CN103501218B - A kind of multicarrier adaptive demodulation method based on resource multiplex - Google Patents
A kind of multicarrier adaptive demodulation method based on resource multiplex Download PDFInfo
- Publication number
- CN103501218B CN103501218B CN201310446055.0A CN201310446055A CN103501218B CN 103501218 B CN103501218 B CN 103501218B CN 201310446055 A CN201310446055 A CN 201310446055A CN 103501218 B CN103501218 B CN 103501218B
- Authority
- CN
- China
- Prior art keywords
- addr
- carrier
- data
- flag
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012545 processing Methods 0.000 claims description 17
- 102100031584 Cell division cycle-associated 7-like protein Human genes 0.000 claims description 13
- 101000777638 Homo sapiens Cell division cycle-associated 7-like protein Proteins 0.000 claims description 13
- 101100325756 Arabidopsis thaliana BAM5 gene Proteins 0.000 claims description 10
- 101150046378 RAM1 gene Proteins 0.000 claims description 10
- 101100476489 Rattus norvegicus Slc20a2 gene Proteins 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 5
- 230000009191 jumping Effects 0.000 claims 3
- 230000003139 buffering effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000004891 communication Methods 0.000 abstract description 16
- 238000013461 design Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 abstract 1
- 239000000969 carrier Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于资源复用的多载波自适应解调方法。The invention relates to a multi-carrier adaptive demodulation method based on resource multiplexing.
背景技术Background technique
卫星通信具有覆盖地域广、通信距离远、通信容量大、传输质量好等特点,己成为通信的一种重要的通信手段。由于卫星通信业务日趋繁忙,通信容量迅速增加,致使射频频谱非常拥挤,为了解决频谱资源紧张的问题,卫星通信向着有广阔前景的Ka(20/30GHz)及以上的高频段发展。结合通信类型的多样化要求,使得卫星通信系统在Ka及以上的频段的应用有以下几个问题需要解决:1)卫星在Ku/Ka频段进行多载波无线传输时的严重雨衰问题;2)通信卫星系统如何满足多类型通信终端不同的数据传输需求问题;3)通信卫星系统如何满足多载波抗干扰通信的需求问题。而解决这一切的基础是卫星的高效多载波自适应解调能力。Satellite communication has the characteristics of wide coverage, long communication distance, large communication capacity and good transmission quality, and has become an important means of communication. Due to the increasingly busy satellite communication business and the rapid increase in communication capacity, the radio frequency spectrum is very crowded. In order to solve the problem of shortage of spectrum resources, satellite communication is developing towards the high-frequency band of Ka (20/30GHz) and above with broad prospects. Combined with the diversified requirements of communication types, the application of satellite communication systems in the Ka and above frequency bands has the following problems to be solved: 1) The serious problem of rain attenuation when satellites perform multi-carrier wireless transmission in the Ku/Ka frequency band; 2) How does the communication satellite system meet the different data transmission requirements of multi-type communication terminals; 3) How does the communication satellite system meet the needs of multi-carrier anti-jamming communication. The basis for solving all these is the satellite's efficient multi-carrier adaptive demodulation capability.
多载波自适应解调既要求各路载波能够独立自适应解调,又要求各载波能够资源复用,资源的消耗不能比单载波大很多,因此,多载波自适应解调性能的优劣直接影响系统的整体性能。Multi-carrier adaptive demodulation not only requires independent adaptive demodulation of each carrier, but also requires each carrier to be able to reuse resources. The resource consumption cannot be much larger than that of a single carrier. Therefore, the performance of multi-carrier adaptive demodulation is directly related to affect the overall performance of the system.
现有的多载波解调算法都相对单一。例如文献1《多载波突发信号整体解调技术研究》(李辉,西安电子科技大学硕士学位论文,2011年)给出了多载波突发信号的全数字接收技术,包含位同步及载波同步;文献2《Multi-CarrierMulti-RateModemforUniversalFDMA/TDMAsystem》(FumihiroYamashita,24thAIAAinternationalCommunicationsSatelliteSystemsConference,2006-5316)给出了基于资源复用的QPSK多载波突发解调器的设计。文献1中,其给出的多载波突发算法是单独实现的,并没有给出具体的复用方式;文献2中,给出了的多载波突发解调算法仅能适用于QPSK,解调模式单一。Existing multi-carrier demodulation algorithms are relatively single. For example, Document 1 "Research on the Overall Demodulation Technology of Multi-Carrier Burst Signals" (Li Hui, Xidian University Master's Degree Thesis, 2011) provides an all-digital reception technology for multi-carrier burst signals, including bit synchronization and carrier synchronization ; Literature 2 "Multi-CarrierMulti-RateModemforUniversalFDMA/TDMAsystem" (FumihiroYamashita, 24thAIAAinternationalCommunicationsSatelliteSystemsConference, 2006-5316) gives the design of a QPSK multi-carrier burst demodulator based on resource multiplexing. In Document 1, the multi-carrier burst algorithm is implemented separately, and no specific multiplexing method is given; in Document 2, the multi-carrier burst demodulation algorithm is only applicable to QPSK, and the solution The tuning mode is single.
发明内容Contents of the invention
本发明解决的技术问题是:克服现有技术的不足,提供了一种基于资源复用的多载波自适应解调方法,以非常小的资源消耗解决了卫星在Ku/Ka频段进行多载波自适应通信时的星载实现问题。The technical problem solved by the present invention is to overcome the deficiencies of the prior art, provide a multi-carrier adaptive demodulation method based on resource multiplexing, and solve the multi-carrier autonomous demodulation method for satellites in the Ku/Ka frequency band with very small resource consumption. Adapt to the problem of on-board implementation of communication.
本发明的技术方案是:一种基于资源复用的多载波自适应解调方法,步骤如下:The technical solution of the present invention is: a multi-carrier adaptive demodulation method based on resource multiplexing, the steps are as follows:
1)将数字分路之后的多路串行输入数据的实部和虚部缓存入RAM1中,每存入一个数据,输入数据的地址Addr_in加1,并且将各载波初始参数依次写入FIFO1中;所述的初始参数包括开始处理的输入数据地址Addr_best、输出块的个数Part_num、各载波的编号Channel_index、捕获标志Flag、用于同前导头相关的128位序列Demola;1) Cache the real part and imaginary part of the multi-channel serial input data after digital splitting into RAM1, and add 1 to the address Addr_in of the input data every time a data is stored, and write the initial parameters of each carrier into FIFO1 in turn ; The initial parameters include the input data address Addr_best to start processing, the number Part_num of output blocks, the numbering Channel_index of each carrier, the capture flag Flag, and the 128-bit sequence Demola used for leading the header;
2)从FIFO1中读出第1路载波的载波参数,判断Flag的值,若Flag的值不为1,表明没有成功捕获,则进入步骤3);若Flag的值为1,表示已经成功捕获,则进入步骤5);2) Read the carrier parameters of the first carrier from FIFO1, and judge the value of Flag. If the value of Flag is not 1, it means that it has not been successfully captured, and then go to step 3); if the value of Flag is 1, it means that it has been successfully captured , then go to step 5);
3)以Addr_best为起始地址,A为载波个数,从RAM1中读取数据,做差分运算后进行硬判决,将硬判决结果存入Demola,同前导头做相关,若Addr_in减去Addr_best小于载波个数A的2倍,则Flag置为1,Addr_best置为成功捕获时的输入序列的起始地址,并进入步骤4);若Addr_in减去Addr_best大于等于载波个数A的2倍,将此时的参数存入FIFO1,跳转至步骤2)继续读取下一路载波参数;3) Take Addr_best as the starting address, A as the number of carriers, read data from RAM1, make a hard decision after differential calculation, store the hard decision result in Demola, and correlate with the leading header, if Addr_in minus Addr_best is less than twice the number of carriers A, then Flag is set to 1, and Addr_best is set as the starting address of the input sequence when successfully captured, and enters step 4); if Addr_in minus Addr_best is greater than or equal to twice the number of carriers A, set The parameters at this time are stored in FIFO1, jump to step 2) continue to read the parameters of the next carrier;
4)若Addr_in减去Addr_best大于M,进入步骤5);若Addr_in减去Addr_best小于等于M,将此时的载波参数存入FIFO1,跳转至步骤2)继续读取下一路载波参数;所述的其中N为三角函数内插后的输出符号个数;4) If Addr_in minus Addr_best is greater than M, go to step 5); if Addr_in minus Addr_best is less than or equal to M, store the carrier parameters at this time in FIFO1, and jump to step 2) continue to read the next carrier parameter; of Where N is the number of output symbols after trigonometric function interpolation;
5)以Addr_best为起始地址,A为间隔,从RAM1中读取4N个采样点,获取位定时偏差值;5) With Addr_best as the starting address and A as the interval, read 4N sampling points from RAM1 to obtain the bit timing deviation value;
6)以Addr_best-1为起始地址,A为间隔,从RAM1中读取4N个采样点,根据步骤5)获得的位定时偏差值,对4N个采样点做三角函数内插后,输出N个符号,同时将此时的载波参数存入FIFO1中,跳转至步骤2)继续读取下一路载波参数;6) With Addr_best-1 as the starting address and A as the interval, read 4N sampling points from RAM1, and perform trigonometric interpolation on the 4N sampling points according to the bit timing deviation value obtained in step 5, and output N at the same time, store the carrier parameters at this time in FIFO1, and jump to step 2) continue to read the next carrier parameter;
7)将步骤6)中输出的N个符号的实部与虚部数据转换为幅度和相位数据;7) Convert the real part and imaginary part data of the N symbols output in step 6) into amplitude and phase data;
8)将步骤7)中得到的幅度和相位数据按载波号存入RAM2中,第n路每存入一个数据,n=1,2,3...A,该路输入数据地址Addr_in_mid_n加1,并且将各路的初始参数,依次写入FIFO2中;所述的初始参数包括载波编号Channel_index、载波帧头指示信号initial_flag(Channel_index)、载波输入数据地址Addr_in_mid_n、初始频偏及相偏估计标志信号Flag_est、开始处理的输入数据地址Addr_track、输出块的个数Part_num、估计出的初始频偏Fre_move、估计出的初始相偏Phase_offset、编码调制类型Rm_reg;8) Store the amplitude and phase data obtained in step 7) into RAM2 according to the carrier number. For each data stored in the nth channel, n=1,2,3...A, add 1 to the input data address Addr_in_mid_n of this channel , and write the initial parameters of each path into FIFO2 in turn; the initial parameters include carrier number Channel_index, carrier frame header indication signal initial_flag (Channel_index), carrier input data address Addr_in_mid_n, initial frequency offset and phase offset estimation flag signal Flag_est, input data address Addr_track to start processing, number of output blocks Part_num, estimated initial frequency offset Fre_move, estimated initial phase offset Phase_offset, coded modulation type Rm_reg;
9)读出第一路载波参数,判断Flag_est的值,若Flag_est的值不为1,则进入步骤10);若Flag_est的值为1,则进入步骤13);9) Read out the parameters of the first carrier, judge the value of Flag_est, if the value of Flag_est is not 1, go to step 10); if the value of Flag_est is 1, go to step 13);
10)判断initial_flag(Channel_index)的值,若initial_flag(Channel_index)的值为1,则进入步骤11),若initial_flag(Channel_index)的值不为1,则将当前的载波参数存入FIFO中,跳转至步骤9)继续读取下一路载波参数;10) Determine the value of initial_flag(Channel_index), if the value of initial_flag(Channel_index) is 1, go to step 11), if the value of initial_flag(Channel_index) is not 1, store the current carrier parameters in FIFO, and jump to Go to step 9) continue to read the parameters of the next carrier;
11)以载波编号Channel_index和输入数据地址Addr_track的复合地址Addr_Channel为起始地址,从RAM2中读取128位幅度及相位数据,并进行初始频偏及相偏估计,得到估计出的初始频偏Fre_move及相偏Phase_offset;11) With the carrier number Channel_index and the composite address Addr_Channel of the input data address Addr_track as the starting address, read 128-bit amplitude and phase data from RAM2, and perform initial frequency offset and phase offset estimation to obtain the estimated initial frequency offset Fre_move And phase offset Phase_offset;
12)以Addr_Channel为起始地址从RAM2中读取64位编码调制模式字的幅度及相位数据,根据从步骤11)中接收到的Fre_move及Phase_offset对读取的64位编码调制模式字的幅度及相位数据进行纠偏处理,然后将纠偏后的数据进行硬判决,对硬判决后的数据做RM译码运算,得到编码调制类型RM_reg,并将Flag_est置为1,进入步骤13);12) Use Addr_Channel as the starting address to read the amplitude and phase data of the 64-bit coded modulation mode word from RAM2, and read the amplitude and phase data of the 64-bit coded modulation mode word according to the Fre_move and Phase_offset received from step 11). The phase data is subjected to deviation correction processing, and then the data after deviation correction is subjected to hard judgment, and the RM decoding operation is performed on the data after hard judgment to obtain the encoding modulation type RM_reg, and Flag_est is set to 1, and then enter step 13);
13)若Addr_in_mid_n减去Addr_track大于N,则进入步骤14),若Addr_in_mid_n减去Addr_track小于等于N,则将当前载波参数存入FIFO2中,跳转至步骤9)继续读取下一路载波参数;13) If Addr_in_mid_n minus Addr_track is greater than N, go to step 14), if Addr_in_mid_n minus Addr_track is less than or equal to N, then store the current carrier parameters in FIFO2, and jump to step 9) Continue to read the next carrier parameter;
14)以Addr_Channel为起始地址从RAM2中读取信息数据的幅度及相位数据,根据步骤11)中得到的Fre_move及Phase_offset的值对读取的输入数据的幅度及相位数据进行纠偏,并根据RM_reg的不同,选用不同的载波跟踪算法对纠偏后的数据进行载波跟踪处理并按128个数据为一块处理单元分块输出,并将当前载波参数存入FIFO2中,跳转至步骤9)继续读取下一路载波参数,直至完成对A路载波的处理。14) Use Addr_Channel as the starting address to read the amplitude and phase data of the information data from RAM2, correct the amplitude and phase data of the read input data according to the values of Fre_move and Phase_offset obtained in step 11), and correct the deviation according to RM_reg Different carrier tracking algorithms are used to perform carrier tracking processing on the corrected data, and 128 data are divided into one processing unit to output, and the current carrier parameters are stored in FIFO2, and then skip to step 9) to continue reading The parameters of the next carrier, until the processing of carrier A is completed.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明在多载波突发自适应解调上有很好的性能,在频偏、相偏、位定时偏差及白噪声的影响下,解调损失小于0.5dB。(1) The present invention has good performance in multi-carrier burst adaptive demodulation, and under the influence of frequency deviation, phase deviation, bit timing deviation and white noise, the demodulation loss is less than 0.5 dB.
(2)本发明资源复用率高,使用Virtex4-55芯片,仅以14%的资源消耗率完成多载波自适应捕获及位同步功能、13%的资源消耗率完成多载波自适应载波同步功能,稍大于单载波模块。(2) The resource reuse rate of the present invention is high. Using the Virtex4-55 chip, the multi-carrier adaptive capture and bit synchronization function can be completed with a resource consumption rate of only 14%, and the multi-carrier adaptive carrier synchronization function can be completed with a resource consumption rate of 13%. , slightly larger than the single-carrier module.
(3)本发明实现了对变速率(2~7Mbps)、多调制方式(QPSK、8PSK及16APSK)的突发多载波信号进行自适应解调。速率可变,可适应多种调制方式。(3) The present invention realizes adaptive demodulation of burst multi-carrier signals with variable rate (2-7Mbps) and multi-modulation modes (QPSK, 8PSK and 16APSK). The rate is variable and can be adapted to various modulation methods.
附图说明Description of drawings
图1为资源复用的多载波自适应解调方法框图;FIG. 1 is a block diagram of a multi-carrier adaptive demodulation method for resource multiplexing;
图2为传输信号帧结构;Fig. 2 is a transmission signal frame structure;
图3为RAM存储分配图。Figure 3 is a RAM storage allocation diagram.
具体实施方式detailed description
下面以8个载波为例,结合附图对本发明做进一步介绍。Taking 8 carriers as an example below, the present invention will be further introduced in conjunction with the accompanying drawings.
如图1所示,8个载波复用是通过FIFO实现的,各路将其重要的中间参数存入FIFO中,待处理到哪一路,则在读出参数的基础上继续做处理。FIFO1中各路需缓存的参数分别是Addr_best(开始处理的输入数据地址)、Part_num(输出块的个数)、Channel_index(各载波的编号,范围0~7)、Flag(是否成功捕获的标志,’1’代表成功捕获)、Burst_type(突发类型,’0’代表数据突发,’1’代表测距突发)、Demola(用于同前导头相关的128位序列),所述的前导头为图2中的捕获及同步序列。As shown in Figure 1, the multiplexing of 8 carriers is realized through FIFO, and each channel stores its important intermediate parameters in the FIFO, and which channel to be processed will continue to process on the basis of the read parameters. The parameters to be cached in each channel in FIFO1 are Addr_best (the input data address to start processing), Part_num (the number of output blocks), Channel_index (the number of each carrier, ranging from 0 to 7), Flag (the flag of whether the capture is successful, '1' represents successful capture), Burst_type (burst type, '0' represents data burst, '1' represents ranging burst), Demola (for the 128-bit sequence related to the preamble), the preamble The head is the capture and synchronization sequence in Figure 2.
总体处理过程如下:The overall process is as follows:
1)从FIFO1中读出一路载波参数,判断Flag的值,若Flag的值不为1,表明没有成功捕获,进入步骤2);若Flag的值为1,表示已经成功捕获,进入步骤4);1) Read one carrier parameter from FIFO1, and judge the value of Flag. If the value of Flag is not 1, it means that the capture was not successful, and then go to step 2); if the value of Flag is 1, it means that it has been captured successfully, and then go to step 4) ;
2)以Addr_best为起始地址,8为载波个数,从RAM1中读取数据,做差分运算后进行硬判决,将硬判决结果存入Demola,同前导头做相关,若Addr_in减去Addr_best小于16,则Flag置为1,Addr_best置为成功捕获时的输入序列的起始地址,并进入步骤3);若Addr_in减去Addr_best大于等于16,将此时的参数存入FIFO1,跳转至步骤1)继续读取下一路载波参数;2) Take Addr_best as the starting address, 8 as the number of carriers, read data from RAM1, perform a hard decision after differential calculation, store the hard decision result in Demola, and correlate with the leading header, if Addr_in minus Addr_best is less than 16, then Flag is set to 1, Addr_best is set as the starting address of the input sequence when successfully captured, and enters step 3); if Addr_in minus Addr_best is greater than or equal to 16, store the parameters at this time in FIFO1, and jump to step 1) Continue to read the next carrier parameter;
3)若Addr_in减去Addr_best大于512进入步骤4),若Addr_in减去Addr_best小于等于512,将此时的载波参数存入FIFO1,跳转至步骤2)继续读取下一路载波参数;3) If Addr_in minus Addr_best is greater than 512 Go to step 4), if Addr_in minus Addr_best is less than or equal to 512, store the carrier parameters at this time in FIFO1, skip to step 2) and continue to read the next carrier parameter;
4)以Addr_best为起始地址,8为间隔,从RAM1中读取512个采样点,估计出位定时偏差(见专利《一种MAPSK自适应解调系统》);4) Take Addr_best as the starting address and 8 as the interval, read 512 sampling points from RAM1, and estimate the bit timing deviation (see the patent "A MAPSK Adaptive Demodulation System");
5)以Addr_best-1为起始地址,8为间隔,从RAM中读取512个采样点,根据步骤4)获得的位定时偏差值,对512个采样点做三角函数内插(见专利《一种MAPSK自适应解调系统》)并分块输出,每块128个符号数据,随着各载波的突发类型反馈到捕获及位同步处理部分,各路载波的输出符号块数就确定了(数据突发:ceil(16352/N)=128,测距突发:ceil(4256/N)=34),若本路载波为数据突发且Part_num<128或本路载波为测距突发且Part_num<34),输出128个符号,输出完毕后,Part_num置为Part_num+1,Addr_best置为Addr_best+512,Burst_type置为反馈回来的本路载波的Burst_type,其余不变,将本路载波的参数存入FIFO1中,再读取下一路载波的参数进行处理;若本路载波为数据突发且Part_num=128,说明这是本载波数据突发帧的最后一块,输出M1个符号(M1=16352-N*(Part_num-1)=96),输出完毕后,Addr_best置为Addr_best+M1′Channel_index不变,其余全置为0,将本路载波的参数存入FIFO1中,再读取下一路载波的参数进行处理;若本路载波为测距突发且Part_num=34,说明这是本载波测距突发帧的最后一块,输出M2个符号(M2=4256-N*(Part_num-1)=32),输出完毕后,Addr_best置为Addr_best+M2′Channel_index不变,其余全置为0,将本路载波的参数存入FIFO1中,,跳转至步骤(1)读取下一路载波的参数;5) With Addr_best-1 as the starting address and 8 as the interval, read 512 sampling points from the RAM, and perform trigonometric interpolation on the 512 sampling points according to the bit timing deviation value obtained in step 4 (see the patent " A MAPSK adaptive demodulation system") and output in blocks, each block of 128 symbol data, as the burst type of each carrier is fed back to the acquisition and bit synchronization processing part, the number of output symbol blocks of each carrier is determined (data burst: ceil(16352/N)=128, ranging burst: ceil(4256/N)=34), if the carrier of this channel is a data burst and Part_num<128 or the carrier of this channel is a ranging burst And Part_num<34), output 128 symbols, after the output, Part_num is set to Part_num+1, Addr_best is set to Addr_best+512, Burst_type is set to the Burst_type of the current carrier fed back, and the rest remain unchanged. The parameters are stored in FIFO1, and then the parameters of the next carrier are read for processing; if the carrier of this channel is a data burst and Part_num=128, it means that this is the last block of the data burst frame of this carrier, and M1 symbols are output (M1= 16352-N*(Part_num-1)=96), after the output is completed, Addr_best is set to Addr_best+M1′ Channel_index remains unchanged, and the rest are all set to 0. Store the parameters of this carrier in FIFO1, and then read the parameters of the next carrier for processing; if the carrier of this channel is a ranging burst and Part_num=34, it means that this channel is In the last block of the carrier ranging burst frame, M2 symbols are output (M2=4256-N*(Part_num-1)=32). After the output is completed, Addr_best is set to Addr_best+M2′ Channel_index remains unchanged, and the rest are all set to 0, and the parameters of this carrier are stored in FIFO1, and jump to step (1) to read the parameters of the next carrier;
6)将步骤5)中输出的128个符号的实部与虚部数据块转换为幅度和相位数据;6) Convert the real part and imaginary part data blocks of 128 symbols output in step 5) into amplitude and phase data;
7)将步骤6)中得到的幅度和相位数据按载波号存入RAM2中,第n路每存入一个数据,n=1,2,3...8,该路输入数据地址Addr_in_mid_n加1,并且将各路的初始参数,依次写入FIFO2中;所述的初始参数包括载波编号Channel_index、载波帧头指示信号initial_flag(Channel_index)、载波输入数据地址Addr_in_mid_n、初始频偏及相偏估计标志信号Flag_est、开始处理的输入数据地址Addr_track、输出块的个数Part_num、估计出的初始频偏Fre_move、估计出的初始相偏Phase_offset、编码调制类型Rm_reg;7) Store the amplitude and phase data obtained in step 6) into RAM2 according to the carrier number. For each data stored in the nth channel, n=1,2,3...8, add 1 to the input data address Addr_in_mid_n of this channel , and write the initial parameters of each path into FIFO2 in turn; the initial parameters include carrier number Channel_index, carrier frame header indication signal initial_flag (Channel_index), carrier input data address Addr_in_mid_n, initial frequency offset and phase offset estimation flag signal Flag_est, input data address Addr_track to start processing, number of output blocks Part_num, estimated initial frequency offset Fre_move, estimated initial phase offset Phase_offset, coded modulation type Rm_reg;
8)读出一路载波参数,判断Flag_est的值,若Flag_est的值不为1,则进入步骤(9);若Flag_est的值为1,则进入步骤(12);8) Read out one carrier parameter, judge the value of Flag_est, if the value of Flag_est is not 1, go to step (9); if the value of Flag_est is 1, go to step (12);
9)判断initial_flag(n)的值,n为读出的本路载波号Channel_index,若initial_flag(n)的值为1,说明本路载波已经有数据存入RAM2,则进入步骤(10),若initial_flag(n)的值不为1,则将当前的载波参数存入FIFO2中(Channel_index为本路载波号,其余都为0),并读取下一路载波参数,返回步骤(8);9) Determine the value of initial_flag(n), n is the channel_index of the carrier number read out, if the value of initial_flag(n) is 1, it means that the carrier of this channel has data stored in RAM2, then enter step (10), if The value of initial_flag(n) is not 1, then store the current carrier parameters into FIFO2 (Channel_index is the carrier number of this channel, and the rest are 0), and read the parameters of the next carrier, and return to step (8);
10)以载波编号Channel_index和输入数据地址Addr_track的复合地址Addr_Channel为起始地址,从RAM2中读取128个幅度及相位数据,对前导头(图3中的捕获及同步序列)做初始频偏及相偏估计(见专利《一种MAPSK自适应解调系统》),得到估计出的初始频偏(Fre_move)及相偏(Phase_offset);10) With the carrier number Channel_index and the composite address Addr_Channel of the input data address Addr_track as the starting address, read 128 amplitude and phase data from RAM2, and do the initial frequency offset and Phase offset estimation (see the patent "A MAPSK Adaptive Demodulation System") to obtain the estimated initial frequency offset (Fre_move) and phase offset (Phase_offset);
11)以载波编号Channel_index和输入数据地址Addr_track的复合地址Addr_Channel为起始地址,从RAM2中读取读出64个幅度和相位数据(图2的编码调制模式字),用从10)中接收到的初始频偏及相偏对这些数据进行纠偏处理,然后将纠偏后的数据进行硬判决,之后对硬判决后的数据做RM译码运算,得到编码调制类型RM_reg,并将Flag_est置为1,进入步骤12);11) With the carrier number Channel_index and the composite address Addr_Channel of the input data address Addr_track as the starting address, read and read 64 amplitude and phase data (the coded modulation mode word in Figure 2) from RAM2, and use the data received from 10) The initial frequency offset and phase offset of these data are corrected, and then the corrected data is hard-judged, and then RM decoding is performed on the hard-judged data to obtain the coded modulation type RM_reg, and Flag_est is set to 1. go to step 12);
12)若Addr_in_mid_n减去Addr_track大于128(128为输出一块的符号数据个数),则进入步骤13),若Addr_in_mid_n减去Addr_track小于等于128,则将当前载波参数存入FIFO2中,跳转至步骤8)继续读取下一路载波参数;12) If Addr_in_mid_n minus Addr_track is greater than 128 (128 is the number of symbol data for an output block), then go to step 13), if Addr_in_mid_n minus Addr_track is less than or equal to 128, then store the current carrier parameters in FIFO2 and jump to step 8) Continue to read the next carrier parameter;
13)从RAM2中读取输入数据的幅度及相位数据,用10)中得到的Fre_move及Phase_offset值对这些数据进行纠偏,并根据RM_reg的不同,选用不同的载波跟踪算法(见专利《一种MAPSK自适应解调系统》)对纠偏后的数据进行载波跟踪处理并按128个数据为1块处理单元分块输出,随着本路载波的突发类型反馈到载波跟踪模块,本路载波输出的数据块数就确定了(数据突发:ceil(16352/N)=128,测距突发:ceil(4256/N)=34)。若本路载波为数据突发且Part_num<128或本路载波为测距突发且Part_num<34),输出128个幅度、相位数据,输出完毕后,Part_num置为Part_num+1,Addr_track置为Addr_track+128,Burst_type置为反馈回来的本路载波的Burst_type,其余不变,将本路载波的参数存入FIFO2中,再读取下一路载波的参数进行处理;若本路载波为数据突发且Part_num=128,说明这是本载波数据突发帧的最后一块,输出M1个幅度、相位数据(M1=96),输出完毕后,Addr_track置为Addr_track+96,Channel_index不变,其余全置为0,将本路载波的参数存入FIFO2中,再读取下一路载波的参数进行处理;若本路载波为测距突发且Part_num=34,说明这是本载波测距突发帧的最后一块,输出M2个幅度、相位数据(M2=4256-N*(Part_num-1)=32),输出完毕后,Addr_track置为Addr_track+32,Channel_index不变,其余全置为0,将当前载波参数存入FIFO2中,读取下一载波的参数,跳转至步骤(8)继续处理。13) Read the amplitude and phase data of the input data from RAM2, use the Fre_move and Phase_offset values obtained in 10) to correct the deviation of these data, and select different carrier tracking algorithms according to the difference of RM_reg (see the patent "A MAPSK Adaptive demodulation system") Carrier tracking processing is performed on the corrected data and output in blocks according to 128 data as a processing unit. As the burst type of the carrier of this channel is fed back to the carrier tracking module, the output of the carrier of this channel The number of data blocks is determined (data burst: ceil(16352/N)=128, ranging burst: ceil(4256/N)=34). If the carrier of this channel is a data burst and Part_num<128 or the carrier of this channel is a ranging burst and Part_num<34), output 128 amplitude and phase data. After the output is completed, Part_num is set to Part_num+1, and Addr_track is set to Addr_track +128, Burst_type is set to the Burst_type of the current carrier that is fed back, and the rest remain unchanged. The parameters of the current carrier are stored in FIFO2, and then the parameters of the next carrier are read for processing; if the current carrier is a data burst and Part_num=128, indicating that this is the last block of the carrier data burst frame, output M1 amplitude and phase data (M1=96), after the output is completed, Addr_track is set to Addr_track+96, Channel_index remains unchanged, and the rest are all set to 0 , store the parameters of the current carrier in FIFO2, and then read the parameters of the next carrier for processing; if the current carrier is a ranging burst and Part_num=34, it means this is the last block of the ranging burst frame of this carrier , output M2 amplitude and phase data (M2=4256-N * (Part_num-1)=32), after the output is completed, Addr_track is set to Addr_track+32, Channel_index remains unchanged, the rest are all set to 0, and the current carrier parameters are saved into FIFO2, read the parameters of the next carrier, and jump to step (8) to continue processing.
本发明未详细说明部分属本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310446055.0A CN103501218B (en) | 2013-09-26 | 2013-09-26 | A kind of multicarrier adaptive demodulation method based on resource multiplex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310446055.0A CN103501218B (en) | 2013-09-26 | 2013-09-26 | A kind of multicarrier adaptive demodulation method based on resource multiplex |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103501218A CN103501218A (en) | 2014-01-08 |
CN103501218B true CN103501218B (en) | 2016-06-01 |
Family
ID=49866393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310446055.0A Active CN103501218B (en) | 2013-09-26 | 2013-09-26 | A kind of multicarrier adaptive demodulation method based on resource multiplex |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103501218B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114039623B (en) * | 2021-10-22 | 2023-05-19 | 中国电子科技集团公司第五十四研究所 | Short burst spread spectrum signal tracking method with low carrier-to-noise ratio |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1191050A (en) * | 1995-07-12 | 1998-08-19 | 汤姆森消费电子有限公司 | Apparatus for demodulating and decoding video signals |
CN1371570A (en) * | 1999-07-15 | 2002-09-25 | 汤姆森特许公司 | Demodualtion section in multiple protocol receiver |
CN1497964A (en) * | 1995-07-12 | 2004-05-19 | ��ķɭ���ѵ�������˾ | Device for decoing video signal of different form coded |
CN101355546A (en) * | 2008-09-19 | 2009-01-28 | 北京交通大学 | ICI self-cancellation method for OFDM system based on adaptive modulation |
-
2013
- 2013-09-26 CN CN201310446055.0A patent/CN103501218B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1191050A (en) * | 1995-07-12 | 1998-08-19 | 汤姆森消费电子有限公司 | Apparatus for demodulating and decoding video signals |
CN1497964A (en) * | 1995-07-12 | 2004-05-19 | ��ķɭ���ѵ�������˾ | Device for decoing video signal of different form coded |
CN1371570A (en) * | 1999-07-15 | 2002-09-25 | 汤姆森特许公司 | Demodualtion section in multiple protocol receiver |
CN101355546A (en) * | 2008-09-19 | 2009-01-28 | 北京交通大学 | ICI self-cancellation method for OFDM system based on adaptive modulation |
Also Published As
Publication number | Publication date |
---|---|
CN103501218A (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1832467B (en) | OFDM transmission/reception apparatus and method, communication terminal apparatus, base station apparatus | |
CN110224721B (en) | Method and receiver for processing an analog signal from a transmission channel | |
CN103414674B (en) | A kind of MAPSK adaptive de adjusting system | |
CN104821837B (en) | A kind of frequency hopping jamproof system for MF TDMA systems | |
US20110026619A1 (en) | method and system for doppler spread and delay spread matching with channel estimation by circular convolution in ofdm communication networks | |
CN110011724B (en) | Receiving method of ship automatic identification system, receiver and communication satellite | |
CN113447893B (en) | Radar pulse signal frequency spectrum automatic detection method, system and medium | |
CN111510411B (en) | Carrier phase synchronization processing method, device, terminal and storage medium | |
CN108923877B (en) | PCMA (Primary packet Access) timing acquisition and tracking method | |
CN104394105A (en) | TDS-OFDM (Time Domain Synchronous-Orthogonal Frequency Division Multiplexing) channel estimation equalization method and system | |
CN105591990A (en) | Method for suppressing impulse interference | |
CN106508104B (en) | A kind of method of extension remote measurement coherent receiver frequency offset estimation range | |
CN103560799B (en) | A kind of OFDM receiver device of effective suppression moderate strength rangefinder impulse disturbances | |
US7675997B2 (en) | Dynamic DC offset removal apparatus and dynamic DC offset removal method | |
EP2884682A1 (en) | Receiver, method for estimating frequency response of transmission path by receiver | |
CN103501218B (en) | A kind of multicarrier adaptive demodulation method based on resource multiplex | |
CN107612860B (en) | Synchronization and Downsampling Estimation Methods for 802.11ac Receivers | |
CN112600608B (en) | Multi-frame superimposed satellite signal capturing method and device | |
CN106817200B (en) | Dynamic signal detection method based on multi-channel communication receiving system | |
CN117240411B (en) | Burst frame capturing method, device and equipment | |
US9094915B2 (en) | Method and communication device for power savings in chip-to-chip signalling | |
CN1656698A (en) | Colored interference identification | |
CN103718525A (en) | Clipping method, device and system | |
CN113890577B (en) | Rapid diversity method based on signal similarity | |
CN110286392A (en) | It is a kind of that implementation method is interfered based on the down-sampled anti-narrowband of frequency domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |