CN103450144A - Method for preparing epsilon-caprolactone through biomimetic catalysis of cyclohexanone oxidation - Google Patents
Method for preparing epsilon-caprolactone through biomimetic catalysis of cyclohexanone oxidation Download PDFInfo
- Publication number
- CN103450144A CN103450144A CN2013104153355A CN201310415335A CN103450144A CN 103450144 A CN103450144 A CN 103450144A CN 2013104153355 A CN2013104153355 A CN 2013104153355A CN 201310415335 A CN201310415335 A CN 201310415335A CN 103450144 A CN103450144 A CN 103450144A
- Authority
- CN
- China
- Prior art keywords
- general formula
- caprolactone
- cyclohexanone
- hydrogen
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 8
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 title abstract description 28
- 238000007254 oxidation reaction Methods 0.000 title abstract description 12
- 230000003592 biomimetic effect Effects 0.000 title abstract description 11
- 230000003647 oxidation Effects 0.000 title abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 11
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 claims description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000012752 auxiliary agent Substances 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical group 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- -1 phenyl aldehyde Chemical class 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical group 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 claims 2
- 150000002460 imidazoles Chemical class 0.000 claims 1
- 239000011664 nicotinic acid Substances 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 32
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 16
- 238000004817 gas chromatography Methods 0.000 description 12
- 238000010813 internal standard method Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 3
- 150000002431 hydrogen Chemical group 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000004632 polycaprolactone Substances 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- 238000006220 Baeyer-Villiger oxidation reaction Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CGKQZIULZRXRRJ-UHFFFAOYSA-N Butylone Chemical compound CCC(NC)C(=O)C1=CC=C2OCOC2=C1 CGKQZIULZRXRRJ-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical class O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- TWXWPPKDQOWNSX-UHFFFAOYSA-N dicyclohexylmethanone Chemical compound C1CCCCC1C(=O)C1CCCCC1 TWXWPPKDQOWNSX-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920003240 metallophthalocyanine polymer Polymers 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种ε-己内酯的制备方法,具体地说,涉及一种仿生催化环己酮氧化制备ε-己内酯的方法。The invention relates to a method for preparing ε-caprolactone, in particular to a method for preparing ε-caprolactone by biomimetic catalysis of cyclohexanone oxidation.
背景技术Background technique
ε-己内酯是一种重要的高分子聚合单体,作为新型聚酯单体,被广泛应用于合成各种不同用途的聚己内酯(PCL)和共混改性树脂,并且作为一种优良的有机溶剂和重要的有机合成中间体,对一些难溶性树脂表现出很好的溶解性,可与多种化合物反应制备具有独特性能的精细化学品。目前工业生产ε-己内酯的方法主要通过Baeyer-Villiger氧化反应来实现,采用的氧化剂通常都是有机过酸如过氧乙酸,使用过程中存在安全性差、能耗大等问题,使得该工艺的应用受到限制。ε-caprolactone is an important polymer monomer. As a new type of polyester monomer, it is widely used in the synthesis of various polycaprolactone (PCL) and blended modified resins, and as a It is an excellent organic solvent and an important organic synthesis intermediate. It shows good solubility to some insoluble resins and can react with various compounds to prepare fine chemicals with unique properties. At present, the method of industrial production of ε-caprolactone is mainly realized by the Baeyer-Villiger oxidation reaction. The oxidant used is usually an organic peracid such as peracetic acid. There are problems such as poor safety and high energy consumption during use, which makes the process application is limited.
采用使用方便、易得、安全且环境友好的分子氧/空气作为氧化剂制备ε-己内酯成为研究的趋势,其中金属卟啉或者金属酞菁等仿生催化剂可以在温和条件下活化氧气,在催化氧化反应中具有安全、绿色、高效、选择性高等优点。中国专利ZL 101205225A报道了一种金属卟啉仿生催化酮类化合物氧化制备内酯的方法,该方法涉及到环己酮B-V氧化制备ε-己内酯的过程,但存在助剂用量大(是原料的15倍)、条件苛刻等问题,因此该方法的工业应用受到限制。专利ZL201110298626.1报道了简单结构的金属卟啉催化环己酮氧气氧化制备ε-己内酯的方法,但该方法中使用了金属氧化物或分子筛为助催化剂,存在催化体系复杂、分离困难等缺点。The preparation of ε-caprolactone by using convenient, easy-to-obtain, safe and environment-friendly molecular oxygen/air as the oxidant has become a research trend, among which biomimetic catalysts such as metalloporphyrins or metallophthalocyanines can activate oxygen under mild conditions. The oxidation reaction has the advantages of safety, greenness, high efficiency and high selectivity. Chinese patent ZL 101205225A reports a method for producing lactones by metalloporphyrin biomimetic catalyzed oxidation of ketones. This method involves the process of preparing ε-caprolactone by oxidation of cyclohexanone B-V, but there is a large amount of additives (the raw material 15 times), harsh conditions and other issues, so the industrial application of this method is limited. Patent ZL201110298626.1 reported a method for the preparation of ε-caprolactone through the oxygen oxidation of cyclohexanone catalyzed by a metalloporphyrin with a simple structure. However, in this method, metal oxides or molecular sieves are used as cocatalysts, and the catalytic system is complicated and separation is difficult. shortcoming.
因此,开发一种以环己酮为原料,氧气为氧化剂,且条件温和、工艺简单、选择性高的ε-己内酯制备工艺将具有十分重要的应用前景。Therefore, the development of a preparation process of ε-caprolactone using cyclohexanone as raw material, oxygen as oxidant, mild conditions, simple process and high selectivity will have a very important application prospect.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种仿生催化环己酮氧化制备ε-己内酯的方法。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide a method for preparing ε-caprolactone by biomimetic catalyzing the oxidation of cyclohexanone.
为实现本发明的目的,所采用的技术方案是:以环己酮为原料,以氧气为氧化剂,加入有机溶剂和助剂苯甲醛,以具有通式(I)结构的金属酞菁、通式(II)结构的单核金属卟啉、通式(III)结构的氧代金属卟啉、通式(IV)结构的μ-氧-双核金属卟啉作催化剂,控制在反应温度为25~120℃,常压的条件下进行催化反应得到ε-己内酯,其中催化剂的浓度为0.1-100ppm,助剂苯甲醛与原料环己酮的摩尔比为0.01~2,For realizing the purpose of the present invention, the technical scheme adopted is: take cyclohexanone as raw material, take oxygen as oxygenant, add organic solvent and auxiliary agent benzaldehyde, with the metal phthalocyanine of general formula (I) structure, general formula The mononuclear metalloporphyrin of (II) structure, the oxometalloporphyrin of general formula (III) structure, the μ-oxygen-binuclear metalloporphyrin of general formula (IV) structure are used as catalyzer, and control is 25~120 at reaction temperature ℃, under the condition of normal pressure, the catalytic reaction is carried out to obtain ε-caprolactone, wherein the concentration of the catalyst is 0.1-100ppm, and the molar ratio of the auxiliary agent benzaldehyde to the raw material cyclohexanone is 0.01-2,
通式(I)中的M1是过渡金属原子Mg、Al、Cr、Mn、Fe、Co、Ni、Cu或Zn,R是氢或羧基或磺酸基;通式(II)中的M2是金属原子Cr、Mn、Fe、Co、Ni、Cu、Zn、Rh、Ru或Sn,X是卤素或氢,R1、R2、R3、R4和R5均选自氢、卤素、硝基、烷基、烷氧基、羟基、羧基、巯基或磺酸基,配位基X1是氯或咪唑或吡啶;通式(III)中的M3是金属原子Mo、Fe、Mn、V、Ti、Ru或Rh,R1、R2、R3、R4和R5均选自氢、卤素、硝基、烷基、烷氧基、羟基、羧基、巯基或磺酸基;通式(IV)中的M4是金属原子Al、Fe、Co、Mn、Zn、Ru或Rh,R1、R2、R3、R4和R5均选自氢、卤素、硝基、烷基、烷氧基、羟基、羧基、巯基或磺酸基。M in general formula (I) 1 is transition metal atom Mg, Al, Cr, Mn, Fe, Co, Ni, Cu or Zn, R is hydrogen or carboxyl or sulfonic acid group; M in general formula (II) 2 is metal atom Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Ru or Sn, X is halogen or hydrogen, R 1 , R 2 , R 3 , R 4 and R 5 are all selected from hydrogen, halogen, Nitro, alkyl, alkoxy, hydroxyl, carboxyl, mercapto or sulfonic acid group, ligand X 1 is chlorine or imidazole or pyridine; M in general formula (III) 3 is metal atom Mo, Fe, Mn, V, Ti, Ru or Rh, R 1 , R 2 , R 3 , R 4 and R 5 are all selected from hydrogen, halogen, nitro, alkyl, alkoxy, hydroxyl, carboxyl, mercapto or sulfonic acid; M in formula (IV) is metal atom Al, Fe, Co, Mn, Zn , Ru or Rh, R 1 , R 2 , R 3 , R 4 and R 5 are all selected from hydrogen, halogen, nitro, alkane group, alkoxy group, hydroxyl group, carboxyl group, mercapto group or sulfonic acid group.
在上述仿生催化环己酮氧化制备ε-己内酯的方法中,优选的催化剂用量为1-50ppm,优选的助剂苯甲醛与原料环己酮摩尔比为0.5~2,优选的反应温度为30-100℃。In the method for preparing ε-caprolactone by the above-mentioned biomimetic catalytic cyclohexanone oxidation, the preferred catalyst consumption is 1-50ppm, the preferred auxiliary agent benzaldehyde and raw material cyclohexanone molar ratio is 0.5~2, and the preferred reaction temperature is 30-100°C.
在上述仿生催化环己酮氧化制备ε-己内酯的方法中,所述的溶剂为1,2-二氯乙烷、1,4-二氧六环、三氟甲苯、乙酸正丁酯、乙酸仲丁酯、乙腈、乙酸乙酯中的一种或几种混合。In the method for preparing ε-caprolactone by biomimetic catalytic cyclohexanone oxidation, the solvent is 1,2-dichloroethane, 1,4-dioxane, trifluorotoluene, n-butyl acetate, One or more of sec-butyl acetate, acetonitrile and ethyl acetate are mixed.
本发明首先合成了金属酞菁、金属卟啉类仿生催化剂,将催化剂均匀溶解在溶剂中,苯甲醛为助剂,在氧气存在的条件下催化环己酮氧化生成ε-己内酯。仿生催化剂一方面活化了分子氧,另一方面也促进了自由基的引发,通过一系列的自由基增长后形成具有强氧化性能的高价活性物,易于攻击环己酮的羰基,有利于ε-己内酯的生成。The invention first synthesizes metal phthalocyanine and metal porphyrin biomimetic catalysts, dissolves the catalysts uniformly in a solvent, and uses benzaldehyde as an auxiliary agent to catalyze the oxidation of cyclohexanone to generate ε-caprolactone in the presence of oxygen. On the one hand, the biomimetic catalyst activates molecular oxygen, and on the other hand, it also promotes the initiation of free radicals. After a series of free radicals grow, a high-priced active substance with strong oxidation properties is formed, which is easy to attack the carbonyl of cyclohexanone, which is beneficial to ε- Production of caprolactone.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明采用氧气为氧化剂,避免了使用过酸所带来的安全性问题。1. The present invention adopts oxygen as an oxidizing agent, avoiding the safety problem caused by using peracid.
2.本发明使用了与生物酶类似结构的金属卟啉化合物或者金属酞菁作催化剂,催化剂和助剂的用量少。2. The present invention uses a metal porphyrin compound or a metal phthalocyanine with a structure similar to a biological enzyme as a catalyst, and the amount of catalyst and auxiliary agent is small.
3.本发明操作工艺简单、条件温和、经济成本低、绿色安全,具有良好的工业应用前景。3. The present invention has simple operation process, mild conditions, low economic cost, green safety and good industrial application prospect.
具体实施方式Detailed ways
以下结合实施例对本发明做进一步说明,但本发明的保护范围不局限于实施例表示的范围。The present invention will be further described below in conjunction with the examples, but the protection scope of the present invention is not limited to the scope indicated by the examples.
实施例中所用的试剂均为市售的分析纯试剂。The reagents used in the examples are commercially available analytical reagents.
实施例中所用的金属酞菁、金属卟啉等仿生催化剂是按现有技术(Alder AD,et al.J.Org.Chem.1967,32,476;Wang LZ et al.Org.Process Res.Dev.2006,10,757)所描述的方法制备出的。The biomimetic catalysts such as metal phthalocyanine, metal porphyrin used in the embodiment are according to prior art (Alder AD, et al.J.Org.Chem.1967,32,476; Wang LZ et al.Org.Process Res.Dev.2006 , 10,757) prepared by the method described.
实施例1Example 1
在5mL含有50ppm具有通式(I)的金属酞菁(M1=Al,R=H)的乙酸仲丁酯溶液中,加入1mmol的环己酮和2mmol的苯甲醛,通入氧气,在温度为70℃下搅拌反应6小时,经气相色谱内标法定量检测分析,环己酮的转化率为92%,ε-己内酯的收率为92%。In 5mL containing 50ppm of sec-butyl acetate solution with metal phthalocyanine (M 1 =Al, R=H) of general formula (I), add 1mmol of cyclohexanone and 2mmol of benzaldehyde, feed oxygen, at temperature The reaction was stirred and reacted at 70°C for 6 hours, and the conversion rate of cyclohexanone was 92% and the yield of ε-caprolactone was 92% through quantitative detection and analysis by gas chromatography internal standard method.
实施例2Example 2
在5mL含有0.1ppm具有通式(I)的金属酞菁(M1=Mg,R=COOH)的三氟甲苯溶液中,加入1mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为100℃下搅拌反应2小时,经气相色谱内标法定量检测分析,环己酮的转化率为80%,ε-己内酯的收率为80%。In 5 mL of trifluorotoluene solution containing 0.1 ppm of metal phthalocyanine (M 1 =Mg, R = COOH) with general formula (I), add 1 mmol of cyclohexanone and 1 mmol of benzaldehyde, feed oxygen, at temperature The reaction was stirred and reacted at 100°C for 2 hours, and the conversion rate of cyclohexanone was 80% and the yield of ε-caprolactone was 80% through quantitative detection and analysis by gas chromatography internal standard method.
实施例3Example 3
在5mL含有10ppm具有通式(I)的金属酞菁(M1=Zn,R1=COOH,R2、R3、R4、R5=H)的三氟甲苯溶液中,加入1mmol的环己酮和0.1mmol的苯甲醛,通入氧气,在温度为100℃下搅拌反应8小时,经气相色谱内标法定量检测分析,环己酮的转化率为83%,ε-己内酯的收率为83%。In 5 mL of trifluorotoluene solution containing 10 ppm metal phthalocyanine (M 1 =Zn, R 1 =COOH, R 2 , R 3 , R 4 , R 5 =H) with general formula (I), add 1 mmol of cyclo Hexanone and 0.1mmol of benzaldehyde were passed into oxygen, and the temperature was stirred at 100°C for 8 hours. Through the quantitative detection and analysis of gas chromatography internal standard method, the conversion rate of cyclohexanone was 83%, and the conversion rate of ε-caprolactone The yield was 83%.
实施例4Example 4
在5mL含有1ppm具有通式(II)的金属卟啉(M2=Cr,X=F,R1、R2、R3、R4、R5=H,X1为吡啶)的1,2-二氯乙烷溶液中,加入1mmol的环己酮和0.5mmol的苯甲醛,通入氧气,在温度为25℃下搅拌反应12小时,经气相色谱内标法定量检测分析,环己酮的转化率为89%,ε-己内酯的收率为88%。 In 5 mL of 1,2 _ _ -In the dichloroethane solution, add 1mmol of cyclohexanone and 0.5mmol of benzaldehyde, feed oxygen, and stir and react at a temperature of 25°C for 12 hours, and quantitatively detect and analyze the cyclohexanone through gas chromatography internal standard method. The conversion rate was 89%, and the yield of ε-caprolactone was 88%.
实施例5Example 5
在5mL含有50ppm具有通式(II)的金属卟啉(M2=Rh,R1、R2、R4、R5=H,R3=SO3H,X1为咪唑)的三氟甲苯溶液中,加入1mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为120℃下搅拌反应2小时,经气相色谱内标法定量检测分析,环己酮的转化率为93%,ε-己内酯的收率为93%。Trifluorotoluene containing 50 ppm of metalloporphyrins of general formula (II) (M 2 =Rh, R 1 , R 2 , R 4 , R 5 =H, R 3 =SO 3 H, X 1 is imidazole) in 5 mL In the solution, add 1mmol of cyclohexanone and 1mmol of benzaldehyde, pass through oxygen, and stir and react at a temperature of 120°C for 2 hours. Quantitative detection and analysis by gas chromatography internal standard method shows that the conversion rate of cyclohexanone is 93%. The yield of ε-caprolactone was 93%.
实施例6Example 6
在5mL含有100ppm具有通式(II)的金属卟啉(M2=Ru,R1=C2H5、R3=NO2,R2、R4、R5=H,X1=Cl)的乙酸正丁酯溶液中,加入2mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为80℃下搅拌反应4小时,经气相色谱内标法定量检测分析,环己酮的转化率为95%,ε-己内酯的收率为95%。100 ppm metalloporphyrins with general formula (II) in 5 mL (M 2 =Ru, R 1 =C 2 H 5 , R 3 =NO 2 , R 2 , R 4 , R 5 =H, X 1 =Cl) Add 2mmol of cyclohexanone and 1mmol of benzaldehyde to the n-butyl acetate solution, feed oxygen, stir and react at a temperature of 80°C for 4 hours, and quantitatively detect and analyze through gas chromatography internal standard method, the conversion of cyclohexanone The yield was 95%, and the yield of ε-caprolactone was 95%.
实施例7Example 7
在5mL含有100ppm具有通式(III)的金属卟啉(M3=Mo,R1、R2、R4、R5=H,R3=NO2)的乙腈溶液中,加入1mmol的环己酮和1.5mmol的苯甲醛,通入氧气,在温度为60℃下搅拌反应5小时,经气相色谱内标法定量检测分析,环己酮的转化率为97%,ε-己内酯的收率为97%。 Add 1 mmol of cyclohexane _ _ Ketone and 1.5mmol of benzaldehyde were passed into oxygen, and the temperature was 60°C and the reaction was stirred for 5 hours. After quantitative detection and analysis by gas chromatography internal standard method, the conversion rate of cyclohexanone was 97%, and the recovery of ε-caprolactone The rate is 97%.
实施例8Example 8
在5mL含有30ppm具有通式(III)的金属卟啉(M3=V,R1、R2、R3、R4、R5=CH3、)的乙酸乙酯溶液中,加入1mmol的环己酮和2mmol的苯甲醛,通入氧气,在温度为30℃下搅拌反应6小时,经气相色谱内标法定量检测分析,环己酮的转化率为86%,ε-己内酯的收率为86%。In 5 mL of ethyl acetate solution containing 30 ppm of metalloporphyrins of general formula (III) (M 3 =V, R 1 , R 2 , R 3 , R 4 , R 5 =CH 3 ,), add 1 mmol of cyclo Hexanone and 2mmol of benzaldehyde, fed oxygen, stirred and reacted at a temperature of 30°C for 6 hours, quantitatively detected and analyzed by gas chromatography internal standard method, the conversion rate of cyclohexanone was 86%, and the recovery of ε-caprolactone The rate is 86%.
实施例9Example 9
在5mL含有10ppm具有通式(III)的金属卟啉(M3=Ru,R1、R2、R3、R4=H、R5=COOH)的1,4-二氧六环溶液中,加入1mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为50℃下搅拌反应7小时,经气相色谱内标法定量检测分析,环己酮的转化率为93%,ε-己内酯的收率为93%。In 5 mL of 1,4-dioxane solution containing 10 ppm of a metalloporphyrin of general formula (III) (M 3 =Ru, R 1 , R 2 , R 3 , R 4 =H, R 5 =COOH) , add 1mmol of cyclohexanone and 1mmol of benzaldehyde, feed oxygen, stir and react at a temperature of 50°C for 7 hours, quantitatively detect and analyze by gas chromatography internal standard method, the conversion rate of cyclohexanone is 93%, ε- The yield of caprolactone was 93%.
实施例10Example 10
在5mL含有40ppm具有通式(IV)的金属卟啉(M4=Al,R1、R2、R4、R5=H,R3=CH3)的1,2-二氯乙烷溶液中,加入1mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为60℃下搅拌反应8小时,经气相色谱内标法定量检测分析,环己酮的转化率为90%,ε-己内酯的收率为90%。In 5 mL of 1,2-dichloroethane solution containing 40 ppm metalloporphyrins of general formula (IV) (M 4 =Al, R 1 , R 2 , R 4 , R 5 =H, R 3 =CH 3 ) , add 1mmol of cyclohexanone and 1mmol of benzaldehyde, feed oxygen, stir and react at a temperature of 60°C for 8 hours, and quantitatively detect and analyze through gas chromatography internal standard method, the conversion rate of cyclohexanone is 90%, ε - The yield of caprolactone is 90%.
实施例11Example 11
在5mL含有40ppm具有通式(IV)的金属卟啉(M4=Zn,R1、R3、R4、R5=H,R2=SH)的乙酸正丁酯溶液中,加入2mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为100℃下搅拌反应5小时,经气相色谱内标法定量检测分析,环己酮的转化率为95%,ε-己内酯的收率为95%。 Add 2mmol _ _ _ _ Cyclohexanone and 1mmol of benzaldehyde were passed into oxygen, and the temperature was 100°C for a stirring reaction for 5 hours. Through gas chromatography internal standard method quantitative detection and analysis, the conversion rate of cyclohexanone was 95%, and the conversion rate of ε-caprolactone was 95%. The yield is 95%.
实施例12Example 12
在5mL含有60ppm具有通式(IV)的金属卟啉(M4=Ru,R1=OCH3,R3=Cl、R2、R4、R5=H)的三氟甲苯溶液中,加入1mmol的环己酮和1mmol的苯甲醛,通入氧气,在温度为90℃下搅拌反应6小时,经气相色谱内标法定量检测分析,环己酮的转化率为92%,ε-己内酯的收率为92%。 Add _ _ _ _ _ _ 1mmol of cyclohexanone and 1mmol of benzaldehyde were passed into oxygen, and the temperature was 90°C and the reaction was stirred for 6 hours. Through quantitative detection and analysis by gas chromatography internal standard method, the conversion rate of cyclohexanone was 92%. The yield of ester was 92%.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013104153355A CN103450144A (en) | 2013-09-12 | 2013-09-12 | Method for preparing epsilon-caprolactone through biomimetic catalysis of cyclohexanone oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013104153355A CN103450144A (en) | 2013-09-12 | 2013-09-12 | Method for preparing epsilon-caprolactone through biomimetic catalysis of cyclohexanone oxidation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103450144A true CN103450144A (en) | 2013-12-18 |
Family
ID=49733033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013104153355A Pending CN103450144A (en) | 2013-09-12 | 2013-09-12 | Method for preparing epsilon-caprolactone through biomimetic catalysis of cyclohexanone oxidation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103450144A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103980078A (en) * | 2014-05-08 | 2014-08-13 | 中山大学 | Method for preparing lactone through catalyzing oxidation of ketone compound, and its special catalyst |
CN104003971A (en) * | 2014-04-28 | 2014-08-27 | 上海应用技术学院 | Method for preparing epsilon-caprolactone through catalytic oxidation of cyclohexanone |
CN105067740A (en) * | 2015-07-29 | 2015-11-18 | 中山大学惠州研究院 | Method for analyzing products generated during process of biomimetic catalytic cyclohexanone gas-liquid phase oxidation for producing epsilon-caprolactone |
CN105130947A (en) * | 2015-07-21 | 2015-12-09 | 刘小秦 | Industrial production method of [epsilon]-caprolactone |
CN111018823A (en) * | 2019-12-12 | 2020-04-17 | 河南能源化工集团研究总院有限公司 | Process for preparing epsilon-caprolactone and co-producing methacrylic acid by cyclohexanone |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101205225A (en) * | 2007-11-09 | 2008-06-25 | 华南理工大学 | A kind of biomimetic catalytic oxidation method of ketone compound to prepare lactone |
CN101899022A (en) * | 2010-07-27 | 2010-12-01 | 中山大学 | A kind of method for preparing propylene oxide by biomimetic catalyzed propylene epoxidation |
CN102391238A (en) * | 2011-09-28 | 2012-03-28 | 江苏飞翔化工股份有限公司 | Method for preparing epsilon-caprolactone by catalyzing oxidation of cyclohexanone |
-
2013
- 2013-09-12 CN CN2013104153355A patent/CN103450144A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101205225A (en) * | 2007-11-09 | 2008-06-25 | 华南理工大学 | A kind of biomimetic catalytic oxidation method of ketone compound to prepare lactone |
CN101899022A (en) * | 2010-07-27 | 2010-12-01 | 中山大学 | A kind of method for preparing propylene oxide by biomimetic catalyzed propylene epoxidation |
CN102391238A (en) * | 2011-09-28 | 2012-03-28 | 江苏飞翔化工股份有限公司 | Method for preparing epsilon-caprolactone by catalyzing oxidation of cyclohexanone |
Non-Patent Citations (4)
Title |
---|
LALA SETTI BELAROUI ET AL.: "Comparative Baeyer-Villiger oxidation of cyclohexanone on Fe-pillared clays and iron tetrasulfophthalocyanine covalently supported on silica", 《C. R. CHIMIE》 * |
李臻 等: "金属卟啉配合物的催化氧化应用研究进展", 《有机化学》 * |
王攀 等: "金属卟啉类化合物特性及光催化机理与应用研究", 《三峡大学学报(自然科学版)》 * |
马红 等: "卟啉在催化剂方面的应用研究进展", 《河北工业科技》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104003971A (en) * | 2014-04-28 | 2014-08-27 | 上海应用技术学院 | Method for preparing epsilon-caprolactone through catalytic oxidation of cyclohexanone |
CN103980078A (en) * | 2014-05-08 | 2014-08-13 | 中山大学 | Method for preparing lactone through catalyzing oxidation of ketone compound, and its special catalyst |
CN105130947A (en) * | 2015-07-21 | 2015-12-09 | 刘小秦 | Industrial production method of [epsilon]-caprolactone |
CN105130947B (en) * | 2015-07-21 | 2018-04-17 | 刘小秦 | A kind of industrial process of ε-caprolactone |
CN105067740A (en) * | 2015-07-29 | 2015-11-18 | 中山大学惠州研究院 | Method for analyzing products generated during process of biomimetic catalytic cyclohexanone gas-liquid phase oxidation for producing epsilon-caprolactone |
CN105067740B (en) * | 2015-07-29 | 2017-03-15 | 中山大学惠州研究院 | A kind of bionic catalysis cyclohexanone gas-liquid phase oxidation prepares the product analysis method of ε caprolactones |
CN111018823A (en) * | 2019-12-12 | 2020-04-17 | 河南能源化工集团研究总院有限公司 | Process for preparing epsilon-caprolactone and co-producing methacrylic acid by cyclohexanone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Patil et al. | Catalytic methods for imine synthesis | |
Schumperli et al. | Developments in the aerobic oxidation of amines | |
CN102391238B (en) | Method for preparing epsilon-caprolactone by catalyzing oxidation of cyclohexanone | |
Liu et al. | Dehydrogenation of alcohols to carboxylic acid catalyzed by in situ-generated facial ruthenium-CPP complex | |
CN103450144A (en) | Method for preparing epsilon-caprolactone through biomimetic catalysis of cyclohexanone oxidation | |
CN104628548B (en) | Method for preparing acetophenone by bionic catalytic oxidation of ethylbenzene | |
CN102070382A (en) | Method for preparing benzaldehyde or substituted benzaldehyde by catalytically oxidizing methylbenzene or substituted methylbenzene | |
CN101899022B (en) | Method for preparing epoxypropane by bionically catalyzing epoxidation of propylene | |
CN1191218C (en) | Metalloporphyrin Catalyzed Air Oxidation Method of Cyclohexane | |
CN103467434B (en) | Method for preparing eta-caprolactone by composite catalysis | |
CN104478677B (en) | A kind of method that bionic catalysis diphenyl-methane dioxygen oxidation prepares benzophenone | |
Romanowski et al. | Synthesis, structure, spectroscopic characterization and catalytic activity of chiral dioxidomolybdenum (VI) Schiff base complexes derived from R (−)-2-amino-1-propanol | |
CN103980078A (en) | Method for preparing lactone through catalyzing oxidation of ketone compound, and its special catalyst | |
CN103272644A (en) | Schiff base metal catalyst used in liquid phase epoxidation reaction and preparation method of schiff base metal catalyst | |
Rogers et al. | Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species | |
CN106831675A (en) | A kind of method that iron catalysis dihydroxylic alcohols intramolecular cyclization prepares lactone | |
JP6037209B2 (en) | Method for producing tetrahydrofuran compound, hydrogenation catalyst and method for producing the same | |
CN103724314A (en) | Method for preparing inner ester through composite catalysis of ketone compounds | |
CN107129426B (en) | Preparation method of 2, 5-dichlorophenol | |
CN105440006B (en) | Method for preparing caprolactone by catalyzing cyclohexanone with soluble salt modified magnesium aluminum hydrotalcite | |
CN101759536A (en) | Method for preparing parahydroxybenzaldehyde by catalytic oxidation of paracresol with metalloporphyrin | |
CN100463891C (en) | A kind of method that prepares benzaldehyde by one-step direct selective oxidation of toluene | |
CN102050711A (en) | Method for preparing acraldehyde | |
CN110950822A (en) | Method for catalyzing olefin epoxidation | |
CN101205225B (en) | Method for preparing lactones by biomimetic catalytic oxidation of ketone compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20131218 |
|
RJ01 | Rejection of invention patent application after publication |