CN103559550A - Milling stability domain prediction method under multi-modal coupling - Google Patents
Milling stability domain prediction method under multi-modal coupling Download PDFInfo
- Publication number
- CN103559550A CN103559550A CN201310409076.5A CN201310409076A CN103559550A CN 103559550 A CN103559550 A CN 103559550A CN 201310409076 A CN201310409076 A CN 201310409076A CN 103559550 A CN103559550 A CN 103559550A
- Authority
- CN
- China
- Prior art keywords
- milling
- modal
- parameters
- test
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003801 milling Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000008878 coupling Effects 0.000 title claims abstract description 16
- 238000010168 coupling process Methods 0.000 title claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 16
- 238000010586 diagram Methods 0.000 claims abstract description 33
- 238000005520 cutting process Methods 0.000 claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 18
- 238000002474 experimental method Methods 0.000 claims abstract description 10
- 230000001934 delay Effects 0.000 claims description 9
- 238000013016 damping Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000004323 axial length Effects 0.000 claims description 3
- 238000009863 impact test Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000011438 discrete method Methods 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract 2
- 238000004364 calculation method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Numerical Control (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种铣削稳定域预测方法,特别涉及一种多模态耦合下的铣削稳定域预测方法。The invention relates to a milling stable region prediction method, in particular to a milling stable region prediction method under multi-modal coupling.
背景技术Background technique
参照图1-2。铣削加工是最常用的金属材料成型工艺方法之一,广泛应用于各种模具、汽车零件及其航空航天零件的生产制造中。铣削过程中由于切削参数选取不合理而导致的再生颤振现象将严重影响加工精度和刀具寿命,甚至导致机床过早破坏。为了合理选取切削参数,避免颤振现象的发生,需要建立一套行之有效的稳定域预测方法。考虑实际工艺系统的复杂性,为准确表征其动力学行为,需要建立多自由度模型来预测铣削过程稳定域,从而建立多模态耦合下的稳定性预测方法。Refer to Figure 1-2. Milling is one of the most commonly used metal forming processes, and it is widely used in the production and manufacture of various molds, auto parts and aerospace parts. Regenerative chatter caused by unreasonable selection of cutting parameters during milling will seriously affect machining accuracy and tool life, and even lead to premature failure of the machine tool. In order to select the cutting parameters reasonably and avoid the occurrence of chatter, it is necessary to establish an effective stable region prediction method. Considering the complexity of the actual process system, in order to accurately characterize its dynamic behavior, it is necessary to establish a multi-degree-of-freedom model to predict the stability domain of the milling process, so as to establish a stability prediction method under multi-modal coupling.
文献1“T.Insperger,G.Stepan,Updated semi-discretization method for periodic delaydifferential equations with discrete delay,International Journal for Numerical Methods inEngineering 61(2004)117-141.”公开了一种在时域内采用半离散方法预测铣削稳定域的方法,该方法只适用于单延时系统,无法考虑刀具螺旋角、刀具偏心等因素对稳定域的影响。
文献2“M.Wan,W.H.Zhang,J.W.Dang,Y.Yang,A unified stability predictionmethod for milling process with multiple delays,International Journal of Machine Tools&Manufacture 50(2010)29-41.”公开了一种在时域内采用改进半离散方法预测多延时铣削系统稳定域(即稳定性叶瓣图)的方法,该方法可系统考虑刀具偏心、不等距齿等现象对铣削稳定域的影响。
以上关于在时域内预测铣削稳定域的文献的典型特点是:在建模过程中,为了缩短计算时间,只选取了刚性最差的单阶模态参数进行求解,没有考虑多模态耦合的影响,造成在某些转速范围内预测失真。The typical characteristics of the above literatures on predicting the stability domain of milling in the time domain are: in the modeling process, in order to shorten the calculation time, only the single-order modal parameters with the worst rigidity are selected for solution, and the influence of multi-modal coupling is not considered , causing prediction distortion in certain speed ranges.
发明内容Contents of the invention
为了克服现有铣削稳定域预测方法效率低的不足,本发明提供一种多模态耦合下的铣削稳定域预测方法。该方法首先通过模态测试实验测定工艺系统的传递函数,再从传递函数中提取模态参数并将其两个正交方向的模态参数按阶数进行配对组合,然后进行切削实验标定铣削力系数,之后基于铣削力系数和各阶模态参数采用改进半离散法得到各阶模态下的稳定性叶瓣图,最后由各阶模态得到的叶瓣图绘制在同一坐标系中取其最低包络线即可得到多模态耦合下的稳定域,可以提高铣削稳定域预测效率。In order to overcome the low efficiency of the existing milling stable region prediction method, the present invention provides a milling stable region prediction method under multi-modal coupling. In this method, the transfer function of the process system is first determined through the modal test experiment, and then the modal parameters are extracted from the transfer function, and the modal parameters in the two orthogonal directions are paired and combined according to the order, and then the cutting experiment is carried out to calibrate the milling force coefficient, and then based on the milling force coefficient and the parameters of each order mode, the improved semi-discrete method is used to obtain the stability lobe diagrams of each order mode, and finally the lobe diagrams obtained by each order mode are drawn in the same coordinate system, whichever is the best The lowest envelope can get the stable domain under multi-modal coupling, which can improve the efficiency of milling stable domain prediction.
本发明解决其技术问题所采用的技术方案是:一种多模态耦合下的铣削稳定域预测方法,其特点是包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is: a method for predicting the stable region of milling under multimodal coupling, which is characterized in that it includes the following steps:
步骤一、将铣刀与刀柄安装于机床主轴系统,然后采用标准冲击试验测试铣刀-刀柄-机床主轴系统的模态参数,测试得到的第j阶模态参数记为mX,j、cX,j、kX,j,mY,j、cY,j和kY,j,下标X和Y表示在X和Y方向的测试结果,下标j表示第j阶模态参数,符号m、c与k分别表示模态质量、阻尼系数以及模态刚度。
步骤二、将步骤一测得的X方向的第j阶模态参数与Y方向第j阶模态参数组成一个组合,把该组合记为模态j;
步骤三、通过铣削实验测试铣削力,标定切向铣削力系数Kt、径向铣削力系数Kr、刀具偏心参数ρ和λ。ρ表示刀具旋转中心与刀具几何中心的偏移量,λ表示刀具偏心产生的方向与相邻最近的刀齿头部之间的夹角。Step 3: Test the milling force through a milling experiment, and calibrate the tangential milling force coefficient K t , the radial milling force coefficient K r , and the tool eccentricity parameters ρ and λ. ρ represents the offset between the center of rotation of the tool and the geometric center of the tool, and λ represents the angle between the direction of tool eccentricity and the head of the nearest adjacent tooth.
步骤四、根据铣刀几何参数以及步骤三得到的偏心参数ρ和λ,分析确定铣削系统可能出现的延时量的大小和个数,将延时量按从小到达的顺序记为NM表示延时量的个数。Step 4. According to the geometric parameters of the milling cutter and the eccentric parameters ρ and λ obtained in
步骤五、将铣削系统在模态j下的动力学控制方程表示为:Step 5. Express the dynamic control equation of the milling system under mode j as:
其中,in,
X(t)表示刀具动态变形向量,
表达式如下:The expression is as follows:
Hl,XX(t)=∑[zl,p,qsinθl,p,q(t)(Ktcosθl,p,q(t)+Krsinθl,p,q(t))]H l,XX (t)=∑[z l,p,q sinθ l,p,q (t)(K t cosθ l,p,q (t)+K r sinθ l,p,q (t)) ]
Hl,XY(t)=∑[zl,p,qcosθl,p,q(t)(Ktcosθl,p,q(t)+Krsinθl,p,q(t))]H l,XY (t)=∑[z l,p,q cosθ l,p,q (t)(K t cosθ l,p,q (t)+K r sinθ l,p,q (t)) ]
Hl,YX(t)=∑[zl,p,qsinθl,p,q(t)(-Ktsinθl,p,q(t)+Krcosθl,p,q(t))]H l,YX (t)=∑[z l,p,q sinθ l,p,q (t)(-K t sinθ l,p,q (t)+K r cosθ l,p,q (t) )]
Hl,YY(t)=∑[zl,p,qcosθl,p,q(t)(-Ktsinθl,p,q(t)+Krcosθl,p,q(t))]H l,YY (t)=∑[z l,p,q cosθ l,p,q (t)(-K t sinθ l,p,q (t)+K r cosθ l,p,q (t) )]
式中,每一刀齿沿轴向被离散成若干个等长的刀齿片,zl,p,q和θl,p,q(t)表示第p个刀齿上第q个单元所对应的轴向长度和切削角度;下标l表示在时间t与第p个刀齿上第q个单元对应的延时量为τl。In the formula, each tooth is discretized into several blades of equal length along the axial direction, z l, p, q and θ l, p, q (t) represent the corresponding The axial length and cutting angle of ; the subscript l indicates that the time delay corresponding to the qth unit on the pth tooth at time t is τ l .
步骤六、对由步骤五得到的控制方程进行稳定性分析,求解与模态j对应的稳定性叶瓣图。Step 6: Perform stability analysis on the control equation obtained in Step 5, and solve the stability lobe diagram corresponding to mode j.
步骤七、从j=1到j=n,重复执行步骤五与步骤六,直到得到与各阶模态对应的稳定性叶瓣图,n表示测得的最大模态数。Step 7. From j=1 to j=n, repeat steps 5 and 6 until the stability lobe diagram corresponding to each mode is obtained, and n represents the maximum number of modes measured.
步骤八、将由各个单阶模态得到的叶瓣图绘制在同一坐标系下,取所有叶瓣图最下缘连接成连续曲线,即做最低包络线,即可得到多模态耦合下多延时铣削系统的稳定性叶瓣图。Step 8. Draw the lobe diagrams obtained from each single-order mode in the same coordinate system, take the bottom edge of all the lobe diagrams and connect them into a continuous curve, that is, make the lowest envelope, and you can get the multi-mode coupling. Stability lobe diagram of a time-lapse milling system.
本发明的有益效果是:该方法首先通过模态测试实验测定工艺系统的传递函数,再从传递函数中提取模态参数并将其两个正交方向的模态参数按阶数进行配对组合,然后进行切削实验标定铣削力系数,之后基于铣削力系数和各阶模态参数采用改进半离散法得到各阶模态下的稳定性叶瓣图,最后由各阶模态得到的叶瓣图绘制在同一坐标系中取其最低包络线即可得到多模态耦合下的稳定域,提高了铣削稳定域预测效率。经测试,当切削周期被离散为40段时,本发明方法比背景技术方法节省时间为4949.6秒,效率提高了85.9%;当切削周期被离散为80段时,本发明方法比背景技术方法节省时间为74200.4秒,效率提高了92.0%;当切削周期被离散为120段时,本发明方法比背景技术方法节省时间为344699.5秒,效率提高了88.5%;不难看出,对于精度要求越高的多模态多延时稳定域的预测,本发明方法的高效性体现得越明显。The beneficial effects of the present invention are: the method first measures the transfer function of the process system through a modal test experiment, then extracts the modal parameters from the transfer function and pairs and combines the modal parameters in two orthogonal directions according to the order, Then the cutting experiment is carried out to calibrate the milling force coefficient, and then based on the milling force coefficient and the modal parameters of each order, the stability lobe diagram of each order mode is obtained by using the improved semi-discrete method, and finally the lobe diagram obtained by each order mode is drawn The stable domain under multi-modal coupling can be obtained by taking the lowest envelope in the same coordinate system, which improves the efficiency of milling stable domain prediction. After testing, when the cutting cycle is discretized into 40 segments, the method of the present invention saves 4949.6 seconds compared with the method of the background technology, and the efficiency is increased by 85.9%; The time is 74200.4 seconds, and the efficiency is increased by 92.0%; when the cutting cycle is discretized into 120 segments, the time saving of the method of the present invention is 344699.5 seconds compared with the method of the background technology, and the efficiency is increased by 88.5%; it is not difficult to see that the higher precision requirements For the prediction of multi-modal and multi-delay stable domains, the efficiency of the method of the present invention is more obvious.
下面结合附图和实施例对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
附图说明Description of drawings
图1是背景技术方法中多模态模型示意图。Fig. 1 is a schematic diagram of a multimodal model in the method of the background technology.
图2是背景技术方法中各单阶模态下的稳定性叶瓣图。Fig. 2 is a diagram of the stability lobe in each single-order mode in the method of the background technology.
图3是本发明方法求得的多模态叶瓣图。Fig. 3 is a multimodal lobe diagram obtained by the method of the present invention.
图中,mX,1、cX,1、kX,1和mY,n、cY,n、kY,n分别表示第一阶模态质量、模态阻尼、模态刚度和第n阶模态质量、模态阻尼、模态刚度;θl,p,q表示第p个刀齿上第q个单元所对应的切削角度。1-是按照第一阶模态参数计算得到的叶瓣图,2-是第二阶模态参数计算得到的叶瓣图,3-是按照第三阶模态参数计算得到的叶瓣图;A,B,C,D,E,F,G,H表示不同阶模态参数计算得到的叶瓣图的交点。黑色实心正方形代表实际实验测定的稳定切削过程,空心圆代表实测不稳定切削过程。In the figure, m X,1 , c X,1 , k X,1 and m Y,n , c Y,n , k Y,n represent the first-order modal mass, modal damping, modal stiffness and the first-order modal mass, respectively. n-order modal mass, modal damping, and modal stiffness; θ l, p, q represent the cutting angle corresponding to the qth unit on the pth tooth. 1- is the lobe diagram calculated according to the first-order modal parameters, 2- is the lobe diagram calculated according to the second-order modal parameters, and 3- is the lobe diagram calculated according to the third-order modal parameters; A, B, C, D, E, F, G, H represent the intersection points of the lobe diagrams obtained by calculating the modal parameters of different orders. The black solid squares represent the stable cutting process measured by the actual experiment, and the open circles represent the measured unstable cutting process.
具体实施方式Detailed ways
本发明多模态耦合下的铣削稳定域预测方法的具体步骤如下。The specific steps of the milling stable region prediction method under multi-modal coupling in the present invention are as follows.
1)将半径为12mm、螺旋角为30°、刀齿数N为3的铣刀安装于刀柄然后安装于机床主轴系统,接着采用标准冲击试验测试铣刀-刀柄-机床主轴系统的模态参数,测试得到的各阶模态参数,如下表:1) Install a milling cutter with a radius of 12mm, a helix angle of 30°, and a number of teeth N of 3 on the tool holder and then on the machine tool spindle system, and then use the standard impact test to test the modal of the milling cutter-tool holder-machine tool spindle system Parameters, the modal parameters of each order obtained from the test, as shown in the following table:
表1.模态参数Table 1. Modal parameters
2)将步骤1)中测得的X方向和Y方向的模态参数进行配对组合,即将X方向的第一阶模态参数与和Y方向的第一阶模态组合为一组记成模态1;同理,即将X方向的第二阶模态参数与和Y方向的第二阶模态组合为一组记成模态2;即将X方向的第三阶模态参数与和Y方向的第三阶模态组合为一组记成模态3。2) Combine the modal parameters in the X direction and Y direction measured in step 1), that is, the first-order modal parameters in the X direction and the first-order modal parameters in the Y direction are combined into a group and recorded as a
3)将测力仪安装于机床工作台,再将铝合金7050安装于测力仪上,然后利用步骤1)的铣刀-刀柄-机床主轴系统对铝合金7050进行加工,并测试加工过程中的铣削铣削力,根据测试得到的铣削力利用文献3“W.A.Kline,R.E.DeVor,J.R.Lindberg,Theprediction of cutting forces in end milling with application to cornering cuts.InternationalJournal of Machine Tool Design and Research,22(1982),7-22”公开的方法标定切向铣削力系数Kt和径向铣削力系数Kr,采用文献4“M.Wan,M.S.LU,W.H.Zhang,Y.Yang,Y.Li,A new method for identifying the cutter runout parameters in flat milling process,Materials Science Forum,697-698(2011),71-74”公开的方法标定刀具偏心参数ρ和λ。ρ表示刀具旋转中心与刀具几何中心的偏移量,λ表示刀具偏心产生的方向与相邻最近的刀齿头部之间的夹角。该例中标定结果如下:Kt为1110.6MPa,Kr为554.45MPa,ρ,λ分别为13.5μm和-17.51°。3) Install the dynamometer on the machine table, then install the aluminum alloy 7050 on the dynamometer, and then use the milling cutter-knife handle-machine spindle system in step 1) to process the aluminum alloy 7050, and test the processing process The milling force in milling, according to the milling force obtained by the
4)根据铣刀几何参数以及步骤3)得到的偏心参数ρ和λ,分析确定铣削系统可能出现的延时量总数为3,其大小分别为T/3、2T/3、T,T为刀具旋转周期。4) According to the geometric parameters of the milling cutter and the eccentric parameters ρ and λ obtained in step 3), analyze and determine that the total amount of delay that may occur in the milling system is 3, and their sizes are T/3, 2T/3, T respectively, and T is the tool rotation period.
5)将铣削系统在模态j下的动力学控制方程表示为:5) Express the dynamic control equation of the milling system under mode j as:
其中,in,
X(t)表示刀具动态变形向量,
Hl,XX(t)=∑[zl,p,qsinθl,p,q(t)(Ktcosθl,p,q(t)+Krsinθl,p,q(t))]H l,XX (t)=∑[z l,p,q sinθ l,p,q (t)(K t cosθ l,p,q (t)+K r sinθ l,p,q (t)) ]
Hl,XY(t)=∑[zl,p,qcosθl,p,q(t)(Ktcosθl,p,q(t)+Krsinθl,p,q(t))]H l,XY (t)=∑[z l,p,q cosθ l,p,q (t)(K t cosθ l,p,q (t)+K r sinθ l,p,q (t)) ]
Hl,YX(t)=∑[zl,p,qsinθl,p,q(t)(-Ktsinθl,p,q(t)+Krcosθl,p,q(t))]H l,YX (t)=∑[z l,p,q sinθ l,p,q (t)(-K t sinθ l,p,q (t)+K r cosθ l,p,q (t) )]
Hl,YY(t)=∑[zl,p,qcosθl,p,q(t)(-Ktsinθl,p,q(t)+Krcosθl,p,q(t))]H l,YY (t)=∑[z l,p,q cosθ l,p,q (t)(-K t sinθ l,p,q (t)+K r cosθ l,p,q (t) )]
在上式计算过程中,每一刀齿沿轴向被离散成若干个等长的刀齿片,zl,p,q和θl,p,q(t)表示第p个刀齿上第q个单元所对应的轴向长度和切削角度;下标l表示在时间t与第p个刀齿上第q个单元对应的延时量为τl。In the calculation process of the above formula, each tooth is discretized into several equal-length blades along the axial direction, z l, p, q and θ l, p, q (t) represent the The axial length and cutting angle corresponding to each unit; the subscript l indicates that the time delay corresponding to the qth unit on the pth tooth at time t is τ l .
6)按照文献2“M.Wan,W.H.Zhang,J.W.Dang,Y.Yang,A unified stabilityprediction method for milling process with multiple delays,International Journal ofMachine Tools&Manufacture 50(2010)29-41.”公开的改进半离散方法对由步骤5)得到的控制方程进行稳定性分析,求解与模态j对应的稳定性叶瓣图;6) According to the improved semi-discrete method disclosed in
7)从j=1到j=n,重复执行步骤5)与步骤6),直到得到与各阶模态对应的稳定性叶瓣图,n表示测得的最大模态数,此处n的取值为3。7) From j=1 to j=n, repeat step 5) and step 6) until the stability lobe diagram corresponding to each mode is obtained, n represents the maximum number of modes measured, where n The value is 3.
8)将各个单阶模态计算得到的叶瓣图绘制在同一坐标系下,参见附图2,图中A,B,C,D,E,F表示不同阶模态参数得到的叶瓣图的交点。取所有叶瓣图最下缘连接成连续曲线,即依次取图中一阶模态参数的AB段,三阶模态的BC段,一阶模态的CD段,三阶模态的DE段,一阶模态的EF段,三阶模态的FG段及一阶模态的GH段,将其连接成的曲线绘制在同一坐标系下,即可得到多模态耦合下多延时铣削系统的稳定性叶瓣图,参见附图3;为验证所给方法的有效性,特设计四组切削验证实验,实验结果已在图3中给出:图3中黑色实心正方形代表实际实验测定的稳定切削过程,空心圆代表实测不稳定切削过程。验证实验的结果与铣削稳定域预测结果吻合,表明所给方法可行有效。8) Draw the lobe diagrams calculated by each single-order mode in the same coordinate system, see Figure 2, A, B, C, D, E, F in the figure represent the lobe diagrams obtained by different order modal parameters intersection point. Take the bottom edge of all lobe diagrams and connect them into a continuous curve, that is, take the AB section of the first-order mode parameters in the figure, the BC section of the third-order mode, the CD section of the first-order mode, and the DE section of the third-order mode in the figure. , the EF section of the first-order mode, the FG section of the third-order mode and the GH section of the first-order mode, and the curves formed by connecting them are drawn in the same coordinate system, and the multi-delay milling under multi-mode coupling can be obtained For the stability lobe diagram of the system, see attached drawing 3; in order to verify the effectiveness of the given method, four sets of cutting verification experiments are specially designed, and the experimental results are shown in Figure 3: the black solid squares in Figure 3 represent the actual experimental measurements The stable cutting process of , and the hollow circle represents the measured unstable cutting process. The results of the verification experiment are consistent with the prediction results of the milling stable region, which shows that the proposed method is feasible and effective.
从图2、图3对比可以看出,在实际铣削过程中,由于多阶模态的存在,其稳定域是多个模态耦合的结果,如果只取某阶模态参数求解,预测结果必然存在误差。比如取第一阶仿真,得到的叶瓣图即为模态1的叶瓣图,参见附图2,则该稳定域在转速范围为15000至21000转/分时,预测结果将不准确。From the comparison of Figure 2 and Figure 3, it can be seen that in the actual milling process, due to the existence of multi-order modes, its stable domain is the result of multi-mode coupling. There is an error. For example, taking the first-order simulation, the lobe diagram obtained is the lobe diagram of
另一方面,包络线法计算时间与在求解动力学方程过程中考虑多模态计算时间对比如表2。表2中由于文献2“M.Wan,W.H.Zhang,J.W.Dang,Y.Yang,A unified stabilityprediction method for milling process with multiple delays,International Journal ofMachine Tools&Manufacture 50(2010)29-41.”公开的改进半离散方法在计算叶瓣图时需要将转速,轴向切深以及切削周期进行分段处理,其分段段数将对计算时间产生影响。本例中将轴向切深40mm分为100段,即每段0.4mm,转速计算范围5000至50000转/分离散为100段,即每段450转/分,将刀齿切削周期分别离散为40、80、120段求解,对比其计算时间。On the other hand, the calculation time of the envelope method is compared with the calculation time of considering multi-modality in the process of solving the dynamic equation, as shown in Table 2. In Table 2, due to the
表2.计算时间对比Table 2. Computational time comparison
从表中可以看出,本发明方法提高了铣削稳定域预测效率,且随着延时时间离散段数的增长,效率提高越明显。当切削周期被离散为40段时,本发明方法比背景技术方法节省时间为4949.6秒,效率提高了85.9%;当切削周期被离散为80段时,本发明方法比背景技术方法节省时间为74200.4秒,效率提高了92.0%;当切削周期被离散为120段时,本发明方法比背景技术方法节省时间为344699.5秒,效率提高了88.5%;不难看出,对于精度要求越高的多模态多延时稳定域的预测,本发明方法的高效性体现得越明显。It can be seen from the table that the method of the present invention improves the efficiency of milling stable domain prediction, and the efficiency is improved more obviously with the increase of the number of discrete segments of the delay time. When the cutting cycle is discretized into 40 segments, the method of the present invention saves 4949.6 seconds of time compared with the method of the background technology, and the efficiency is increased by 85.9%; when the cutting cycle is discretized into 80 segments, the method of the present invention saves 74200.4 seconds compared with the method of the background technology seconds, the efficiency has been improved by 92.0%; when the cutting cycle is discretized into 120 segments, the method of the present invention saves 344699.5 seconds compared with the background technology method, and the efficiency has been increased by 88.5%; it is not difficult to see that for multi-modal For the prediction of multi-delay stable domains, the efficiency of the method of the present invention is more obvious.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310409076.5A CN103559550B (en) | 2013-09-09 | 2013-09-09 | Milling stable region Forecasting Methodology under multi-mode coupling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310409076.5A CN103559550B (en) | 2013-09-09 | 2013-09-09 | Milling stable region Forecasting Methodology under multi-mode coupling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103559550A true CN103559550A (en) | 2014-02-05 |
CN103559550B CN103559550B (en) | 2016-10-05 |
Family
ID=50013791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310409076.5A Active CN103559550B (en) | 2013-09-09 | 2013-09-09 | Milling stable region Forecasting Methodology under multi-mode coupling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103559550B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104484506A (en) * | 2014-11-25 | 2015-04-01 | 东北大学 | Turning flutter forecasting method based on reliability lobe graph |
CN104657606A (en) * | 2015-02-10 | 2015-05-27 | 北京理工大学 | Milling stability predicting method based on cubic polynomial |
CN104657607A (en) * | 2015-02-10 | 2015-05-27 | 北京理工大学 | Thin-wall part supporting device and milling stability forecasting method |
CN104680000A (en) * | 2015-02-10 | 2015-06-03 | 北京理工大学 | Orthogonal polynomial-based milling stability prediction method |
CN104680248A (en) * | 2015-02-10 | 2015-06-03 | 北京理工大学 | Method for forecasting milling stability based on Legendre polynomial expansion |
CN105414616A (en) * | 2015-12-02 | 2016-03-23 | 上海交通大学 | Method for cutting force forecasting and stability judging in spiral hole milling process |
CN106156477A (en) * | 2015-04-28 | 2016-11-23 | 河南理工大学 | Thin-wall part dynamic milling the stability lobes diagram high-precision forecasting method |
CN106647625A (en) * | 2016-12-15 | 2017-05-10 | 太原科技大学 | Method for predicting milling stability based on Gear formula |
CN106774148A (en) * | 2017-01-12 | 2017-05-31 | 太原科技大学 | A kind of milling stability Forecasting Methodology based on Bull formula |
WO2020051818A1 (en) * | 2018-09-13 | 2020-03-19 | 大连理工大学 | Cross-axis/cross-point modal test and parameter identification method for cutting stability prediction |
CN114072807A (en) * | 2020-09-10 | 2022-02-18 | 南京航空航天大学 | Multimodal frequency response prediction method for milling robot based on small sample transfer learning |
CN116976018A (en) * | 2023-03-11 | 2023-10-31 | 哈尔滨理工大学 | Method for predicting relative position deviation of milling tool system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090136311A1 (en) * | 2007-11-26 | 2009-05-28 | Bam Bundesanstalt Fuer Materialforschung Und-Pruefung | Device and method for producing slit diaphrams for high-energy radiation |
CN101653841A (en) * | 2009-08-27 | 2010-02-24 | 西北工业大学 | Stable domain determining method in milling process |
CN102248209A (en) * | 2011-07-01 | 2011-11-23 | 黑龙江科技学院 | Method for determining limit stable process parameter of machine tool in process of milling thin-wall complex curved surface workpiece |
-
2013
- 2013-09-09 CN CN201310409076.5A patent/CN103559550B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090136311A1 (en) * | 2007-11-26 | 2009-05-28 | Bam Bundesanstalt Fuer Materialforschung Und-Pruefung | Device and method for producing slit diaphrams for high-energy radiation |
CN101653841A (en) * | 2009-08-27 | 2010-02-24 | 西北工业大学 | Stable domain determining method in milling process |
CN102248209A (en) * | 2011-07-01 | 2011-11-23 | 黑龙江科技学院 | Method for determining limit stable process parameter of machine tool in process of milling thin-wall complex curved surface workpiece |
Non-Patent Citations (1)
Title |
---|
李江威: "铣削系统动力学建模及稳定性分析", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104484506A (en) * | 2014-11-25 | 2015-04-01 | 东北大学 | Turning flutter forecasting method based on reliability lobe graph |
CN104484506B (en) * | 2014-11-25 | 2017-05-24 | 东北大学 | Turning flutter forecasting method based on reliability lobe graph |
CN104657607B (en) * | 2015-02-10 | 2017-12-15 | 北京理工大学 | A kind of thin-wall part milling stability Forecasting Methodology |
CN104657606A (en) * | 2015-02-10 | 2015-05-27 | 北京理工大学 | Milling stability predicting method based on cubic polynomial |
CN104657607A (en) * | 2015-02-10 | 2015-05-27 | 北京理工大学 | Thin-wall part supporting device and milling stability forecasting method |
CN104680000A (en) * | 2015-02-10 | 2015-06-03 | 北京理工大学 | Orthogonal polynomial-based milling stability prediction method |
CN104680248A (en) * | 2015-02-10 | 2015-06-03 | 北京理工大学 | Method for forecasting milling stability based on Legendre polynomial expansion |
CN104680000B (en) * | 2015-02-10 | 2018-03-09 | 北京理工大学 | A kind of milling stability Forecasting Methodology based on orthogonal polynomial |
CN104680248B (en) * | 2015-02-10 | 2017-09-26 | 北京理工大学 | A kind of milling stability Forecasting Methodology based on Legnedre polynomial |
CN104657606B (en) * | 2015-02-10 | 2017-11-28 | 北京理工大学 | A kind of milling stability Forecasting Methodology based on cubic polynomial |
CN106156477A (en) * | 2015-04-28 | 2016-11-23 | 河南理工大学 | Thin-wall part dynamic milling the stability lobes diagram high-precision forecasting method |
CN106156477B (en) * | 2015-04-28 | 2019-11-05 | 河南理工大学 | Thin-wall part dynamic milling the stability lobes diagram high-precision forecasting method |
CN105414616A (en) * | 2015-12-02 | 2016-03-23 | 上海交通大学 | Method for cutting force forecasting and stability judging in spiral hole milling process |
CN106647625B (en) * | 2016-12-15 | 2018-12-21 | 太原科技大学 | A method of based on Gear formula predictions milling stability |
CN106647625A (en) * | 2016-12-15 | 2017-05-10 | 太原科技大学 | Method for predicting milling stability based on Gear formula |
CN106774148A (en) * | 2017-01-12 | 2017-05-31 | 太原科技大学 | A kind of milling stability Forecasting Methodology based on Bull formula |
CN106774148B (en) * | 2017-01-12 | 2018-11-13 | 太原科技大学 | A kind of milling stability prediction technique based on Bull formula |
WO2020051818A1 (en) * | 2018-09-13 | 2020-03-19 | 大连理工大学 | Cross-axis/cross-point modal test and parameter identification method for cutting stability prediction |
US11426833B2 (en) | 2018-09-13 | 2022-08-30 | Dalian University Of Technology | Cross-axis and cross-point modal testing and parameter identification method for predicting the cutting stability |
CN114072807A (en) * | 2020-09-10 | 2022-02-18 | 南京航空航天大学 | Multimodal frequency response prediction method for milling robot based on small sample transfer learning |
CN114072807B (en) * | 2020-09-10 | 2023-04-04 | 南京航空航天大学 | Milling robot multi-mode frequency response prediction method based on small sample transfer learning |
CN116976018A (en) * | 2023-03-11 | 2023-10-31 | 哈尔滨理工大学 | Method for predicting relative position deviation of milling tool system |
Also Published As
Publication number | Publication date |
---|---|
CN103559550B (en) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103559550B (en) | Milling stable region Forecasting Methodology under multi-mode coupling | |
CN102622489B (en) | Cutting force prediction method for five-axis side milling based on ACIS platform | |
CN103196643B (en) | Main shaft-knife handle joint surface nonlinear dynamic characteristic parameter identification method | |
Jing et al. | Modelling the cutting forces in micro-end-milling using a hybrid approach | |
CN102554326B (en) | A milling finishing method based on dynamic stiffness of impeller blades | |
US11426833B2 (en) | Cross-axis and cross-point modal testing and parameter identification method for predicting the cutting stability | |
CN106647625A (en) | Method for predicting milling stability based on Gear formula | |
CN102609591A (en) | Optimization method of cutting parameters of heavy machine tool | |
CN103823945A (en) | Flutter stability domain modeling approach for face cutting process | |
CN104484506A (en) | Turning flutter forecasting method based on reliability lobe graph | |
CN102689229A (en) | Method for acquiring tool tip point frequency response function based on response coupling | |
CN108256273A (en) | A kind of rotary ultrasonic drilling transverse direction chatter stable region Forecasting Methodology | |
CN104794337B (en) | A kind of orthogonal turn-milling judged based on boundary condition processes end face sword On Cutting Force Modeling | |
CN105414616A (en) | Method for cutting force forecasting and stability judging in spiral hole milling process | |
CN107423502A (en) | Milling optimization method and optimization system based on milling cutter's helix angle and curvature effect | |
CN101653841B (en) | Stable domain determining method in milling process | |
CN106980720A (en) | Thin-wall part milling distortion inaccuracy Forecasting Methodology | |
CN112784451A (en) | Thin-wall part machining deformation prediction method based on finite element and support vector machine | |
CN105160128A (en) | Prediction method for cutting force in curve end milling process | |
CN112016203B (en) | Method for predicting milling stability based on segmented Hermite interpolation polynomial and integral discrete strategy | |
CN104298799A (en) | Method for designing key geometric parameters of end mill on basis of machining vibration | |
Mandal | Applicability of tool condition monitoring methods used for conventional milling in micromilling: A comparative review | |
CN108520117A (en) | A Method of Obtaining Stability Lobe Diagram Using Full Discrete Method | |
CN113094925A (en) | Milling chatter stability prediction method | |
CN110321652B (en) | Dynamic modeling method and system for blade cyclone milling process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |