CN103606669A - Preparation method of trivalent scandium or chromium-doped spinel-type lithium-rich lithium manganate cathode material - Google Patents
Preparation method of trivalent scandium or chromium-doped spinel-type lithium-rich lithium manganate cathode material Download PDFInfo
- Publication number
- CN103606669A CN103606669A CN201310624430.6A CN201310624430A CN103606669A CN 103606669 A CN103606669 A CN 103606669A CN 201310624430 A CN201310624430 A CN 201310624430A CN 103606669 A CN103606669 A CN 103606669A
- Authority
- CN
- China
- Prior art keywords
- lithium
- manganese
- chromium
- precursor
- scandium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 27
- 239000010406 cathode material Substances 0.000 title claims abstract description 23
- 229910052706 scandium Inorganic materials 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 title claims abstract description 13
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 239000011572 manganese Substances 0.000 claims abstract description 72
- 239000002243 precursor Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 35
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 33
- 239000011029 spinel Substances 0.000 claims abstract description 33
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 33
- 238000005245 sintering Methods 0.000 claims abstract description 31
- 239000011651 chromium Substances 0.000 claims abstract description 17
- 229910002102 lithium manganese oxide Inorganic materials 0.000 claims abstract description 13
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- -1 manganese, scandium compounds Chemical class 0.000 claims abstract description 11
- 238000001238 wet grinding Methods 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 150000002500 ions Chemical class 0.000 claims abstract description 6
- 150000001845 chromium compounds Chemical class 0.000 claims abstract description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 54
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 239000007787 solid Substances 0.000 claims description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 229910001437 manganese ion Inorganic materials 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910001430 chromium ion Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 8
- 235000006748 manganese carbonate Nutrition 0.000 claims description 8
- 239000011656 manganese carbonate Substances 0.000 claims description 8
- 229940093474 manganese carbonate Drugs 0.000 claims description 8
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 8
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical group [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 8
- 239000007774 positive electrode material Substances 0.000 claims description 8
- 150000002697 manganese compounds Chemical class 0.000 claims description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 6
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 claims description 6
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical group [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 6
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 6
- 150000002642 lithium compounds Chemical class 0.000 claims description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 5
- 238000001291 vacuum drying Methods 0.000 claims description 5
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 4
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 4
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 claims description 4
- 235000002867 manganese chloride Nutrition 0.000 claims description 4
- 239000011565 manganese chloride Substances 0.000 claims description 4
- 229940099607 manganese chloride Drugs 0.000 claims description 4
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 claims description 4
- DFCYEXJMCFQPPA-UHFFFAOYSA-N scandium(3+);trinitrate Chemical compound [Sc+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O DFCYEXJMCFQPPA-UHFFFAOYSA-N 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 4
- 238000001694 spray drying Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 229940071125 manganese acetate Drugs 0.000 claims description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 3
- OAVRWNUUOUXDFH-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;manganese(2+) Chemical compound [Mn+2].[Mn+2].[Mn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O OAVRWNUUOUXDFH-UHFFFAOYSA-H 0.000 claims description 2
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims description 2
- 229940071264 lithium citrate Drugs 0.000 claims description 2
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 claims description 2
- 235000014872 manganese citrate Nutrition 0.000 claims description 2
- 239000011564 manganese citrate Substances 0.000 claims description 2
- 229940097206 manganese citrate Drugs 0.000 claims description 2
- OIDPCXKPHYRNKH-UHFFFAOYSA-J chrome alum Chemical compound [K]OS(=O)(=O)O[Cr]1OS(=O)(=O)O1 OIDPCXKPHYRNKH-UHFFFAOYSA-J 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 13
- 230000010287 polarization Effects 0.000 abstract description 11
- 238000000605 extraction Methods 0.000 abstract description 10
- 238000009830 intercalation Methods 0.000 abstract description 10
- 230000002687 intercalation Effects 0.000 abstract description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 7
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 5
- 229960000359 chromic chloride Drugs 0.000 description 5
- 238000001027 hydrothermal synthesis Methods 0.000 description 5
- 238000009768 microwave sintering Methods 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 229910013553 LiNO Inorganic materials 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009831 deintercalation Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- 229910018071 Li 2 O 2 Inorganic materials 0.000 description 2
- 229910018663 Mn O Inorganic materials 0.000 description 2
- 229910003176 Mn-O Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003326 scandium compounds Chemical class 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910009343 Li1.33 Mn1.67 O4 Inorganic materials 0.000 description 1
- 229910011981 Li4Mn5O12 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- 229910003174 MnOOH Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- WCMHZFHLWGFVCQ-UHFFFAOYSA-N [Ba].[Mn] Chemical compound [Ba].[Mn] WCMHZFHLWGFVCQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- RSYUFYQTACJFML-DZGCQCFKSA-N afzelechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C=C1 RSYUFYQTACJFML-DZGCQCFKSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910006290 γ-MnOOH Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及掺三价钪或铬的尖晶石富锂锰酸锂正极材料的制备方法,其特征在于按照锂、锰、掺杂离子的摩尔比(0.97≤x≤1.08):(1.05≤y≤1.20):(0.05≤z≤0.17)分别称取锂、锰、钪的化合物或铬的化合物。将称量的化合物混合,加入湿磨介质制得前驱物1,干燥制备前驱物2。最后用两段烧结法制备掺杂尖晶石富锂锰酸锂正极材料。本发明的原料成本较低,掺杂减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。
The present invention relates to the preparation method of spinel lithium-rich lithium manganese oxide cathode material doped with trivalent scandium or chromium, which is characterized in that according to the molar ratio (0.97≤x≤1.08) of lithium, manganese and doping ions: (1.05≤y ≤1.20): (0.05≤z≤0.17) Weigh lithium, manganese, scandium compounds or chromium compounds respectively. The weighed compounds were mixed, added to wet grinding media to prepare precursor 1, and dried to prepare precursor 2. Finally, the doped spinel lithium-rich lithium manganate cathode material was prepared by two-stage sintering method. The raw material cost of the invention is low, the doping reduces the electrochemical polarization of lithium ion intercalation and extraction, improves the high-current discharge performance, and lays a good foundation for industrialization.
Description
技术领域 technical field
本发明属于电池电极材料制备的技术领域,具体涉及一种可用于锂电池、锂离子电池、聚合物电池和超级电容器的富锂尖晶石锰酸锂正极材料的制备方法。 The invention belongs to the technical field of battery electrode material preparation, and in particular relates to a preparation method of a lithium-rich spinel lithium manganate positive electrode material that can be used for lithium batteries, lithium ion batteries, polymer batteries and supercapacitors.
技术背景 technical background
锂离子电池具有电池电压高、能量密度高、无记忆效应、循环寿命长、自放电低等优点,正极材料的性能对锂离子电池的性能起着决定的作用。 Lithium-ion batteries have the advantages of high battery voltage, high energy density, no memory effect, long cycle life, and low self-discharge. The performance of positive electrode materials plays a decisive role in the performance of lithium-ion batteries.
锰基正极材料具有价格低,绿色无污染等优点,是锂离子电池的研究重点。在锰基正极材料中,研究得较多的有尖晶石LiMn2O4、层状LiMnO2和层状固溶体正极材料。其中,层状LiMnO2在充放电时结构的稳定性较差,目前研究得不多。尖晶石LiMn2O4能在4V和3V两个电压区间发挥作用。对于4V区来说,与锂离子在尖晶石结构的四面体8a位置的嵌入和脱出有关;对于3V区来说,与锂离子在尖晶石结构的八面体16c位置的嵌入和脱出有关。锂离子在尖晶石结构的四面体位置的嵌入和脱出不会引起样品结构的明显变化。然而,当充放电深度过大时,由于存在锂离子的John-Teller畸变效应,在八面体中嵌入和脱出锂离子会导致样品结构由立方变成四方,放电容量快速衰减。因此,抑制尖晶石LiMn2O4的John-Teller畸变是改善其充放电性能的关键。此外,LiMn2O4中锰会溶于电解质中,在较高电压下充放电时电解液的分解也可能影响电极材料的循环性能。 Manganese-based cathode materials have the advantages of low price, green and pollution-free, and are the research focus of lithium-ion batteries. Among the manganese-based cathode materials, spinel LiMn 2 O 4 , layered LiMnO 2 and layered solid solution cathode materials have been studied more. Among them, the structure stability of layered LiMnO2 during charge and discharge is poor, and there are not many studies at present. Spinel LiMn 2 O 4 can function in two voltage ranges of 4V and 3V. For the 4V region, it is related to the insertion and extraction of lithium ions at the tetrahedral 8a position of the spinel structure; for the 3V region, it is related to the insertion and extraction of lithium ions at the octahedron 16c position of the spinel structure. The intercalation and deintercalation of lithium ions in the tetrahedral positions of the spinel structure will not cause obvious changes in the sample structure. However, when the charge-discharge depth is too large, due to the John-Teller distortion effect of lithium ions, the intercalation and extraction of lithium ions in the octahedron will cause the sample structure to change from cubic to tetragonal, and the discharge capacity will rapidly decay. Therefore, suppressing the John-Teller distortion of spinel LiMn2O4 is the key to improving its charge-discharge performance . In addition, manganese in LiMn 2 O 4 will dissolve in the electrolyte, and the decomposition of the electrolyte during charge and discharge at higher voltages may also affect the cycle performance of electrode materials.
在Li4Mn5O12的充放电过程中,锂离子的脱嵌反应主要发生在3V区,其理论放电容量可达163mAh/g。与尖晶石LiMn2O4理论容量的148mAh/g相比明显提高,有成为3V区优秀正极材料的可能性。该材料充放电过程中晶胞膨胀率较小,具有循环性能优秀等优点。然而,Li4Mn5O12的热稳定性不好。高温下Li1+yMn2-yO4 (y < 0.33)容易分解为LiMn2O4和Li2MnO3[Manthiram A., et al., Ceram.Trans, 1998, 92: 291-302.],使得Li4Mn5O12很难用一般方法制备。已经研究了多种合成方法,试图获得更加理想的制备方法。包括固相烧结法、溶胶凝胶法、水热法和微波烧结法等。 During the charge and discharge process of Li 4 Mn 5 O 12 , the deintercalation reaction of lithium ions mainly occurs in the 3V region, and its theoretical discharge capacity can reach 163mAh/g. Compared with the theoretical capacity of 148mAh/g of spinel LiMn 2 O 4 , it is obviously improved, and it has the possibility of becoming an excellent cathode material in the 3V region. The material has a small unit cell expansion rate during charge and discharge, and has the advantages of excellent cycle performance. However, the thermal stability of Li 4 Mn 5 O 12 is not good. Li 1+y Mn 2-y O 4 (y < 0.33) is easily decomposed into LiMn 2 O 4 and Li 2 MnO 3 at high temperature [Manthiram A., et al., Ceram.Trans, 1998, 92: 291-302. ], making it difficult to prepare Li 4 Mn 5 O 12 by general methods. A variety of synthetic methods have been studied in an attempt to obtain a more ideal preparation method. Including solid phase sintering method, sol-gel method, hydrothermal method and microwave sintering method.
固相烧结法是将锂的化合物和锰的化合物混合,在有氧或无氧条件下烧结制备。Takada等[Takada T., J. Solid State Chem., 1997, 130: 74-80.]将锂盐(LiNO3、Li2CO3、Li(CH3COO))和锰化合物(MnCO3、Mn(NO3)2、Mn2O3和MnO2)混合,在500℃-800℃温度区间制得Li4Mn5O12。Kang等[Kang S. H., et al., Electrochem. Solid-State Lett., 2000, 3(12): 536-639.]和Fumio等[Fumio S., et al., J. Power Sources, 1997, 68(2): 609-612.]先干燥LiOH·H2O和Mn(Ac)2·4H2O的混合溶液,再于500℃烧结制得Li[LiyMn2-y]O4。他们制备的Li[LiyMn2-y]O4样品在3V区的放电容量为115-126mAh/g。在氧气气氛中,Takada 等[Takada T., et al., J. Power Sources, 1997, 68: 613-617.]发现,500℃烧结CH3COOLi和Mn(NO3)2的熔融物制得的产品在第1循环的放电容量为135mAh/g。Shin等[Shin Y., et al., Electrochim. Acta, 2003, 48(24): 3583–3592.]认为烧结温度低于500℃时, Mn3+的量增加使放电容量增加。Kajiyama等[Kajiyama A., et al., J. Japan Soc. Powder & Powder Metallurgy, 2000, 47(11): 1139-1143; Nakamura T. et al., Solid State Ionics, 1999, 25: 167-168.]将LiOH·H2O和γ-Mn2O3混合,他们发现,在氧气气氛中制备的Li4Mn5O12的电化学性能比在空气气氛制备的好。徐美华等[Xu M. H., et al., J. Phys. Chem, 2010, 114 (39): 16143–16147.]和Tian等[Tian Y., et al., Chem. Commun., 2007: 2072–2074.]将MnSO4加入LiNO3和NaNO3的熔融盐中,在470℃-480℃温度区间可制得纳米Li4Mn5O12。Tian等[Tian Y., et al., Chem. Commun., 2007: 2072–2074.]制备的纳米线Li4Mn5O12在(0.2C倍率电流下)第1循环和第30循环的放电容量分别为154.3mAh/g和140mAh/g。Thackeray等[Thackeray M. M,, et al., J. Solid State Chem., 1996, 125: 274-277.;Michael M., et al., American Ceram. Soc. Bull, 1999, 82(12): 3347-3354.]将LiOH·H2O和γ-MnO2混合,600℃烧结可制得Li4Mn5O12。Yang等[Yang X., et al., J. Solid State Chem., 2000, 10: 1903-1909.]将γ-MnO2或β-MnO2或钡锰矿或酸式水钠锰矿和熔融的LiNO3混合,在400℃可制得Li1.33Mn1.67O4。刘聪[刘聪. 锂离子电池锰酸锂阴极材料的合成及性能[D].广东:华南师范大学, 2009.]先将LiOH·H2O和电解MnO2在无水乙醇中混合,在空气气氛中于450℃烧结,再在乙醇中球磨得到样品。他们制备的样品的最高放电容量为161.1mAh/g,第30循环的放电容量高于120mAh/g。 The solid-phase sintering method is to mix lithium compounds and manganese compounds and sinter them under aerobic or oxygen-free conditions. Takada et al [Takada T., J. Solid State Chem., 1997, 130: 74-80.] combined lithium salts (LiNO 3 , Li 2 CO 3 , Li(CH 3 COO)) and manganese compounds (MnCO 3 , Mn (NO 3 ) 2 , Mn 2 O 3 and MnO 2 ) are mixed to prepare Li 4 Mn 5 O 12 at a temperature range of 500°C to 800°C. Kang et al [Kang SH, et al., Electrochem. Solid-State Lett., 2000, 3(12): 536-639.] and Fumio et al [Fumio S., et al., J. Power Sources, 1997, 68 (2): 609-612.] First dry the mixed solution of LiOH·H 2 O and Mn(Ac) 2 ·4H 2 O, and then sinter at 500°C to obtain Li[Li y Mn 2-y ]O 4 . The discharge capacity of the Li[Li y Mn 2-y ]O 4 samples prepared by them is 115-126mAh/g in the 3V region. In an oxygen atmosphere, Takada et al. [Takada T., et al., J. Power Sources, 1997, 68: 613-617.] found that the melt of CH 3 COOLi and Mn(NO 3 ) 2 was sintered at 500°C to obtain The discharge capacity of the product in the first cycle is 135mAh/g. Shin et al [Shin Y., et al., Electrochim. Acta, 2003, 48(24): 3583–3592.] believed that when the sintering temperature is lower than 500°C, the increase in the amount of Mn 3+ will increase the discharge capacity. Kajiyama et al. [Kajiyama A., et al., J. Japan Soc. Powder & Powder Metallurgy, 2000, 47(11): 1139-1143; Nakamura T. et al., Solid State Ionics, 1999, 25: 167-168 .] Mixing LiOH·H 2 O and γ-Mn 2 O 3 , they found that the electrochemical performance of Li 4 Mn 5 O 12 prepared in oxygen atmosphere was better than that prepared in air atmosphere. Xu Meihua et al [Xu MH, et al., J. Phys. Chem, 2010, 114 (39): 16143–16147.] and Tian et al [Tian Y., et al., Chem. Commun., 2007: 2072–2074 .] Adding MnSO 4 into the molten salt of LiNO 3 and NaNO 3 can produce nanometer Li 4 Mn 5 O 12 in the temperature range of 470°C-480°C. Discharge of nanowires Li 4 Mn 5 O 12 prepared by Tian et al [Tian Y., et al., Chem. Commun., 2007: 2072–2074.] in the first cycle and the 30th cycle (at 0.2C rate current) The capacities are 154.3mAh/g and 140mAh/g, respectively. Thackeray et al. [Thackeray M. M,, et al., J. Solid State Chem., 1996, 125: 274-277.; Michael M., et al., American Ceram. Soc. Bull, 1999, 82(12) : 3347-3354.] Mix LiOH·H 2 O and γ-MnO 2 and sinter at 600℃ to obtain Li 4 Mn 5 O 12 . Yang et al [Yang X., et al., J. Solid State Chem., 2000, 10: 1903-1909.] combined γ-MnO 2 or β-MnO 2 or barium manganese or acid birnessite and molten LiNO 3 mixed, Li 1.33 Mn 1.67 O 4 can be prepared at 400°C. Liu Cong [Liu Cong. Synthesis and performance of lithium manganese oxide cathode material for lithium ion battery [D]. Guangdong: South China Normal University, 2009.] first mixed LiOH·H 2 O and electrolytic MnO 2 in absolute ethanol, Sintered at 450°C in an air atmosphere, and then ball milled in ethanol to obtain samples. The highest discharge capacity of their prepared samples was 161.1 mAh/g, and the discharge capacity at the 30th cycle was higher than 120 mAh/g.
Kim等[ Kim J., et al., J. Electrochem. Soc, 1998, 145(4): 53-55. ]在LiOH和Mn(CH3COO)2的混合溶液中加入Li2O2,先制得LixMnyOz·nH2O,再经过过滤、洗涤、干燥和固相烧结制得Li4Mn5O12。他们发现,500℃制备的样品的初始放电容量为153mAh/g,40循环的容量衰减率为2%。Manthiram等[Manthiram A.,et al., J. Chem. Mater, 1998, 10(10): 2895-2909.]研究表明,在LiOH溶液中,Li2O2先氧化[Mn(H2O)6]2+,再经过400℃烧结,制备的Li4Mn5O12在第1循环的放电容量为160mAh/g。 Kim et al. [Kim J., et al., J. Electrochem. Soc, 1998, 145(4): 53-55.] added Li 2 O 2 to a mixed solution of LiOH and Mn(CH 3 COO) 2 to prepare Li x Mn y O z ·nH 2 O is obtained, and Li 4 Mn 5 O 12 is obtained through filtration, washing, drying and solid phase sintering. They found that the initial discharge capacity of the sample prepared at 500 °C was 153 mAh/g, and the capacity decay rate was 2% after 40 cycles. Manthiram et al [Manthiram A., et al., J. Chem. Mater, 1998, 10(10): 2895-2909.] research shows that in LiOH solution, Li 2 O 2 first oxidizes [Mn(H 2 O) 6 ] 2+ , and then sintered at 400°C, the prepared Li 4 Mn 5 O 12 has a discharge capacity of 160mAh/g in the first cycle.
为了改善固相烧结法工艺条件,两段烧结法被用于制备过程。李义兵等[李义兵等,有色金属, 2007, 59(3): 25-29.]将LiOH、Mn(C2O4)2和H2C2O4的混合物置于空气气氛中,分别在350℃和500℃烧结制备微米Li4Mn5O12。制备的样品在第1循环的放电容量为151mAh/g。Gao等[Gao J., et al., Appl. Phys. Lett., 1995, 66(19): 2487-2489.;Gao J., et al., J. Electrochem. Soc., 1996, 143(6):1783-1788.]采用两步加热法制备了尖晶石Li1+xMn2-xO4x (0<x≤0.2)。Robertson等[Robertson A. D., et al., J. Power Sources, 2001, 97-97: 332-335.]在Mn(CH3COO)2·4H2O溶液中混入Li2CO3,干燥获得前躯物。分别于250℃和300-395℃烧结制备了Li4Mn5O12。样品第1循环和第50循环的放电容量分别为175mAh/g和120mAh/g。Wang等[Wang G. X., et al., J. Power Sources, 1998, 74(2): 198-201.]在380℃合成了Li4Mn5O12。Xia[Xia Y. Y., et al., J. Power Sources, 1996, 63(1): 97-102.]等通过注入法,在260℃直接烧结制得样品。在C/3电流下,该样品的首次放电容量为80mAh/g。 In order to improve the process conditions of the solid phase sintering method, a two-stage sintering method was used in the preparation process. [Li Yibing et al., Nonferrous Metals, 2007, 59(3): 25-29.] put the mixture of LiOH, Mn(C 2 O 4 ) 2 and H 2 C 2 O 4 in the air atmosphere, respectively at 350 ℃ and 500℃ sintering to prepare micron Li 4 Mn 5 O 12 . The discharge capacity of the prepared sample in the first cycle was 151mAh/g. Gao et al [Gao J., et al., Appl. Phys. Lett., 1995, 66(19): 2487-2489.; Gao J., et al., J. Electrochem. Soc., 1996, 143(6 ):1783-1788.] Spinel Li 1+x Mn 2-x O 4x (0<x≤0.2) was prepared by two-step heating method. Robertson et al [Robertson AD, et al., J. Power Sources, 2001, 97-97: 332-335.] mixed Li 2 CO 3 into the Mn(CH 3 COO) 2 4H 2 O solution, and dried to obtain the precursor things. Li 4 Mn 5 O 12 was prepared by sintering at 250℃ and 300-395℃ respectively. The discharge capacities of the samples at the 1st cycle and the 50th cycle were 175mAh/g and 120mAh/g, respectively. Wang et al [Wang GX, et al., J. Power Sources, 1998, 74(2): 198-201.] synthesized Li 4 Mn 5 O 12 at 380°C. Xia [Xia YY, et al., J. Power Sources, 1996, 63(1): 97-102.] etc. made samples by direct sintering at 260°C by injection method. Under C/3 current, the initial discharge capacity of this sample is 80mAh/g.
以上研究表明,固相烧结法制备Li4Mn5O12需在纯O2或空气气氛中进行。这种方法的缺点包括合成产物的组成及粒度分布差异大,样品充放电循环的容量衰减率高,大电流放电性能不佳,高温循环性能更不理想。 The above studies show that the preparation of Li 4 Mn 5 O 12 by solid-state sintering needs to be carried out in pure O 2 or air atmosphere. The disadvantages of this method include large differences in the composition and particle size distribution of the synthesized products, high capacity decay rate of the sample charge-discharge cycle, poor high-current discharge performance, and even less ideal high-temperature cycle performance.
为了改善样品的均匀性,减小样品颗粒的粒度,溶胶凝胶法被用于制备Li4Mn5O12 [Hao Y. J., et al., J. Solid State Electrochem., 2009, 13: 905–912; 蒙丽丽等,无机盐工业, 2009, 46(5): 37-39; Chu H. Y., et al.,J. Appl. Electrochem, 2009, 39: 2007-2013.]。张会情等[张会情等,电池, 2004, 34(3): 176-177.]将LiOH·2H2O、Mn(CH3COO)2·4H2O和柠檬酸的混合物分别在300℃和500℃烧结制得微米尖晶石Li4Mn5O12。 In order to improve the uniformity of the sample and reduce the particle size of the sample, the sol-gel method was used to prepare Li 4 Mn 5 O 12 [Hao YJ, et al., J. Solid State Electrochem., 2009, 13: 905–912 ; Meng Lili et al., Inorganic Salt Industry, 2009, 46(5): 37-39; Chu HY, et al., J. Appl. Electrochem, 2009, 39: 2007-2013.]. [Zhang Huiqing et al., Battery, 2004, 34(3): 176-177.] made a mixture of LiOH·2H 2 O, Mn(CH 3 COO) 2 ·4H 2 O and citric acid at 300 ℃ and 500 ℃ sintering to produce micro spinel Li 4 Mn 5 O 12 .
为了改善样品的均匀性,减小样品颗粒的粒度,降低烧结温度,水热法也被用于制备过程。Zhang[Zhang Y. C., et al., Mater. Res. Bull., 2002, 37(8): 1411-1417.; 张永才. 水热与溶剂热合成亚稳相功能材料研究[D]. 北京: 北京工业大学, 2003. ;Zhang Y. C., et al., J. Solid State Ionics, 2003, 158(1): 113-117.]等先将H2O2、LiOH和Mn(NO3)2的混合溶液反应制得纤维状前驱体LixMnyOz·nH2O,再与LiOH溶液低温水热反应制得纳米Li4Mn5O12。张世超等[张世超等. 一种合成Li4Mn5O12亚微米棒的方法[P]. CN 201010033605.2, 申请日2010.01.04.]将MnSO4·H2O、KMnO4和十六烷基三甲基溴化铵的混合物在140℃-180℃温度范围水热反应先制得亚微米MnOOH,再混入LiOH·H2O,最后于500℃-900℃制得Li4Mn5O12。孙淑英等[孙淑英等,无机材料导报, 2010, 25(6): 626-630.]通过水热反应,将MnSO4·H2O和(NH4)2S2O8制得纳米β-MnO2,混入LiNO3后再通过低温固相法反应制得Li4Mn5O12。 In order to improve the homogeneity of the samples, reduce the particle size of the sample particles, and lower the sintering temperature, the hydrothermal method was also used in the preparation process. Zhang[Zhang YC, et al., Mater. Res. Bull., 2002, 37(8): 1411-1417.; Zhang Yongcai. Hydrothermal and Solvothermal Synthesis of Metastable Functional Materials[D]. Beijing: Beijing Industry University, 2003.; Zhang YC, et al., J. Solid State Ionics, 2003, 158(1): 113-117.] etc. first react the mixed solution of H 2 O 2 , LiOH and Mn(NO 3 ) 2 The fibrous precursor Li x Mny O z ·nH 2 O was prepared, and then reacted with LiOH solution in low-temperature hydrothermal reaction to prepare nano Li 4 Mn 5 O 12 . Zhang Shichao et al [Zhang Shichao et al. A method for synthesizing Li 4 Mn 5 O 12 submicron rods [P]. CN 201010033605.2, application date 2010.01.04.] MnSO 4 ·H 2 O, KMnO 4 and hexadecyl tri The mixture of methyl ammonium bromide is hydrothermally reacted in the temperature range of 140°C-180°C to produce submicron MnOOH, then mixed with LiOH·H 2 O, and finally Li 4 Mn 5 O 12 is produced at 500°C-900°C. Sun Shuying et al [Sun Shuying et al., Inorganic Materials Herald, 2010, 25(6): 626-630.] prepared nanometer β-MnO from MnSO 4 ·H 2 O and (NH 4 ) 2 S 2 O 8 through hydrothermal reaction 2 , Li 4 Mn 5 O 12 was prepared by low-temperature solid-state reaction after mixing LiNO 3 .
由于微波烧结法具有烧结速度快,烧结过程简便等优点,微波烧结法或固相烧结-微波烧结相结合的方法被用于合成LiMn2O4。Ahniyaz等[Ahniyaz A., et al., J. Eng. Mater. Technol., 2004, 264-268: 133-136.]将γ-MnOOH、LiOH和H2O2的混合物通过微波烧结法合成了LiMn2O4。童庆松课题组以LiOH和Mn(CH3COO)2为原料[林素英等,福建化工, 2004, 2: 1-4.;童庆松等,电化学, 2005, 11(4): 435-439.]或以LiOH和MnC2O4为原料[童庆松等,福建师范大学学报, 2006, 22(1): 60-63.],以乙二胺四乙酸二钠盐(EDTA)和柠檬酸为络合剂,采用微波-固相两段烧结方法,在380℃制备了尖晶石Li3.22Na0.569Mn5.78O12样品或Li4Mn5O12正极材料。研究表明,在4.5-2.5V电压区间,制备的Li3.22Na0.569Mn5.78O12样品在第1循环的放电容量为132mAh/g,100循环的容量衰减率为6.8%。经过4个月的存放,该样品初始放电容量为122mAh/g,100循环的容量衰减率为17.4%。 Because microwave sintering has the advantages of fast sintering speed and simple sintering process, microwave sintering or solid phase sintering-microwave sintering combined method is used to synthesize LiMn 2 O 4 . Ahniyaz et al [Ahniyaz A., et al., J. Eng. Mater. Technol., 2004, 264-268: 133-136.] synthesized a mixture of γ-MnOOH, LiOH and H 2 O 2 by microwave sintering LiMn 2 O 4 . Tong Qingsong’s research group used LiOH and Mn(CH 3 COO) 2 as raw materials [Lin Suying et al., Fujian Chemical Industry, 2004, 2: 1-4.; Tong Qingsong et al., Electrochemistry, 2005, 11(4): 435-439.] or Using LiOH and MnC 2 O 4 as raw materials [Tong Qingsong et al., Journal of Fujian Normal University, 2006, 22(1): 60-63.], using ethylenediaminetetraacetic acid disodium salt (EDTA) and citric acid as complexing agents , a spinel Li 3.22 Na 0.569 Mn 5.78 O 12 sample or Li 4 Mn 5 O 12 cathode material was prepared at 380 °C by microwave-solid-state two-stage sintering method. The research shows that in the voltage range of 4.5-2.5V, the discharge capacity of the prepared Li 3.22 Na 0.569 Mn 5.78 O 12 sample in the first cycle is 132mAh/g, and the capacity decay rate in 100 cycles is 6.8%. After 4 months of storage, the initial discharge capacity of the sample was 122mAh/g, and the capacity decay rate after 100 cycles was 17.4%.
郭俊明等[郭俊明等,功能材料, 2006, 37: 485-488.]以硝酸锂和硝酸锰(或以醋酸锂和醋酸锰)为原料,用尿素作燃料,采用液相燃烧法制得Li4Mn5O12。他们发现,醋酸盐体系合成的Li4Mn5O12的物相纯度较硝酸盐体系合成的高。Kim等[Kim H. U., et al., Phys. Scr, 2010, 139: 1-6.]发现,用通过液相合成途径于400℃烧结的样品带有微量Mn2O3。在1C倍率电流下,样品第1循环的放电容量为44.2mAh/g。Zhao等[Zhao Y., et al., Electrochem. Solid-State Lett., 2010, 14: 1509–1513.]采用油包水微乳液法合成了纳米尖晶石Li4Mn5O12。 [Guo Junming et al., Functional Materials, 2006, 37: 485-488.] Lithium nitrate and manganese nitrate (or lithium acetate and manganese acetate) were used as raw materials, urea was used as fuel, and Li 4 Mn 5 O 12 . They found that the phase purity of Li 4 Mn 5 O 12 synthesized in the acetate system was higher than that synthesized in the nitrate system. Kim et al. [Kim HU, et al., Phys. Scr, 2010, 139: 1-6.] found that the sample sintered at 400°C by the liquid phase synthesis route contained a trace amount of Mn 2 O 3 . Under 1C rate current, the discharge capacity of the sample in the first cycle is 44.2mAh/g. Zhao et al [Zhao Y., et al., Electrochem. Solid-State Lett., 2010, 14: 1509–1513.] synthesized nano-spinel Li 4 Mn 5 O 12 by water-in-oil microemulsion method.
由于上述方法制备的尖晶石Li4Mn5O12充放电过程中结构稳定性不高,存在低温放电、高温循环及大电流下放电性能较差等问题。已采用表面包覆、加入高聚物、掺杂阴离子或阳离子的方法进行改性。 Due to the low structural stability of the spinel Li 4 Mn 5 O 12 prepared by the above method during charge and discharge, there are problems such as low temperature discharge, high temperature cycle, and poor discharge performance under high current. It has been modified by surface coating, adding polymers, and doping with anions or cations.
为了改善Li4Mn5O12的循环性能,刘聪[刘聪,锂离子电池锰酸锂阴极材料的合成及性能,华南师范大学学位论文, 2009.]将聚乙烯吡咯烷酮溶液与450℃制备的前驱物混合,分别经过水热低温处理、真空处理、干燥和100℃下氧气气氛处理,制得Li4Mn5O12。研究表明,在0.5C倍率电流下,样品在第1循环和第50循环的放电容量分别为137mAh/g和126mAh/g。 In order to improve the cycle performance of Li 4 Mn 5 O 12 , Liu Cong [Liu Cong, Synthesis and performance of lithium manganese oxide cathode material for lithium ion batteries, dissertation of South China Normal University, 2009.] mixed polyvinylpyrrolidone solution with 450 °C prepared The precursors are mixed, and Li 4 Mn 5 O 12 is prepared through hydrothermal low-temperature treatment, vacuum treatment, drying and oxygen atmosphere treatment at 100°C. The research shows that at a rate current of 0.5C, the discharge capacities of the samples in the first cycle and the 50th cycle are 137mAh/g and 126mAh/g, respectively.
为了进一步改善尖晶石Li4Mn5O12的性能,已经采用阳离子和阴离子掺杂法改善样品的性能。Zhang等[Zhang D. B., et al., J. Power Sources, 1998, 76: 81-90.]以CrO2.65、Li(OH)·H2O和MnO2为原料,在氧气氛中分别于300℃和450℃烧结,制备了Li4CryMn5-yO12(y=0,0.3,0.9,1.5,2.1)。研究表明,在0.25mA/cm2电流下,Li4Cr1.5Mn3.5O12样品在第1循环和第100循环的放电容量分别为170mAh/g和152Ah/g。Robertson等[Robertson A. D., et al., J. Power Sources, 2001, 97-97: 332-335.]在Mn(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合溶液中先加入Li2CO3,制备前躯物,干燥后分别于250℃和430-440℃烧结,制得Li4-xMn5-2xCo3xO12样品。该样品在第1循环和第50循环的放电容量分别为175mAh/g和120mAh/g。与Li4Mn5O12相比,在充放电循环过程中,Li4-xMn5-2xCo3xO12的结构较稳定。其中,Li3.75Mn4.5Co0.075O12在第1循环的放电容量为150mAh/g,50循环的容量衰减率接近0%。Choi等[Choi W., et al., Solid State Ionics, 2007, 178: 1541-1545.]将LiOH、LiF及Mn(OH)2混合,在空气气氛中分别于500℃和600℃两段烧结制备Li4Mn5O12 − ηFη(0≤η≤0.2)。其中,在0.2C倍率电流下,500℃制备的Li4Mn5O11.85F0.1在第1循环的放电容量为158mAh/g。在25℃和60℃下充放电50循环后,该样品的容量衰减率分别为2.9%和3.9%,说明在高温和低温下掺氟样的初始放电容量和循环性能得到了改善。 In order to further improve the performance of spinel Li4Mn5O12 , cation and anion doping methods have been adopted to improve the performance of the samples. [Zhang DB, et al., J. Power Sources, 1998, 76: 81-90.] used CrO 2.65 , Li(OH)·H 2 O and MnO 2 as raw materials, respectively at 300°C in an oxygen atmosphere And sintering at 450℃, prepared Li 4 Cr y Mn 5-y O 12 (y=0, 0.3, 0.9, 1.5, 2.1). The research shows that the discharge capacity of the Li 4 Cr 1.5 Mn 3.5 O 12 sample is 170mAh/g and 152Ah/g in the 1st cycle and 100th cycle under the current of 0.25mA/cm 2 . Robertson et al [Robertson AD, et al., J. Power Sources, 2001, 97-97: 332-335.] in Mn(CH 3 COO) 2 4H 2 O and Co(CH 3 COO) 2 4H 2 O Li 2 CO 3 was first added to the mixed solution to prepare the precursor, which was dried and sintered at 250°C and 430-440°C respectively to obtain Li 4-x Mn 5-2x Co 3x O 12 samples. The discharge capacities of this sample at the 1st cycle and the 50th cycle were 175 mAh/g and 120 mAh/g, respectively. Compared with Li 4 Mn 5 O 12 , the structure of Li 4-x Mn 5-2x Co 3x O 12 is more stable during the charge-discharge cycle. Among them, the discharge capacity of Li 3.75 Mn 4.5 Co 0.075 O 12 in the first cycle is 150mAh/g, and the capacity decay rate in 50 cycles is close to 0%. Choi et al [Choi W., et al., Solid State Ionics, 2007, 178: 1541-1545.] mixed LiOH, LiF and Mn(OH) 2 and sintered them in two stages at 500°C and 600°C in an air atmosphere Preparation of Li 4 Mn 5 O 12 − η F η (0≤η≤0.2). Among them, at a rate current of 0.2C, the discharge capacity of Li 4 Mn 5 O 11.85 F 0.1 prepared at 500°C in the first cycle was 158mAh/g. After charging and discharging for 50 cycles at 25 °C and 60 °C, the capacity decay rate of the sample was 2.9% and 3.9%, respectively, indicating that the initial discharge capacity and cycle performance of the fluorine-doped sample were improved at high and low temperatures.
上述方法虽能不同程度的改善样品的电化学性能,不过,由于尖晶石Li4Mn5O12结构的稳定性不够好,在低温及大电流放电条件下放电性能差,在高温下循环性能会明显衰减。为此,本发明通过掺钪或铬的的方法提升Li4Mn5O12中锰的实际氧化态,延后放电过程中锰的氧化态低于+3.5的过程,减小Jahn-Teller畸变对结构稳定性的影响。已知以下参数,∆Hf 298 Sc-O= 674 kJ mol− 1 ,∆Hf 298 Cr-O= 427 kJ mol− 1 ,∆Hf 298 OCr-O= 531 kJ mol− 1 ,∆Hf 298 Mn-O= 402 kJ mol− 1 , r Sc-O = 74.5pm (Sc氧化态为+3,且其配位数为6),r Cr-O = 61.5 pm (Cr氧化态为+3,且其配位数为6),r Mn -O = 39pm (Mn氧化态为+4,且其配位数为4),r Mn -O = 53pm (Mn氧化态为+4,且其配位数为6)[ John A. Dean, Handbook of Chemistry(15th edition)]。从以上参数可知,Sc-O键及Cr-O键比Mn-O键的强度大得多,钪离子和铬离子的离子半径较锰离子的半径大,因此,用少量钪离子或铬离子取代部分锰离子不会对掺杂样结构产生大的影响。由于钪离子或铬离子较尖晶石结构中原来的锰离子稍大一些,使掺杂样的晶胞结构有所膨胀,锂离子在掺杂样品中嵌入和脱出更加容易,减小了锂离子嵌入和脱出时的电化学极化。此外,由于掺杂的钪离子或铬离子在掺杂样中显现氧化态为+3,提高了锰离子的相对氧化态,延迟了锰离子发生Jahn-Teller畸变的进程,使得制备的掺杂样的循环性能得到明显的改善。 Although the above methods can improve the electrochemical performance of the samples to varying degrees, however, due to the insufficient stability of the spinel Li 4 Mn 5 O 12 structure, the discharge performance is poor at low temperature and high current discharge conditions, and the cycle performance at high temperature is poor. will be noticeably attenuated. For this reason, the present invention promotes the actual oxidation state of manganese in Li 4 Mn 5 O 12 by doping scandium or chromium, delays the process that the oxidation state of manganese is lower than +3.5 in the discharge process, reduces Jahn-Teller distortion to effect on structural stability. Given the following parameters, ∆H f 298 Sc-O = 674 kJ mol − 1 , ∆H f 298 Cr-O = 427 kJ mol − 1 , ∆H f 298 OCr-O = 531 kJ mol − 1 , ∆H f 298 Mn-O = 402 kJ mol − 1 , r Sc-O = 74.5pm (Sc oxidation state is +3, and its coordination number is 6), r Cr-O = 61.5 pm (Cr oxidation state is +3, And its coordination number is 6), r Mn -O = 39pm (Mn oxidation state is +4, and its coordination number is 4), r Mn -O = 53pm (Mn oxidation state is +4, and its coordination number is 6) [John A. Dean, Handbook of Chemistry (15 th edition)]. It can be seen from the above parameters that the Sc-O bond and Cr-O bond are much stronger than the Mn-O bond, and the ionic radius of scandium ions and chromium ions is larger than that of manganese ions. Therefore, a small amount of scandium ions or chromium ions are used instead of Part of the manganese ions will not have a large impact on the doping-like structure. Since scandium ions or chromium ions are slightly larger than the original manganese ions in the spinel structure, the unit cell structure of the doped sample is expanded, and lithium ions are more easily intercalated and extracted in the doped sample, reducing the lithium ion density. Electrochemical polarization upon intercalation and deintercalation. In addition, because the doped scandium ions or chromium ions show an oxidation state of +3 in the doped sample, which increases the relative oxidation state of the manganese ions and delays the process of Jahn-Teller distortion of the manganese ions, making the prepared doped samples The cycle performance has been significantly improved.
发明内容 Contents of the invention
为避免现有技术的不足,本发明采用掺杂钪离子或铬离子的方法改善尖晶石Li4Mn5O12结构的稳定性,减小锂离子嵌入和脱出时的电化学极化。为实现本发明的目的所采用的技术方案是: In order to avoid the shortcomings of the prior art, the present invention adopts the method of doping scandium ions or chromium ions to improve the stability of the spinel Li 4 Mn 5 O 12 structure, and reduce the electrochemical polarization when lithium ions are intercalated and extracted. The technical scheme adopted for realizing the purpose of the present invention is:
步骤1:按照锂离子、锰离子、掺杂离子的摩尔比为 x : y : z分别称取锂的化合物、锰的化合物、掺杂的化合物。所述的x、y和z的取值范围同时满足以下关系式:1.20≤y+z≤1.25,0.97≤x≤1.08,1.05≤y≤1.20,0.05≤z≤0.17。 Step 1: According to the molar ratio of lithium ions, manganese ions, and dopant ions as x:y:z, weigh the lithium compound, the manganese compound, and the doped compound respectively. The value ranges of x, y and z satisfy the following relational expressions at the same time: 1.20≤y+z≤1.25, 0.97≤x≤1.08, 1.05≤y≤1.20, 0.05≤z≤0.17.
步骤2:将步骤1称取的锂的化合物、锰的化合物和掺杂的化合物混合,加入混合后的固体总体积的1倍至15倍体积的湿磨介质,用湿磨设备湿磨混合3小时~15小时,制得前驱物1。将前驱物1用常压干燥、真空干燥或喷雾干燥的方法制备干燥的前驱物2。将前驱物2置于空气、富氧空气或纯氧气氛中,采用两段烧结法制备尖晶石富锂锰酸锂正极材料。
Step 2: Mix the lithium compound, manganese compound and doping compound weighed in
所述的两段烧结法如下进行: 将干燥的前驱物2置于空气、富氧空气或纯氧气氛中,在150℃~300℃温度区间的任一温度烧结3小时~15小时,接着按照1℃/分钟~30℃/分钟的加热速度由前一烧结温度加热至400℃~600℃温度区间的任一温度,保持温度烧结3小时~24小时,制备尖晶石富锂锰酸锂正极材料。
The two-stage sintering method is carried out as follows: the
所述的掺杂离子为钪离子或铬离子。 The doping ions are scandium ions or chromium ions.
所述的掺杂的化合物为钪的化合物或铬的化合物。 The doping compound is scandium compound or chromium compound.
所述的钪的化合物为Sc2O3、硝酸钪、ScCl3、Sc(OH)3、Sc2(SO4)3或Sc2(C2O4)3。 The scandium compound is Sc 2 O 3 , scandium nitrate, ScCl 3 , Sc(OH) 3 , Sc 2 (SO 4 ) 3 or Sc 2 (C 2 O 4 ) 3 .
所述的铬的化合物为Cr2O3、氢氧化铬、硫酸铬钾、硫酸铬或三氯化铬。 The chromium compound is Cr 2 O 3 , chromium hydroxide, chromium potassium sulfate, chromium sulfate or chromium trichloride.
所述的锂的化合物为碳酸锂、氢氧化锂、醋酸锂、硝酸锂、氯化锂或柠檬酸锂。 The lithium compound is lithium carbonate, lithium hydroxide, lithium acetate, lithium nitrate, lithium chloride or lithium citrate.
所述的锰的化合物为碳酸锰、碱式碳酸锰、氢氧化锰、醋酸锰、硝酸锰、氯化锰或柠檬酸锰。 The manganese compound is manganese carbonate, basic manganese carbonate, manganese hydroxide, manganese acetate, manganese nitrate, manganese chloride or manganese citrate.
所述的常压干燥是将前驱物1置于140℃~280℃温度区间的任一温度,在1个大气压下干燥,制备前驱物2。所述的真空干燥是将前驱物置于80℃~280℃温度区间的任一温度,在10Pa ~ 10132Pa压力区间的任一压力下干燥,制备前驱物2。所述的喷雾干燥法是将前驱物1置于130℃~280℃温度区间的任一温度,用喷雾干燥机进行干燥,制备前驱物2。
The atmospheric pressure drying is to place the
所述的湿磨介质为去离子水、蒸馏水、乙醇、丙酮、甲醇或甲醛。 The wet grinding medium is deionized water, distilled water, ethanol, acetone, methanol or formaldehyde.
所述的富氧空气是氧气体积含量大于21%且小于100%之间的富氧空气。 The oxygen-enriched air is oxygen-enriched air with an oxygen volume content greater than 21% and less than 100%.
所述的湿磨设备包括普通球磨机、超能球磨机或湿磨机。 The wet milling equipment includes ordinary ball mills, super energy ball mills or wet mills.
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization of lithium ion intercalation and extraction is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
附图说明 Description of drawings
图1是本发明实施例1所制备的样品的第1循环的放电曲线图。 Fig. 1 is a discharge curve diagram of the first cycle of the sample prepared in Example 1 of the present invention.
图2是本发明实施例1所制备的样品及对应的JCPDS卡片的XRD衍射图。 Fig. 2 is the XRD diffraction pattern of the sample prepared in Example 1 of the present invention and the corresponding JCPDS card.
具体实施方式 Detailed ways
下面结合实施例对本发明进行进一步的说明。实施例仅是对本发明的进一步补充和说明,而不是对发明的限制。 The present invention will be further described below in conjunction with examples. The examples are only further supplements and descriptions of the present invention, rather than limiting the invention.
实施例1 Example 1
按照锂离子、锰离子、钪离子的摩尔比为 0.99 : 1.20 : 0.05分别称取氢氧化锂、硝酸锰和Sc(OH)3。 Lithium hydroxide, manganese nitrate and Sc(OH) 3 were weighed respectively according to the molar ratio of lithium ion, manganese ion and scandium ion being 0.99 : 1.20 : 0.05.
将称取的氢氧化锂、硝酸锰和Sc(OH)3混合,加入固体总体积的10倍体积的乙醇,用超能球磨机湿磨混合12小时,制得前驱物1。将前驱物1置于180℃和100Pa压力下真空干燥,制备前驱物2。将前驱物2置于氧气体积含量63%的富氧空气气氛中,在197℃烧结12小时,接着按照5℃/分钟的加热速度由197℃加热至530℃,保持温度烧结20小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium hydroxide, manganese nitrate and Sc(OH) 3 , add ethanol 10 times the volume of the total solid volume, and wet-mill and mix for 12 hours with a super-energy ball mill to prepare
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization of lithium ion intercalation and extraction is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
实施例2 Example 2
按照锂离子、锰离子、铬离子的摩尔比为 1.02 : 1.08 : 0.17分别称取碳酸锂、碱式碳酸锰和Cr2O3。 Lithium carbonate, basic manganese carbonate and Cr 2 O 3 were weighed according to the molar ratio of lithium ion, manganese ion and chromium ion being 1.02 : 1.08 : 0.17, respectively.
将称取的碳酸锂、碱式碳酸锰和Cr2O3混合,加入固体总体积的15倍体积的去离子水,用超能球磨机湿磨混合12小时,制得前驱物1。将前驱物1置于130℃下,用喷雾干燥机干燥,制备前驱物2。将前驱物2置于氧气体积含量99%的富氧空气气氛中,在290℃烧结3小时,接着按照1℃/分钟的加热速度由290℃加热至495℃,保持温度烧结19小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium carbonate, basic manganese carbonate and Cr 2 O 3 , add deionized water 15 times the volume of the total solid volume, and use a super energy ball mill for wet grinding and mixing for 12 hours to prepare
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization of lithium ion intercalation and extraction is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
实施例3 Example 3
按照锂离子、锰离子、钪离子的摩尔比为 0.97 : 1.05 : 0.15分别称取醋酸锂、氯化锰和硝酸钪。 According to the molar ratio of lithium ion, manganese ion and scandium ion is 0.97: 1.05: 0.15 Weigh lithium acetate, manganese chloride and scandium nitrate respectively.
将称取的醋酸锂、氯化锰和硝酸钪混合,加入固体总体积的1倍体积的丙酮,用普通球磨机湿磨混合3小时,制得前驱物1。将前驱物1置于80℃和10Pa压力下真空干燥,制备前驱物2。将前驱物2置于氧气体积含量22%的富氧空气气氛中,在150℃烧结3小时,接着按照1℃/分钟的加热速度由150℃加热至400℃,保持温度烧结3小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium acetate, manganese chloride and scandium nitrate, add acetone that is 1 times the volume of the total solid volume, and wet grind and mix for 3 hours with an ordinary ball mill to prepare the
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization of lithium ion intercalation and extraction is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
实施例4 Example 4
按照锂离子、锰离子、钪离子的摩尔比为 1.08 : 1.20 : 0.05分别称取氯化锂、碳酸锰和Sc2(C2O4)3。 Lithium chloride, manganese carbonate and Sc 2 (C 2 O 4 ) 3 were weighed respectively according to the molar ratio of lithium ion, manganese ion and scandium ion being 1.08 : 1.20 : 0.05.
将称取的氯化锂、碳酸锰和Sc2(C2O4)3混合,加入固体总体积的12倍体积的蒸馏水,用湿磨机湿磨混合15小时,制得前驱物1。将前驱物1置于280℃和10132Pa的压力下真空干燥,制备前驱物2。将前驱物2置于氧气体积含量99%的富氧空气气氛中,在300℃烧结15小时,接着按照30℃/分钟的加热速度由300℃加热至600℃,保持温度烧结24小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium chloride, manganese carbonate and Sc 2 (C 2 O 4 ) 3 , add distilled water 12 times the volume of the total solid volume, and wet grind and mix for 15 hours with a wet grinder to prepare
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization of lithium ion intercalation and extraction is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
实施例5 Example 5
按照锂离子、锰离子、铬离子的摩尔比为 1.08 : 1.08 : 0.12分别称取碳酸锂、氢氧化锰和硫酸铬。 According to the molar ratio of lithium ion, manganese ion and chromium ion is 1.08 : 1.08 : 0.12 Weigh lithium carbonate, manganese hydroxide and chromium sulfate respectively.
将称取的碳酸锂、氢氧化锰和硫酸铬进行混合,加入固体总体积的1倍体积的甲醇,用超能球磨机湿磨混合15小时,制得前驱物1。前驱物1置于280℃下,用喷雾干燥机进行干燥,制备前驱物2。将前驱物2置于空气气氛中,在300℃烧结15小时,接着按照2℃/分钟的加热速度由300℃加热至400℃,保持温度烧结24小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium carbonate, manganese hydroxide and chromium sulfate, add methanol with a
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization of lithium ion intercalation and extraction is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
实施例6 Example 6
按照锂离子、锰离子、铬离子的摩尔比为 1 : 1.11 : 0.11分别称取氢氧化锂、硝酸锰、三氯化铬。 According to the molar ratio of lithium ion, manganese ion and chromium ion is 1: 1.11: 0.11 Weigh lithium hydroxide, manganese nitrate, and chromium trichloride respectively.
将称取的氢氧化锂、硝酸锰、三氯化铬混合,加入固体总体积的5倍体积的甲醇,用湿磨机湿磨混合12小时,制得前驱物1。将前驱物1置于280℃和1个大气压下进行干燥,制备前驱物2。将前驱物2置于纯氧气氛中,在275℃烧结10小时,接着按照1℃/分钟的加热速度由275℃加热至539℃,保持温度烧结3小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium hydroxide, manganese nitrate, and chromium trichloride, add 5 times the volume of methanol of the total volume of the solid, and wet grind and mix for 12 hours with a wet grinder to prepare the
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出时的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization when lithium ions are intercalated and extracted is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
实施例7 Example 7
按照锂离子、锰离子、铬离子的摩尔比为 1 : 1.11 : 0.11分别称取氢氧化锂、硝酸锰、三氯化铬。 According to the molar ratio of lithium ion, manganese ion and chromium ion is 1: 1.11: 0.11 Weigh lithium hydroxide, manganese nitrate, and chromium trichloride respectively.
将称取的氢氧化锂、硝酸锰、三氯化铬混合,加入固体总体积的10倍体积的甲醇,用湿磨机湿磨混合15小时,制得前驱物1。将前驱物1置于140℃和1个大气压下进行干燥,制备前驱物2。将前驱物2置于空气气氛中,在285℃烧结10小时,接着按照1℃/分钟的加热速度由285℃加热至539℃,保持温度烧结10小时,制备尖晶石富锂锰酸锂正极材料。
Mix the weighed lithium hydroxide, manganese nitrate, and chromium trichloride, add methanol 10 times the volume of the total solid volume, and wet grind and mix for 15 hours with a wet mill to prepare
与其它发明方法相比,本发明的原料成本较低,减小了锂离子嵌入和脱出时的电化学极化,改善了大电流放电性能,为产业化打下良好的基础。 Compared with other inventive methods, the raw material cost of the present invention is lower, the electrochemical polarization when lithium ions are intercalated and extracted is reduced, the high-current discharge performance is improved, and a good foundation is laid for industrialization.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310624430.6A CN103606669B (en) | 2013-11-28 | 2013-11-28 | Mix the preparation method of the spinel lithium-rich lithium manganate cathode material of trivalent scandium or chromium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310624430.6A CN103606669B (en) | 2013-11-28 | 2013-11-28 | Mix the preparation method of the spinel lithium-rich lithium manganate cathode material of trivalent scandium or chromium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103606669A true CN103606669A (en) | 2014-02-26 |
CN103606669B CN103606669B (en) | 2016-01-20 |
Family
ID=50124883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310624430.6A Expired - Fee Related CN103606669B (en) | 2013-11-28 | 2013-11-28 | Mix the preparation method of the spinel lithium-rich lithium manganate cathode material of trivalent scandium or chromium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103606669B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106099097A (en) * | 2016-07-06 | 2016-11-09 | 福建师范大学 | Acid salt processes the method for the spinel lithium-rich LiMn2O4 mixing Tricationic |
CN106129354A (en) * | 2016-07-06 | 2016-11-16 | 天津大学前沿技术研究院 | The method of aluminate richness lithium manganate cathode material for lithium is mixed in acid treatment |
CN106953094A (en) * | 2016-12-30 | 2017-07-14 | 惠州龙为科技有限公司 | A kind of high circulation, high voltage are modified the preparation method of rich lithium manganate cathode material for lithium |
CN107634217A (en) * | 2017-08-31 | 2018-01-26 | 福建师范大学 | Mix the preparation method of chromium ternary material |
CN109037612A (en) * | 2018-07-04 | 2018-12-18 | 合肥国轩高科动力能源有限公司 | Scandium-doped lithium nickel manganese oxide lithium ion battery positive electrode material and preparation method thereof |
CN115924987A (en) * | 2021-10-06 | 2023-04-07 | 芯量科技股份有限公司 | Method for preparing precursor of anode material with uniform components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1556552A (en) * | 2004-01-10 | 2004-12-22 | 昆明理工大学 | A kind of manufacturing method of positive electrode material of lithium ion battery |
CN1773749A (en) * | 2004-11-11 | 2006-05-17 | 中国科学技术大学 | A kind of preparation method of Sc (Ⅲ) doped spinel type lithium manganese oxide battery cathode material |
CN101719546A (en) * | 2009-11-26 | 2010-06-02 | 上海大学 | Method for preparing lithium ion battery anode material doped with nanometer oxide |
CN102544442A (en) * | 2010-12-30 | 2012-07-04 | 北京当升材料科技股份有限公司 | Preparation method of lithium manganate precursor |
CN102683669A (en) * | 2011-12-19 | 2012-09-19 | 中国科学院宁波材料技术与工程研究所 | Cathode material of lithium ion battery and preparation method of cathode material |
CN102881891A (en) * | 2012-10-15 | 2013-01-16 | 福建师范大学 | Method for preparing trivalent ion-doped lithium-rich solid solution cathode material |
-
2013
- 2013-11-28 CN CN201310624430.6A patent/CN103606669B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1556552A (en) * | 2004-01-10 | 2004-12-22 | 昆明理工大学 | A kind of manufacturing method of positive electrode material of lithium ion battery |
CN1773749A (en) * | 2004-11-11 | 2006-05-17 | 中国科学技术大学 | A kind of preparation method of Sc (Ⅲ) doped spinel type lithium manganese oxide battery cathode material |
CN101719546A (en) * | 2009-11-26 | 2010-06-02 | 上海大学 | Method for preparing lithium ion battery anode material doped with nanometer oxide |
CN102544442A (en) * | 2010-12-30 | 2012-07-04 | 北京当升材料科技股份有限公司 | Preparation method of lithium manganate precursor |
CN102683669A (en) * | 2011-12-19 | 2012-09-19 | 中国科学院宁波材料技术与工程研究所 | Cathode material of lithium ion battery and preparation method of cathode material |
CN102881891A (en) * | 2012-10-15 | 2013-01-16 | 福建师范大学 | Method for preparing trivalent ion-doped lithium-rich solid solution cathode material |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106099097A (en) * | 2016-07-06 | 2016-11-09 | 福建师范大学 | Acid salt processes the method for the spinel lithium-rich LiMn2O4 mixing Tricationic |
CN106129354A (en) * | 2016-07-06 | 2016-11-16 | 天津大学前沿技术研究院 | The method of aluminate richness lithium manganate cathode material for lithium is mixed in acid treatment |
CN106953094A (en) * | 2016-12-30 | 2017-07-14 | 惠州龙为科技有限公司 | A kind of high circulation, high voltage are modified the preparation method of rich lithium manganate cathode material for lithium |
CN107634217A (en) * | 2017-08-31 | 2018-01-26 | 福建师范大学 | Mix the preparation method of chromium ternary material |
CN107634217B (en) * | 2017-08-31 | 2020-12-04 | 福建师范大学 | Preparation method of chromium-doped ternary material |
CN109037612A (en) * | 2018-07-04 | 2018-12-18 | 合肥国轩高科动力能源有限公司 | Scandium-doped lithium nickel manganese oxide lithium ion battery positive electrode material and preparation method thereof |
CN115924987A (en) * | 2021-10-06 | 2023-04-07 | 芯量科技股份有限公司 | Method for preparing precursor of anode material with uniform components |
Also Published As
Publication number | Publication date |
---|---|
CN103606669B (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102916169B (en) | Lithium-rich manganese-based anode material and method for manufacturing same | |
CN104134797B (en) | A kind of high-capacity lithium-rich cathode material and preparation method thereof | |
CN104966831A (en) | A lithium-rich manganese-based positive electrode material, its preparation method and lithium-ion battery | |
CN103606669B (en) | Mix the preparation method of the spinel lithium-rich lithium manganate cathode material of trivalent scandium or chromium | |
CN103178252B (en) | A kind of anode material for lithium-ion batteries and preparation method thereof | |
CN103594703B (en) | Mix the preparation method of the spinel lithium-rich lithium manganate cathode material of bivalent cation | |
CN103594704B (en) | Preparation method of spinel lithium-rich lithium manganese oxide cathode material doped with tetravalent titanium ions | |
CN103594706B (en) | Mix the preparation method of yttrium spinel lithium-rich lithium manganate cathode material | |
CN106129355A (en) | The preparation method of the spinel lithium-rich LiMn2O4 of the compound of cladding niobium | |
CN105932274A (en) | Preparation method of titanium-dioxide-coated spinel lithium-rich lithium manganite positive electrode material | |
CN105914360A (en) | Method for preparing anode material of coated spinel lithium-rich lithium manganate | |
CN103594702B (en) | The standby method of mixing the spinel lithium-rich lithium manganate cathode material of tin of double sintering legal system | |
CN103594700B (en) | Mix the preparation method of the rich lithium manganate cathode material for lithium of vanadic spinel | |
CN103746105B (en) | The method of spinel type lithium-rich lithium manganate cathode material is prepared by doping molybdenum ion | |
CN105914366A (en) | Method for preparing spinel lithium-rich lithium manganate coated with boron oxide | |
CN103594701B (en) | Preparation method of nickel-doped spinel type lithium-rich lithium manganese oxide cathode material | |
CN105958034A (en) | Method for preparing silicon oxide coated spinel lithium-rich lithium manganate material | |
CN105932264A (en) | Preparation method of lithium-rich spinel lithium manganite compound | |
CN103594705B (en) | The preparation method of the spinel lithium-rich lithium manganate cathode material of doping tetravalence rare earth ion | |
CN103606668B (en) | The preparation method of the spinel lithium-rich lithium manganate cathode material of doping monovalent ion | |
CN103579611B (en) | Mix the preparation method of boron spinel lithium-rich lithium manganate cathode material | |
CN105914361A (en) | Method for preparing anode material of spinel lithium-rich lithium manganate containing magnesium oxide | |
CN103579613B (en) | Method for preparing spinel-doped lithium-enriched lithium manganate anode material through doping zirconium | |
CN105958035A (en) | Preparation method of spinel lithium-rich lithium manganate coated with lanthanum oxide | |
CN106099097A (en) | Acid salt processes the method for the spinel lithium-rich LiMn2O4 mixing Tricationic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 |