CN103368170A - Converter and control method of multi-end soft direct current power transmission system - Google Patents
Converter and control method of multi-end soft direct current power transmission system Download PDFInfo
- Publication number
- CN103368170A CN103368170A CN2013102604317A CN201310260431A CN103368170A CN 103368170 A CN103368170 A CN 103368170A CN 2013102604317 A CN2013102604317 A CN 2013102604317A CN 201310260431 A CN201310260431 A CN 201310260431A CN 103368170 A CN103368170 A CN 103368170A
- Authority
- CN
- China
- Prior art keywords
- voltage
- converter
- power
- controller
- bus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000001105 regulatory effect Effects 0.000 claims 4
- 238000004088 simulation Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Landscapes
- Direct Current Feeding And Distribution (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Inverter Devices (AREA)
Abstract
本发明涉及一种多端柔性直流输电系统的换流器控制方法及采用本控制方法的换流器和柔性直流输电系统,当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low之间时,换流器运行于定功率控制模式;当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low以外时,换流器运行于直流母线电压控制模式,当母线电压高于设定上限值时,换流器调节直流母线电压稳定于上限值,当母线电压低于下限值时,换流器调节直流母线电压稳定于下限值。采用本方法,直流电压与潮流协调控制可以同时进行,适合应用于大规模多落点的分布式多端柔性直流系统工程。
The present invention relates to a converter control method of a multi-terminal flexible direct current transmission system and the converter and flexible direct current transmission system adopting the control method. When u dc_ref_low is between, the converter operates in constant power control mode; when the DC bus voltage is outside the preset voltage upper limit u dc_ref_high and lower limit u dc_ref_low , the converter operates in DC bus voltage control mode , when the bus voltage is higher than the set upper limit, the converter adjusts the DC bus voltage to stabilize at the upper limit, and when the bus voltage is lower than the lower limit, the converter adjusts the DC bus voltage to stabilize at the lower limit. With this method, the coordinated control of DC voltage and power flow can be carried out simultaneously, which is suitable for large-scale multi-drop distributed multi-terminal flexible DC system engineering.
Description
技术领域technical field
本发明涉及一种多端柔性直流输电系统的换流器控制方法,应用该控制方法的换流器以及应用该换流器的柔性直流输电系统。The invention relates to a converter control method of a multi-terminal flexible direct current transmission system, a converter using the control method and a flexible direct current transmission system using the converter.
背景技术Background technique
柔性直流输电技术以可关断电力电子器件和电压源型换流器(VSC)为基础,多为BtB拓扑结构并以地下电缆及海底电缆为传输媒介实现电能传输。其中电压源型换流器(VSC)是该输电系统的基本组成单元。目前应用于实际工程的拓扑结构有两电平、三电平及模块化多电平等拓扑结构。Flexible DC transmission technology is based on power electronic devices that can be shut down and voltage source converters (VSCs). Most of them are BtB topological structures and use underground cables and submarine cables as transmission media to realize power transmission. Among them, the voltage source converter (VSC) is the basic unit of the transmission system. At present, the topological structures used in practical engineering include two-level, three-level and modular multi-level topological structures.
多端直流输电(MTDC)系统是指含有多个整流站或多个逆变站的直流输电系统。其显著特点在于能够实现多电源供电、多落点受电,提供一种更为灵活、快捷的输电方式。MTDC输电系统主要应用于:由多个能源基地输送电能到远方的多个负荷中心;不能使用架空线路走廊的大城市或工业中心;直流输电线路中间分支接入负荷或电源;几个孤立的交流系统之间利用直流输电线路实现电网的非同期联络等。随着大功率电力电子全控开关器件技术的进一步发展、新型控制策略的研究、直流输电成本的逐步降低以及电能质量要求的提高,基于常规的电流源换流器(Current Source Converted CSC)和电压源型换流器(VoltageSource Converter VSC)的混合MTDC输电技术、基于FACTS的MTDC输电技术、以及基于VSC的新型MTDC技术将得到快速发展,必将大大提高MTDC输电系统的运行可靠性和实用性,扩大MTDC输电系统的应用范围,为电网提供更多的新型互联模式,为大城市直流供电的多落点受电提供新思路,为其他形式的新能源接入电网提供新方法,为优质电能库的建立提供新途径。A multi-terminal DC transmission (MTDC) system refers to a DC transmission system that includes multiple rectifier stations or multiple inverter stations. Its notable feature is that it can realize multi-power supply and multi-drop power receiving, and provide a more flexible and fast power transmission method. MTDC power transmission system is mainly used in: transmission of electric energy from multiple energy bases to multiple load centers in the distance; large cities or industrial centers that cannot use overhead line corridors; middle branches of direct current transmission lines connected to loads or power sources; several isolated AC The DC transmission line is used between the systems to realize the asynchronous connection of the power grid, etc. With the further development of high-power power electronic fully-controlled switching device technology, the research of new control strategies, the gradual reduction of DC transmission costs, and the improvement of power quality requirements, based on conventional current source converters (Current Source Converted CSC) and voltage The hybrid MTDC power transmission technology of Voltage Source Converter VSC, the MTDC power transmission technology based on FACTS, and the new MTDC technology based on VSC will be developed rapidly, which will greatly improve the operational reliability and practicability of the MTDC power transmission system. Expand the scope of application of the MTDC transmission system, provide more new interconnection modes for the power grid, provide new ideas for multi-point power receiving of DC power supply in large cities, provide new methods for other forms of new energy to connect to the power grid, and provide high-quality electric energy storage The establishment of a new way.
与传统CSC-MTDC系统不同,VSC-MTDC系统潮流反转时直流电压方向不变,直流电流方向反转,并且不需要机械操作,速度较快,可靠性较高。它是一种既具有较高的可靠性又具有灵活多变的控制方式,因此VSC-MTDC是构建并联多端直流系统的适宜方案。Different from the traditional CSC-MTDC system, the VSC-MTDC system does not change the direction of the DC voltage when the power flow is reversed, but reverses the direction of the DC current, and does not require mechanical operation, which is faster and more reliable. It is a control method with high reliability and flexibility, so VSC-MTDC is a suitable scheme for constructing parallel multi-terminal DC system.
VSC-MTDC系统在运行灵活性、可靠性等方面比两端系统更具技术优势,但其运行控制相对也要复杂。与电流控制是电流源型直流输电(CSC-HVDC)系统中的基本控制方式一样,直流电压控制是VSC-HVDC系统中的基本控制。在VSC-MTDC系统中,采样直流电压控制的换流站相当于一个有功平衡结点,起功率平衡和稳定直流电压的作用,其控制性能和可靠性也就决定了整个系统的运行特性和可靠性。The VSC-MTDC system has more technical advantages than the two-end system in terms of operation flexibility and reliability, but its operation control is relatively complicated. Just as the current control is the basic control method in the current source direct current transmission (CSC-HVDC) system, the DC voltage control is the basic control in the VSC-HVDC system. In the VSC-MTDC system, the converter station controlled by sampling DC voltage is equivalent to an active power balance node, which plays the role of power balance and stable DC voltage, and its control performance and reliability determine the operating characteristics and reliability of the entire system. sex.
VSC-MTDC直流电压与潮流协调控制策略有以下几种:(1)主从式电压控制法,特点是控制简单,可控性最强,但是需要高速通讯对系统指令进行协调;(2)电压下降法,优点是不需要上层控制器进行调整值协调,对相互通讯的要求低,具有一定的可扩展性,缺点是斜率配置复杂,潮流控制受系统主接线和直流电缆参数影响,最大缺陷是不能精确进行有功潮流控制;(3)基于电压偏差的直流电压协调控制方法,该方法的特点是无通讯独立调节,配置灵活、可扩展性强,但是在兼具直流电压协调和潮流优化控制方面,受本身控制结构的限制,其控制性能有限,其中二阶电压偏差法在进行电压偏差控制时自动切断潮流控制,因此电压协调和潮流控制不能同时进行,而三阶电压偏差法也存在这个问题,同时每个阶段的控制能力有限。VSC-MTDC DC voltage and power flow coordination control strategy has the following types: (1) master-slave voltage control method, which is characterized by simple control and the strongest controllability, but requires high-speed communication to coordinate system commands; (2) voltage The advantage of the descending method is that it does not require the adjustment value coordination of the upper controller, has low requirements for mutual communication, and has certain scalability. The disadvantage is that the configuration of the slope is complicated, and the power flow control is affected by the main wiring of the system and the parameters of the DC cable. The biggest defect is Active power flow control cannot be accurately performed; (3) DC voltage coordination control method based on voltage deviation, which is characterized by independent adjustment without communication, flexible configuration, and strong scalability, but in terms of both DC voltage coordination and power flow optimization control , limited by its own control structure, its control performance is limited. Among them, the second-order voltage deviation method automatically cuts off the power flow control when performing voltage deviation control, so voltage coordination and power flow control cannot be carried out at the same time, and the third-order voltage deviation method also has this problem , while the control capability of each stage is limited.
发明内容Contents of the invention
本发明的目的是提供一种多端柔性直流输电系统的换流器控制方法,应用该控制方法的换流器以及应用该换流器的柔性直流输电系统,用以解决现有VSC-MTDC系统中直流电压与潮流协调控制不能同时进行的的问题。The object of the present invention is to provide a converter control method for a multi-terminal flexible direct current transmission system, a converter using the control method and a flexible direct current transmission system using the converter, to solve the problems in the existing VSC-MTDC system The problem that DC voltage and power flow coordination control cannot be carried out simultaneously.
为实现上述目的,本发明的方案包括:一种多端柔性直流输电系统的换流器控制方法,应用该控制方法的换流器以及应用该换流器的柔性直流输电系统。To achieve the above object, the solution of the present invention includes: a converter control method of a multi-terminal flexible direct current transmission system, a converter applying the control method, and a flexible direct current transmission system applying the converter.
一种多端柔性直流输电系统的换流器控制方法:当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low之间时,换流器运行于定功率控制模式;当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low以外时,换流器运行于直流母线电压控制模式,当母线电压高于设定上限值时,换流器调节直流母线电压稳定于上限值,当母线电压低于下限值时,换流器调节直流母线电压稳定于下限值。A converter control method for a multi-terminal flexible direct current transmission system: when the DC bus voltage is between a preset voltage upper limit value u dc_ref_high and a lower limit value u dc_ref_low , the converter operates in a constant power control mode; when When the DC bus voltage is outside the preset voltage upper limit value u dc_ref_high and lower limit value u dc_ref_low , the converter operates in the DC bus voltage control mode. When the bus voltage is higher than the set upper limit value, the converter regulates The DC bus voltage is stable at the upper limit, and when the bus voltage is lower than the lower limit, the converter adjusts the DC bus voltage to be stable at the lower limit.
该控制方法中的换流器采用基于旋转坐标系的直接电流控制方法,其基于旋转坐标系的外环控制包括用于产生有功电流指令idref的功率控制器,功率控制器包括有功潮流控制器和直流电压控制器,当换流器运行于定功率控制模式,有功潮流控制器的输出为有功电流指令idref的输入;当换流器运行于直流母线电压控制模式,直流电压控制器的输出为有功电流指令idref的输入。The converter in this control method adopts the direct current control method based on the rotating coordinate system, and its outer loop control based on the rotating coordinate system includes a power controller for generating the active current command idref , and the power controller includes an active power flow controller and DC voltage controller, when the converter operates in the constant power control mode, the output of the active power flow controller is the input of the active current command i dref ; when the converter operates in the DC bus voltage control mode, the output of the DC voltage controller It is the input of active current instruction idref .
该控制方法中直流电压控制器包括电压低限控制器和电压高限控制器。The DC voltage controller in the control method includes a voltage lower limit controller and a voltage upper limit controller.
采用该控制方法的换流器:当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low之间时,换流器运行于定功率控制模式;当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low以外时,换流器运行于直流母线电压控制模式,当母线电压高于设定上限值时,换流器调节直流母线电压稳定于上限值,当母线电压低于下限值时,换流器调节直流母线电压稳定于下限值。The converter using this control method: when the DC bus voltage is between the preset voltage upper limit value u dc_ref_high and the lower limit value u dc_ref_low , the converter operates in the constant power control mode; when the DC bus voltage is in the preset When the set voltage upper limit value u dc_ref_high and lower limit value u dc_ref_low are outside, the converter operates in the DC bus voltage control mode. When the bus voltage is higher than the set upper limit value, the converter adjusts the DC bus voltage to stabilize at Upper limit value, when the bus voltage is lower than the lower limit value, the converter adjusts the DC bus voltage to stabilize at the lower limit value.
该换流器采用基于旋转坐标系的直接电流控制方法,其基于旋转坐标系的外环控制包括用于产生有功电流指令idref的功率控制器,功率控制器包括有功潮流控制器和直流电压控制器,当换流器运行于定功率控制模式,有功潮流控制器的输出为有功电流指令idref的输入;当换流器运行于直流母线电压控制模式,直流电压控制器的输出为有功电流指令idref的输入。The converter adopts the direct current control method based on the rotating coordinate system, and its outer loop control based on the rotating coordinate system includes a power controller for generating the active current command idref , and the power controller includes an active power flow controller and a DC voltage controller When the converter operates in the constant power control mode, the output of the active power flow controller is the input of the active current command i dref ; when the converter operates in the DC bus voltage control mode, the output of the DC voltage controller is the active current command Input for i dref .
该换流器的直流电压控制器包括电压低限控制器和电压高限控制器。The DC voltage controller of the converter includes a voltage low limit controller and a voltage high limit controller.
采用该控制方法的多端柔性直流输电系统:该直流输电系统中各换流器根据负荷重要性的不同设定不同的电压上限值udc_ref_high及下限值udc_ref_low。A multi-terminal flexible direct current transmission system using this control method: each converter in the direct current transmission system sets different voltage upper limit values u dc_ref_high and lower limit values u dc_ref_low according to the importance of loads.
本发明的有益效果是:采用该控制方法和该换流器的直流输电系统,换流器能够根据直流系统的运行状态自动切换自身的运行模式:在一端或者多端直流母线电压发生偏移时将切换运行模式由定功率控制模式至直流电压控制模式,将直流母线电压稳定在设定的上下限范围内,预防事故扩大;根据负荷重要性的不同设定不同的电压上下限可以在直流系统发生故障时优先确保关键负荷的供电。采用本方法的多端系统直流工作点固定,控制结构简单,系统配置灵活,可扩展性强,适合应用于大规模多落点的分布式多端柔性直流系统工程。The beneficial effects of the present invention are: adopting the control method and the DC power transmission system of the converter, the converter can automatically switch its own operating mode according to the operating state of the DC system: when the DC bus voltage at one or more terminals deviates, the Switch the operation mode from the constant power control mode to the DC voltage control mode, stabilize the DC bus voltage within the set upper and lower limits, and prevent accidents from expanding; set different voltage upper and lower limits according to the importance of the load to avoid accidents in the DC system In case of failure, priority is given to ensuring the power supply of key loads. The DC operating point of the multi-terminal system adopting this method is fixed, the control structure is simple, the system configuration is flexible, and the scalability is strong, which is suitable for large-scale multi-drop distributed multi-terminal flexible DC system engineering.
附图说明Description of drawings
图1是多端柔性直流输电的结构简图;Figure 1 is a schematic diagram of the structure of the multi-terminal flexible direct current transmission;
图2a是模块化多电平柔性直流输电换流器等值电路;Figure 2a is the equivalent circuit of a modular multilevel flexible direct current transmission converter;
图2b是模块化多电平柔性直流输电换流器控制框图;Fig. 2b is a control block diagram of a modular multilevel flexible direct current transmission converter;
图3a是具有直流母线电压高低压限控制功能的功率控制器控制框图;Fig. 3a is a control block diagram of a power controller with a DC bus voltage high and low voltage limit control function;
图3b是具有直流母线电压高低压限控制功能的功率控制器外部控制特性图;Figure 3b is an external control characteristic diagram of a power controller with a DC bus voltage high and low voltage limit control function;
图4是模块化多电平直流输电换流器仿真系统结构图;Fig. 4 is a structural diagram of a simulation system of a modular multilevel direct current transmission converter;
图5a是模块化多电平柔性直流输电换流器多端系统交流电压零电压跌落仿真试验交流电压波形;Figure 5a is the AC voltage waveform of the multi-terminal system AC voltage zero-voltage drop simulation test of the modular multi-level flexible DC transmission converter;
图5b是模块化多电平柔性直流输电换流器多端系统交流电压零电压跌落仿真试验直流母线电压波形;Figure 5b is the DC bus voltage waveform in the simulation test of the AC voltage zero voltage drop of the multi-terminal system of the modular multi-level flexible DC transmission converter;
图5c是模块化多电平柔性直流输电换流器多端系统交流电压零电压跌落仿真试验直流电流波形;Figure 5c is the DC current waveform of the AC voltage zero voltage drop simulation test of the multi-terminal system of the modular multi-level flexible DC transmission converter;
图6a是模块化多电平柔性直流输电换流器多端系统功率运行仿真试验直流电压波形;Figure 6a is the DC voltage waveform of the multi-terminal system power operation simulation test of the modular multi-level flexible DC transmission converter;
图6b是模块化多电平柔性直流输电换流器多端系统功率运行仿真试验直流电流波形。Figure 6b is the DC current waveform of the multi-terminal system power operation simulation test of the modular multi-level flexible DC transmission converter.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
多端柔性直流输电系统的结构简图如图1所示:以功率从交流侧向直流侧流动为正方向,S1、S3、S4为供电电源,Load2、Load5为用电负荷。图2a为柔性直流输电系统换流器的等值电路,其中Ps、Qs为交流侧有功及无功功率,Ia1、Ib1、Ic1、Usa、Usb、Usc分别为交流侧三相的电流与电压,Uca、Ucb、Ucc为经过换流器阻抗消耗后的交流电压,Pc、Idc为该换流器输入直流电网的功率与电流,以从交流侧向直流侧流动为正方向,Udc为换流器直流侧端电压,具体工作方式在此不再赘述。图2b是柔性直流输电换流器控制框图,此控制框图所涉及的定功率控制方式,直流电压控制(定电压控制)方式本身原理、措施及图中标号等均属于现有技术,在此不再赘述,具体内容参照论文《基于dq0同步坐标的柔性直流输电控制策略及仿真研究》(电力系统保护与检测,37卷22期)。增加各符号标注说明。The structure diagram of the multi-terminal flexible DC power transmission system is shown in Figure 1: the positive direction of power flowing from the AC side to the DC side is taken as the positive direction, S1, S3, and S4 are power supply sources, and Load2 and Load5 are power loads. Figure 2a is the equivalent circuit of the converter of the flexible direct current transmission system, where P s and Q s are the active and reactive power of the AC side, and I a1 , I b1 , I c1 , U sa , U sb , and U sc are the AC side The current and voltage of the three phases on the side, U ca , U cb , and U cc are the AC voltages consumed by the converter impedance, and P c and I dc are the power and current input by the converter to the DC grid. Flowing to the DC side is the positive direction, and U dc is the DC side terminal voltage of the converter, and the specific working method will not be repeated here. Figure 2b is a control block diagram of a flexible direct current transmission converter. The constant power control method involved in this control block diagram, the principle and measures of the direct current voltage control (constant voltage control) method itself, and the labels in the figure, etc. belong to the prior art, and will not be discussed here. For details, refer to the paper "Control Strategy and Simulation Research of Flexible DC Transmission Based on dq0 Synchronous Coordinates" (Power System Protection and Detection, Volume 37, Issue 22). Add descriptions for each symbol.
多端柔性直流输电的换流器具体控制方法如下:The specific control method of the converter of the multi-terminal flexible direct current transmission is as follows:
设定换流器的上限值udc_ref_high与下限值udc_ref_low及整流和逆变权衡函数。在正常运行时,母线电压处于设定电压上限值udc_ref_high与下限值udc_ref_low范围内,经过权衡函数的运算后控制换流器运行于定功率控制模式;当直流母线电压处于预先设定的电压上限值udc_ref_high及下限值udc_ref_low以外时,经过权衡函数的运算后切换换流器运行于直流母线电压控制模式,当母线电压超过上限值时,控制母线电压稳定于上限值,当母线电压低于下限值时,控制母线电压稳定于下限值。当换流器运行于定功率控制模式,将维持有功功率按照其功率指令值Porder进行控制,此时有功潮流控制器的输出作为图2b中有功电流指令idref的输入;当换流器运行于直流母线电压控制模式,将切换原先通过其功率指令值Porder进行控制至通过直流母线电压值Udc进行控制,直流电压控制器的输出作为图2b中有功电流指令idref的输入,通过这种方式,换流器能够平稳的在两种工作模式中相互切换,解决了原先一个换流器不能既工作在定功率控制模式又工作在稳定直流母线电压模式的问题。完成模式切换操作的功率控制器控制框图如图3a所示,图3a是基于电压偏差原理提出的协调控制器结构,功率控制器包括直流电压控制部分和有关潮流控制部分。其中电压高低限控制器均为PI控制器,用于直流电压超过偏差范围时进行有功的调节从而控制直流电压,有功潮流控制器是基于稳态逆模型的PI控制器,该控制器用于直流电压在高低限范围之内时进行快速的潮流闭环控制;由于三个控制器输出均通过加法器相加作为有功电流指令,从而为电压控制器和潮流控制器的竞争创造了条件,而权衡函数就是基于直流电压高低限控制器输出结果来调整潮流控制器的输出,进而按照预先配置的参数进行直流电压和有功潮流的协调控制,该权衡函数可以根据系统的直流电压和有功潮流的协调需求进行不同配置,最简单的配置为一个常数,该常数和电压控制器输出相结合,并于潮流控制器进行比较分析,结合当前换流器的实际直流母线电压有输出有功情况,基于直流电压稳定和潮流优化分配原则最终决定输出的有功电流指令。该协调控制器的输入共有5个变量,分别为电压高限指令Udc_ref_High、电压低限指令Udc_ref_Low、有功功率指令P_ref、直流母线电压Udc和换流器交流侧实际有功功率P,输出为换流器的有功电流指令Id_ref;其中电压高低限控制器和有功潮流控制器的PI参数由系统传递函数基于动态特性进行配置;电压低限控制器的输出限幅为该端换流器参与协调控制的整流有功限制,其中低限Pvdc_Low_lower设置为零,高限Pvdc_Low_upper的配置直接决定了该端参与电压协调控制的整流有功能力,实际结合工程需求进行配置;电压高限控制器的输出限幅为该端换流器参与协调控制的逆变有功限制,其中高限Pvdc_High_upper设置为零,低限Pvdc_High_lower的配置直接决定了该端参与电压协调控制的逆变有功能力,实际结合工程需求进行配置;权衡函数的配置有多种形式,但总体有三种方案:第一种方案为直流电压高低限控制器完全优先,此时当直流电压超过高限限值时,有功潮流将会进行改变以满足直流电压最大稳定性,实际有功潮流和指令不再相等;该方案适合于具有很强的紧急潮流支撑的交流电网端;第二种方案为有功潮流优先,此时该端换流器在直流电压超过高低限初期进行一定程度的直流电压控制,但由于权衡函数配置为有功潮流优先,在进行稳态时,有功潮流仍然保证为闭环指令值,该方案能在动态初期进行直流电压控制,稳定后仍然保证潮流输送,该方案适合于具有一定的暂态紧急潮流支撑的交流电网端;第三种方案为有功潮流限定协调方式,此时直流电压超过高低限时,潮流也将改变进行一定程度的直流电压支撑,但也会考虑该端潮流的输送需求,该种方式下由于协调作用导致的交流潮流改变量介于一、二两种方案之间,该方案适合于换流器必须保证一定程度潮流输送的交流电网端;而最后的是保证该端换流器在允许的容量下运行,其中Id_upper为该端换流器最大整流有功电流限定值,Id_lower为该端换流器最大逆变有功电流限定值,有功电流限幅值一般设定为变流器允许的最大连续运行负荷电流。The upper limit value u dc_ref_high and the lower limit value u dc_ref_low of the converter and the rectification and inversion trade-off function are set. During normal operation, the bus voltage is within the range of the set voltage upper limit value u dc_ref_high and lower limit value u dc_ref_low , after the calculation of the trade-off function, the converter is controlled to operate in the constant power control mode; when the DC bus voltage is in the preset When the voltage upper limit value u dc_ref_high and the lower limit value u dc_ref_low are outside, after the calculation of the trade-off function, the converter is switched to operate in the DC bus voltage control mode. When the bus voltage exceeds the upper limit value, the control bus voltage is stabilized at the upper limit value, when the bus voltage is lower than the lower limit, the control bus voltage is stable at the lower limit. When the converter is running in the constant power control mode, the active power will be maintained according to its power command value P order , at this time the output of the active power flow controller is used as the input of the active current command idref in Figure 2b; when the converter is running In the DC bus voltage control mode, it will switch from the original control by its power command value P order to the control by the DC bus voltage value U dc , the output of the DC voltage controller is used as the input of the active current command idref in Figure 2b, through which In this way, the converter can smoothly switch between the two working modes, which solves the original problem that a converter cannot work in both the constant power control mode and the stable DC bus voltage mode. The control block diagram of the power controller that completes the mode switching operation is shown in Figure 3a. Figure 3a is a coordinated controller structure based on the principle of voltage deviation. The power controller includes a DC voltage control part and a related power flow control part. Among them, the voltage high and low limit controllers are all PI controllers, which are used to adjust the active power when the DC voltage exceeds the deviation range to control the DC voltage. The active power flow controller is a PI controller based on the steady-state inverse model. This controller is used for DC voltage Fast closed-loop control of power flow is carried out within the range of high and low limits; since the outputs of the three controllers are added together as active current commands through the adder, conditions are created for the competition between the voltage controller and the power flow controller, and the trade-off function is Adjust the output of the power flow controller based on the output results of the DC voltage high and low limit controller, and then perform coordinated control of the DC voltage and active power flow according to the pre-configured parameters. The trade-off function can be different according to the coordination requirements of the system's DC voltage and active power flow Configuration, the simplest configuration is a constant, which is combined with the output of the voltage controller and compared with the power flow controller, combined with the actual DC bus voltage of the current converter to output active power, based on the DC voltage stability and power flow The optimal allocation principle finally determines the output active current command. The input of the coordination controller has 5 variables, which are the voltage high limit command Udc_ref_High, the voltage low limit command Udc_ref_Low, the active power command P_ref, the DC bus voltage Udc and the actual active power P of the AC side of the converter, and the output is the converter The active current command Id_ref; the PI parameters of the voltage high and low limit controller and the active power flow controller are configured by the system transfer function based on the dynamic characteristics; the output limit of the voltage low limit controller is the rectification Active power limit, where the lower limit Pvdc_Low_lower is set to zero, and the configuration of the upper limit Pvdc_Low_upper directly determines the rectification active capability of this terminal participating in voltage coordination control, which is actually configured in combination with engineering requirements; the output limit of the voltage high limit controller is changed for this terminal. The active power limit of the inverter participating in the coordinated control of inverters, where the upper limit Pvdc_High_upper is set to zero, and the configuration of the lower limit Pvdc_High_lower directly determines the active power of the inverter participating in voltage coordinated control at this end, and is actually configured according to engineering requirements; the configuration of the trade-off function There are many forms, but there are generally three schemes: the first scheme is that the DC voltage high and low limit controllers are fully prioritized. At this time, when the DC voltage exceeds the high limit, the active power flow will be changed to meet the maximum stability of the DC voltage. , the actual active power flow and the command are no longer equal; this scheme is suitable for the AC power grid end with strong emergency power flow support; the second scheme is active power flow priority, and at this time the converter at this end performs the initial stage when the DC voltage exceeds the upper and lower limits. A certain degree of DC voltage control, but because the trade-off function is configured to give priority to active power flow, the active power flow is still guaranteed to be the closed-loop command value in the steady state. This scheme can perform DC voltage control at the initial stage of dynamics, and still ensure power flow transmission after stabilization. This scheme is suitable for the AC grid end with certain transient emergency power flow support; the third scheme is the limited coordination mode of active power flow. The transmission demand of the power flow at this end will be considered. In this way, the AC power flow change due to the coordination effect is between the first and second schemes. This scheme is suitable for the AC grid end where the converter must ensure a certain degree of power flow transmission. ; and the last thing is to ensure that the converter at this end operates under the allowable capacity, where Id_upper is the limit value of the maximum rectified active current of the converter at this end, Id_lower is the limit value of the maximum inverter active current of the converter at this end, and the active current The limit value is generally set to the maximum continuous operating load current allowed by the converter.
具有直流母线电压高低压限控制功能的有功功率控制器的外特性符合如图3b的要求:The external characteristics of the active power controller with the DC bus voltage high and low voltage limit control function meet the requirements of Figure 3b:
在控制过程中,母线电压超出设定好的上下限值时,功率控制器工作在直流电压控制模式,此时电压恒定为对应的设定好的上下限值;当母线电压在上下限值范围内时,切换为定功率控制模式,此时功率恒定。During the control process, when the bus voltage exceeds the set upper and lower limits, the power controller works in the DC voltage control mode, and the voltage is constant at the corresponding set upper and lower limits; when the bus voltage is within the upper and lower limits When it is inside, switch to constant power control mode, and the power is constant at this time.
选定各端的直流母线电压高低压限值,各端限值可以一致,也可以选为不同值,该限值选择的不同将引起潮流分配优先权不同。下面的仿真实例中,对不同的换流器对应负荷设定不同的优先级——即不同的上下限值。Select the high and low voltage limits of the DC bus voltage at each end. The limit values at each end can be the same, or they can be selected as different values. Different selections of the limit values will cause different power flow distribution priorities. In the following simulation example, different priorities are set for different converters corresponding to loads—that is, different upper and lower limit values.
下面通过仿真验证直流电压高低压限控制方法的有效性。The effectiveness of the DC voltage high and low voltage limit control method is verified below through simulation.
根据以上的控制策略,在MATLAB/SIMULINK软件中搭建了模块化多电平柔性直流输电换流器多端系统的仿真模型。该模型由五个换流器直流侧共点接入系统,接线简图如图4所示。其中1#换流器额定功率为350MW,2#换流器的额定功率为100MW,3#换流器的额定功率为100MW,4#换流器的额定功率为200MW,5#换流器的额定功率为100MW,直流母线额定电压为400kV。1#换流器为定直流母线电压运行模式,2—5#换流器均为定功率运行模式。2#、3#、4#、5#均为具有直流母线电压高低压限控制功能的功率控制器,其中4#低压限为370kV、其余低压限为380kV。According to the above control strategy, the simulation model of the multi-terminal system of the modular multi-level flexible DC transmission converter is built in MATLAB/SIMULINK software. The model is connected to the system by the common point of the DC side of five converters, and the wiring diagram is shown in Figure 4. Among them, the rated power of 1# converter is 350MW, the rated power of 2# converter is 100MW, the rated power of 3# converter is 100MW, the rated power of 4# converter is 200MW, and the rated power of 5# converter The rated power is 100MW, and the rated voltage of the DC bus is 400kV. The 1# converter is in the constant DC bus voltage operation mode, and the 2-5# converters are in the constant power operation mode. 2#, 3#, 4#, and 5# are all power controllers with DC bus voltage high and low voltage limit control function, of which 4# low voltage limit is 370kV, and other low voltage limits are 380kV.
仿真一:1#换流器为定直流母线电压模式,母线电压指令为400kV;2#换流器从直流侧抽功率50MW,3#换流器从直流侧抽功率100MW,4#换流器从直流侧抽功率100MW,5#换流器从直流侧抽功率100MW。0.6S时1#换流器电网侧发生三相零电压跌落故障。图5a为1#换流器交流电压波形,图5b为直流母线电压波形,图5c为1—5#换流器直流母线电流波形(以换流器交流侧流向直流侧为正方向)。从仿真波形中可看出0.6S故障后1#换流器退出运行,其直流电流降为0A,2#、3#、5#换流器由之前的定功率模式切入至直流母线电压控制状态,并将母线电压稳定在下限值380kV,4#换流器仍保持100MW功率运行。Simulation 1: 1# converter is in constant DC bus voltage mode, the bus voltage command is 400kV; 2# converter draws 50MW from the DC side, 3# converter draws 100MW from the DC side, 4# converter The power drawn from the DC side is 100MW, and the 5# converter draws 100MW from the DC side. At 0.6S, a three-phase zero voltage drop fault occurred on the grid side of the 1# converter. Figure 5a is the AC voltage waveform of the 1# converter, Figure 5b is the DC bus voltage waveform, and Figure 5c is the DC bus current waveform of the 1-5# converter (the flow from the AC side of the converter to the DC side is the positive direction). From the simulation waveform, it can be seen that after 0.6S fault, the 1# converter exits the operation, and its DC current drops to 0A, and the 2#, 3#, 5# converters switch from the previous constant power mode to the DC bus voltage control state , and stabilize the bus voltage at the lower limit of 380kV, and the 4# converter still maintains 100MW power operation.
仿真二:1#换流器为定直流母线电压模式,母线电压指令为400kV;0.2S2#开始从直流侧抽功率100MW,3#换流器从直流侧抽功率50MW,5#从直流侧抽功率100MW,0.5S时4#开始从直流侧抽功率150MW,0.7S时4#转为向直流侧送功率100MW;1.0S2#向直流送功率70MW,3#向直流送功率70MW,5#开始向直流送功率70MW,1.3S4#向直流送功率200MW,1.7S4#转为从直流侧抽功率20MW。图6a、6b为本试验的仿真波形。从波形中可以看出0.5S时由于1#功率传输有限,2—5#4个换流器抽的功率总和超出了1#换流器的输送能力,此时1#换流站转为整流方向最大功率输出运行,直流母线电压跌落,2#、3#、5#在0.5S切入至直流母线电压控制,将母线电压稳定在其下限值380kV,当0.7S时2—5#从直流侧抽功率的总和转为50MW,此时1#换流器功率可以满足其余四个换流器的运行要求,1#换流器再次将母线电压控制在400kV,2#、3#、5#转为原先的定功率控制,其传输功率恢复至功率指令值。1.0S2#、3#、5#转为向直流侧输出功率,此时4#也向直流侧输出功率,4个换流器向直流侧输出功率总和为310MW,系统正常运行,在1.3S时,4#向直流侧输出功率增大至200MW增大了100WM,此时4个换流器向直流侧输送总功率为410MW,超出了1#换流器的传输能力,此时1#换流器转为逆变方向最大功率输出运行,直流母线电压升高,2#、3#、5#1.3S切入至直流母线电压控制,将母线电压稳定在其上限值400kV,当1.7S时2—5#向直流侧送功率的总和转为190MW,此时1#换流器功率可以满足其余四个换流器的运行要求,1#换流器再次将母线电压控制在400kV,2#、3#、5#转为原先的定功率控制,其传输功率恢复至功率指令值。Simulation 2: 1# converter is in constant DC bus voltage mode, and the bus voltage command is 400kV; 0.2S2# starts to draw power from the DC side of 100MW, 3# converter draws power from the DC side to 50MW, and 5# draws power from the DC side Power 100MW, 4# starts to draw power 150MW from the DC side at 0.5S, 4# turns to send power to the DC side at 0.7S; 1.0S2# sends power to DC 70MW, 3# sends power to DC 70MW, 5# starts Send power 70MW to DC, 1.3S4# send power 200MW to DC, 1.7S4# turn to draw power 20MW from DC side. Figures 6a and 6b are the simulation waveforms of this experiment. It can be seen from the waveform that due to the limited power transmission of 1# at 0.5S, the sum of the power pumped by the 4 converters 2-5# exceeds the transmission capacity of the 1# converter. At this time, the 1# converter station is converted to rectification Direction maximum power output operation, DC bus voltage drops, 2#, 3#, 5# switch to DC bus voltage control at 0.5S, stabilize the bus voltage at its lower limit of 380kV, when 0.7S, 2-5# from DC The sum of side pumping power is converted to 50MW. At this time, the power of 1# converter can meet the operation requirements of the other four converters. 1# converter controls the bus voltage at 400kV again, 2#, 3#, 5# Switch to the original constant power control, and its transmission power returns to the power command value. 1.0S2#, 3#, 5# turn to output power to the DC side, at this
以上仿真验证了本控制方法的有效性。The above simulations verify the effectiveness of this control method.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310260431.7A CN103368170B (en) | 2013-06-26 | 2013-06-26 | The inverter of a kind of Multi-end flexible direct current transmission system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310260431.7A CN103368170B (en) | 2013-06-26 | 2013-06-26 | The inverter of a kind of Multi-end flexible direct current transmission system and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103368170A true CN103368170A (en) | 2013-10-23 |
CN103368170B CN103368170B (en) | 2016-08-24 |
Family
ID=49368955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310260431.7A Active CN103368170B (en) | 2013-06-26 | 2013-06-26 | The inverter of a kind of Multi-end flexible direct current transmission system and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103368170B (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103701133A (en) * | 2013-12-25 | 2014-04-02 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Reactive power control method for high-voltage direct current transmission system under low-power running condition |
CN103840478A (en) * | 2014-02-27 | 2014-06-04 | 国家电网公司 | Pre-charging method for modularized multi-level converter direct-current transmission system |
CN103986151A (en) * | 2014-03-20 | 2014-08-13 | 国家电网公司 | A Calculation Method for DC Power Receiving Scale of AC Receiving-end Grid |
CN104052077A (en) * | 2014-07-04 | 2014-09-17 | 南京南瑞继保电气有限公司 | Direct-current transmission contravariant side frequency control method |
CN104065287A (en) * | 2014-05-30 | 2014-09-24 | 许继电气股份有限公司 | A Balance Control Method for Voltage Source Symmetrical Bipolar Converter |
CN104184138A (en) * | 2014-08-21 | 2014-12-03 | 南京南瑞继保电气有限公司 | Method for one end of multi-end flexible direct-current power transmission system to exit from operation system |
CN104184139A (en) * | 2014-09-12 | 2014-12-03 | 东南大学 | Direct-current power flow controller for multiport flexible direct-current power transmission system and control method |
CN104218808A (en) * | 2014-07-25 | 2014-12-17 | 国家电网公司 | Output voltage positive and negative polarity inversion method based on modular multilevel converter |
CN104253428A (en) * | 2014-05-07 | 2014-12-31 | 南方电网科学研究院有限责任公司 | Single-loop direct-current large-signal modulation controller based on ping-pong control and control method thereof |
CN104578129A (en) * | 2015-01-08 | 2015-04-29 | 南方电网科学研究院有限责任公司 | Control method of multi-terminal flexible direct-current power transmission system |
CN104901301A (en) * | 2014-03-04 | 2015-09-09 | 国家电网公司 | Coordination control method for multi-terminal flexible DC power transmission system |
CN105006831A (en) * | 2015-07-14 | 2015-10-28 | 南方电网科学研究院有限责任公司 | Method for controlling AC side voltage of flexible DC power distribution network by energy storage and converter station cooperation |
CN105207192A (en) * | 2014-06-24 | 2015-12-30 | 南京南瑞继保电气有限公司 | Direct-current power transmission closed-loop current control feedback method and device |
CN105429164A (en) * | 2015-12-09 | 2016-03-23 | 许继电气股份有限公司 | Sending-end low voltage fault ride-through method for hybrid direct current power transmission system |
CN105811449A (en) * | 2016-05-22 | 2016-07-27 | 辽宁省电力有限公司大连供电公司 | Reactive power distribution method for flexible direct current power transmission system |
CN106253319A (en) * | 2016-08-21 | 2016-12-21 | 国家电网公司 | A kind of grounded circuit of low-voltage direct power distribution network based on flexible direct current networking technology |
CN106451401A (en) * | 2016-05-16 | 2017-02-22 | 浙江大学 | Control method of maximum power output of converter when DC voltage drops |
CN106487032A (en) * | 2016-11-16 | 2017-03-08 | 南方电网科学研究院有限责任公司 | Multi-terminal flexible direct current transmission control method |
CN106655238A (en) * | 2017-01-06 | 2017-05-10 | 国家电网公司 | Combined current converter and internal DC voltage balance control method thereof |
CN106786645A (en) * | 2016-12-23 | 2017-05-31 | 海南电网有限责任公司 | Dynamic reactive compensation device cooperative control method and system |
CN106849146A (en) * | 2017-02-05 | 2017-06-13 | 安徽康力节能电器科技有限公司 | A kind of five end HVDC transmission systems |
CN107404119A (en) * | 2017-06-14 | 2017-11-28 | 国家电网公司 | A kind of electric automobile load turns the control method for system |
CN108134401A (en) * | 2017-12-19 | 2018-06-08 | 东北电力大学 | Ac/dc Power Systems multiple target tide optimization and control method |
CN108418228A (en) * | 2018-03-28 | 2018-08-17 | 许继电气股份有限公司 | Active power control method and flexible direct current grid when converter fails |
CN109066756A (en) * | 2018-08-01 | 2018-12-21 | 华南理工大学 | A kind of VSC-HVDC linear active disturbance rejection control method improving power system transient stability |
CN109962473A (en) * | 2017-12-14 | 2019-07-02 | 中电普瑞科技有限公司 | A Control and Protection System of Unified Power Flow Controller UPFC |
CN110336312A (en) * | 2019-07-04 | 2019-10-15 | 许继电气股份有限公司 | A VSC power control method and device |
CN110571781A (en) * | 2018-06-05 | 2019-12-13 | 台达电子工业股份有限公司 | DC bus voltage control method and system |
CN111416376A (en) * | 2020-03-13 | 2020-07-14 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Voltage balancing method for extra-high voltage flexible direct-current constant active power MMC converter station |
CN111934340A (en) * | 2020-08-24 | 2020-11-13 | 华中科技大学 | Adaptive power-voltage droop control method and system for direct current transmission system |
CN112821378A (en) * | 2021-01-08 | 2021-05-18 | 珠海格力电器股份有限公司 | Voltage regulation method and device and multi-element power supply system |
CN113612380A (en) * | 2021-08-27 | 2021-11-05 | 国网江苏省电力有限公司电力科学研究院 | A method and device for starting and stopping an inverter of an integrated energy station |
CN114759553A (en) * | 2022-04-24 | 2022-07-15 | 南方电网科学研究院有限责任公司 | Back-to-back converter system and converter single-side exit method |
CN115459328A (en) * | 2022-07-28 | 2022-12-09 | 贵州电网有限责任公司 | Flexible direct-current power transmission topology with ring network structure and control method |
CN115514019A (en) * | 2022-10-13 | 2022-12-23 | 国家电网有限公司 | Large-load test control method and system for carrying out flexible direct current delivery on new energy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102545201A (en) * | 2011-12-27 | 2012-07-04 | 上海交通大学 | Method for establishing high-voltage direct-current transmission small signal model |
-
2013
- 2013-06-26 CN CN201310260431.7A patent/CN103368170B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102545201A (en) * | 2011-12-27 | 2012-07-04 | 上海交通大学 | Method for establishing high-voltage direct-current transmission small signal model |
Non-Patent Citations (3)
Title |
---|
吴俊宏等: "多端柔性直流输电系统在风电场中的应用", 《电网技术》 * |
阮思烨等: "多端电压源型直流输电系统的控制策略", 《电力系统自动化》 * |
陈海荣等: "一种基于电压源型多端直流输电的供电系统", 《高电压技术》 * |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103701133B (en) * | 2013-12-25 | 2015-12-02 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Powerless control method in HVDC (High Voltage Direct Current) transmission system low power run situation |
CN103701133A (en) * | 2013-12-25 | 2014-04-02 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Reactive power control method for high-voltage direct current transmission system under low-power running condition |
CN103840478A (en) * | 2014-02-27 | 2014-06-04 | 国家电网公司 | Pre-charging method for modularized multi-level converter direct-current transmission system |
CN103840478B (en) * | 2014-02-27 | 2016-01-20 | 国家电网公司 | A kind of pre-charge method of modular multi-level converter DC transmission system |
WO2015131602A1 (en) * | 2014-03-04 | 2015-09-11 | 国家电网公司 | Method for coordinating and controlling multi-terminal flexible direct current transmission system |
CN104901301A (en) * | 2014-03-04 | 2015-09-09 | 国家电网公司 | Coordination control method for multi-terminal flexible DC power transmission system |
CN103986151B (en) * | 2014-03-20 | 2016-04-20 | 国家电网公司 | A kind of computational methods exchanging the powered scale of receiving end electrical network direct current |
CN103986151A (en) * | 2014-03-20 | 2014-08-13 | 国家电网公司 | A Calculation Method for DC Power Receiving Scale of AC Receiving-end Grid |
CN104253428A (en) * | 2014-05-07 | 2014-12-31 | 南方电网科学研究院有限责任公司 | Single-loop direct-current large-signal modulation controller based on ping-pong control and control method thereof |
CN104065287A (en) * | 2014-05-30 | 2014-09-24 | 许继电气股份有限公司 | A Balance Control Method for Voltage Source Symmetrical Bipolar Converter |
CN105207192A (en) * | 2014-06-24 | 2015-12-30 | 南京南瑞继保电气有限公司 | Direct-current power transmission closed-loop current control feedback method and device |
CN104052077B (en) * | 2014-07-04 | 2016-03-02 | 南京南瑞继保电气有限公司 | A kind of direct current transportation inverter side control method for frequency |
CN104052077A (en) * | 2014-07-04 | 2014-09-17 | 南京南瑞继保电气有限公司 | Direct-current transmission contravariant side frequency control method |
CN104218808A (en) * | 2014-07-25 | 2014-12-17 | 国家电网公司 | Output voltage positive and negative polarity inversion method based on modular multilevel converter |
CN104218808B (en) * | 2014-07-25 | 2017-01-25 | 国家电网公司 | Output voltage positive and negative polarity inversion method based on modular multilevel converter |
CN104184138A (en) * | 2014-08-21 | 2014-12-03 | 南京南瑞继保电气有限公司 | Method for one end of multi-end flexible direct-current power transmission system to exit from operation system |
CN104184139A (en) * | 2014-09-12 | 2014-12-03 | 东南大学 | Direct-current power flow controller for multiport flexible direct-current power transmission system and control method |
CN104578129A (en) * | 2015-01-08 | 2015-04-29 | 南方电网科学研究院有限责任公司 | Control method of multi-terminal flexible direct-current power transmission system |
CN105006831A (en) * | 2015-07-14 | 2015-10-28 | 南方电网科学研究院有限责任公司 | Method for controlling AC side voltage of flexible DC power distribution network by energy storage and converter station cooperation |
CN105006831B (en) * | 2015-07-14 | 2017-03-01 | 南方电网科学研究院有限责任公司 | Method for controlling AC side voltage of flexible DC power distribution network by energy storage and converter station cooperation |
CN105429164B (en) * | 2015-12-09 | 2018-08-21 | 许继电气股份有限公司 | The sending end low voltage failure traversing method of Hybrid HVDC system |
CN105429164A (en) * | 2015-12-09 | 2016-03-23 | 许继电气股份有限公司 | Sending-end low voltage fault ride-through method for hybrid direct current power transmission system |
CN106451401A (en) * | 2016-05-16 | 2017-02-22 | 浙江大学 | Control method of maximum power output of converter when DC voltage drops |
CN106451401B (en) * | 2016-05-16 | 2019-02-05 | 浙江大学 | Control method of inverter maximum power output when DC voltage drops |
CN105811449A (en) * | 2016-05-22 | 2016-07-27 | 辽宁省电力有限公司大连供电公司 | Reactive power distribution method for flexible direct current power transmission system |
CN106253319A (en) * | 2016-08-21 | 2016-12-21 | 国家电网公司 | A kind of grounded circuit of low-voltage direct power distribution network based on flexible direct current networking technology |
CN106487032A (en) * | 2016-11-16 | 2017-03-08 | 南方电网科学研究院有限责任公司 | Multi-terminal flexible direct current transmission control method |
CN106487032B (en) * | 2016-11-16 | 2019-04-19 | 南方电网科学研究院有限责任公司 | Multi-terminal flexible direct current transmission control method |
CN106786645A (en) * | 2016-12-23 | 2017-05-31 | 海南电网有限责任公司 | Dynamic reactive compensation device cooperative control method and system |
CN106786645B (en) * | 2016-12-23 | 2019-03-08 | 海南电网有限责任公司 | Dynamic reactive compensation device cooperative control method and system |
CN106655238A (en) * | 2017-01-06 | 2017-05-10 | 国家电网公司 | Combined current converter and internal DC voltage balance control method thereof |
CN106849146B (en) * | 2017-02-05 | 2024-09-27 | 施秀花 | Five-end high-voltage direct-current transmission system |
CN106849146A (en) * | 2017-02-05 | 2017-06-13 | 安徽康力节能电器科技有限公司 | A kind of five end HVDC transmission systems |
CN107404119B (en) * | 2017-06-14 | 2020-08-18 | 国家电网公司 | Control method of electric vehicle load transfer system |
CN107404119A (en) * | 2017-06-14 | 2017-11-28 | 国家电网公司 | A kind of electric automobile load turns the control method for system |
CN109962473A (en) * | 2017-12-14 | 2019-07-02 | 中电普瑞科技有限公司 | A Control and Protection System of Unified Power Flow Controller UPFC |
CN108134401A (en) * | 2017-12-19 | 2018-06-08 | 东北电力大学 | Ac/dc Power Systems multiple target tide optimization and control method |
CN108418228A (en) * | 2018-03-28 | 2018-08-17 | 许继电气股份有限公司 | Active power control method and flexible direct current grid when converter fails |
CN110571781B (en) * | 2018-06-05 | 2022-10-21 | 台达电子工业股份有限公司 | DC bus voltage control method and system |
CN110571781A (en) * | 2018-06-05 | 2019-12-13 | 台达电子工业股份有限公司 | DC bus voltage control method and system |
CN109066756A (en) * | 2018-08-01 | 2018-12-21 | 华南理工大学 | A kind of VSC-HVDC linear active disturbance rejection control method improving power system transient stability |
CN110336312A (en) * | 2019-07-04 | 2019-10-15 | 许继电气股份有限公司 | A VSC power control method and device |
CN110336312B (en) * | 2019-07-04 | 2022-12-02 | 许继电气股份有限公司 | A VSC power control method and device |
CN111416376B (en) * | 2020-03-13 | 2021-09-07 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A voltage balance method for UHV flexible DC constant active power MMC converter station |
CN111416376A (en) * | 2020-03-13 | 2020-07-14 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Voltage balancing method for extra-high voltage flexible direct-current constant active power MMC converter station |
CN111934340A (en) * | 2020-08-24 | 2020-11-13 | 华中科技大学 | Adaptive power-voltage droop control method and system for direct current transmission system |
CN112821378A (en) * | 2021-01-08 | 2021-05-18 | 珠海格力电器股份有限公司 | Voltage regulation method and device and multi-element power supply system |
CN113612380A (en) * | 2021-08-27 | 2021-11-05 | 国网江苏省电力有限公司电力科学研究院 | A method and device for starting and stopping an inverter of an integrated energy station |
CN114759553A (en) * | 2022-04-24 | 2022-07-15 | 南方电网科学研究院有限责任公司 | Back-to-back converter system and converter single-side exit method |
CN115459328A (en) * | 2022-07-28 | 2022-12-09 | 贵州电网有限责任公司 | Flexible direct-current power transmission topology with ring network structure and control method |
CN115514019A (en) * | 2022-10-13 | 2022-12-23 | 国家电网有限公司 | Large-load test control method and system for carrying out flexible direct current delivery on new energy |
CN115514019B (en) * | 2022-10-13 | 2023-05-16 | 国家电网有限公司 | Large-load test control method and system for new energy sent out by flexible direct current |
Also Published As
Publication number | Publication date |
---|---|
CN103368170B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103368170B (en) | The inverter of a kind of Multi-end flexible direct current transmission system and control method thereof | |
CN104319816B (en) | A kind of light storage alternating current-direct current mixing micro-grid system and control method thereof | |
CN105226632B (en) | A kind of multi-mode switching control method for coordinating of DC micro power grid system | |
CN104113082B (en) | A kind of modularity full direct current photovoltaic system and control method thereof | |
CN104810850B (en) | Non-critical load continuously adjustable DC (direct current) micro-grid off-grid and on-grid unified and coordinated control method | |
CN110649642B (en) | Voltage coordination control method for alternating current and direct current power distribution system and alternating current and direct current power distribution system | |
CN103269083B (en) | Multi-terminal high-voltage direct-current power transmission system | |
CN108521136A (en) | A multi-objective cooperative control method based on true bipolar flexible direct current transmission system | |
CN204118759U (en) | A kind of light storage alternating current-direct current mixing micro-grid system | |
CN103904635A (en) | Topological structure of multi-port DC transformer substation and control method thereof | |
CN206471841U (en) | Electric energy router and micro-capacitance sensor structure | |
CN110676917A (en) | Charging system and charging method | |
CN103280844A (en) | Alternating/direct current hybrid multi-level micro grid system | |
CN113949089A (en) | An electrochemical energy storage commutation system and method with harmonic suppression capability | |
CN110544938A (en) | Low-voltage microgrid grid-connected and off-grid control method containing battery and super capacitor | |
CN107749636A (en) | Ternary converter system based on distributed power generation system | |
CN109888786A (en) | A control method for AC-DC hybrid microgrid | |
Zhan et al. | Research on hybrid multi-terminal high-voltage DC technology for offshore wind farm integration | |
CN106712068A (en) | Parallel hybrid DC power transmission system and reactive power regulation optimization method thereof | |
CN105978011B (en) | Flexible subregion interconnect device steady-state model for dispatching of power netwoks | |
CN105870963A (en) | Frequency voltage slope control-based VSC convertor station control method | |
CN210780187U (en) | Charging system | |
CN108418245A (en) | A Simplified Constant Power Control Method for Tie Lines of DC Microgrid | |
Tu et al. | Study on an novel multi-port energy router for AC-DC hybrid microgrid | |
CN105977995B (en) | A kind of active reactive control method of flexibility looped network device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: XUJI ELECTRIC CO., LTD. Free format text: FORMER OWNER: XUJI GROUP CO., LTD. Effective date: 20131129 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20131129 Address after: No. 1298 Xuchang City, Henan province 461000 XJ Avenue Applicant after: Xuji Electric Co., Ltd. Address before: No. 1298 Xuchang City, Henan province 461000 XJ Avenue Applicant before: Xuji Group Co., Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |