CN103532233B - Based on the power information acquisition abnormity Precise Position System of GPRS technology - Google Patents
Based on the power information acquisition abnormity Precise Position System of GPRS technology Download PDFInfo
- Publication number
- CN103532233B CN103532233B CN201310476960.0A CN201310476960A CN103532233B CN 103532233 B CN103532233 B CN 103532233B CN 201310476960 A CN201310476960 A CN 201310476960A CN 103532233 B CN103532233 B CN 103532233B
- Authority
- CN
- China
- Prior art keywords
- data
- module
- microprocessor
- gprs
- server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005516 engineering process Methods 0.000 title claims abstract description 22
- 230000006854 communication Effects 0.000 claims abstract description 42
- 238000004891 communication Methods 0.000 claims abstract description 39
- 230000002159 abnormal effect Effects 0.000 claims description 20
- 238000004422 calculation algorithm Methods 0.000 claims description 18
- 230000005611 electricity Effects 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 20
- 230000008569 process Effects 0.000 abstract description 10
- 238000011161 development Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 230000010354 integration Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000007418 data mining Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012896 Statistical algorithm Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于GPRS技术的用电信息采集异常精确定位系统,其中微处理器通过RS485模块与用电信息采集装置连接,采集用电信息采集装置内的数据;微处理器将采集到的数据保存到Flash模块,微处理器还将采集到的数据处理后通过RS232模块传输到GPRS模块;GPRS模块与DNS服务器通信,获取TCP通讯服务器的IP地址;然后GPRS模块与TCP通讯服务器进行通信,并将微处理器处理后的数据发送到TCP通讯服务器,TCP通讯服务器将微处理器处理后的数据保存到数据库服务器;PC机完成对数据库服务器中数据的访问;电源管理模块与微处理器的电源端连接。本发明可以对用电故障出现的位置进行定位。
The invention discloses a GPRS technology-based abnormally accurate positioning system for power consumption information collection, wherein a microprocessor is connected with a power consumption information collection device through an RS485 module to collect data in the power consumption information collection device; the microprocessor collects Save the data to the Flash module, and the microprocessor will process the collected data and transmit it to the GPRS module through the RS232 module; the GPRS module communicates with the DNS server to obtain the IP address of the TCP communication server; then the GPRS module communicates with the TCP communication server , and send the data processed by the microprocessor to the TCP communication server, and the TCP communication server saves the data processed by the microprocessor to the database server; the PC completes the access to the data in the database server; the power management module and the microprocessor The power terminal connection. The invention can locate the location where the power failure occurs.
Description
技术领域technical field
本发明涉及电网中的用电信息采集领域,具体是一种基于GPRS技术的用电信息采集异常精确定位系统。The invention relates to the field of electricity consumption information collection in a power grid, in particular to a GPRS technology-based system for accurately locating abnormalities in electricity consumption information collection.
背景技术Background technique
在当今经济的发展趋势下,传统电网已经不能够满足电力行业的需求,智能电网成为发展方向。而就目前来说,电网已成为工业化、信息化社会发展的基础和重要组成部分。随着市场化改革的不断推进,智能电网已成为现代电网技术发展的必由之路。其中,随着电子技术的发展,用电信息采集系统为实现电量采集、数据统计分析及电量考核提供了切实可行的技术手段,从根本上克服了传统人工抄表模式的弊端,同时通过系统的深化应用,为电力管理提供现代化的手段,逐渐改变了人们的社会活动方式,成为部分地区人们生活中不可缺少的一部分。Under the development trend of today's economy, the traditional power grid can no longer meet the needs of the power industry, and the smart grid has become the development direction. At present, the power grid has become the foundation and an important part of the development of industrialization and information society. With the continuous advancement of market-oriented reforms, smart grid has become the only way for the development of modern grid technology. Among them, with the development of electronic technology, the power consumption information collection system provides practical technical means for the realization of power collection, data statistical analysis and power assessment, which fundamentally overcomes the disadvantages of the traditional manual meter reading mode. Deepen the application, provide modern means for power management, gradually change people's social activities, and become an indispensable part of people's life in some areas.
然而与之相对应的用电信息采集异常精确定位一直没有良好的解决方案。例如集抄系统,它包括按一定周期进行的前端采集和后台系统集中采集。这样虽然可以满足负荷分析和低电压监测的要求,但难以满足配网状态检修的需要。该系统也不具备主动上报故障信息的功能,也无法满足故障抢修的要求。当电能表发生故障时,只能靠用户电话反馈才能确定电能表发生故障,并确定故障的位置。这远远达不到智能电网所要求的“自愈性”、“互动性”。因此找到一种合理有效的用电信息采集异常精确定位解决方法,是我国发展“电网2.0”的必然要求。However, there has been no good solution for the corresponding abnormal precise positioning of electricity consumption information collection. For example, the centralized copying system includes the front-end collection and the centralized collection of the background system according to a certain period. Although this can meet the requirements of load analysis and low voltage monitoring, it is difficult to meet the needs of distribution network condition maintenance. The system also does not have the function of actively reporting fault information, nor can it meet the requirements of fault repair. When the electric energy meter breaks down, it can only be determined that the electric energy meter fails and the location of the fault can only be determined by the user's telephone feedback. This is far from the "self-healing" and "interactive" required by the smart grid. Therefore, finding a reasonable and effective solution to the precise location of abnormal electricity consumption information collection is an inevitable requirement for the development of "Grid 2.0" in my country.
低压载波集抄系统的历史可追溯到上世纪90年代末,由于相关技术领域的长足进步,最主要是GPRS的大规模使用,集抄系统中的数据传输通道得到极大的改善,低压载波集抄技术开始走向成熟。时至今日,通信科技发展迅猛,编码和信息压缩技术的发展,3G网络的推广,都使得集抄系统取得了长足的发展。这时集抄系统的核心设备-采集器由于制造技术的提高,性能趋于稳定;与此同时,集中器发展也非常迅速,单片机处理器性能的飞速提升,存储空间的增大,都使集抄系统进一步趋于成熟。The history of the low-voltage carrier copying system can be traced back to the end of the 1990s. Due to the considerable progress in related technical fields, the most important thing is the large-scale use of GPRS, the data transmission channel in the centralized copying system has been greatly improved, and the low-voltage carrier set Copy technology began to mature. Today, with the rapid development of communication technology, the development of coding and information compression technology, and the promotion of 3G networks, the centralized copying system has made great progress. At this time, due to the improvement of manufacturing technology, the core equipment of the centralized copying system - the collector, the performance tends to be stable; at the same time, the development of the concentrator is also very rapid. Copying system is further mature.
而且,随着计算机科学的高速发展,处于管理层的营销MIS系统也从传统的C/S模式演化为更具开放性的B/S系统,不仅提供了更加丰富的数据库接口及与上级机关和外界交换信息的接口,而且还对传统MIS系统概念上进行了扩展----提倡最大限度的利用现有的数据接口为电力行业现代化服务。Moreover, with the rapid development of computer science, the marketing MIS system at the management level has also evolved from the traditional C/S model to a more open B/S system, which not only provides more abundant database interfaces and communication with higher authorities and It is an interface for exchanging information with the outside world, and it also expands the concept of the traditional MIS system-advocating the use of existing data interfaces to serve the modernization of the power industry.
现在国内用电信息采集异常定位主要采用以下方法:At present, the abnormal location of domestic electricity consumption information collection mainly adopts the following methods:
1.加强配电自动化DA功能的延伸和扩展应用,把配电自动化技术延伸到低压台区,故障定位在0.4千伏配变;1. Strengthen the extension and application of the DA function of distribution automation, extend the distribution automation technology to the low-voltage station area, and locate the fault in the 0.4 kV distribution transformer;
2.使用基于SCADA的地理信息仿真电网GIS系统延伸到集表箱,在故障定位、生产MIS和营销MIS的接口、调度SCADA的连接和图形标准格式的互相导入等,并使用GPS定位故障抢修车或定位仪进行故障定位,明确故障地点和停电范围。2. Use SCADA-based geographic information to simulate the power grid GIS system and extend it to the meter collection box, in the fault location, the interface of production MIS and marketing MIS, the connection of dispatching SCADA and the mutual import of graphic standard formats, etc., and use GPS to locate fault repair vehicles Or locate the fault with a locator to clarify the fault location and power outage range.
3.在低压台区安装配变智能终端,监测A、B、C、N三线电流、零序电流和三相电压,根据电流的突变和过流、速段信号、电压的波动等判断出用电异常和台区故障,该信息上传到主站进行故障定位显示在GIS地理信息系统上。3. Install distribution transformer intelligent terminals in the low-voltage station area to monitor the currents of A, B, C, and N wires, zero-sequence currents, and three-phase voltages, and judge the use Electricity abnormalities and faults in the station area, the information is uploaded to the main station for fault location and displayed on the GIS geographic information system.
以上方法已经在部分地区使用,取得了一定的效果。但是,它们所使用的技术复杂、维护难度大,并不能有效地进行低压台区故障定位。The above methods have been used in some areas and have achieved certain results. However, the technologies they use are complex and difficult to maintain, and cannot effectively locate faults in low-voltage station areas.
对电网企业而言,信息流不只是电力流和业务流的辅助工具,而是电网企业的控制中枢和神经系统,是电力企业最有价值的资源。For power grid companies, information flow is not just an auxiliary tool for power flow and business flow, but the control center and nervous system of power grid companies, and is the most valuable resource for power companies.
发明内容Contents of the invention
本发明需要解决的问题是配电网所覆盖区域内复杂的、分布的、异构的信息资源的交换、转换、集成与共享。从采集的数据中获取故障集中器、关口表或电能表的地址信息,确定故障出现的具体位置。The problem to be solved by the present invention is the exchange, conversion, integration and sharing of complex, distributed and heterogeneous information resources in the area covered by the distribution network. Obtain the address information of the fault concentrator, gateway meter or electric energy meter from the collected data to determine the specific location of the fault.
因而需要对采集到的数据进行数据挖掘,数据挖掘就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘其实是一类深层次的数据分析方法,分析组织原有的数据,做出归纳推理,从中挖掘出潜在的模式,为管理人员决策提供支持。通过数据挖掘技术来挖掘潜在模式,预测未来趋势,为电力生产决策提供高级支持。对于数据信息的集成与共享,基于配电网系统特点以及目前的技术发展,有五种系统集成技术可用于数据信息集成及共享:(1)基于XML的集成技术;(2)基于规约的集成技术;(3)基于API的集成技术;(4)基于数据库的集成技术;(5)基于黑板决策模型的集成技术。Therefore, it is necessary to carry out data mining on the collected data. Data mining is a non-trivial process of obtaining effective, novel, potentially useful, and finally understandable patterns from a large amount of data. Data mining is actually a kind of in-depth data analysis method, which analyzes the original data of the organization, makes inductive reasoning, digs out potential patterns from it, and provides support for the decision-making of managers. Use data mining technology to mine potential patterns, predict future trends, and provide advanced support for power production decisions. For the integration and sharing of data information, based on the characteristics of the distribution network system and the current technological development, there are five system integration technologies that can be used for data information integration and sharing: (1) XML-based integration technology; (2) Protocol-based integration (3) Integration technology based on API; (4) Integration technology based on database; (5) Integration technology based on blackboard decision-making model.
为解决上述技术问题本发明采用的技术方案如下:基于GPRS技术的用电信息采集异常精确定位系统,包括用电信息采集装置、GPRS模块、PC机、RS485模块、微处理器、RS232模块、Flash模块、电源管理模块、TCP通讯服务器、DNS服务器和数据库服务器;其中,所述微处理器通过RS485模块与用电信息采集装置连接,采集用电信息采集装置内的数据;微处理器将采集到的数据保存到Flash模块,微处理器还将采集到的数据处理后通过RS232模块传输到GPRS模块;GPRS模块与DNS服务器通信,获取TCP通讯服务器的IP地址;然后GPRS模块与TCP通讯服务器进行通信,并将微处理器处理后的数据发送到TCP通讯服务器,TCP通讯服务器将微处理器处理后的数据保存到数据库服务器;PC机完成对数据库服务器中数据的访问;电源管理模块与微处理器的电源端连接。In order to solve the above-mentioned technical problems, the technical scheme adopted by the present invention is as follows: an abnormally accurate positioning system for power consumption information collection based on GPRS technology, including power consumption information collection device, GPRS module, PC, RS485 module, microprocessor, RS232 module, Flash module, power management module, TCP communication server, DNS server and database server; wherein, the microprocessor is connected with the power consumption information collection device through the RS485 module, and collects the data in the power consumption information collection device; the microprocessor will collect Save the data to the Flash module, and the microprocessor will process the collected data and transmit it to the GPRS module through the RS232 module; the GPRS module communicates with the DNS server to obtain the IP address of the TCP communication server; then the GPRS module communicates with the TCP communication server , and send the data processed by the microprocessor to the TCP communication server, and the TCP communication server saves the data processed by the microprocessor to the database server; the PC completes the access to the data in the database server; the power management module and the microprocessor The power terminal connection.
具体地,上述用电信息采集装置为集中器、关口表或电能表。Specifically, the above-mentioned power consumption information collection device is a concentrator, a gateway meter or a power meter.
更进一步,上述微处理器对采集到的数据进行的处理是判断数据是否超过预设的阀值,如果超过则以报警数据进行发送。Furthermore, the microprocessor processes the collected data by judging whether the data exceeds a preset threshold, and if so, sends it as alarm data.
本发明获得的有益技术效果是:分散于不同地域的低压配变台区,若采用传统组网方式进行大量数据采集,组网将十分复杂,成本也比较高。在每个配变安口表上安装一个数据采集终端(是由RS485模块、微处理器、RS232模块、Flash模块和电源管理模块构成的),该终端通过GPRS网络从DNS服务器获取TCP通讯服务器的IP地址,然后将数据汇总到TCP通讯服务器,最后将数据存储到数据库服务器,从而使组网简单。The beneficial technical effect obtained by the present invention is: if the low-voltage distribution substation areas scattered in different regions adopt the traditional networking method to collect a large amount of data, the networking will be very complicated and the cost will be relatively high. Install a data acquisition terminal (consisting of RS485 module, microprocessor, RS232 module, Flash module and power management module) on each distribution transformer safety meter, the terminal obtains the TCP communication server's data from the DNS server through the GPRS network IP address, then summarize the data to the TCP communication server, and finally store the data to the database server, thus making the networking simple.
集中器平常工作时,只用小部分时间通过GPRS模块将电量计量信息传到数据库服务器中,大部分时间集中器的通信部分是处于不工作状态的。利用这一充足的时间段,对集中器中的数据进行分析处理,并将精确的异常电表信息能过GPRS上传到服务器。在其他没有集中器的用电区域,检测变压器等终端设备的环境参数,对终端设备进行在线监测、故障分析和负荷监测。通过分析运行参数,来分析端终设备的工作状态是否正常。同时,可以将分析的结果加密后通过GPRS模块传到各服务器中。这样可以对故障出现的位置进行定位。When the concentrator works normally, it only takes a small part of the time to transmit the power metering information to the database server through the GPRS module, and the communication part of the concentrator is not working most of the time. Utilize this sufficient time period to analyze and process the data in the concentrator, and upload accurate abnormal meter information to the server via GPRS. In other power consumption areas without concentrators, the environmental parameters of terminal equipment such as transformers are detected, and online monitoring, fault analysis and load monitoring are performed on terminal equipment. Analyze whether the working status of the terminal equipment is normal by analyzing the operating parameters. At the same time, the analysis results can be encrypted and transmitted to each server through the GPRS module. In this way, the location of the fault can be located.
附图说明Description of drawings
图1为本发明的系统框图;Fig. 1 is a system block diagram of the present invention;
图2为本发明TCP通讯服务器的基本通讯流程图;Fig. 2 is the basic communication flowchart of TCP communication server of the present invention;
图3为本发明GPRS端的基本通讯流程图;Fig. 3 is the basic communication flowchart of GPRS end of the present invention;
图4为本发明中服务器主动获取数据的流程图;Fig. 4 is a flow chart of the server actively acquiring data in the present invention;
图5为本发明中服务器被动获取数据的流程图;Fig. 5 is the flow chart of server passive acquisition data in the present invention;
图6为改进GSA算法的流程图。Fig. 6 is a flow chart of the improved GSA algorithm.
具体实施方式detailed description
参见图1,基于GPRS技术的用电信息采集异常精确定位系统,包括用电信息采集装置1、GPRS模块7、PC机11、RS485模块2、微处理器3、RS232模块4、Flash模块5、电源管理模块6、TCP通讯服务器8、DNS服务器9和数据库服务器10;其中,所述微处理器3通过RS485模块2与用电信息采集装置1连接,采集用电信息采集装置1内的数据;微处理器3将采集到的数据保存到Flash模块5,微处理器3还将采集到的数据处理后通过RS232模块4传输到GPRS模块7,该处理为判断数据是否超过预设的阀值,如果超过则以报警数据进行发送;GPRS模块7与DNS服务器9通信,获取TCP通讯服务器8的IP地址;然后GPRS模块7与TCP通讯服务器8进行通信,并将微处理器3处理后的数据发送到TCP通讯服务器8,TCP通讯服务器8将微处理器3处理后的数据保存到数据库服务器10;PC机11完成对数据库服务器10中数据的访问;电源管理模块6与微处理器3的电源端连接。Referring to Fig. 1, the system for accurately locating abnormalities in electricity consumption information collection based on GPRS technology includes power consumption information collection device 1, GPRS module 7, PC 11, RS485 module 2, microprocessor 3, RS232 module 4, Flash module 5, Power management module 6, TCP communication server 8, DNS server 9 and database server 10; Wherein, described microprocessor 3 is connected with electricity consumption information collection device 1 through RS485 module 2, collects the data in the electricity consumption information collection device 1; Microprocessor 3 saves the data collected to Flash module 5, and microprocessor 3 also transmits to GPRS module 7 by RS232 module 4 after the data processing that collects, and this processing is to judge whether data exceeds preset threshold value, If exceed then send with warning data; GPRS module 7 communicates with DNS server 9, obtains the IP address of TCP communication server 8; Then GPRS module 7 communicates with TCP communication server 8, and the data after microprocessor 3 processes is sent To TCP communication server 8, TCP communication server 8 saves the data after microprocessor 3 processes to database server 10; PC machine 11 completes the access to data in database server 10; connect.
上述RS485模块2、微处理器3、RS232模块4、Flash模块5和电源管理模块6组合为一整体为数据采集终端,与集中器、关口表或电能表安装在一起。The above-mentioned RS485 module 2, microprocessor 3, RS232 module 4, Flash module 5 and power management module 6 are combined into a whole as a data acquisition terminal, which is installed together with a concentrator, a gateway meter or an electric energy meter.
在PC机11上安装一套完善的用电信息异常精确定位的WEB系统。可以对故障节点信息进行统计、分析,可以在WEB中以曲线图、柱状图等方式为用户提供直观的统计结果,并且可以为用户提供报表统计的功能。Install a complete set of WEB system for abnormal and precise positioning of electricity consumption information on the PC 11 . It can carry out statistics and analysis on fault node information, and can provide users with intuitive statistical results in the form of graphs, histograms, etc. in the WEB, and can provide users with the function of report statistics.
对与本实施例中的集中器、关口表或者电能表,按照相关标准,集中器或者关口表有一个红外通讯口,两个485通讯口。每个电表均有一个唯一的地址,作为通讯的唯一识别码,电表的通讯协议采用DL/T645-2007通信规约。集中器或关口表符合国家标准,可以对电表数据进行采集、保存。For the concentrator, gateway meter or electric energy meter in this embodiment, according to relevant standards, the concentrator or gateway meter has one infrared communication port and two 485 communication ports. Each meter has a unique address, which is used as a unique identification code for communication. The communication protocol of the meter adopts the DL/T645-2007 communication protocol. The concentrator or gateway meter conforms to the national standard, and can collect and save the data of the electric meter.
每个GPRS模块7上安装有一张手机卡,在通讯过程当中,可以获知手机号码,以此作为GPRS模块7的识别码。GPRS模块7的工作模式为TCP客户端,可以配置服务器地址,支持断线自动连接。GPRS模块7主要的功能是接收TCP通讯服务器8的指令,并转发给集中器或关口表,然后将集中器或关口表发过来的数据原封不动的发给TCP通讯服务器8。因为TCP通讯服务器8的IP地址会发生变化或者是一个内网IP,因此,GPRS模块7首先要通过DNS服务器9获取TCP通讯服务器8的IP地址,然后才能进行数据收发。A mobile phone card is installed on each GPRS module 7 , and in the communication process, the mobile phone number can be known as the identification code of the GPRS module 7 . The working mode of GPRS module 7 is TCP client, which can configure the server address and support automatic disconnection. The main function of the GPRS module 7 is to receive the instruction of the TCP communication server 8, and forward it to the concentrator or the gateway table, and send the data sent by the concentrator or the gateway table to the TCP communication server 8 intact. Because the IP address of TCP communication server 8 can change or be an intranet IP, therefore, GPRS module 7 at first will obtain the IP address of TCP communication server 8 by DNS server 9, and then just can carry out data sending and receiving.
TCP通讯服务器8的主要功能是发送和接收数据采集终端通过GPRS发送的数据。逻辑上,可以将它理解为一个485集线器。它通过IP网络,发送数据包给集中器或关口表(GPRS模块转发),然后接收集中器或关口表反馈回来的数据(GPRS模块转发)。然后,根据通信规约对数据进行解码,并保存到数据库服务器。TCP服务器支持自动采集(定时采集、按计划任务采集等)、手动采集等功能。TCP服务器管理设备的配对、在线状态维护、在线状态报警等功能。TCP通讯服务器的基本通讯流程如图2所示。GPRS模块转发时的基本通讯流程如图3所示。The main function of the TCP communication server 8 is to send and receive data sent by the data collection terminal through GPRS. Logically, it can be understood as a 485 hub. It sends data packets to the concentrator or gateway table (GPRS module forwarding) through the IP network, and then receives the data fed back by the concentrator or gateway table (GPRS module forwarding). Then, decode the data according to the communication protocol and save it to the database server. The TCP server supports automatic collection (scheduled collection, collection according to scheduled tasks, etc.), manual collection and other functions. TCP server management device pairing, online status maintenance, online status alarm and other functions. The basic communication process of the TCP communication server is shown in Figure 2. The basic communication process when the GPRS module forwards is shown in Figure 3.
数据库服务器10主要存储集中器或关口表或电能表通过GPRS发过来的数据。The database server 10 mainly stores the data sent by the concentrator or the gateway meter or the electric energy meter through GPRS.
数据采集终端为嵌入式系统,与集中器或关口表或电能表安装在同一位置。由采用485芯片的RS485模块2、采用STM32微处理芯片的微处理器3、采用232芯片的RS232模块4、Flash模块5和电源管理模块6组成,设置有两个接口,一个为RS485接口,用于与集中器或关口表或电能表通信,采集集中器或关口表或电能表的数据;另一个为RS232或RS485接口,用于与GPRS模块通信,上传报警信息和接收来自远端服务器的答应及配置命令。微处理器3对集中器或关口表或电能表的数据进行分析判断是否超出阈值,如果超过则为异常数据,将有异常的数据上传给服务器,即服务器被动获取数据,流程如图5所示。同时服务器也定时(时间相对较长)通过单片机透传去主动获取关口表数据。服务器端也可以通过空中配置修改采集设备中的配置参数(例如修改分析数据的种类,修改数据的报警阈值),即服务器主动获取数据,流程如图4所示。采用者两种方式的优点是节省GPRS流量,服务器端需要处理的数据量少。The data acquisition terminal is an embedded system, which is installed at the same location as the concentrator or gateway meter or electric energy meter. It is composed of RS485 module 2 using 485 chip, microprocessor 3 using STM32 micro-processing chip, RS232 module 4 using 232 chip, Flash module 5 and power management module 6. It is equipped with two interfaces, one is RS485 interface, used It is used to communicate with the concentrator or gateway meter or electric energy meter, and collect the data of the concentrator or gateway meter or electric energy meter; the other is RS232 or RS485 interface, which is used to communicate with the GPRS module, upload alarm information and receive the promise from the remote server and configuration commands. The microprocessor 3 analyzes the data of the concentrator or the gateway meter or the electric energy meter to judge whether it exceeds the threshold value. If it exceeds, it is abnormal data, and uploads the abnormal data to the server, that is, the server passively obtains the data. The process is shown in Figure 5 . At the same time, the server also regularly (relatively long time) actively obtains the data of the gateway table through the transparent transmission of the single-chip microcomputer. The server can also modify the configuration parameters in the acquisition device through air configuration (such as modifying the type of analysis data, modifying the alarm threshold of the data), that is, the server actively obtains data, and the process is shown in Figure 4. The advantage of adopting the two methods is to save GPRS traffic, and the amount of data to be processed on the server side is small.
微处理器3判断是否为异常数据所采用的算法描述如下。电力系统中的异常信息对于调度员掌握实时的网络运行状态,做出正确的调度决策有影响。本发明采用人工神经网络、聚类分析与间隙统计算法相结合,并对算法进行改进,利用改进算法实现异常数据的检测。The algorithm adopted by the microprocessor 3 to judge whether it is abnormal data is described as follows. Abnormal information in the power system has an impact on the dispatcher to grasp the real-time network operation status and make correct dispatching decisions. The invention adopts the combination of artificial neural network, cluster analysis and gap statistics algorithm, improves the algorithm, and realizes the detection of abnormal data by using the improved algorithm.
此算法是一种无监督的学习算法。通过人工神经网络对采集数据进行预处理,聚类分析对预处理后的数据进行聚类,而间隙统计算法自动确定最佳聚类个数。当采集数据中含有异常数据时,间隙统计算法确定最佳聚类个数以后,聚类算法把采集数据聚成不同的类,实现正常数据与异常数据的分离,从而能够检测和辨识出用电信息采集数据中的异常数据。算法在处理大电网中的海量数据时,计算量会相对较大,计算速度受到数据量大小的影响,需要对算法进行改进,使算法适用于海量数据的处理。This algorithm is an unsupervised learning algorithm. The collected data is preprocessed through the artificial neural network, the cluster analysis clusters the preprocessed data, and the gap statistical algorithm automatically determines the optimal number of clusters. When the collected data contains abnormal data, after the gap statistical algorithm determines the optimal number of clusters, the clustering algorithm clusters the collected data into different classes to realize the separation of normal data and abnormal data, so as to be able to detect and identify power consumption Abnormal data in information collection data. When the algorithm processes massive data in a large power grid, the amount of calculation will be relatively large, and the calculation speed is affected by the size of the data volume. The algorithm needs to be improved to make the algorithm suitable for the processing of massive data.
改进后的GSA算法描述如下:GSA方法中定义了一个间隙(Gap)统计量如式(1)所示:The improved GSA algorithm is described as follows: a gap (Gap) statistic is defined in the GSA method as shown in formula (1):
Gap(k)=E(ln(Wr,k))-ln(Wk)(1)Gap(k)=E(ln(W r, k ))-ln(W k )(1)
为了减少非线性带来的误差,式(1)中,对Wr,k取了对数,使其更趋于线性,但这样却直接导致了无法计算E(ln(Wr,k))在参考分别下的具体表达式,只能采用样本估计的方法得到E(ln(Wr,k))的近似值,从而带来误差。事实上,由于产生参考数据集的随机性,可以认为ln(Wr,k)是一个随机变量,而这个随机变量的分布规律复杂,从而导致Gap统计量无法用具体表达式表示,因此只能采用样本对总体进行估计才能使GSA算法成为一个实际可行的方法。In order to reduce the error caused by nonlinearity, in formula (1), the logarithm is taken for W r, k to make it more linear, but this directly leads to the inability to calculate E(ln(W r, k )) Referring to the specific expressions under the respective references, the approximate value of E(ln(W r, k )) can only be obtained by the method of sample estimation, which will bring errors. In fact, due to the randomness of the reference data set, it can be considered that ln(W r, k ) is a random variable, and the distribution of this random variable is complicated, so that the Gap statistic cannot be expressed by a specific expression, so it can only be The use of samples to estimate the population can make the GSA algorithm a practical and feasible method.
GSA方法重要的一步是在合适的参考分布情况下产生参考数据,但参考数据的产生是随机的,所以每次产生的随机误差也是不一样的。对产生的随机误差是通过样本估计的方式引入模拟误差来表征的,模拟误差与样本统计的数组F以及每组样本的个数有关,当进行海量数据或者F值较大的计算时,模拟误差的计算量非常大,计算速度会受到影响,不能满足实时电网中海量数据的异常数据辨识要求。An important step in the GSA method is to generate reference data under a suitable reference distribution, but the generation of reference data is random, so the random error generated each time is also different. The generated random error is represented by the introduction of simulation error through sample estimation. The simulation error is related to the array F of sample statistics and the number of samples in each group. When performing calculations with massive data or large F values, the simulation error The amount of calculation is very large, the calculation speed will be affected, and it cannot meet the abnormal data identification requirements of massive data in the real-time power grid.
聚类离散度刻画的是k个聚类的评价离散程度的总和,而方差用来刻画数据平均离散程度,由此将式(1)中的Gap统计量进行修正,修正后的Gap统计量如式(2):The cluster dispersion describes the sum of the evaluation dispersion of k clusters, and the variance is used to describe the average dispersion of the data, so the Gap statistic in formula (1) is corrected, and the corrected Gap statistic is as follows: Formula (2):
GaP(k)=ln(E(Wr,k))-ln(Wk)t(2)GaP(k)=ln(E(W r,k ))-ln(W k )t(2)
图6为改进GSA算法的流程图,主要步骤如下:Figure 6 is a flowchart of the improved GSA algorithm, the main steps are as follows:
1)通过神经网络算法对数据进行预处理,将预处理后的数据进行聚类,并计算不同聚类个数时的聚类离散度;1) Preprocess the data through the neural network algorithm, cluster the preprocessed data, and calculate the cluster dispersion when the number of clusters is different;
2)以均匀分布作为参考,计算不同聚类个数k对应的聚类离散度的期望值;2) Using the uniform distribution as a reference, calculate the expected value of the cluster dispersion corresponding to different cluster numbers k;
3)计算不同聚类个数k对应的Gap(k)值;3) Calculate the Gap(k) value corresponding to different cluster numbers k;
4)确定最小k值,并进行异常数据检测。4) Determine the minimum k value and perform abnormal data detection.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310476960.0A CN103532233B (en) | 2013-10-14 | 2013-10-14 | Based on the power information acquisition abnormity Precise Position System of GPRS technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310476960.0A CN103532233B (en) | 2013-10-14 | 2013-10-14 | Based on the power information acquisition abnormity Precise Position System of GPRS technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103532233A CN103532233A (en) | 2014-01-22 |
CN103532233B true CN103532233B (en) | 2016-02-03 |
Family
ID=49934021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310476960.0A Active CN103532233B (en) | 2013-10-14 | 2013-10-14 | Based on the power information acquisition abnormity Precise Position System of GPRS technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103532233B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105427542A (en) * | 2015-11-27 | 2016-03-23 | 国网重庆市电力公司电力科学研究院 | Alarming method for abnormity of distribution transformer |
CN105610997A (en) * | 2016-02-29 | 2016-05-25 | 东南大学 | Real-time data transmission method based on dynamic IP address of mobile terminal |
CN113128117A (en) * | 2021-04-20 | 2021-07-16 | 河南能创电子科技有限公司 | Low-voltage centralized reading, operation and maintenance simulation device based on AI artificial neural network research |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102055198A (en) * | 2010-12-28 | 2011-05-11 | 重庆樱花电气开关有限公司 | Reactive compensation intelligent monitoring management system |
CN201928087U (en) * | 2010-12-24 | 2011-08-10 | 江苏电力信息技术有限公司 | Grid-equipment-monitoring and fault-locating wireless system based on SOA (service-oriented architecture) architecture |
CN202931036U (en) * | 2012-11-23 | 2013-05-08 | 重庆市电力公司南岸供电局 | Transformer real-time data analysis system based on gateway meter |
CN203632354U (en) * | 2013-10-14 | 2014-06-04 | 国网重庆市电力公司客户服务中心 | Electricity consumption information acquisition abnormity positioning system in electric network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100964296B1 (en) * | 2009-12-15 | 2010-06-16 | 한국전력거래소 | A data acquisition and supervisory control system |
-
2013
- 2013-10-14 CN CN201310476960.0A patent/CN103532233B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201928087U (en) * | 2010-12-24 | 2011-08-10 | 江苏电力信息技术有限公司 | Grid-equipment-monitoring and fault-locating wireless system based on SOA (service-oriented architecture) architecture |
CN102055198A (en) * | 2010-12-28 | 2011-05-11 | 重庆樱花电气开关有限公司 | Reactive compensation intelligent monitoring management system |
CN202931036U (en) * | 2012-11-23 | 2013-05-08 | 重庆市电力公司南岸供电局 | Transformer real-time data analysis system based on gateway meter |
CN203632354U (en) * | 2013-10-14 | 2014-06-04 | 国网重庆市电力公司客户服务中心 | Electricity consumption information acquisition abnormity positioning system in electric network |
Also Published As
Publication number | Publication date |
---|---|
CN103532233A (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110350528B (en) | Low-voltage distribution area topology automatic identification method | |
CN202906579U (en) | Power distribution network real-time monitoring and control system based on internet of things | |
CN105914881A (en) | Intelligent transformer station advanced application system | |
CN203632354U (en) | Electricity consumption information acquisition abnormity positioning system in electric network | |
CN109358574A (en) | A kind of intelligent data acquisition, monitor and analysis system and method | |
CN110609209A (en) | A method for actively sensing power failure in a station area based on the Internet of Things | |
CN113708350B (en) | Cloud edge cooperation-based power distribution area heavy overload abnormality judgment method and system | |
CN104751305A (en) | Trouble analysis and repair-based intelligent interaction system and control method thereof | |
CN117477794B (en) | Power distribution station power consumption management optimization system and method based on gateway machine data exchange | |
CN108736923A (en) | A kind of low-voltage platform area line loss on-line monitoring terminal | |
CN107508550A (en) | A kind of photovoltaic apparatus monitoring method and system based on Internet of Things | |
CN110768372A (en) | IEC61850 standard-based protection information system source end modeling method | |
CN105634406A (en) | Wireless monitoring system of intelligent photovoltaic array | |
CN103532233B (en) | Based on the power information acquisition abnormity Precise Position System of GPRS technology | |
CN102338835B (en) | Power quality dynamic monitoring system | |
CN112580957A (en) | Smart energy management and control system based on cloud platform | |
CN112654022B (en) | Electric power system thing networking data acquisition system based on loRa communication | |
CN111917186B (en) | Intelligent substation cloud monitored control system | |
CN210518408U (en) | Communication access equipment | |
Fu et al. | An edge computing framework for digital grid | |
CN101729342A (en) | Realization method of real-time memory calculation data structure of mixed mobile power system | |
CN107633091A (en) | A kind of automatic power supervisory systems | |
CN116150195A (en) | System and method for online monitoring safety low-carbon electricity consumption of users in multiple types of parks | |
CN114709923A (en) | An intelligent fault judgment method for power Internet of things | |
CN112133071A (en) | Multi-meter metering data acquisition method based on Internet of things technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |