Nothing Special   »   [go: up one dir, main page]

CN103709237B - Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application - Google Patents

Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application Download PDF

Info

Publication number
CN103709237B
CN103709237B CN201310591977.0A CN201310591977A CN103709237B CN 103709237 B CN103709237 B CN 103709237B CN 201310591977 A CN201310591977 A CN 201310591977A CN 103709237 B CN103709237 B CN 103709237B
Authority
CN
China
Prior art keywords
gene
ospsf1
plant
seq
photosynthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310591977.0A
Other languages
Chinese (zh)
Other versions
CN103709237A (en
Inventor
权瑞党
张海文
张执金
王娟
黄荣峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CN201310591977.0A priority Critical patent/CN103709237B/en
Publication of CN103709237A publication Critical patent/CN103709237A/en
Application granted granted Critical
Publication of CN103709237B publication Critical patent/CN103709237B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种植物光合作用相关蛋白及其编码基因和应用,植物光合作用相关蛋白其氨基酸序列如SEQ ID NO:1所示,编码该蛋白的基因其核苷酸序列如SEQ ID NO:2所示或SEQ ID NO:3所示,或其简并序列。将本发明基因导入水稻过表达,能够互补水稻<i>psf1</i>突变体的黄叶表型,并提高氧化胁迫处理后转基因植株叶片的光合速率。本发明植物光合作用相关蛋白OsPSF1的基因组基因及其cDNA基因为培育具有经济价值的高光效作物提供了基础。<b><u /></b>The invention discloses a plant photosynthesis-related protein and its encoding gene and application. The amino acid sequence of the plant photosynthesis-related protein is shown in SEQ ID NO: 1, and the nucleotide sequence of the gene encoding the protein is shown in SEQ ID NO: 2 or shown in SEQ ID NO: 3, or its degenerate sequence. Introducing the gene of the present invention into rice for overexpression can complement the yellow leaf phenotype of the rice <i>psf1</i> mutant, and increase the photosynthetic rate of the transgenic plant leaves after oxidative stress treatment. The genome gene and the cDNA gene of the plant photosynthesis-related protein OsPSF1 provided by the invention provide a basis for cultivating high-light-efficiency crops with economic value. <b><u /></b>

Description

植物光合作用相关蛋白OsPSF1及其编码基因和应用Plant photosynthesis related protein OsPSF1 and its coding gene and application

技术领域technical field

本发明属于生物技术领域,涉及一种植物光合作用相关蛋白OsPSF1及其编码基因和应用。The invention belongs to the field of biotechnology, and relates to a plant photosynthesis-related protein OsPSF1 and its coding gene and application.

背景技术Background technique

植物利用光能将二氧化碳和水转变成碳水化合物并释放氧气的过程称为光合作用。光合作用是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。叶片是高等植物进行光合作用的主要场所,在这个过程中,首先由位于叶绿体内的叶绿素捕获光能并传递到光合反应中心,从而开始了能量的转化过程。光合作用被认为是地球上最重要的化学反应,光合作用是作物产量形成的物质基础, 90~ 95% 的植物干重来自光合产物。目前,我国水稻光能利用率很低,一般只有0.5~1.0%左右,最高的也不过2%。理论上,植物光能利用率可达13~14% ,水稻理想的光能利用率应达3~5%,所以提高水稻高光效具有很大潜力。The process by which plants use light energy to convert carbon dioxide and water into carbohydrates and release oxygen is called photosynthesis. Photosynthesis is the basis for the survival of the biological world and an important medium for the earth's carbon-oxygen cycle. Leaves are the main place for higher plants to carry out photosynthesis. In this process, the chlorophyll located in the chloroplast captures light energy and transmits it to the photosynthetic reaction center, thus starting the energy conversion process. Photosynthesis is considered to be the most important chemical reaction on the earth. Photosynthesis is the material basis for the formation of crop yields. 90-95% of the dry weight of plants comes from photosynthetic products. At present, the light energy utilization rate of rice in my country is very low, generally only about 0.5-1.0%, and the highest is only 2%. Theoretically, the light energy utilization rate of plants can reach 13~14%, and the ideal light energy utilization rate of rice should reach 3~5%, so it has great potential to improve the high light efficiency of rice.

如何充分利用照射到地球表面的太阳辐射能进行光合作用,是农业生产中的一个根本性问题。作物对光能的利用是一个综合过程, 影响作物光能利用率的原因很多,大体可以分为作物本身特征以及光照、温度、二氧化碳、水分和旱涝、盐碱、病虫害等外界环境变化。提高作物光效需要提高最适条件下的光能利用率以及作物对非最佳外界环境的适应,可以分为叶绿体水平、单叶水平、植株水平以及群体水平不同层次的策略。本发明鉴定出一个新的影响植物光合作用的相关因子,可以作为设计培育高光效种质的靶点。How to make full use of the solar radiation that irradiates the earth's surface for photosynthesis is a fundamental problem in agricultural production. The use of light energy by crops is a comprehensive process. There are many reasons that affect the light energy utilization rate of crops, which can be roughly divided into the characteristics of the crop itself and the changes in the external environment such as light, temperature, carbon dioxide, water, drought and flood, salinity, and pests and diseases. Improving crop light efficiency requires improving light energy utilization efficiency under optimal conditions and crop adaptation to non-optimal external environments, which can be divided into strategies at the chloroplast level, single leaf level, plant level, and group level. The invention identifies a new related factor affecting plant photosynthesis, which can be used as a target for designing and cultivating germplasm with high light efficiency.

发明内容Contents of the invention

本发明的目的是提供一种植物光合作用相关蛋白及其编码基因和应用,将该编码基因导入水稻中过表达,能够提高转基因水稻光合作用效率。The object of the present invention is to provide a plant photosynthesis-related protein and its coding gene and application, the coding gene can be introduced into rice for overexpression, which can improve the photosynthesis efficiency of transgenic rice.

本发明提供的植物光合作用相关蛋白(OsPSF1, Oryza sativa photosynthesisfactor 1),来源于粳稻品种“日本晴”(Oryza sativa subsp. japonicacv. Nipponbare),其氨基酸序列如SEQ ID NO:1所示。The plant photosynthesis-related protein (OsPSF1, Oryza sativa photosynthesisfactor 1) provided by the present invention is derived from the japonica rice variety "Nipponbare" (Oryza sativa subsp. japonicacv. Nipponbare), and its amino acid sequence is shown in SEQ ID NO:1.

SEQ ID NO:1的序列由172个氨基酸残基组成。The sequence of SEQ ID NO: 1 consists of 172 amino acid residues.

本发明还提供将SEQ ID NO:1的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与植物耐逆性相关的由SEQ ID NO:1序列衍生的蛋白质。The present invention also provides a protein derived from the sequence of SEQ ID NO:1, which is related to plant stress tolerance through the substitution and/or deletion and/or addition of one or several amino acid residues to the amino acid sequence of SEQ ID NO:1.

为了使所述的植物光合作用相关蛋白(OsPSF1)便于纯化,可在由SEQ ID NO:1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。In order to facilitate the purification of the plant photosynthesis-related protein (OsPSF1), the amino acid sequence shown in SEQ ID NO:1 can be connected to the amino-terminal or carboxyl-terminal of the protein, as shown in Table 1.

表1 标签的序列Table 1 Sequence of tags

标签Label 残基Residues 序列sequence Poly-ArgPoly-Arg 5-6(通常为5个)5-6 (usually 5) RRRRRRRRRR Poly-HisPoly-His 2-10(通常为6个)2-10 (usually 6) HHHHHHHHHHHH FLAGFLAG 88 DYKDDDDKDYKDDDDK Strep-tag Strep-tag 88 WSHPQFEKWSHPQFEK c-mycc-myc 1010 EQKLISEEDLEQKLISEEDL

上述由SEQ ID NO:1序列衍生的蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到,其编码基因可通过将SEQ ID NO:2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5´端和/或3´端连上表1所示的标签的编码序列得到。The above-mentioned protein derived from the sequence of SEQ ID NO:1 can be artificially synthesized, or its coding gene can be synthesized first, and then obtained by biological expression, and its coding gene can be obtained by deleting one or more of the DNA sequences shown in SEQ ID NO:2. amino acid residues, and/or carry out a missense mutation of one or several base pairs, and/or connect the coding sequence of the tag shown in Table 1 at its 5' end and/or 3' end to obtain .

本发明还提供一种编码所述植物光合作用相关蛋白(OsPSF1)的基因,其核苷酸序列如SEQ ID NO:2所示或SEQ ID NO:3所示,或其简并序列。The present invention also provides a gene encoding the plant photosynthesis-related protein (OsPSF1), the nucleotide sequence of which is shown in SEQ ID NO: 2 or SEQ ID NO: 3, or its degenerate sequence.

同时,本发明还提供如SEQ ID NO:2所示或SEQ ID NO:3所示的DNA序列具有90%以上同源性,且编码耐逆性相关蛋白的DNA分子。At the same time, the present invention also provides a DNA molecule having more than 90% homology to the DNA sequence shown in SEQ ID NO: 2 or SEQ ID NO: 3 and encoding a stress tolerance-related protein.

本发明还提供在在严格条件下与SEQ ID NO:2所示或SEQ ID NO:3所示的DNA序列杂交且编码所述蛋白的DNA分子;同时还提供与该DNA分子具有90%以上同源性,且编码耐逆性相关蛋白的DNA分子;所述严格条件可为在6×SSC,0.5% SDS的溶液中,在65oC下杂交,然后用2×SSC,0.1% SDS和1×SSC,0.1% SDS各洗膜一次。The present invention also provides a DNA molecule that hybridizes to the DNA sequence shown in SEQ ID NO:2 or SEQ ID NO:3 under stringent conditions and encodes the protein; it also provides a DNA molecule that has more than 90% identity with the DNA molecule. DNA molecules that are native and encode stress tolerance-related proteins; the stringent conditions can be hybridized at 65 o C in a solution of 6×SSC, 0.5% SDS, and then mixed with 2×SSC, 0.1% SDS and 1 ×SSC, 0.1% SDS wash the membrane once.

SEQ ID NO:3所示的DNA分子由3734个核苷酸组成,自5’端1-1495位为启动子,1496-1839为第一外显子,2179-2299为内含子,2583-3191为第二外显子。The DNA molecule shown in SEQ ID NO: 3 is composed of 3734 nucleotides, from the 5' end 1-1495 is a promoter, 1496-1839 is the first exon, 2179-2299 is an intron, 2583- 3191 is the second exon.

本发明还提供所述基因的重组表达载体。The invention also provides the recombinant expression vector of the gene.

可用现有的植物表达载体构建含有所述基因的重组表达载体。An existing plant expression vector can be used to construct a recombinant expression vector containing the gene.

所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。所述植物表达载体还可包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂合成酶Nos基因)、植物基因(如大豆贮存蛋白基因)3’端转录的非翻译区均具有类似功能。The plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment and the like. The plant expression vector can also include the 3' untranslated region of the foreign gene, that is, the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression. The polyA signal can direct polyA to be added to the 3' end of the mRNA precursor, such as Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopain synthase Nos gene), plant gene (such as soybean storage The untranslated region transcribed at the 3' end of protein gene) has similar functions.

使用所述基因构建重组植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子或组成型启动子,如花椰菜花叶病毒(CAMV)35S启动子、玉米的泛素启动子(Ubiquitin),它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。When using the gene to construct a recombinant plant expression vector, any enhanced promoter or constitutive promoter can be added before its transcription start nucleotide, such as the cauliflower mosaic virus (CAMV) 35S promoter, maize Ubiquitin promoters (Ubiquitin), which can be used alone or in combination with other plant promoters; in addition, when using the gene of the present invention to construct a plant expression vector, enhancers, including translation enhancers or transcription enhancers, can also be used, These enhancer regions can be ATG initiation codons or adjacent region initiation codons, etc., but must be in the same reading frame as the coding sequence to ensure correct translation of the entire sequence. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene.

为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因(如抗除莠剂基因)等。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vectors used can be processed, such as adding genes (GUS gene, luciferase gene, etc.) Genes, etc.), antibiotic resistance markers (gentamicin markers, kanamycin markers, etc.), or chemical resistance marker genes (such as herbicide resistance genes), etc. Considering the safety of the transgenic plants, the transformed plants can be screened directly by adversity without adding any selectable marker gene.

所述重组表达载体是将所述基因插入pCAMBIA1300和pCAMBIA2300的多克隆位点得到的重组质粒。The recombinant expression vector is a recombinant plasmid obtained by inserting the gene into the multiple cloning sites of pCAMBIA1300 and pCAMBIA2300.

含有以上任一所述基因(OsPSF1)的表达盒、转基因细胞系及重组菌均属于本发明的保护范围。Expression cassettes, transgenic cell lines and recombinant bacteria containing any of the above genes (OsPSF1) all belong to the protection scope of the present invention.

扩增所述基因(OsPSF1)全长或任一片段的引物对也属于本发明的保护范围。A pair of primers for amplifying the full length or any fragment of the gene (OsPSF1) also falls within the protection scope of the present invention.

本发明还提供所述的基因在培育光合效率提高的转基因植物中的应用。The invention also provides the application of the gene in cultivating transgenic plants with improved photosynthetic efficiency.

上述应用是将编码所述植物光合作用相关蛋白的基因导入目的植物(如植物细胞或组织)中,得到光合效率高于所述目的植物的转基因植物。具体地,将所述重组表达载体导入目的植物中,得到转基因植物的光合效率高于所述受体植物。The above application is to introduce the gene encoding the plant photosynthesis-related protein into the target plant (such as plant cells or tissues) to obtain a transgenic plant with higher photosynthetic efficiency than the target plant. Specifically, the recombinant expression vector is introduced into the target plant, and the photosynthetic efficiency of the transgenic plant is higher than that of the recipient plant.

利用任何一种可以引导外源基因在植物中表达的载体,将编码所述蛋白的基因导入植物细胞,可获得耐旱能力增强的转基因细胞系及转基因植株。携带有所述基因的表达载体可通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。被转化的植物宿主既可以是单子叶植物,也可以是双子叶植物,如:烟草、百脉根、拟南芥、水稻、小麦、玉米、黄瓜、番茄、杨树、草坪草、苜宿等。By using any carrier capable of directing the expression of exogenous genes in plants, the gene encoding the protein is introduced into plant cells to obtain transgenic cell lines and transgenic plants with enhanced drought tolerance. The expression vector carrying the gene can transform plant cells or tissues by conventional biological methods such as Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, electrical conduction, Agrobacterium-mediated, and transform the transformed The plant tissue is grown into a plant. The transformed plant host can be either a monocotyledon or a dicotyledonous plant, such as: tobacco, lotus root, Arabidopsis, rice, wheat, corn, cucumber, tomato, poplar, lawn grass, alfalfa, etc. .

实验表明,将本发明的编码调控植物光合作用相关因子OsPSF1的DNA序列导入水稻中过表达,能够提高转基因水稻光合作用效率。本发明的编码调控植物光合作用相关因子OsPSF1的基因组基因及其cDNA基因为培育其他具有经济价值的高光效植物提供了基础。Experiments show that introducing the DNA sequence encoding and regulating plant photosynthesis-related factor OsPSF1 of the present invention into rice for overexpression can improve the photosynthesis efficiency of transgenic rice. The genome gene and cDNA gene of the invention encoding and regulating plant photosynthesis-related factor OsPSF1 provide a basis for cultivating other high-light-efficiency plants with economic value.

附图说明Description of drawings

图1为从突变体库中筛选出的psf1突变体,其中A为2周龄野生型和psf1突变体幼苗,B为2周龄野生型和psf1突变体叶片。Figure 1 shows the psf1 mutants screened from the mutant library, where A is the 2-week-old wild-type and psf1 mutant seedlings, B is the 2-week-old wild-type and psf1 mutant leaves.

图2为psf1突变体叶片叶绿素含量,其中A为野生型和psf1突变体叶片叶绿素a和叶绿素b总量,B为野生型和psf1突变体叶片叶绿素a与叶绿素b比值。Figure 2 shows the chlorophyll content of psf1 mutant leaves, where A is the total amount of chlorophyll a and chlorophyll b in wild type and psf1 mutant leaves, and B is the ratio of chlorophyll a to chlorophyll b in wild type and psf1 mutant leaves.

图3为psf1突变位点测序谱图。Figure 3 is the sequencing spectrum of the psf1 mutation site.

图4为互补转基因植株叶片叶绿素含量。Figure 4 shows the chlorophyll content of the leaves of the complementary transgenic plants.

图5为互补转基因植株PCR鉴定。Figure 5 is the PCR identification of complementary transgenic plants.

图6为互补转基因植株测序图谱。Fig. 6 is the sequence map of complementary transgenic plants.

图7为过表达转基因植株PCR鉴定。Figure 7 is the PCR identification of overexpression transgenic plants.

图8为过表达转基因植株RT-PCR鉴定。Figure 8 is the RT-PCR identification of overexpression transgenic plants.

图9为过表达转基因植株叶片光合速率的测定。Figure 9 is the determination of photosynthetic rate of leaves of overexpressed transgenic plants.

具体实施方式detailed description

下面通过具体实施方式的详细描述来进一步阐明本发明,但并不是对本发明的限制,仅仅作示例说明。The present invention will be further clarified through the detailed description of specific embodiments below, but it is not intended to limit the present invention, but only for illustration.

下述实施例中的实验方法,如无特殊说明,均为常规方法,所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的,实验均设置三次重复,结果取平均值。The experimental methods in the following examples, unless otherwise specified, are conventional methods, and the test materials used, unless otherwise specified, are purchased from conventional biochemical reagent stores. The experiments are all set to repeat three times, and the results are averaged .

实施例1:psf1突变体的筛选及突变基因的图位克隆Example 1: Screening of psf1 mutants and map-based cloning of mutant genes

一、水稻突变体库的筛选1. Screening of rice mutant library

取2000g粳稻品种“日本晴”(Oryza sativa subsp. japonicacv. Nipponbare)(中国农业科学院作物科学研究所,编号WD-10576;原始来源不清)种子,先用水浸种16小时,再用0.5%的甲基磺酸乙醋(EMS)在28℃下处理12小时,然后用大量自来水冲洗10遍,得到M1种子,将M1种子播种,单株收获,得到M2突变体库。Take 2000g seeds of japonica rice variety "Nipponbare" (Oryza sativa subsp. japonicacv. Nipponbare) (Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. WD-10576; original source is unclear), soak the seeds in water for 16 hours, and then use 0.5% methyl Ethyl sulfonate (EMS) was treated at 28°C for 12 hours, and then washed 10 times with a large amount of tap water to obtain M1 seeds, which were sown and harvested from individual plants to obtain the M2 mutant library.

将2000份M2突变体种子萌发,在2周幼苗期观察叶片颜色,发现一浅黄色突变体,命名为psf1,如图1所示。80%丙酮提取野生型和psf1突变体叶片色素,比色法测定叶绿素含量,结果如图2所示,psf1叶绿素a和b均减少,总量仅为野生型植株的50%,叶绿素a/b是野生型的5倍,表明叶绿素b比叶绿素a降低的幅度更大(图2AB)。2000 copies of M2 mutant seeds were germinated, and the leaf color was observed at the seedling stage of 2 weeks, and a light yellow mutant was found, named psf1, as shown in Figure 1 . 80% acetone was used to extract the leaf pigments of wild type and psf1 mutants, and the chlorophyll content was measured by colorimetry. It was 5 times that of the wild type, indicating that chlorophyll b decreased more than chlorophyll a (Fig. 2AB).

二、psf1突变体突变基因的图位克隆2. Map-based cloning of mutant genes of psf1 mutants

将psf1突变体与日本晴野生型回交,统计F2回交分离群体幼苗中浅黄叶植株与绿叶植株的比例,结果如表2所示。对3个独立的F2回交群体浅黄叶与正常叶色植株的比例按卡方检验和二项式检验两种方法分析发现符合单基因控制的1:3分离比(表2)。The psf1 mutant was backcrossed with Nippon Haru wild type, and the ratio of light yellow leaf plants to green leaf plants in the seedlings of the F2 backcross segregation population was counted. The results are shown in Table 2. The ratio of light yellow leaf to normal leaf color plants in 3 independent F2 backcross populations was analyzed by chi-square test and binomial test and found to be in line with the segregation ratio of 1:3 controlled by a single gene (Table 2).

表2 psf1突变体回交F2代植株浅黄叶与绿叶正常植株分离比Table 2 The segregation ratio of light yellow leaves and green leaves normal plants of backcross F2 generation plants of psf1 mutant

将psf1突变体与Dular的杂交获得F1,F1自交得到F2群体,利用SSR分子标记对352个F2浅黄叶分离单株连锁分析发现该突变位点与分子标记Chr7-20.1和Chr7-20.2紧密连锁,对该区段全部8个ORF测序发现psf1突变体ORF7第284位T突变为G,编码氨基酸由中性的亮氨酸变为碱性的精氨酸,而Dular该位点与野生型相同(图3)。ORF7编码一个推测定位于质体的具有ankyrin结构域的蛋白,我们命名为OsPSF1蛋白(LOC_Os07g33660)。 The psf1 mutant was crossed with Dular to obtain F1, and F1 was self-crossed to obtain F2 population. Linkage analysis of 352 F2 light yellow leaves isolated by SSR molecular markers found that the mutation site was closely linked with molecular markers Chr7-20.1 and Chr7-20.2 , all 8 ORFs in this segment were sequenced and found that the 284th position T of psf1 mutant ORF7 was mutated to G, and the encoded amino acid changed from neutral leucine to basic arginine, and the position of Dular was the same as that of wild type (image 3). ORF7 encodes a protein with ankyrin domain that is presumed to be located in the plastid, which we named OsPSF1 protein (LOC_Os07g33660).

实施例2:OsPSF1 cDNA和基因组基因的克隆Example 2: Cloning of OsPSF1 cDNA and Genomic Gene

一、OsPSF1 cDNA的克隆1. Cloning of OsPSF1 cDNA

取0.2g粳稻品种“日本晴”(Oryza sativa subsp. japonicacv. Nipponbare)的叶片,液氮研磨,TRIzol法提取总RNA。取2μg总RNA用M-MLV反转录酶进行反转录,合成cDNA第一链,以此为模板,以特异引物对甲进行PCR反应。PCR产物经电泳分离回收后,克隆到pEASY-T(北京全式金生物技术有限公司),命名为pEASY-T-OsPSF1ORF,进行测序。Take 0.2g leaves of japonica rice variety "Nipponbare" (Oryza sativa subsp. japonicacv. Nipponbare), grind with liquid nitrogen, and extract total RNA by TRIzol method. Take 2 μg of total RNA for reverse transcription with M-MLV reverse transcriptase to synthesize the first strand of cDNA, which is used as a template to carry out PCR reaction with specific primers. After the PCR product was separated and recovered by electrophoresis, it was cloned into pEASY-T (Beijing Quanshijin Biotechnology Co., Ltd.), named pEASY-T-OsPSF1ORF, and sequenced.

特异引物对甲如下:The specific primer pair A is as follows:

上游引物:5’-ATGGCATCCATCCCGTGCAC-3’;Upstream primer: 5'-ATGGCATCCATCCCGTGCAC-3';

下游引物:5’-TCAGGCGGCCAAGGTGGCGG-3’。Downstream primer: 5'-TCAGGCGGCCAAGGTGGCGG-3'.

测序结果表明,该片段的核苷酸序列如SEQ ID NO:2所示,编码SEQ ID NO:1所示的蛋白质。Sequencing results show that the nucleotide sequence of the fragment is shown in SEQ ID NO:2, encoding the protein shown in SEQ ID NO:1.

二、OsDRPSF1基因组基因的获得2. Acquisition of OsDRPSF1 genome gene

CTAB法提取日本晴叶片的基因组DNA,以该基因组DNA为模板,以特异引物对乙进行反应。PCR产物经电泳分离回收后,克隆到pEASY-T(北京全式金生物技术有限公司),进行测序。Genomic DNA of Nipponbare leaves was extracted by CTAB method, and the genomic DNA was used as a template to react with specific primers. After the PCR products were separated and recovered by electrophoresis, they were cloned into pEASY-T (Beijing Quanshijin Biotechnology Co., Ltd.) for sequencing.

特异引物对乙如下:The specific primer pair B is as follows:

上游引物:5’-GTGTGCTGTTGTCCCAGTATG-3’;Upstream primer: 5'-GTGTGCTGTTGTCCCAGTATG-3';

下游引物:5’-AACCTGTTAGCCCTACGAGTG-3’。Downstream primer: 5'-AACCTGTTAGCCCTACGAGTG-3'.

测序结果表明,该片段的核苷酸序列如SEQ ID NO:3所示。Sequencing results showed that the nucleotide sequence of the fragment is shown in SEQ ID NO:3.

将SEQ ID NO:1所示的蛋白质命名为OsPSF1,将OsPSF1的编码基因命名为OsPSF1。将SEQ ID NO:2所示核苷酸与pEASY-T连接得到的重组质粒命名为pEASY-T-OsPSF1。The protein shown in SEQ ID NO: 1 was named OsPSF1, and the gene encoding OsPSF1 was named OsPSF1. The recombinant plasmid obtained by linking the nucleotide shown in SEQ ID NO: 2 with pEASY-T was named pEASY-T-OsPSF1.

实施例3:psf1突变体的功能互补Example 3: Functional complementation of psf1 mutants

一、pCAMBIA1300-OsPSF1表达载体的构建1. Construction of pCAMBIA1300-OsPSF1 expression vector

1、用限制性内切酶XbaI和KpnI酶切实施1中重组质粒pEASY-T-OsPSF1,回收包含OsPSF1序列 的3.7kb片段。1. Digest the recombinant plasmid pEASY-T-OsPSF1 in Implementation 1 with restriction endonucleases XbaI and KpnI, and reclaim the 3.7kb fragment comprising the OsPSF1 sequence.

2、用限制性内切酶XbaI和KpnI酶切pCAMBIA1300(Cambia,GPO Box 3200,Canberra, ACT 2601,Australia),回收骨架。2. Digest pCAMBIA1300 (Cambia, GPO Box 3200, Canberra, ACT 2601, Australia) with restriction enzymes XbaI and KpnI, and recover the backbone.

3、将步骤1得到的片段和步骤2得到的片段连接,得到pCAMBIA1300-OsPSF1。3. Ligate the fragment obtained in step 1 with the fragment obtained in step 2 to obtain pCAMBIA1300-OsPSF1.

二、转基因植物的获得The acquisition of transgenic plants

1、利用电击法将重组表达载体pCAMBIA1300-OsPSF1导入农杆菌AGL0(ATCC®BAA-100™,www.atcc.org)。1. Introduce the recombinant expression vector pCAMBIA1300-OsPSF1 into Agrobacterium AGL0 (ATCC®BAA-100™, www.atcc.org) by electroporation.

5、将含有pCAMBIA1300-OsPSF1的农杆菌AGL0侵染psf1突变体诱导产生的胚型愈伤组织,然后在MS培养基 (含有30mg/L潮霉素) 中筛选抗性愈伤组织,每代15天,共计3代,而后将抗性愈伤组织诱导成完整植株,插秧于大田,收获转基因植物的T1代种子。5. Agrobacterium AGL0 containing pCAMBIA1300-OsPSF1 was used to infect the embryo-type callus induced by the psf1 mutant, and then the resistant callus was selected in MS medium (containing 30 mg/L hygromycin), 15 times per generation. 3 generations in total, and then the resistant callus was induced into complete plants, transplanted in the field, and the T1 generation seeds of the transgenic plants were harvested.

将OsPSF1转化psf1突变体T1代种子萌发,2周后发现幼苗叶色恢复正常,测定叶绿素含量发现与野生型对照相同,显著高于psf1突变体叶绿素含量(图4)。The T1 generation seeds of the psf1 mutant transformed with OsPSF1 were germinated, and the leaf color of the seedlings returned to normal after 2 weeks. The chlorophyll content was determined to be the same as that of the wild-type control, but significantly higher than that of the psf1 mutant (Figure 4).

CTAB法提取叶片DNA,以潮霉素磷酸转移酶基因(hpt)特异性引物5’-CATCGAAATTGCCGTCAACC-3’和5’-AGCCTGACCTATTGCATCTC-3’PCR检测,结果表明psf1突变体互补转基因植株(com)中有特异性扩增条带,而野生型和psf1突变体DNA无特异扩增条带(图5)。这表明载体上的筛选标记hpt基因已经导入psf1突变体互补转基因植株。Leaf DNA was extracted by CTAB method, and the hygromycin phosphotransferase gene (hpt) specific primers 5'-CATCGAAATTGCCGTCAACC-3' and 5'-AGCCTGACCTATTGCATCTC-3'PCR detection, the results showed that the psf1 mutant complementary transgenic plants (com) There are specific amplification bands, while the wild-type and psf1 mutant DNA have no specific amplification bands (Figure 5). This indicated that the screening marker hpt gene on the vector had been introduced into the psf1 mutant complementary transgenic plants.

因为pCAMBIA1300-OsPSF1质粒载体上野生型OsPSF1 DNA片段与hpt基因串联共同位于T-DNA区,可以推测野生型OsPSF1 DNA片段与hpt基因片段共同导入psf1突变体互补转基因植株中。因psf1突变体为点突变,PCR方法无法将被导入的野生型OsPSF1 DNA与psf1突变体基因组中突变片段分开,我们以OsPSF1基因特异性引物5’-ATGGCATCCATCCCGTGCAC-3’和5’-TCAGGCGGCCAAGGTGGCGG-3’分别从野生型、psf1突变体和互补转基因植株基因组DNA中PCR扩增,然后将PCR产物测序,结果如图6所示。互补转基因植株(com)OsPSF1 ORF 284位呈T/G杂合,这明确证明野生型OsPSF1片段已经导入psf1突变体。Because the wild-type OsPSF1 DNA fragment and the hpt gene on the pCAMBIA1300-OsPSF1 plasmid vector are located in the T-DNA region in tandem, it can be speculated that the wild-type OsPSF1 DNA fragment and the hpt gene fragment are co-introduced into psf1 mutant complementation transgenic plants. Because the psf1 mutant is a point mutation, the PCR method cannot separate the introduced wild-type OsPSF1 DNA from the mutant fragment in the psf1 mutant genome. We used OsPSF1 gene-specific primers 5'-ATGGCATCCATCCCGTGCAC-3' and 5'-TCAGGCGGCCAAGGTGGCGG-3 'Respectively PCR amplified from the wild type, psf1 mutant and complementary transgenic plant genomic DNA, and then sequenced the PCR products, the results are shown in Figure 6. The complementation transgenic plant (com) was T/G heterozygous at position 284 of OsPSF1 ORF, which clearly proved that the wild-type OsPSF1 fragment had been introduced into the psf1 mutant.

以上结果表明,向psf1突变体中导入OsPSF1基因序列能够使浅黄色表型转变为正常叶色,进一步证明了OsPSF1基因突变是导致其呈浅黄色表型的基因。The above results indicated that the introduction of OsPSF1 gene sequence into the psf1 mutant could transform the light yellow phenotype into normal leaf color, which further proved that the OsPSF1 gene mutation was the gene that caused the light yellow phenotype.

实施例4:OsPSF1在水稻中的超表达Example 4: Overexpression of OsPSF1 in rice

一、pCAMBIA2300-Act-OsPSF1表达载体的构建1. Construction of pCAMBIA2300-Act-OsPSF1 expression vector

1、以实施1中重组质粒pEASY-T-OsPSF1ORF为模版,以下列特异性引物扩增得到OsPSF1序列。1. Using the recombinant plasmid pEASY-T-OsPSF1ORF in Implementation 1 as a template, amplify the OsPSF1 sequence with the following specific primers.

上游引物:5’-TCCCCCGGGATGGCATCCATCCCGTGC-3’;Upstream primer: 5'-TCCCCCGGGATGGCATCCATCCCGTGC-3';

下游引物:5’-AACTGCAGTCAGGCGGCCAAGGTGGCGG-3’。Downstream primer: 5'-AACTGCAGTCAGGCGGCCAAGGTGGCGG-3'.

PCR产物电泳分离后,切胶回收520bp DNA片段,然后以限制性内切酶XmaI和PstI酶切。After the PCR products were separated by electrophoresis, a 520bp DNA fragment was recovered by cutting the gel, and then digested with restriction enzymes XmaI and PstI.

2、用限制性内切酶XmaI和PstI酶切pCAMBIA2300-ACT(Actin启动子) (Cambia,GPO Box 3200, Canberra, ACT 2601,Australia),回收骨架。2. Digest pCAMBIA2300-ACT (Actin promoter) (Cambia, GPO Box 3200, Canberra, ACT 2601, Australia) with restriction enzymes XmaI and PstI, and recover the backbone.

3、将步骤1得到的片段和步骤2得到的片段连接,得到pCAMBIA2300-Act-OsPSF1。3. Ligate the fragment obtained in step 1 with the fragment obtained in step 2 to obtain pCAMBIA2300-Act-OsPSF1.

二、转基因植物的获得The acquisition of transgenic plants

1、利用电击法将重组表达载体pCAMBIA2300-Act-OsPSF1导入农杆菌AGL0。1. The recombinant expression vector pCAMBIA2300-Act-OsPSF1 was introduced into Agrobacterium AGL0 by electric shock method.

5、将含有pCAMBIA2300-Act-OsPSF1的农杆菌AGL0侵染日本晴野生型诱导产生的胚型愈伤组织,然后在MS培养基 (含有100mg/L G418) 中筛选抗性愈伤组织,每代15天,共计3代,而后将抗性愈伤组织诱导成完整植株,插秧于大田,收获转基因植物的T1代种子。5. Agrobacterium AGL0 containing pCAMBIA2300-Act-OsPSF1 was used to infect the embryo-type callus produced by Nipponbare wild-type induction, and then the resistant callus was screened in MS medium (containing 100mg/L G418), 15 times per generation. 3 generations in total, and then the resistant callus was induced into complete plants, transplanted in the field, and the T1 generation seeds of the transgenic plants were harvested.

三、转基因植物的分子检测3. Molecular detection of transgenic plants

CTAB法提取叶片DNA,以Act-OsPSF1特异性引物5’-TCTGCGATCCGCCGTTGTTG-3’和5’-GCGCCTCCATCTTGTCGTAGLeaf DNA was extracted by CTAB method, using Act-OsPSF1 specific primers 5'-TCTGCGATCCGCCGTTGTTG-3' and 5'-GCGCCTCCATCTTGTCGTAG

-3’PCR检测,结果表明转基因植株中有特异性扩增条带,而野生型DNA无特异扩增条带(图7),这表明Act-OsPSF1已经导入转基因植株。-3'PCR detection, the results showed that there were specific amplification bands in the transgenic plants, while the wild-type DNA had no specific amplification bands (Fig. 7), which indicated that Act-OsPSF1 had been introduced into the transgenic plants.

TRIzol方法提取2周龄野生型和Act-OsPSF1转基因植株(ox1, 2, 3)叶片总RNA,取2 μg总RNA,以2 u RQ1 RNase-free DNase (Promega) 37 °C 处理30 min,加终止反应液后,以polyA为引物,利用M-MLV反转录酶42 °C 1小时合成cDNA第一链,然后以cDNA为模板,以Actin (引物5’-GCCAATCGTGAGAAGATGAC-3’和5’-CTATGAAGGAAGGCTGGAAG-3’)为内参,PCR方法检测PSF1基因(引物5’-ATGGCATCCATCCCGTGCAC-3’和5’-TCAGGCGGCCAAGGTGGCGG-3’)表达,结果如图8所示。各植株之间Actin基因表达基本相同,而Act-OsPSF1转基因植株(ox1, 2, 3)PSF1基因表达水平约为对照植株的5-10倍。Total RNA was extracted from leaves of 2-week-old wild-type and Act-OsPSF1 transgenic plants (ox1, 2, 3) by TRIzol method, and 2 μg of total RNA was treated with 2 u RQ1 RNase-free DNase (Promega) at 37 °C for 30 min. After terminating the reaction solution, use polyA as a primer, use M-MLV reverse transcriptase at 42 °C for 1 hour to synthesize the first strand of cDNA, then use cDNA as a template, and use Actin (primers 5'-GCCAATCGTGAGAAGATGAC-3' and 5'- CTATGAAGGAAGGCTGGAAG-3') was used as an internal reference, and the expression of PSF1 gene (primers 5'-ATGGCATCCATCCCGTGCAC-3' and 5'-TCAGGCGGCCAAGGTGGCGG-3') was detected by PCR method, and the results are shown in Figure 8. The expression of Actin gene was basically the same among the plants, while the expression level of PSF1 gene in Act-OsPSF1 transgenic plants (ox1, 2, 3) was about 5-10 times that of the control plants.

四、光合速率的测定4. Determination of photosynthetic rate

3周龄野生型和Act-OsPSF1转基因植株(ox1, 2, 3)叶片喷施50 μmol L-1甲基紫精(MV)处理,以水为对照,3天后以LI6400XT(LI-COR, Inc)便携式光合仪测定3周龄野生型和Act-OsPSF1转基因植株(ox1, 2, 3)叶片的净光合速率,参数设定为CO2 400 μmol CO2mol-1,光强800 μmol m-2 s-1,温度30 °C,结果表明对照条件下转基因植株(ox1, 2, 3)与野生型叶片之间的净光合速率没有显著差异,而甲基紫精处理后转基因植株(ox1, 2, 3)叶片净光合速率高于野生型(图9)。这表明过表达OsPSF1基因能够提高转基因植株氧化胁迫后的光合速率。The leaves of 3-week-old wild-type and Act-OsPSF1 transgenic plants (ox1, 2, 3) were sprayed with 50 μmol L -1 methyl viologen (MV), with water as the control, and 3 days later with LI6400XT (LI-COR, Inc ) portable photosynthetic instrument to measure the net photosynthetic rate of 3-week-old wild-type and Act-OsPSF1 transgenic plants (ox1, 2, 3) leaves, the parameters were set as CO2 400 μmol CO2mol -1 , light intensity 800 μmol m -2 s -1 , temperature 30 °C, the results showed that the net photosynthetic rate between the transgenic plants (ox1, 2, 3) and the wild-type leaves had no significant difference under the control condition, while the transgenic plants (ox1, 2, 3) after treatment with methyl viologen The net photosynthetic rate of leaves was higher than that of the wild type (Fig. 9). This indicates that overexpression of OsPSF1 gene can increase the photosynthetic rate of transgenic plants after oxidative stress.

<110> 中国农业科学院生物技术研究所<110> Institute of Biotechnology, Chinese Academy of Agricultural Sciences

<120>植物光合作用相关蛋白OsPSF1及其编码基因和应用<120>Plant photosynthesis related protein OsPSF1 and its coding gene and application

<160> 3<160> 3

<210> 1<210> 1

<211>172<211>172

<212> 氨基酸<212> amino acid

<400> 1<400> 1

Met Ala Ser Ile Pro Cys Thr Phe Gln Leu Ser Ala Arg Ala Ser Ser Ala SerAla Ala 20Met Ala Ser Ile Pro Cys Thr Phe Gln Leu Ser Ala Arg Ala Ser Ser Ala SerAla Ala 20

Ala Ala Ala Arg Arg Ser Pro Arg Ala Ala Ala Arg Leu Gly Trp Leu Arg Pro Ser Arg 40Ala Ala Ala Arg Arg Ser Pro Arg Ala Ala Ala Arg Leu Gly Trp Leu Arg Pro Ser Arg 40

Leu Ser Ala Val Val Pro Ala Ser Glu Ser Gly Arg Val Gly Pro Thr Cys Phe Phe Lys 60Leu Ser Ala Val Val Pro Ala Ser Glu Ser Gly Arg Val Gly Pro Thr Cys Phe Phe Lys 60

Phe Gly Asn Lys Asp Ala Glu Gly Ala Gly Ile Tyr Gly Ser Gln Gly Arg Asp Asp Phe 80Phe Gly Asn Lys Asp Ala Glu Gly Ala Gly Ile Tyr Gly Ser Gln Gly Arg Asp Asp Phe 80

Asp Arg Asp Asp Val Glu Gln Tyr Phe Asn Tyr Met Gly Met Leu Ala Val Glu Gly Thr 100Asp Arg Asp Asp Val Glu Gln Tyr Phe Asn Tyr Met Gly Met Leu Ala Val Glu Gly Thr 100

Tyr Asp Lys Met Glu Ala Leu Leu Asn Gln Asp Ile His Pro Val Asp Ile Leu Leu Met 120Tyr Asp Lys Met Glu Ala Leu Leu Asn Gln Asp Ile His Pro Val Asp Ile Leu Leu Met 120

Leu Ala Ala Ser Glu Gly Asp Lys Pro Lys Leu Glu Glu Leu Leu Arg Ala Gly Ala Lys 140Leu Ala Ala Ser Glu Gly Asp Lys Pro Lys Leu Glu Glu Leu Leu Arg Ala Gly Ala Lys 140

Tyr Asp Val Lys Asp Val Asp Gly Arg Thr Ala Leu Asp Arg Ala Ala Asp Asp Thr Arg 160Tyr Asp Val Lys Asp Val Asp Gly Arg Thr Ala Leu Asp Arg Ala Ala Asp Asp Thr Arg 160

Glu Phe Ile Leu Gly Phe Ala Ala Thr Leu Ala Ala 172Glu Phe Ile Leu Gly Phe Ala Ala Thr Leu Ala Ala 172

<210> 2 <210> 2

<211>519<211>519

<212> DNA<212>DNA

<400> 2<400> 2

ATGGCATCCATCCCGTGCACCTTCCAGCTGAGCGCGAGGGCGTCGTCGGC 50ATGGCATCCATCCCGTGCACCTTCCAGCTGAGCGCGAGGGCGTCGTCGGC 50

GTCGGCGGCGGCGGCGGCGAGGAGGTCGCCGCGGGCGGCGGCGAGGCTGG 100GTCGGCGGCGGCGGCGGCGAGGAGGTCGCCGCGGGCGGCGGCGAGGCTGG 100

GGTGGCTGCGGCCGTCGCGGCTGAGCGCGGTGGTGCCGGCGAGCGAGAGC 150GGTGGCTGCGGCCGTCGCGGCTGAGCGCGGTGGTGCCGGCGAGCGAGAGC 150

GGGAGGGTGGGGCCGACGTGCTTCTTCAAGTTCGGGAACAAGGACGCCGA 200GGGAGGGTGGGGCCGACGTGCTTCTTCAAGTTCGGGAACAAGGACGCCGA 200

GGGCGCCGGCATCTACGGCAGCCAGGGCAGGGACGACTTCGACCGCGACG 250GGGCGCCGGCATCTACGGCAGCCAGGGCAGGGACGACTTCGACCGCGACG 250

ACGTCGAGCAGTACTTCAACTACATGGGGATGCTGGCGGTGGAGGGCACC 300ACGTCGAGCAGTACTTCAACTACATGGGGATGCTGGCGGTGGAGGGCACC 300

TACGACAAGATGGAGGCGCTGCTGAACCAGGACATCCACCCGGTGGACAT 350TACGACAAGATGGAGGCGCTGCTGAACCAGGACATCCACCCGGTGGACAT 350

CCTCCTCATGCTCGCCGCCTCCGAGGGCGACAAGCCCAAGCTCGAGGAGC 400CCTCCTCATGCTCGCCGCCTCCGAGGGCGACAAGCCCAAGCTCGAGGAGC 400

TCCTCCGCGCCGGCGCCAAGTACGACGTCAAGGACGTCGACGGCCGGACG 450TCCTCCGCGCCGGCGCCAAGTACGACGTCAAGGACGTCGACGGCCGGACG 450

GCGCTCGACCGCGCCGCCGACGACACCAGGGAGTTCATCCTCGGCTTCGC 500GCGCTCGACCGCGCCGCCGACGACACCAGGGAGTTCATCCTCGGCTTCGC 500

CGCCACCTTGGCCGCCTGA 519CGCCACCTTGGCCGCCTGA 519

<210> 3<210> 3

<211>3734<211>3734

<212> DNA<212>DNA

<400> 3<400> 3

GTGTGCTGTTGTCCCAGTATGGCACGGATCAAATTTATCCATCTTTTTTT 50GTGTGCTGTTGTCCCAGTATGGCACGGATCAAATTTATCCATCTTTTTTT 50

TCACCTTTACTTTTTACTGAAATTTATACACATACCCTTTTGAAGCAGAG 100TCACCTTTACTTTTTACTGAAATTTATACACATACCCTTTTGAAGCAGAG 100

TTGCATACCCATTTTCTTTTTTTGGTTGCTATACAACGGAATCTCCTTCA 150TTGCATACCCATTTTCTTTTTTTGGTTGCTATACAACGGAATCTCCTTCA 150

GACGTGATGATACCGATTAGTTATCAAGTCCTAATACCTAATCGGTATCG 200GACGTGATGATACCGATTAGTTATCAAGTCCTAATACCTAATCGGTATCG 200

GGTGATACATATCAAGTATCATACGATTCTACCACGTATTAGGTGATACT 250GGTGATACATATCAAGTATCATACGATTCTACCACGTATTAGGTGATACT 250

TGGTTATTCCTATTAGGTATACGATTCTTACCACATAGAAGGTGATACTT 300TGGTTATTTCCTATTAGGTATACGATTCTTTACCCATAGAAGGTGATACTT 300

ACGAGATATTAGGTGATACCTATTAGGTATCATGCGATTCTTATCACGTA 350ACGAGATATTAGGTGATACCTATTAGGTATCATGCGATTCTTATCACGTA 350

GAAGGCTATACTTGCGAGATATCAGGTGATACCTATGAAGTATCAGGCGA 400GAAGGCTATACTTGCGAGATATCAGGTGATACCTATGAAGTATCAGGCGA 400

TACCTACTAGATAATAGGTGATTTCTACTGGGTATCAGAAGCTGGACATA 450TACCTACTAGATAATAGGTGATTTCTACTGGGTATCAGAAGCTGGACATA 450

CCTGACGCCGACGCCGACGACCACTACCGCCCTTCCTCCCCTTGGCTCTA 500CCTGACGCCGACGCCGACGACCACTACCGCCCTTCCTCCCCTTGGCTCTA 500

GCCACCACCGCCGCTCCCTTTCCTGGCTCCGGCTACCACCGCTGCCCCTC 550GCCACCACCGCCGCTCCCTTTCCTGGCTCCGGCTACCACCGCTGCCCCTC 550

CCTCCTCTAGCTCTTGCCACCGTCACCACTGCGTTCCTTAGCTTCGGCCA 600CCTCCTCTAGCTCTTGCCACCGTCACCACTGCGTTCCTTAGCTTCGGCCA 600

CCGACGCCCCTCGTCTCTTCGTTGATGTATCCCCCGCCGCCGGCTTGGCC 650CCGACGCCCCTCGTCTCTTCGTTGATGTATCCCCCGCCGCCGGCTTGGCC 650

GCGACGCGCCGCTGCCTCGACGCGACACAGATGGGGTCCTCGACACCACG 700GCGACGCGCCGCTGCCTCGACGCGACACAGATGGGGTCCTCGACACCACG 700

GCAGCTCACCACAAGGGGCTCGTCGCCGGCGGCCTCGTCCTCTTCTCGCC 750GCAGCTCACCACAAGGGGCTCGTCGCCGGCGGCCTCGTCCTCTTCTCGCC 750

GAGCAGGTCCTCTTCCCCAGCCCGCGCCGAAGGTCCTCGCCAATAAGCGG 800GAGCAGGTCCTCTTCCCCAGCCCGCGCCGAAGGTCCTCGCCAATAAGCGG 800

CAACCACCTCCTCCTCATGGCTCAGGCGTTCAGCTCTCGCTTCTCTTTGG 850CAACCACCTCCTCCTCATGGCTCAGGCGTTCAGCTCTCGCTTCTCTTTGG 850

ATAGGCAAGGAGGACAAAGGATCCCGTCCCAACTGGATCCCGGTGCGTAG 900ATAGGCAAGGAGGACAAAGGATCCCGTCCCAACTGGATCCCGGTGCGTAG 900

CATTTCCGTTTCTTTTTTTCACATTTTTTATGGGTGTCTATTTCACATGG 950CATTTCCGTTTCTTTTTTTCACATTTTTTTATGGGTGTCTATTTCACATGG 950

TAATTAGACAGCTAATTCCAAGCTTAAAACCTGGCTTAATGCTACTGCTT 1000TAATTAGACAGCTAATTCCAAGCTTAAAACCTGGCTTAATGCTACTGCTT 1000

TTTATCCTAGGAATCTATTTTGATTTCTCAAGAGGATGTCTTCTCGTAAG 1050TTTATCCTAGGAATCTATTTTGATTTCTCCAAGAGGATGTCTTCTCGTAAG 1050

CTTAAAAACCATTCAAATGGTTATAAAAAAAATTCTAAAAAAATTAACAA 1100CTTAAAAACCATTCAAATGGTTATAAAAAAAATTCTAAAAAAAATTAACAA 1100

CACTCATACAATTTACTTCCTCCGTTCAAAAAAAACCAACGGATGTGACC 1150CACTCATACAATTTACTTCCTCCGTTCAAAAAAAACCAACGGATGTGACC 1150

CCCTCCTAATACAGTAAATCTAAACAGCACTTAATCCAAATTTGTTATAT 1200CCCTCCTAATACAGTAAATCTAAAACAGCACTTAATCCAAATTTGTTATAT 1200

TAGGAGATGTCACATCCTTTTAGGTTGTTTTTTTGGTGACGGATTTTTTT 1250TAGGAGATGTCACATCCTTTTAGGTTGTTTTTTTTGGTGACGGATTTTTTT 1250

TTTACGGAGGGATGGAGTATATCTCACACAGCTCTAGCACGTACTCCTAT 1300TTTACGGAGGGATGGAGTATATCTCCACACAGCTCTAGCACGTACTCCTAT 1300

CTCACACAGATTTATCACAAATCATACACTTTTTTTTAATATCTTCTACA 1350CTCACACAGATTTATCACAAATCATACACTTTTTTTTAATATCTTCTACA 1350

CTGCACTTTATGAATATCTCATGTCCTGTCTTCCACAGGAAAAAAAGTGA 1400CTGCACTTTATGAATATCTCATGTCCTGTCTTCCACAGGAAAAAAGTGA 1400

AATAGTGAAAAGATTCAGAATTAGGAAGCATCTAATCACCTAACTTGACA 1450AATAGTGAAAAGATTCAGAATTAGGAAGCATCTAATCACCTAACTTGACA 1450

GCAATCAGTTTCAAGTGGCCAAGTGCCAAACAGTTTCAAGATTACTTACA 1500GCAATCAGTTTCAAGTGGCCAAGTGCCAAACAGTTTCAAGATTACTTACA 1500

ACTTATCCGTTCCCTCCATATATCTCTCTCCCCTCTTCTCCACCTCTCGC 1550ACTTATCCGTTCCTCTCATATATCTCTCTCCCCTCTTCTCCACCTCTCGC 1550

TACTCCACCATCCAACGTGCGAGAAGCCATGGCATCCATCCCGTGCACCT 1600TACTCCACCATCCAACGTGCGAGAAGCCATGGCATCCATCCCCGTGCACCT 1600

TCCAGCTGAGCGCGAGGGCGTCGTCGGCGTCGGCGGCGGCGGCGGCGAGG 1650TCCAGCTGAGCGCGAGGGCGTCGTCGGCGTCGGCGGCGGCGGCGGCGAGG 1650

AGGTCGCCGCGGGCGGCGGCGAGGCTGGGGTGGCTGCGGCCGTCGCGGCT 1700AGGTCGCCGCGGGCGGCGGCGAGGCTGGGGTGGCTGCGGCCGTCGCGGCT 1700

GAGCGCGGTGGTGCCGGCGAGCGAGAGCGGGAGGGTGGGGCCGACGTGCT 1750GAGCGCGGTGGTGCCGGCGAGCGAGAGCGGGAGGGTGGGGCCGACGTGCT 1750

TCTTCAAGTTCGGGAACAAGGACGCCGAGGGCGCCGGCATCTACGGCAGC 1800TCTTCAAGTTCGGGAACAAGGACGCCGAGGGCGCCGGCATCTACGGCAGC 1800

CAGGGCAGGGACGACTTCGACCGCGACGACGTCGAGCAGGTGAGCCAGCT 1850CAGGGCAGGGACGACTTCGACCGCGACGACGTCGAGCAGGTGAGCCAGCT 1850

TCTCGTTCTTCCTCCTCCCCATGTTGCCTTAGGTGTTCCTTGATTGCTCC 1900TCTCGTTTCTTCCTCCTCCCCATGTTGCCTTAGGTGTTCCTTGATTGCTCC 1900

AGTCCATGGGGAATGTGCTGACGAATGACTGAGATGCTACCTTACCACTG 1950AGTCCATGGGGAATGTGCTGACGAATGACTGAGATGCTACCTTACCACTG 1950

CTATATTACTTGGTGGATTGGTAATTCTGATCCTAATGTGAGACATACGA 2000CTATATTACTTGGTGGATTGGTAATTCTGATCCTAATGTGAGACATACGA 2000

AGTAGTTGATTGCTATACTTGCTAGTTTGGTTTGAGGACAAATGATGCAG 2050AGTAGTTGATTGCTATACTTGCTAGTTTGGTTTGAGGACAAATGATGCAG 2050

CATTTGATTTGAGTTGAATTAAGGCATGTCTTTTTCCTTATGCTTATACT 2100CATTTGATTTGAGTTGAATTAAGGCATGTCTTTTTTCCTTATGCTTATACT 2100

TATCAACCAACATTTGAATTTTAAATTTGGAGTTGATTTAGAGGTTTTTT 2150TATCAACCAACATTTGAATTTTAAATTTGGAGTTGATTTAGAGGTTTTTT 2150

CATTGAAGTATATTTTTCAGCATTTGCTTTTAAATCTCTAAGAATATACA 2200CATTGAAGTATATTTTTCAGCATTTGCTTTTAAATCTCTAAGAATATACA 2200

TATAAAAGTTTTATTTACAAATTACTTTTTATTTGCAAATATTCCGTTTC 2250TATAAAAGTTTTATTTACAAATTACTTTTTATTTGCAAATATTCCGTTTC 2250

GCTTGCTTCGCTTATTCCGCGAATAAGCAAAACGATGGCTCGTATCATAG 2300GCTTGCTTCGCTTATTCCGCGAATAAGCAAAACGATGGCTCGTATCATAG 2300

CCAGCAGTAGCAAAGAGGAAGAGAAGAAAAGAAAAAAACAACAATCACCT 2350CCAGCAGTAGCAAAGAGGAAGAGAAGAAAAGAAAAAAACAACAATCACCT 2350

CGCAATTTAGTCTTTGTAGTTTCATGGACAAAATGCAAATTGCAGCTGCA 2400CGCAATTTAGTCTTTGTAGTTTCATGGACAAAATGCAAATTGCAGCTGCA 2400

GGGTATCTGAAATTCTGAATATGCTAATCAAGAATTCAAGATAGCTGTAG 2450GGGTATCTGAAATTCTGAATATGCTAATCAAGAATTCAAGATAGCTGTAG 2450

ACTAGCACATTCAGATTGAAGAACAGCACCTGAACATGGAAAGCTCTAGT 2500ACTAGCACATTCAGATTGAAGAACAGCACCTGAACATGGAAAGCTCTAGT 2500

GACAAGAAAGATTCAGAATAGTAACTTTGATTCCTGAGATGAGATTCTGA 2550GACAAGAAAGATTCAGAATAGTAACTTTGATTCCTGAGATGAGATTCTGA 2550

ATGTATCTGAATCTTTCTGTCTGCGCTTGTAGTACTTCAACTACATGGGG 2600ATGTATCTGAATCTTTCTGTCTGCGCTTGTAGTACTTCAACTACATGGGG 2600

ATGCTGGCGGTGGAGGGCACCTACGACAAGATGGAGGCGCTGCTGAACCA 2650ATGCTGGCGGTGGAGGGCACCTACGACAAGATGGAGGCGCTGCTGAACCA 2650

GGACATCCACCCGGTGGACATCCTCCTCATGCTCGCCGCCTCCGAGGGCG 2700GGACATCCACCCGGTGGACATCCTCCTCATGCTCGCCGCCTCCGAGGGCG 2700

ACAAGCCCAAGCTCGAGGAGCTCCTCCGCGCCGGCGCCAAGTACGACGTC 2750ACAAGCCCAAGCTCGAGGAGCTCCTCCGCGCCGGCGCCAAGTACGACGTC 2750

AAGGACGTCGACGGCCGGACGGCGCTCGACCGCGCCGCCGACGACACCAG 2800AAGGACGTCGACGGCCGGACGGCGCTCGACCGCGCCGCCGACGACACCAG 2800

GGAGTTCATCCTCGGCTTCGCCGCCACCTTGGCCGCCTGATCGATCGCTT 2850GGAGTTCATCCTCGGCTTCGCCGCCACCTTGGCCGCCTGATCGATCGCTT 2850

CGCCGACGACGACGACCTTGATGCCTGGATATGTTTCGGCTATACTAGTA 2900CGCCGACGACGACGACCTTGATGCCTGGATATGTTTCGGCTATACTAGTA 2900

TACTACGTATTTATCTTTTCTTATTTTTTTCTTTTTCAAGTTTCTCCAAG 2950TACTACGTATTTATCTTTTTCTTATTTTTTTTCTTTTCAAGTTTCTCCAAG 2950

TTTTTCTTGTGTTTGGTAGAGTTTAGCCGGGAAATTCACAAGTTGTTTAC 3000TTTTTCTTGTGTTTGGTAGAGTTTAGCCGGGAAATTCACAAGTTGTTTAC 3000

AGTTCAAGAGGAAGTAGCTTCATCTGTATCTTTCACTTTCTTCGCTGTGT 3050AGTTCAAGAGGAAGTAGCTTCATCTGTATCTTTCACTTTCTTCGCTGTGT 3050

GAGGCTATGCTTTGTAGAAATTGTTGTTACAAGTAGTATCTTCCACTGTT 3100GAGGCTATGCTTTGTAGAAATTGTTGTTACAAGTAGTATCTTCCACTGTT 3100

TCAATATGAAAGTAAGAAGAAGCTTTGGATGCATGATACTATTGGAATTG 3150TCAATATGAAAGTAAGAAGAAGCTTTGGATGCATGATACTATTGGAATTG 3150

GAAGCTTTGATGTTCACATAATAACATGTTAAGATGCCAAATCCTAACAG 3200GAAGCTTTGATGTTCACATAATAACATGTTAAGATGCCAAATCCTAACAG 3200

CAAGCAATAGCATGAACTTCAAGCAAAGCATTACTGCAACAGCAAGCAAA 3250CAAGCAATAGCATGAACTTCAAGCAAAGCATTACTGCAACAGCAAGCAAA 3250

ACTTCATCCTTTATTGTCTCAGATTAACTGCTATGTCCATGTTGCCGTCA 3300ACTTCATCCTTTATTGTCTCAGATTAACTGCTATGTCCATGTTGCCGTCA 3300

GTACATGTTCTATGTACTAGCCTAGAATTACAAACAGCATTTCGCCGAAA 3350GTACATGTTCTATGTACTAGCCTAGAATTACAAAACAGCATTTCGCCGAAA 3350

GATTCACTTGGGGGAAACAAACAGTCTGCGACCACAGCCTCAACAACGAA 3400GATTCACTTGGGGGAAACAAACAGTCTGCGACCACAGCCTCAACAACGAA 3400

ATTACGAGTATAAACTCTATAAACCCCCTCATGAATCCGCCAGATCATAT 3450ATTACGAGTATAAACTCTATAAACCCCCTCATGAATCCGCCAGATCATAT 3450

TATTCTTTTCTTCTTCTATATTCATCTTGGTATATATTTCTATAAGGACT 3500TATTCTTTTCTTTCTTATATTCATCTTGGTATATATTTCTTATAAGGACT 3500

GTGAATGTACTCCTACCTACAAAACATTGGGTAAATGGCAGTTGTACTTC 3550GTGAATGTACTCCTACCTACAAAAACATTGGGTAAATGGCAGTTGTACTTC 3550

AACTTTGGATGTGACCGGAGCGCTTGCTGGAGCGCCGTGTCCACCGTCAC 3600AACTTTGGATGTGACCGGAGCGCTTGCTGGAGCGCCGTGTCCACCGTCAC 3600

GCCCTCGCGGAACAGCTTGTCATACAGGAGGCAGATGAACTGAGCCATGT 3650GCCCTCGCGGAACAGCTTGTCATACAGGAGGCAGATGAACTGAGCCATGT 3650

ACTCCTCATCATCGAAATCTTTGCTGCGATCGCCATTTTTCTCCATGTCG 3700ACTCCTCATCATCGAAATCTTTGCTGCGATCGCCATTTTTCTCCATGTCG 3700

CTGTCTTCCCAGTCACTCGTAGGGCTAACAGGTT 3734CTGTCTTCCCAGTCACTCGTAGGGCTAACAGGTT 3734

Claims (4)

1.一种植物光合作用相关蛋白编码基因在培育光合效率提高的转基因植物中的应用,其中所述相关蛋白的氨基酸序列如SEQ ID NO:1所示。1. The application of a plant photosynthesis-related protein coding gene in cultivating transgenic plants with improved photosynthetic efficiency, wherein the amino acid sequence of the related protein is as shown in SEQ ID NO:1. 2.如权利要求1所述的应用,其特征在于,所述基因的核苷酸序列如SEQ ID NO:2所示或SEQ ID NO:3所示。2. The application according to claim 1, wherein the nucleotide sequence of the gene is shown in SEQ ID NO:2 or SEQ ID NO:3. 3.如权利要求1或2所述的应用,其特征在于:将包含所述基因的表达载体导入植物中,得到光合效率高于所述受体植物的转基因植物。3. The application according to claim 1 or 2, characterized in that: the expression vector containing the gene is introduced into the plant to obtain a transgenic plant whose photosynthetic efficiency is higher than that of the recipient plant. 4.如权利要求3所述的应用,其特征在于:所述转基因植物是转基因水稻。4. The application according to claim 3, characterized in that: the transgenic plant is transgenic rice.
CN201310591977.0A 2013-11-22 2013-11-22 Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application Expired - Fee Related CN103709237B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310591977.0A CN103709237B (en) 2013-11-22 2013-11-22 Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310591977.0A CN103709237B (en) 2013-11-22 2013-11-22 Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application

Publications (2)

Publication Number Publication Date
CN103709237A CN103709237A (en) 2014-04-09
CN103709237B true CN103709237B (en) 2016-06-22

Family

ID=50402624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310591977.0A Expired - Fee Related CN103709237B (en) 2013-11-22 2013-11-22 Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application

Country Status (1)

Country Link
CN (1) CN103709237B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674120A (en) * 2017-11-16 2018-02-09 中国农业科学院生物技术研究所 Plant specular removal gene PS F2 and its application
CN107904246B (en) * 2017-12-29 2020-10-27 浙江师范大学 Genes with high photosynthetic efficiency in rice and their applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485750A (en) * 2010-12-02 2012-06-06 中国科学院微生物研究所 Plant antioxidant related protein SsOEP8 and its coding gene and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110131679A2 (en) * 2000-04-19 2011-06-02 Thomas La Rosa Rice Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485750A (en) * 2010-12-02 2012-06-06 中国科学院微生物研究所 Plant antioxidant related protein SsOEP8 and its coding gene and application

Also Published As

Publication number Publication date
CN103709237A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN107188940B (en) Application of GsA 12 protein and coding gene thereof in regulation and control of plant stress tolerance
CN107383179B (en) A protein GsSLAH3 related to plant stress tolerance and its coding gene and application
CN101519441B (en) Protein related to plant blossom time, a coding gene and applications thereof
CN109111514B (en) Method for cultivating transgenic wheat with resistance to sheath blight and root rot and related biological material thereof
CN105017393B (en) With the relevant protein B hDNAJC2 of stress resistance of plant and its encoding gene and application
WO2023065966A1 (en) Application of bfne gene in tomato plant type improvement and biological yield increase
CN108822194A (en) One plant amylum synthesis associated protein OsFLO10 and its encoding gene and application
CN104710522A (en) Protein related to flowering time of plant, and coding gene and application thereof
CN112795588B (en) Application of OsSGD1 protein in regulation of rice grain size
CN108642065A (en) A kind of paddy endosperm silty related gene OsSecY2 and its coding protein and application
CN105198976A (en) Protein GsERF6 related to plant stress resistance as well as coding gene and application of protein
CN104480120B (en) Plant salt tolerance related gene PpSIG2 and its encoding proteins and application
CN106749580B (en) Plant salt tolerance-related protein TaPUB15-D and its encoding gene and application
CN1970767B (en) Gene related to plant type from rice and its encoded protein and application
CN106589085B (en) A kind of plant starch synthesis related protein OsFLO8 and its coding gene and application
CN103709237B (en) Photosynthesis of plant associated protein OsPSF1 and encoding gene thereof and application
CN105647940A (en) Method for improving rice yield through OsGRF6 gene, and applications thereof
CN104561036B (en) Plant salt tolerance related gene PpSIG1 and its encoding proteins and application
CN101050462B (en) Phosphorus deficiency-induced gene from Arabidopsis thaliana and its encoded protein and application
CN111574606A (en) Wheat disease resistance and heading regulatory gene TaCOK and its related biomaterials and applications
CN103275202A (en) Disease resistance-related protein RCR1 derived from wheat, related biomaterials thereof, and application for same
CN115073573B (en) Sweet potato stress resistance related protein IbNAC087 and its coding gene and application
CN103172714B (en) Rice leaf rolling-associated protein OsMYB103L as well as encoding gene and application thereof
CN105175519B (en) Applications of the Protein S RL2 in cultivating leaf roll Qushui River rice
CN107674120A (en) Plant specular removal gene PS F2 and its application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160622

Termination date: 20181122