<mtr>
<mtd>
<mi>Δ</mi>
<msub>
<mi>L</mi>
<mi>x</mi>
</msub>
<mo>=</mo>
<msub>
<mrow>
<mn>0.039</mn>
<mi>Δt</mi>
</mrow>
<mn>3</mn>
</msub>
<mo>+</mo>
<msub>
<mrow>
<mn>0.009</mn>
<mi>Δt</mi>
</mrow>
<mn>23</mn>
</msub>
<mo>-</mo>
<msub>
<mrow>
<mn>0.007</mn>
<mi>Δt</mi>
</mrow>
<mn>16</mn>
</msub>
<mo>+</mo>
<mn>0.01</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>+</mo>
<mn>0.067</mn>
<mrow>
<mo>(</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>+</mo>
<mn>0.015</mn>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mrow>
<mn>0.0436</mn>
<mi>x</mi>
</mrow>
<mn>2</mn>
</msub>
<mo>-</mo>
<msubsup>
<mn>0.022</mn>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mn>2.32</mn>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mn>0.0024</mn>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>mzx</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mrow>
<mn>0.0872</mn>
<mi>x</mi>
</mrow>
<mn>2</mn>
</msub>
<mo>-</mo>
<msubsup>
<mrow>
<mn>0.009</mn>
<mi>A</mi>
</mrow>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mn>1.10</mn>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mn>0.0003</mn>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mrow>
<mn>0.131</mn>
<mi>x</mi>
</mrow>
<mn>2</mn>
</msub>
<mo>-</mo>
<msubsup>
<mrow>
<mn>0.011</mn>
<mi>A</mi>
</mrow>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>0.616</mn>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mn>0.015</mn>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mrow>
<mn>0.0436</mn>
<mi>x</mi>
</mrow>
<mn>1</mn>
</msub>
<mo>-</mo>
<msubsup>
<mrow>
<mn>0.022</mn>
<mi>A</mi>
</mrow>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mn>2.32</mn>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>+</mo>
<mn>0.0024</mn>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mrow>
<mn>0.0872</mn>
<mi>x</mi>
</mrow>
<mn>1</mn>
</msub>
<mo>-</mo>
<msubsup>
<mrow>
<mn>0.009</mn>
<mi>A</mi>
</mrow>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mn>1.10</mn>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>+</mo>
<mn>0.0003</mn>
<mrow>
<mo>(</mo>
<msub>
<mi>T</mi>
<mi>max</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msubsup>
<mi>A</mi>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>sin</mi>
<mrow>
<mo>(</mo>
<msub>
<mrow>
<mn>0.131</mn>
<mi>x</mi>
</mrow>
<mn>1</mn>
</msub>
<mo>-</mo>
<msubsup>
<mrow>
<mn>0.011</mn>
<mi>A</mi>
</mrow>
<mn>0</mn>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<msub>
<mi>x</mi>
<mn>1</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>0.616</mn>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>13</mn>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
</math>
4. comparison of predicted effects of integrated models
In the embodiment of the invention, the prediction effect of the comprehensive model (ETCP model for short) of the invention is compared with the traditional multiple linear regression model (MRA model), and the comparison is carried out under different experimental conditions, including seasonal temperature change, spindle rotating speed change and the like. Firstly, establishing a multiple regression thermal error prediction model of a machine tool:
ΔL′=0.048Δt24-0.025Δt5+0.026Δt23+0.042Δt15-0.027(14)
wherein t is24、t5、t23、t15Respectively representing the ambient temperature, the cross beam, the front end of the main shaft and the side surface of the ram.
The measurement is carried out in different seasons under different constant rotating speed conditions and different variable rotating speed experimental conditions, the prediction is carried out through the formula (13) and the formula (14), the effect is shown in the attached figures 4 and 5, and the statistical analysis and comparison of residual error data are shown in the attached tables 1 and 2. As can be seen from the attached drawings and the attached table, the model residual error provided by the method is smaller and the model prediction precision is higher along with the change of the main shaft rotating speed under the conditions of different seasons.
Table 3 comparison of residual statistical analysis of data corresponding to fig. 4
Table 4 comparison of residual statistical analysis of data corresponding to fig. 5
It will be understood by those skilled in the art that the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the invention, and that any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the scope of the present invention.