CN103691000B - The preparation method of micro-, nano-calcium phosphate/catechol based polyalcohol bone repairing support - Google Patents
The preparation method of micro-, nano-calcium phosphate/catechol based polyalcohol bone repairing support Download PDFInfo
- Publication number
- CN103691000B CN103691000B CN201310682213.2A CN201310682213A CN103691000B CN 103691000 B CN103691000 B CN 103691000B CN 201310682213 A CN201310682213 A CN 201310682213A CN 103691000 B CN103691000 B CN 103691000B
- Authority
- CN
- China
- Prior art keywords
- calcium phosphate
- nano
- micro
- catechol
- dopamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000001506 calcium phosphate Substances 0.000 title claims abstract description 80
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 229910000389 calcium phosphate Inorganic materials 0.000 title claims abstract description 78
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 150000005846 sugar alcohols Polymers 0.000 title claims 9
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims abstract description 102
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 79
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 66
- 229960003638 dopamine Drugs 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 34
- 229920001690 polydopamine Polymers 0.000 claims abstract description 31
- 238000000465 moulding Methods 0.000 claims abstract description 29
- 229920000578 graft copolymer Polymers 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000000872 buffer Substances 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims description 28
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 22
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 17
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 14
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 239000008103 glucose Substances 0.000 claims description 11
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 11
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 11
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 229910021538 borax Inorganic materials 0.000 claims description 8
- 235000019700 dicalcium phosphate Nutrition 0.000 claims description 8
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 claims description 8
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 8
- 239000004328 sodium tetraborate Substances 0.000 claims description 8
- 239000000594 mannitol Substances 0.000 claims description 5
- 239000012279 sodium borohydride Substances 0.000 claims description 5
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 claims description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 229930195725 Mannitol Natural products 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 3
- 229920002521 macromolecule Polymers 0.000 claims description 3
- 235000010355 mannitol Nutrition 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 239000012467 final product Substances 0.000 claims 3
- 235000019739 Dicalciumphosphate Nutrition 0.000 claims 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 claims 1
- 229940038472 dicalcium phosphate Drugs 0.000 claims 1
- 238000004108 freeze drying Methods 0.000 claims 1
- 238000001556 precipitation Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 239000002002 slurry Substances 0.000 abstract description 41
- 229920000642 polymer Polymers 0.000 abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 21
- 238000010146 3D printing Methods 0.000 abstract description 9
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 abstract description 8
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 229960001714 calcium phosphate Drugs 0.000 description 59
- 239000002245 particle Substances 0.000 description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 10
- 239000002639 bone cement Substances 0.000 description 9
- 239000007853 buffer solution Substances 0.000 description 9
- 239000012890 simulated body fluid Substances 0.000 description 7
- 238000012876 topography Methods 0.000 description 6
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910000392 octacalcium phosphate Inorganic materials 0.000 description 4
- YIGWVOWKHUSYER-UHFFFAOYSA-F tetracalcium;hydrogen phosphate;diphosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YIGWVOWKHUSYER-UHFFFAOYSA-F 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 229920006237 degradable polymer Polymers 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 239000003462 bioceramic Substances 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004068 calcium phosphate ceramic Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- -1 phenoxy anion Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- KEAYESYHFKHZAL-BJUDXGSMSA-N sodium-22 Chemical group [22Na] KEAYESYHFKHZAL-BJUDXGSMSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
本发明公开了一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A、将100份重的磷酸钙、1~40份重的造孔剂和0.1~45份重的儿茶酚基聚合物混合,再加三羟甲基氨基甲烷-盐酸缓冲液得浆状混合物;其中,磷酸钙为微米磷酸钙和/或纳米磷酸钙;儿茶酚基聚合物为聚多巴胺或多巴胺接枝共聚物;B、将A步的浆状混合物以模压、浇注或3D打印的方式成型,成型后置于35-40℃水浴锅中固化20-30h,即得。该方法制得的骨修复材料支架具有良好生物活性、骨传导性、降解能力和生物相容性,同时,其力学性能好。既可通过模压、浇注也可通过3D打印方法成型,能够制成任何形状和结构的骨修复材料支架。
The invention discloses a preparation method of a micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps of which are: A. 100 parts by weight of calcium phosphate, 1-40 parts by weight of a pore-forming agent and 0.1 ~45 parts by weight of catechol-based polymers are mixed, and tris-hydrochloric acid buffer is added to obtain a slurry mixture; wherein, the calcium phosphate is micron calcium phosphate and/or nanometer calcium phosphate; catechol-based polymers The product is polydopamine or dopamine graft copolymer; B. Molding, pouring or 3D printing the slurry mixture in step A, and curing it in a water bath at 35-40°C for 20-30 hours after molding, to obtain the product. The bone repair material bracket prepared by the method has good bioactivity, osteoconductivity, degradation ability and biocompatibility, and meanwhile, has good mechanical properties. It can be formed by molding, pouring or 3D printing, and can be made into bone repair material brackets of any shape and structure.
Description
技术领域technical field
本发明涉及生物医用材料,尤其涉及一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法The invention relates to biomedical materials, in particular to a method for preparing a micro-nano calcium phosphate/catechol-based polymer bone repair scaffold
背景技术Background technique
骨缺损修复材料是临床上需求量最大的生物材料之一(Al-Aql Z S,et al.Molecular mechanisms controlling bone formation during fracture healing anddistraction osteogenesis.J Dent Res,2008;87(2):107-118),而骨支架材料则是较为适宜的骨修复和替换材料。理想的骨支架材料需要具备以下性能:(1)较好的生物相容性、生物活性和骨传导性;(2)可降解性;(3)与骨相类似的力学性能,即力学相容性;(4)适宜的孔隙率;(5)易加工塑形等(Wagoner JohnsonA J,et al.A review of the mechanical behavior of CaP and CaP/polymer compositesfor applications in bone replacement and repair.Acta Biomater,2011;7(1):16-30)。Bone defect repair materials are one of the most clinically demanded biomaterials (Al-Aql Z S, et al. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res, 2008; 87(2): 107-118 ), while the bone scaffold material is a more suitable bone repair and replacement material. An ideal bone scaffold material needs to have the following properties: (1) good biocompatibility, bioactivity and osteoconductivity; (2) degradability; (3) mechanical properties similar to those of bone, that is, mechanical compatibility (4) Suitable porosity; (5) Easy processing and shaping (Wagoner JohnsonA J, et al. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater, 2011; 7(1):16-30).
磷酸钙基生物材料(磷酸钙基生物陶瓷和磷酸钙骨水泥)与自然骨中的无机成分类似且降解产物是人体所需的Ca2+和离子,因此具有良好的生物相容性和生物活性,已被广泛应用于骨科和牙科等领域(Bose s,et al.Calciumphosphate ceramic system in growth factor and drug delivery for bone tissueengineering:A review.Acta Biomater,2012;8(4):1401-1421)。磷酸钙基生物陶瓷和磷酸钙骨水泥通常由微米级或纳米级的磷酸钙组装制成,由于微米级或纳米级的磷酸钙颗粒之间的结合能力较弱,制备出的生物材料支架往往表现出脆性大和强度低的不足。而理想的骨支架材料应具有适宜的孔隙率以利于细胞及骨组织的长入,较高的孔隙率又进一步降低了支架材料的力学性能。Calcium phosphate-based biomaterials (calcium phosphate-based bioceramics and calcium phosphate bone cement) are similar to the inorganic components in natural bone and the degradation products are Ca 2+ and Ions, so they have good biocompatibility and bioactivity, have been widely used in fields such as orthopedics and dentistry (Bose s, et al. Calciumphosphate ceramic system in growth factor and drug delivery for bone tissue engineering: A review.Acta Biomater, 2012;8(4):1401-1421). Calcium phosphate-based bioceramics and calcium phosphate bone cement are usually assembled by micron-scale or nano-scale calcium phosphate. Due to the weak binding ability between micron-scale or nano-scale calcium phosphate particles, the prepared biomaterial scaffolds often exhibit It has the disadvantages of high brittleness and low strength. The ideal bone scaffold material should have appropriate porosity to facilitate the ingrowth of cells and bone tissue, and higher porosity further reduces the mechanical properties of the scaffold material.
现有提高磷酸钙骨水泥支架力学性能的方法主要是在磷酸钙颗粒的粉末中添加抗拉、抗弯的纤维或高强度的碳纳米管,然后再模压成型;从而提高支架的韧性或强度。但是,由于是在固体状态下进行混合,纤维和碳纳米管很难分布均匀,导致材料的力学性能提高有限。并且由于纤维或碳纳米管本身没有粘性,只能通过模压或浇注方式形成支架,而无法采用3D打印方式成型,无法制成带内腔或精细的特殊形状、结构的支架。The existing methods for improving the mechanical properties of calcium phosphate bone cement scaffolds are mainly to add tensile and bending-resistant fibers or high-strength carbon nanotubes to the powder of calcium phosphate particles, and then mold them to improve the toughness or strength of the scaffold. However, due to the mixing in a solid state, it is difficult to distribute the fibers and carbon nanotubes uniformly, resulting in limited improvement in the mechanical properties of the material. And because the fibers or carbon nanotubes themselves are not viscous, they can only be molded or poured to form a bracket, but cannot be formed by 3D printing, and cannot be made into a bracket with an inner cavity or a fine special shape and structure.
发明内容Contents of the invention
本发明的目的是提供一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,该方法制得的骨修复材料支架具有良好生物活性、骨传导性、降解能力和生物相容性,同时,其力学性能好。既可通过模压、浇注也可通过3D打印方法成型,能够制成任何形状和结构的骨修复材料支架。The purpose of the present invention is to provide a preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the bone repair material scaffold prepared by the method has good biological activity, osteoconductivity, degradation ability and biophase Capacitive, at the same time, its mechanical properties are good. It can be formed by molding, pouring or 3D printing, and can be made into bone repair material brackets of any shape and structure.
本发明实现其发明目的所采用的技术方案是,一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:The technical solution adopted by the present invention to realize the purpose of the invention is a preparation method of a micro-nano calcium phosphate/catechol-based polymer bone repair support, the steps of which are:
A、将100份重的磷酸钙、1~40份重的造孔剂和0.1~45份重的儿茶酚基聚合物混合,再加三羟甲基氨基甲烷-盐酸缓冲液得浆状混合物;其中,磷酸钙为微米磷酸钙和/或纳米磷酸钙;儿茶酚基聚合物为聚多巴胺或多巴胺接枝共聚物;A. Mix 100 parts by weight of calcium phosphate, 1 to 40 parts by weight of pore-forming agent and 0.1 to 45 parts by weight of catechol-based polymer, and then add tris-hydrochloric acid buffer to obtain a slurry mixture ; Wherein, the calcium phosphate is micron calcium phosphate and/or nano calcium phosphate; the catechol-based polymer is polydopamine or dopamine graft copolymer;
B、迅即将A步的浆状混合物以模压、浇注或3D打印的方式成型,成型后置于35-40℃水浴锅中固化20-30h,即得。B. Immediately form the slurry mixture in step A by molding, pouring or 3D printing. After forming, put it in a water bath at 35-40°C for 20-30 hours to solidify.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
一、儿茶酚基聚合物(聚多巴胺或多巴胺接枝共聚物)本身的力学性能好,在液态环境下与磷酸钙混合,分布均匀,起到良好的支撑作用,有利于提高复合支架的力学性能。同时儿茶酚基聚合物中含有大量的儿茶酚官能团,可以与磷酸钙材料形成共价或非共价结合,从而对磷酸钙材料具有超强的粘附性能,在其粘附作用下,磷酸钙材料在成型过程中牢固结合,提高了支架的力学性能。并且儿茶酚官能团在碱性条件下可失去H+而带负电性,形成苯氧负离子,对磷酸钙中的Ca2+也具有较强的亲和力,有利于钙离子富集,从而形成结合紧密的羟基磷灰石,也进一步提高了支架的力学性能。从而保证本发明的复合支架在高孔隙的情况下仍具有良好的力学性能。儿茶酚基聚合物的粘附性能在潮湿环境中仍能保持,从而在植入体内的潮湿环境下,支架材料不会发生溃散,避免了游离的磷酸钙颗粒对周围组织的不良影响。1. The catechol-based polymer (polydopamine or dopamine graft copolymer) itself has good mechanical properties. When mixed with calcium phosphate in a liquid environment, the distribution is uniform and plays a good supporting role, which is conducive to improving the mechanical properties of the composite scaffold. performance. At the same time, catechol-based polymers contain a large number of catechol functional groups, which can form covalent or non-covalent bonds with calcium phosphate materials, thus having super strong adhesion properties to calcium phosphate materials. Under its adhesion, The calcium phosphate material is firmly combined during the molding process, which improves the mechanical properties of the scaffold. Moreover, the catechol functional group can lose H + under alkaline conditions and become negatively charged, forming phenoxy anion, which also has a strong affinity for Ca 2+ in calcium phosphate, which is conducive to the enrichment of calcium ions, thus forming a tight bond The hydroxyapatite also further improved the mechanical properties of the scaffold. Therefore, it is ensured that the composite scaffold of the present invention still has good mechanical properties in the case of high porosity. The adhesion performance of the catechol-based polymer can still be maintained in a humid environment, so that the scaffold material will not collapse in a humid environment implanted in the body, and the adverse effects of free calcium phosphate particles on surrounding tissues are avoided.
实验表明,本发明的复合材料骨修复支架的抗压强度为磷酸钙骨修复支架的2倍。Experiments show that the compressive strength of the composite material bone repair bracket of the present invention is twice that of the calcium phosphate bone repair bracket.
二、儿茶酚基聚合物(聚多巴胺或多巴胺接枝共聚物)具有良好的生物相容性,可提高细胞在材料表面的粘附、伸展及增殖。另一方面,植入体内后,均匀分散在支架中的聚多巴胺对Ca2+较强的吸附力,可吸收体液中的Ca2+,促使磷酸钙支架表面快速矿化,进一步提高支架的生物相容性、蛋白吸附能力和细胞亲和性,以达到支架与植入部位的生物活性结合的目的。因此本发明的复合支架较磷酸钙骨水泥支架的生物相容性和生物活性更好。2. Catechol-based polymers (polydopamine or dopamine graft copolymer) have good biocompatibility and can improve the adhesion, extension and proliferation of cells on the surface of the material. On the other hand, after implanted in the body, the polydopamine uniformly dispersed in the scaffold has a strong adsorption force on Ca 2+ , which can absorb Ca 2+ in body fluid, promote the rapid mineralization of the surface of the calcium phosphate scaffold, and further improve the biological properties of the scaffold. Compatibility, protein adsorption capacity and cell affinity, in order to achieve the purpose of bioactive combination of the scaffold and the implantation site. Therefore, the composite scaffold of the present invention has better biocompatibility and bioactivity than the calcium phosphate bone cement scaffold.
实验表明,本发明的复合材料骨修复支架在模拟体液中浸泡1天即可在其表面形成明显的矿化层,表明其生物活性良好。Experiments show that the composite material bone repair scaffold of the present invention can form an obvious mineralized layer on its surface after soaking in simulated body fluid for 1 day, indicating that its biological activity is good.
三、由于聚多巴胺或多巴胺接枝共聚物具有超强粘附力,其与磷酸钙、造孔剂混合形成的浆状物能迅速成型,从而既可通过模压、浇注,更可通过3D打印方法成型,能够制成任何形状和结构的骨修复材料支架,能满足各种形状的骨缺损修复和治疗的需要。3. Due to the strong adhesion of polydopamine or dopamine graft copolymer, the slurry formed by mixing it with calcium phosphate and pore-forming agent can be formed rapidly, so that it can be molded, poured, or 3D printed. Molding can be made into bone repair material scaffolds of any shape and structure, which can meet the needs of various shapes of bone defect repair and treatment.
上述的B步中置于35-40℃水浴锅中固化时,还同时进行紫外光照射。In the above-mentioned step B, when curing in a water bath at 35-40°C, ultraviolet light irradiation is also carried out at the same time.
这样,可促使成型时材料内部未交联的聚多巴胺或多巴胺接枝共聚物继续交联,以提高交联程度,使支架材料中各相的结合力进一步提高。In this way, the uncrosslinked polydopamine or dopamine graft copolymer inside the material can be promoted to continue to crosslink during molding, so as to increase the degree of crosslinking and further improve the binding force of each phase in the scaffold material.
上述的微米磷酸钙的平均粒径为1~500μm,具体为二水磷酸氢钙、磷酸氢钙、磷酸四钙、α磷酸三钙、β磷酸三钙、羟基磷灰石中的一种或一种以的混合物;The above-mentioned micron calcium phosphate has an average particle size of 1 to 500 μm, and is specifically one or a combination of calcium hydrogen phosphate dihydrate, calcium hydrogen phosphate, tetracalcium phosphate, alpha tricalcium phosphate, beta tricalcium phosphate, and hydroxyapatite a mixture of species;
上述的纳米磷酸钙的平均粒径为10~990nm,具体为羟基磷灰石、无定型磷酸钙、磷酸八钙中的一种或一种以的混合物;The above-mentioned nano-calcium phosphate has an average particle size of 10-990nm, and is specifically one or a mixture of hydroxyapatite, amorphous calcium phosphate, and octacalcium phosphate;
这些种类的微米磷酸钙或纳米磷酸钙均为成熟的磷酸钙骨水泥原料,均具有良好的生物相容性和生物活性。These types of micro-calcium phosphate or nano-calcium phosphate are mature raw materials for calcium phosphate bone cement, and all have good biocompatibility and bioactivity.
上述的造孔剂为双氧水、可降解高分子、甘露醇、氯化钠或葡萄糖粉末。The above-mentioned pore-forming agent is hydrogen peroxide, degradable polymer, mannitol, sodium chloride or glucose powder.
双氧水在成型和固化过程中分解,从而制备复合支架的过程中形成很多孔隙;而甘露醇、氯化钠或葡萄糖粉末在植入体内后,会被体液很快溶解,而形成多孔隙支架;可降解高分子则在植入体内后逐渐降解,而形成多孔隙支架。它们能以不同方式形成多孔隙支架,满足不同的使用要求。Hydrogen peroxide decomposes during the molding and curing process, thus forming many pores in the process of preparing the composite scaffold; while mannitol, sodium chloride or glucose powder will be quickly dissolved by body fluids after being implanted in the body to form a porous scaffold; The degradable polymer gradually degrades after being implanted in the body to form a porous scaffold. They can form porous scaffolds in different ways to meet different application requirements.
上述的聚多巴胺由以下方法制得:Above-mentioned polydopamine is made by following method:
在pH7.4-10的碱性溶液中加入多巴胺,在通入氧气或紫外光辐照的情况下,搅拌24h,或在加入高碘酸钠或双氧水后搅拌24h;然后将溶液离心、冷冻干燥即得。Add dopamine to the alkaline solution of pH 7.4-10, stir for 24 hours under the condition of oxygen or ultraviolet light irradiation, or stir for 24 hours after adding sodium periodate or hydrogen peroxide; then centrifuge the solution and freeze-dry Instantly.
这种方法制备的聚多巴胺交联程度高,本身力学好,粘附性能好,使得复合支架的力学性能进一步提高。The polydopamine prepared by this method has a high degree of cross-linking, good mechanics and good adhesion performance, which further improves the mechanical properties of the composite scaffold.
上述的多巴胺接枝共聚物由以下方法制得:将多巴胺溶于碳酸氢钠溶液中,再加入聚乙二醇、聚苯乙烯、聚亚胺酯、聚丙烯酸酯或聚酰胺,然后加入还原剂四硼酸钠或硼氢化钠,再通入氩气10-20h,过滤、将沉淀清洗,即得。The above-mentioned dopamine graft copolymer is prepared by the following method: dissolving dopamine in sodium bicarbonate solution, adding polyethylene glycol, polystyrene, polyurethane, polyacrylate or polyamide, and then adding reducing agent Sodium tetraborate or sodium borohydride, add argon gas for 10-20 hours, filter, and wash the precipitate to obtain the product.
这种方法制备的多巴胺接枝共聚物交联程度高,本身力学好,粘附性能好,使得复合支架的力学性能进一步提高。The dopamine graft copolymer prepared by the method has a high degree of crosslinking, good mechanics and good adhesion performance, so that the mechanical properties of the composite scaffold are further improved.
下面结合附图和具体的实施方式对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1为单纯的磷酸钙骨水泥支架在模拟体液中浸泡24h后的5000倍表面形貌图。Figure 1 is a 5,000-fold surface topography image of a simple calcium phosphate bone cement scaffold soaked in simulated body fluid for 24 hours.
图2为单纯的磷酸钙骨水泥支架在模拟体液中浸泡24h后的20000倍表面形貌图。Figure 2 is a 20,000-fold surface topography image of a simple calcium phosphate bone cement scaffold soaked in simulated body fluid for 24 hours.
图3为实施例1的复合材料骨修复支架在模拟体液中浸泡24h后的5000倍表面形貌图。Fig. 3 is a 5000 times surface topography image of the composite bone repair scaffold of Example 1 soaked in simulated body fluid for 24 hours.
图4为实施例1的复合材料骨修复支架在模拟体液中浸泡24h后的20000倍表面形貌图。Fig. 4 is a 20,000-fold surface topography image of the composite bone repair scaffold of Example 1 soaked in simulated body fluid for 24 hours.
具体实施方式Detailed ways
实施例1Example 1
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为500μm的85份重的α磷酸三钙、平均粒径为500μm的10份重的二水磷酸氢钙、平均粒径为500μm的5份重的羟基磷灰石,20份重的造孔剂—甘露醇和20份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 500 μ m of 85 parts by weight of α-tricalcium phosphate, the average particle diameter of 10 parts by weight of calcium hydrogen phosphate dihydrate, and the average particle diameter of 5 parts by weight of hydroxyapatite of 500 μm, 20 Part by weight of pore-forming agent-mannitol and 20 parts by weight of polydopamine are mixed, and then tris-hydrochloric acid buffer solution is added to obtain slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于37℃水浴锅中固化24h,即得。B. Form the slurry mixture in step A by molding, and place it in a 37°C water bath to solidify for 24 hours after forming.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH8.5的氢氧化钾溶液中加入多巴胺,在通入氧气的情况下,搅拌24h,然后将溶液离心、冷冻干燥即得。Dopamine is added to the potassium hydroxide solution of pH 8.5, stirred for 24 hours under the condition of feeding oxygen, and then the solution is centrifuged and freeze-dried to obtain the obtained product.
测试表明本例制得的复合材料骨修复支架的抗压强度为24.5MPa;而用本例的同样方法,但在A步中不加入聚多巴胺得到的磷酸钙支架的抗压强度仅为12.5MPa,复合材料骨修复支架的抗压强度约为磷酸钙支架的2倍。The test shows that the compressive strength of the composite material bone repair scaffold made in this example is 24.5MPa; while using the same method in this example, but the compressive strength of the calcium phosphate scaffold obtained without adding polydopamine in step A is only 12.5MPa , the compressive strength of the composite bone repair scaffold is about 2 times that of the calcium phosphate scaffold.
图1、2分别为用本例的同样方法,但在A步中不加入聚多巴胺而得到的磷酸钙骨水泥支架在模拟体液中浸泡24h后的5000倍、20000倍表面形貌图。图3、4则分别为本例的复合材料骨修复支架在模拟体液中浸泡24h后的5000倍、20000倍表面形貌图。图1-4表明,未添加聚多巴胺的磷酸钙骨水泥支架在浸泡24h后没有出现明显的矿化层,而本例的骨修复支架则出现了明显的矿化层,说明本例的骨修复支架的生物活性更好。Figures 1 and 2 are respectively 5,000-fold and 20,000-fold surface topography images of calcium phosphate bone cement scaffolds obtained by using the same method in this example but without adding polydopamine in step A after soaking in simulated body fluid for 24 hours. Figures 3 and 4 are respectively 5,000-fold and 20,000-fold surface topography images of the composite bone repair scaffold in this example soaked in simulated body fluid for 24 hours. Figures 1-4 show that the calcium phosphate bone cement scaffold without polydopamine did not appear obvious mineralized layer after soaking for 24 hours, while the bone repair scaffold in this case showed obvious mineralized layer, indicating that the bone repair in this case The bioactivity of the scaffold is better.
实施例2Example 2
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为1μm的100份重的α型磷酸三钙、40份重的造孔剂—双氧水和0.1份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A. Mix 100 parts by weight of α-type tricalcium phosphate with an average particle size of 1 μm, 40 parts by weight of pore-forming agent-hydrogen peroxide and 0.1 parts by weight of polydopamine, and then add trishydroxyaminomethane-hydrochloric acid buffer to obtain slurry mixture;
B、将A步的浆状混合物以浇注的方式成型,成型后置于35℃水浴锅中固化20h,即得。B. Mold the slurry mixture in step A by pouring, and put it in a 35°C water bath to solidify for 20 hours after molding.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH10的氢氧化钠溶液中加入多巴胺,在紫外辐照的情况下,搅拌24h,然后将溶液离心、冷冻干燥即得。Dopamine is added to sodium hydroxide solution with pH 10, stirred for 24 hours under ultraviolet irradiation, and then the solution is centrifuged and freeze-dried to obtain the obtained product.
实施例3Example 3
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为500μm的100份重的β磷酸三钙、1份重的造孔剂—可降解高分子和45份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 100 parts by weight of β tricalcium phosphate with an average particle diameter of 500 μm, 1 part by weight of pore-forming agent-degradable macromolecule and 45 parts by weight of polydopamine are mixed, and then trishydroxyaminomethane-hydrochloric acid buffer solution is obtained slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于40℃水浴锅中固化30h,即得。B. Form the slurry mixture in step A by molding, and place it in a 40°C water bath to solidify for 30 hours after forming.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH7.4的氢氧化钠溶液中加入多巴胺,加入高碘酸钠,搅拌24h,然后将溶液离心、冷冻干燥即得。Add dopamine and sodium periodate to pH 7.4 sodium hydroxide solution, stir for 24 hours, then centrifuge the solution and freeze-dry it.
实施例4Example 4
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为250μm的100份重的二水磷酸氢钙、20份重的造孔剂—氯化钠和22份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 100 parts by weight of calcium hydrogen phosphate dihydrate, 20 parts by weight of pore-forming agent-sodium chloride and 22 parts by weight of polydopamine with an average particle diameter of 250 μm are mixed, and trishydroxyaminomethane-hydrochloric acid buffer solution is added to obtain slurry mixture;
B、将A步的浆状混合物以3D打印的方式成型,成型后置于38℃水浴锅中固化25h,即得。B. Mold the slurry mixture in step A by 3D printing, and put it in a water bath at 38°C to solidify for 25 hours after molding.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH7.4的氢氧化钠溶液中加入多巴胺,加入双氧水,搅拌24h,然后将溶液离心、冷冻干燥即得。Add dopamine and hydrogen peroxide to the sodium hydroxide solution of pH 7.4, stir for 24 hours, then centrifuge the solution and freeze-dry it.
实施例5Example 5
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为500μm的100份重的磷酸氢钙、1份重的造孔剂—葡萄糖和0.1份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A. Mix 100 parts by weight of calcium hydrogen phosphate with an average particle size of 500 μm, 1 part by weight of pore-forming agent-glucose and 0.1 part by weight of dopamine graft copolymer, and then add trishydroxyaminomethane-hydrochloric acid buffer to obtain slurry shape mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于37℃水浴锅中固化24h,即得。B. Form the slurry mixture in step A by molding, and place it in a 37°C water bath to solidify for 24 hours after forming.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚乙二醇,然后加入还原剂四硼酸钠,再通入氩气10h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyethylene glycol, then add reducing agent sodium tetraborate, then pass in argon for 10 hours, filter, and wash the precipitate to obtain the product.
实施例6Example 6
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为1μm的100份重的磷酸四钙、40份重的造孔剂—葡萄糖和0.1份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 100 parts by weight of tetracalcium phosphate with an average particle diameter of 1 μm, 40 parts by weight of pore-forming agent-glucose and 0.1 parts by weight of dopamine graft copolymer are mixed, and then trishydroxyaminomethane-hydrochloric acid buffer solution is added to obtain slurry shape mixture;
B、将A步的浆状混合物以浇注的方式成型,成型后置于37℃水浴锅中同时进行紫外光照射固化24h,即得。B. Mold the slurry mixture in step A by pouring. After molding, put it in a water bath at 37°C and cure it by ultraviolet light for 24 hours.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚苯乙烯,然后加入还原剂硼氢化钠,再通入氩气20h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polystyrene, then add reducing agent sodium borohydride, then pass through argon for 20 hours, filter, and wash the precipitate to obtain the product.
实施例7Example 7
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为250μm的100份重的羟基磷灰石、1份重的造孔剂—葡萄糖和45份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 100 parts by weight of hydroxyapatite with an average particle diameter of 250 μm, 1 part by weight of pore-forming agent-glucose and 45 parts by weight of dopamine graft copolymer are mixed, and then trishydroxyaminomethane-hydrochloric acid buffer solution is obtained slurry mixture;
B、将A步的浆状混合物以3D打印的方式成型,成型后置于37℃水浴锅中同时进行紫外光照射固化24h,即得。B. Mold the slurry mixture in step A by 3D printing, put it in a water bath at 37°C and cure it with ultraviolet light for 24 hours after molding, and you can get it.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚亚胺酯,然后加入还原剂四硼酸钠,再通入氩气15h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyurethane, then add reducing agent sodium tetraborate, then pass through argon for 15 hours, filter, and wash the precipitate to obtain the product.
实施例8Example 8
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为1μm的50份重的羟基磷灰石、平均粒径为500μm的50份重的磷酸四钙,40份重的造孔剂—葡萄糖和0.1份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 50 parts by weight of hydroxyapatite with an average particle size of 1 μm, 50 parts by weight of tetracalcium phosphate with an average particle size of 500 μm, 40 parts by weight of pore-forming agent-glucose and 0.1 parts by weight of dopamine graft copolymerization The mixture was mixed, and tris-hydrochloric acid buffer solution was added to obtain a slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于37℃水浴锅中固化24h,即得。B. Form the slurry mixture in step A by molding, and place it in a 37°C water bath to solidify for 24 hours after forming.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚丙烯酸酯,然后加入还原剂四硼酸钠,再通入氩气20h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyacrylate, then add reducing agent sodium tetraborate, and then pass in argon for 20 hours, filter, and wash the precipitate to obtain the product.
实施例9Example 9
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为250μm的50份重的羟基磷灰石、平均粒径为250μm的50份重的二水磷酸氢钙,25份重的造孔剂—葡萄糖和25份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 50 parts by weight of hydroxyapatite with an average particle diameter of 250 μm, 50 parts by weight of calcium hydrogen phosphate dihydrate with an average particle diameter of 250 μm, 25 parts by weight of pore-forming agent-glucose and 25 parts by weight of dopamine The branch copolymer is mixed, and tris-hydrochloric acid buffer solution is added to obtain slurry mixture;
B、将A步的浆状混合物以3D的方式成型,成型后置于35℃水浴锅中固化30h,即得。B. Shape the slurry mixture in step A in a 3D manner, and place it in a water bath at 35°C to solidify for 30 hours after molding.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚酰胺,然后加入还原剂四硼酸钠,再通入氩气15h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyamide, then add reducing agent sodium tetraborate, then pass through argon for 15 hours, filter, and wash the precipitate to obtain the product.
实施例10Example 10
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为990nm的100份重的羟基磷灰石,1份重的造孔剂—葡萄糖和45份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 990nm 100 parts by weight of hydroxyapatite, 1 part by weight of pore-forming agent-glucose and 45 parts by weight of dopamine graft copolymer are mixed, then trishydroxyaminomethane-hydrochloric acid buffer solution is obtained slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于37℃水浴锅中固化24h,即得。B. Form the slurry mixture in step A by molding, and place it in a 37°C water bath to solidify for 24 hours after forming.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚丙烯酸酯,然后加入还原剂硼氢化钠,再通入氩气20h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyacrylate, then add reducing agent sodium borohydride, and then pass in argon for 20 hours, filter, and wash the precipitate to obtain the product.
实施例11Example 11
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为10nm的100份重的无定型磷酸钙,40份重的造孔剂—氯化钠和0.1份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, 100 parts by weight of amorphous calcium phosphate with an average particle diameter of 10nm, 40 parts by weight of pore-forming agent-sodium chloride and 0.1 part by weight of dopamine graft copolymer are mixed, and then trishydroxyaminomethane-hydrochloric acid buffer The liquid is a slurry mixture;
B、将A步的浆状混合物以浇注的方式成型,成型后置于35℃水浴锅中固化25h,即得。B. Mold the slurry mixture in step A by pouring, and place it in a water bath at 35°C to solidify for 25 hours after molding.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚乙二醇,然后加入还原剂硼氢化钠,再通入氩气20h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyethylene glycol, then add reducing agent sodium borohydride, then pass through argon for 20 hours, filter, and wash the precipitate to obtain the product.
实施例12Example 12
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为450nm的100份重的磷酸八钙,25份重的造孔剂—双氧水和25份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 100 parts of heavy octacalcium phosphate of 450nm, 25 parts of heavy pore-forming agent-hydrogen peroxide and 25 parts of heavy polydopamine are mixed, then add trishydroxyaminomethane-hydrochloric acid buffer to obtain slurry mixture;
B、将A步的浆状混合物以3D打印的方式成型,成型后置于35℃水浴锅中固化25h,即得。B. Mold the slurry mixture in step A by 3D printing, and put it in a 35°C water bath to solidify for 25 hours after molding.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH10的氢氧化钠溶液中加入多巴胺,加入高碘酸钠,搅拌20h,然后将溶液离心、冷冻干燥即得。Add dopamine and sodium periodate to pH 10 sodium hydroxide solution, stir for 20 hours, then centrifuge the solution and freeze-dry it.
实施例13Example 13
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为990nm的50份重的磷酸八钙,平均粒径为990nm的50份重的羟基磷灰石,15份重的造孔剂—可降解高分子和35份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 50 parts by weight of octacalcium phosphate of 990nm, the average particle diameter is 50 parts by weight of hydroxyapatite of 990nm, 15 parts by weight of pore-forming agent-degradable polymer and 35 parts by weight of polymer Dopamine is mixed, and tris-hydrochloric acid buffer solution is added to obtain slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于35℃水浴锅中固化25h,即得。B. Mold the slurry mixture in step A, and put it in a 35°C water bath to solidify for 25 hours after molding.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH8.5的氢氧化钾溶液中加入多巴胺,通入氧气,搅拌20h,然后将溶液离心、冷冻干燥即得。Add dopamine into the potassium hydroxide solution of pH 8.5, feed oxygen, stir for 20 hours, then centrifuge the solution and freeze-dry it.
实施例14Example 14
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为1nm的50份重的无定型磷酸钙,平均粒径为1nm的50份重的羟基磷灰石,20份重的造孔剂—甘露醇和20份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 50 parts by weight of amorphous calcium phosphate of 1nm, the average particle diameter is 50 parts by weight of hydroxyapatite of 1nm, 20 parts by weight of pore-forming agent-mannitol and 20 parts by weight of polydopamine are mixed , plus Tris-hydrochloric acid buffer to obtain a slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于37℃水浴锅中同时进行紫外光照射固化25h,即得。B. Mold the slurry mixture in step A, place it in a water bath at 37°C and cure it with ultraviolet light for 25 hours after molding, and you can get it.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH8.5的氢氧化钾溶液中加入多巴胺,加入双氧水,搅拌20h,然后将溶液离心、冷冻干燥即得。Add dopamine and hydrogen peroxide to potassium hydroxide solution with pH 8.5, stir for 20 hours, then centrifuge the solution and freeze-dry to obtain the obtained product.
实施例15Example 15
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为450nm的20份重的无定型磷酸钙,平均粒径为450nm的50份重的羟基磷灰石,平均粒径为450nm的30份重的无定型磷酸钙,10份重的造孔剂—葡萄糖和40份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 20 parts of heavy amorphous calcium phosphate of 450nm, the average particle diameter is 50 parts of weight of hydroxyapatite of 450nm, the average particle diameter is 30 parts of weight of amorphous calcium phosphate of 450nm, 10 parts Heavy pore-forming agent—glucose and 40 parts of heavy polydopamine are mixed, and then trishydroxyaminomethane-hydrochloric acid buffer is added to obtain slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于35℃水浴锅中同时进行紫外光照射固化25h,即得。B. Mold the slurry mixture in step A, place it in a water bath at 35°C and cure it with ultraviolet light for 25 hours after molding, and you can get it.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH8.5的氢氧化钾溶液中加入多巴胺,在紫外光辐照的情况下,搅拌20h,然后将溶液离心、冷冻干燥即得。Dopamine is added to the potassium hydroxide solution with pH 8.5, stirred for 20 hours under ultraviolet light irradiation, and then the solution is centrifuged and freeze-dried to obtain the obtained product.
实施例16Example 16
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为500μm的50份重β磷酸三钙,平均粒径为990nm的50份重的羟基磷灰石,1份重的造孔剂—双氧水和45份重的聚多巴胺混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 50 parts of heavy beta tricalcium phosphate of 500 μm, the average particle diameter is 50 parts of heavy hydroxyapatite of 990nm, 1 part of heavy pore-forming agent-hydrogen peroxide and 45 parts of heavy polydopamine are mixed, Add tris-hydrochloric acid buffer to obtain a slurry mixture;
B、将A步的浆状混合物以模压的方式成型,成型后置于35℃水浴锅中固化24h,即得。B. Form the slurry mixture in step A by molding, and place it in a 35°C water bath to solidify for 24 hours after forming.
本例的聚多巴胺由以下方法制得:The polydopamine of this example is made by the following method:
在pH7.4的氢氧化钠溶液中加入多巴胺,加入高碘酸钠,搅拌15h,然后将溶液离心、冷冻干燥即得。Add dopamine and sodium periodate to pH 7.4 sodium hydroxide solution, stir for 15 hours, then centrifuge the solution and freeze-dry it.
实施例17Example 17
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为1μm的50份重α磷酸三钙,平均粒径为1μm的30份重二水磷酸氢钙,平均粒径为10nm的20份重的无定型磷酸钙,40份重的造孔剂—葡萄糖和0.1份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 50 parts of heavy alpha tricalcium phosphate of 1 μm, the average particle diameter is 30 parts of heavy calcium hydrogen phosphate dihydrate of 1 μm, the average particle diameter is 20 parts of heavy amorphous calcium phosphate of 10nm, 40 parts of heavy The pore-forming agent-glucose and the dopamine graft copolymer of 0.1 part of weight are mixed, and trishydroxyaminomethane-hydrochloric acid damping fluid is added to obtain slurry mixture;
B、将A步的浆状混合物以3D打印的方式成型,成型后置于35℃水浴锅中同时进行紫外光照固化24h,即得。B. Mold the slurry mixture in step A by 3D printing, put it in a water bath at 35°C and cure it by ultraviolet light for 24 hours after molding, and you can get it.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入聚亚胺脂,然后加入还原剂四硼酸钠,再通入氩气15h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add polyurethane, then add reducing agent sodium tetraborate, then pass through argon for 15 hours, filter, and wash the precipitate to obtain the product.
实施例18Example 18
一种微、纳米磷酸钙/儿茶酚基聚合物骨修复支架的制备方法,其步骤是:A preparation method of micro-nano calcium phosphate/catechol-based polymer bone repair scaffold, the steps are:
A、将平均粒径为250μm的50份重α磷酸三钙,平均粒径为450nm的20份重的无定型磷酸钙,平均粒径为450nm的30份重的磷酸八钙,25份重的造孔剂—可降解高分子和20份重的多巴胺接枝共聚物混合,再加三羟基氨基甲烷-盐酸缓冲液得浆状混合物;A, the average particle diameter is 50 parts of heavy α-tricalcium phosphate of 250 μm, the average particle diameter is 20 parts of heavy amorphous calcium phosphate of 450nm, the average particle diameter is 30 parts of heavy octacalcium phosphate of 450nm, 25 parts of heavy Pore-forming agent—degradable macromolecule and 20 parts by weight of dopamine graft copolymer are mixed, and trishydroxyaminomethane-hydrochloric acid buffer is added to obtain a slurry mixture;
B、将A步的浆状混合物以浇注的方式成型,成型后置于37℃水浴锅中固化20h,即得。B. Mold the slurry mixture in step A by pouring, and put it in a 37°C water bath to solidify for 20 hours after molding.
本例的多巴胺接枝共聚物由以下方法制得:The dopamine graft copolymer of this example is made by following method:
将多巴胺溶于碳酸氢钠溶液中,再加入乙二醇,然后加入还原剂四硼酸钠,再通入氩气15h,过滤、将沉淀清洗,即得。Dissolve dopamine in sodium bicarbonate solution, then add ethylene glycol, then add reducing agent sodium tetraborate, then pass through argon for 15 hours, filter, and wash the precipitate to obtain the product.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310682213.2A CN103691000B (en) | 2013-12-12 | 2013-12-12 | The preparation method of micro-, nano-calcium phosphate/catechol based polyalcohol bone repairing support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310682213.2A CN103691000B (en) | 2013-12-12 | 2013-12-12 | The preparation method of micro-, nano-calcium phosphate/catechol based polyalcohol bone repairing support |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103691000A CN103691000A (en) | 2014-04-02 |
CN103691000B true CN103691000B (en) | 2015-08-05 |
Family
ID=50352765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310682213.2A Expired - Fee Related CN103691000B (en) | 2013-12-12 | 2013-12-12 | The preparation method of micro-, nano-calcium phosphate/catechol based polyalcohol bone repairing support |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103691000B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103877611A (en) * | 2014-04-08 | 2014-06-25 | 中山职业技术学院 | 3D printing preparation method of calcium phosphate-based medical bone tissue scaffold |
CN105816918A (en) * | 2015-01-08 | 2016-08-03 | 北京化工大学 | Aliphatic polyester-nano hydroxyapatite composite material and preparation method thereof |
CN108473714A (en) * | 2015-10-09 | 2018-08-31 | 惠普发展公司,有限责任合伙企业 | Particle mixture |
CN107050508B (en) * | 2017-01-19 | 2020-12-18 | 深圳清华大学研究院 | Injectable bone repair material and preparation method thereof |
CN107150436A (en) * | 2017-06-30 | 2017-09-12 | 深圳市倍康美医疗电子商务有限公司 | A kind of digitlization shaping implementation method of positive gnatho-guide plate |
CN107320155A (en) * | 2017-06-30 | 2017-11-07 | 深圳市倍康美医疗电子商务有限公司 | A kind of digitlization forming method of intraoral tumor resection and repairing accessory |
CN108744055B (en) * | 2018-06-15 | 2021-04-27 | 福州大学 | Silk fibroin bone cement biological adhesive and preparation method thereof |
CN109498844B (en) * | 2018-11-22 | 2020-12-22 | 北京科技大学 | A low-cost method for preparing high composite porosity bone tissue scaffolds |
CN110772430A (en) * | 2019-12-11 | 2020-02-11 | 广州润虹医药科技股份有限公司 | Calcium phosphate root canal filler with stable preservation |
CN116115830B (en) * | 2022-12-23 | 2024-07-09 | 南京航空航天大学 | Biphase calcium phosphate composite slurry, preparation method thereof and application thereof in normal-temperature one-step extrusion 3D printing bone tissue engineering scaffold |
CN118416290A (en) * | 2023-12-01 | 2024-08-02 | 中国人民解放军总医院第四医学中心 | A kind of bio-based bone glue and its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1446109A (en) * | 2000-08-04 | 2003-10-01 | 欧健有限公司 | Porous synthetic bone graft and method of manufacture thereof |
CN1488602A (en) * | 2003-08-12 | 2004-04-14 | 四川大学 | Porous calcium phosphate bioceramic material and preparation method thereof |
CN103330960A (en) * | 2013-06-26 | 2013-10-02 | 西南交通大学 | Preparation method of coating having endothelium bionic function |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE525236C2 (en) * | 2002-10-31 | 2005-01-11 | Cerbio Tech Ab | Process for making structured ceramic coatings and coated devices made with this process |
CA2724907A1 (en) * | 2008-05-30 | 2009-12-10 | Ian Robert Dunkley | Bioceramic and biopolymer composite |
-
2013
- 2013-12-12 CN CN201310682213.2A patent/CN103691000B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1446109A (en) * | 2000-08-04 | 2003-10-01 | 欧健有限公司 | Porous synthetic bone graft and method of manufacture thereof |
CN1488602A (en) * | 2003-08-12 | 2004-04-14 | 四川大学 | Porous calcium phosphate bioceramic material and preparation method thereof |
CN103330960A (en) * | 2013-06-26 | 2013-10-02 | 西南交通大学 | Preparation method of coating having endothelium bionic function |
Non-Patent Citations (3)
Title |
---|
傅荣等.多孔磷酸钙生物材料的制备及表征.《成都医学院学报》.2008,第3卷(第4期),第259-262页. * |
刘宗光等.多巴胺对磷酸钙骨水泥性能影响的研究.《无机化学学报》.2013,第29卷(第3期),摘要、第508页左栏第3段至第514页右栏第5段以及表1、图6. * |
游晓波等.组织工程多孔生物材料的制备及表征.《实用医院临床杂志》.2008,第5卷(第1期),第23-25页. * |
Also Published As
Publication number | Publication date |
---|---|
CN103691000A (en) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103691000B (en) | The preparation method of micro-, nano-calcium phosphate/catechol based polyalcohol bone repairing support | |
Janmohammadi et al. | Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery | |
Zhu et al. | Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration | |
Bose et al. | Additive manufacturing of natural biopolymers and composites for bone tissue engineering | |
Zhang et al. | The development of collagen based composite scaffolds for bone regeneration | |
Pina et al. | Natural‐based nanocomposites for bone tissue engineering and regenerative medicine: A review | |
Kumar et al. | Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration | |
Levengood et al. | Chitosan-based scaffolds for bone tissue engineering | |
Wang | Bioadaptability: an innovative concept for biomaterials | |
CN103668940B (en) | A kind of surface modified fibre strengthens composite bone cement and its preparation method and application | |
Sachot et al. | Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies | |
Ariani et al. | New development of carbonate apatite-chitosan scaffold based on lyophilization technique for bone tissue engineering | |
CN103691001B (en) | Method for preparing three-dimensional porous stent composite layer | |
CN104587524B (en) | Beta-TCP/PGS composite scaffold and preparation method and application thereof | |
Zheng et al. | Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating | |
Kang et al. | Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement | |
CN103007358B (en) | Cartilage tissue engineering fiber scaffold material and preparation method thereof | |
Ribeiro et al. | Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration | |
CN102188753B (en) | A nano-bone biomimetic material containing tussah silk fibroin and its preparation method | |
CN102008753B (en) | Organic-inorganic composite gel material for bone repair and preparation method thereof | |
CN102552985B (en) | Silk fibroin/calcium phosphate bone cement-based porous composite material and preparation method thereof | |
CN103893828B (en) | A kind of method improving calcium phosphate bone cement toughness | |
CN104707179B (en) | Oil-soluble/water-soluble organic-inorganic three-phase porous micro-nanometer composite bone repair material | |
Huang et al. | Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials | |
Zhou et al. | Three-dimensional printed sodium alginate clay nanotube composite scaffold for bone regeneration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150805 Termination date: 20171212 |
|
CF01 | Termination of patent right due to non-payment of annual fee |