Nothing Special   »   [go: up one dir, main page]

CN103281143B - Selecting type cooperation spectrum sensing method based on double-threshold energy detection - Google Patents

Selecting type cooperation spectrum sensing method based on double-threshold energy detection Download PDF

Info

Publication number
CN103281143B
CN103281143B CN201310211159.3A CN201310211159A CN103281143B CN 103281143 B CN103281143 B CN 103281143B CN 201310211159 A CN201310211159 A CN 201310211159A CN 103281143 B CN103281143 B CN 103281143B
Authority
CN
China
Prior art keywords
fusion center
primary user
detection
user
cognitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310211159.3A
Other languages
Chinese (zh)
Other versions
CN103281143A (en
Inventor
高远
周浩
朱昌平
沈媛
汤一彬
单鸣雷
姚澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201310211159.3A priority Critical patent/CN103281143B/en
Publication of CN103281143A publication Critical patent/CN103281143A/en
Application granted granted Critical
Publication of CN103281143B publication Critical patent/CN103281143B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于双门限能量检测的选择式协作频谱感知方法,该方法包括以下步骤:1、在主用户信号检测阶段,认知无线电系统中各认知用户采用双门限能量检测方法进行本地频谱感知,如果能量值落在两门限值之外,则可以进行本地判决“H0或H1”;如果能量值落在两门限值之间,认知用户则需保留原始能量检测值;2、在初始检测结果报告阶段,各认知用户平均分配主用户频段,采用选择式策略向融合中心报告各自的初始检测结果,避免了引入参数不可靠的认知检测结果,同时节约了传统的专有控制信道资源;融合中心首先采用等增益准则对接收到的原始能量检测值进行主用户判决,将该判决结果等效为一个节点决策,然后采用“或”准则做出主用户是否存在的最终判决。通过仿真结果表明,本方案可以在不损失ROC性能的前提下,有效地节省专有控制信道资源,同时可获得更高的检测概率。

The invention discloses a selective cooperative spectrum sensing method based on double-threshold energy detection. The method includes the following steps: 1. In the primary user signal detection stage, each cognitive user in the cognitive radio system adopts a double-threshold energy detection method to conduct Local spectrum sensing, if the energy value falls outside the two thresholds, a local decision "H 0 or H 1 " can be made; if the energy value falls between the two thresholds, the cognitive user needs to retain the original energy detection 2. In the initial detection result reporting stage, each cognitive user is equally allocated to the primary user frequency band, and uses a selective strategy to report their initial detection results to the fusion center, avoiding the introduction of cognitive detection results with unreliable parameters, and saving Traditional dedicated control channel resources; the fusion center first uses the equal gain criterion to make a primary user judgment on the received original energy detection value, and the judgment result is equivalent to a node decision, and then uses the "or" criterion to decide whether the primary user Final judgment exists. The simulation results show that this scheme can effectively save dedicated control channel resources and obtain a higher detection probability without losing ROC performance.

Description

一种基于双门限能量检测的选择式协作频谱感知方法A Selective Cooperative Spectrum Sensing Method Based on Dual Threshold Energy Detection

技术领域technical field

本发明属于无线通信技术领域,涉及一种频谱感知方法,特别涉及一种基于双门限能量检测的选择式协作频谱感知方法。The invention belongs to the technical field of wireless communication, relates to a spectrum sensing method, in particular to a selective cooperative spectrum sensing method based on double-threshold energy detection.

背景技术Background technique

随着无线通信业务的持续增长,无线通信系统对频谱资源的需求不断增加,从而使得无线频谱资源变得越来越稀缺。但是无线频谱资源是一种不可再生资源,只能对频谱资源再利用,因此研究如何提高频谱资源的利用率,才能缓解频谱资源稀缺的难题。认知无线电技术作为一种新兴的智能无线通信技术,突破了传统的固定分配频谱的政策,通过实时监测目标频段,在对主用户不造成任何干扰的前提下,允许认知用户“伺机”接入暂时未被主用户使用的空闲频段,有效的提高了频谱利用率。如果一旦发现主用户重新使用该频段,认知用户应该及时退出该频段,以保证主用户通信的正常和可靠。With the continuous growth of wireless communication services, the demand for spectrum resources of wireless communication systems continues to increase, so that wireless spectrum resources become increasingly scarce. However, wireless spectrum resources are non-renewable resources and can only be reused. Therefore, research on how to improve the utilization of spectrum resources can alleviate the problem of scarcity of spectrum resources. As an emerging intelligent wireless communication technology, cognitive radio technology breaks through the traditional policy of fixed spectrum allocation. By monitoring the target frequency band in real time, it allows cognitive users to "wait for an opportunity" to connect without causing any interference to the primary user. The idle frequency band that is temporarily not used by the main user can be used, which effectively improves the spectrum utilization rate. Once the primary user is found to use the frequency band again, the cognitive user should exit the frequency band in time to ensure the normal and reliable communication of the primary user.

由于无线环境中存在路径损耗、阴影效应、多径效应和隐藏终端等问题,使得传统单节点检测的检测概率降低,甚至无法检测出主用户的存在,从而对主用户通信造成干扰。因此协作频谱检测作为能够提高频谱检测的技术而受到广泛的关注。文献《认知无线电中的协作频谱感知第一部分:两用户网络》(Cooperative spectrum sensing incognitive radio,Part I:Two user networks,G.Ganesan and Y.G.Li,IEEE Transactions on Wireless Communications,2007,6(6):2204-2213)指出在传统的协作频谱感知方案中,一般均假设认知用户与融合中心之间存在专有控制信道,但这需要额外的无线频谱资源,并且需要对专有控制信道资源进行动态管理,增加了系统实现的复杂度。Due to the problems of path loss, shadow effect, multipath effect and hidden terminal in the wireless environment, the detection probability of traditional single-node detection is reduced, and even the existence of the primary user cannot be detected, thereby causing interference to the communication of the primary user. Therefore, cooperative spectrum detection is widely concerned as a technology that can improve spectrum detection. Document "Cooperative spectrum sensing incognitive radio, Part I: Two user networks, G.Ganesan and Y.G.Li, IEEE Transactions on Wireless Communications, 2007, 6(6) :2204-2213) pointed out that in the traditional cooperative spectrum sensing scheme, it is generally assumed that there is a dedicated control channel between the cognitive user and the fusion center, but this requires additional wireless spectrum resources, and the dedicated control channel resources need to be Dynamic management increases the complexity of system implementation.

发明内容Contents of the invention

针对上述问题,本发明提出了一种针对认知无线电网络的基于双门限能量检测的选择式协作频谱感知方法,本方法避免协作频谱检测中难以确定唯一判决门限、多径衰落和阴影衰落等问题,以双门限能量检测为基础,认知用户平均分配主用户频段,在分配到的时隙上采用选择式策略向融合中心汇报其初始检测结果;融合中心首先根据等增益合并准则对原始能量检测值进行判决,将该判决结果等效为一个节点决策,再通过“或”准则与其他决策节点(指向融合中心报告初始检测结果H0或H1的认知用户)作出主用户是否存在的最终判决,提高了系统的检测概率。In view of the above problems, the present invention proposes a selective cooperative spectrum sensing method based on dual-threshold energy detection for cognitive radio networks. This method avoids problems such as difficulty in determining a unique decision threshold, multipath fading, and shadow fading in cooperative spectrum detection. , based on double-threshold energy detection, the cognitive users are evenly allocated to the frequency band of the primary user, and report their initial detection results to the fusion center using a selective strategy on the allocated time slots; the fusion center first performs the original energy detection The judgment result is equivalent to a node decision, and then through the "or" criterion and other decision nodes (cognitive users who report the initial detection result H 0 or H 1 to the fusion center) make the final decision on whether the primary user exists Judgment improves the detection probability of the system.

为实现上述发明目的,本发明基于双门限能量检测的无需专有控制信道的选择式协作频谱感知的方法,其特征在于,包括以下步骤:一种基于双门限能量检测的选择式协作频谱感知方法,其特征在于,包含如下步骤:In order to achieve the purpose of the above invention, the method for selective cooperative spectrum sensing based on dual-threshold energy detection without a dedicated control channel in the present invention is characterized in that it includes the following steps: a method for selective cooperative spectrum sensing based on dual-threshold energy detection , characterized in that it includes the following steps:

(1)、主用户信号检测阶段:(1) Primary user signal detection stage:

(1a)、认知无线电系统中各认知用户对主用户信号进行本地频谱感知,得到感知到的主用户能量检测值Yi(1a), each cognitive user in the cognitive radio system performs local spectrum sensing on the primary user signal, and obtains the sensed primary user energy detection value Y i ;

(1b)、判断各认知用户检测到的主用户能量值Yi与两门限值λ1和λ2的关系,当能量检测值Yi落在两门限值λ1和λ2之外,直接进行本地判决“H0或H1”,H0表示主用户不存在,H1表示主用户存在;(1b), judge the relationship between the primary user energy value Y i detected by each cognitive user and the two threshold values λ 1 and λ 2 , when the energy detection value Y i falls outside the two threshold values λ 1 and λ 2 , directly make a local decision "H 0 or H 1 ", H 0 means that the primary user does not exist, and H 1 means that the primary user exists;

(1c)、如果能量检测值Yi落在两门限值λ1和λ2之间,不直接进行本地判决,认知用户需要保留原始能量检测值Yi(1c), if the energy detection value Y i falls between the two thresholds λ 1 and λ 2 , no local decision is made directly, and the cognitive user needs to keep the original energy detection value Y i ;

(2)初始检测结果报告阶段(2) Initial test result reporting stage

(2a)、各认知用户平均分配主用户频段,认知用户在分配到的子时隙上,将各自的检测结果报告给融合中心;(2a), Each cognitive user is equally allocated to the primary user frequency band, and the cognitive users report their respective detection results to the fusion center on the allocated sub-slots;

(2b)采用选择式策略向融合中心汇报初始检测结果,当认知用户在主用户信号检测阶段未感知到主用户存在,则向融合中心发送一个经过编码的指示信号,否则不向融合中心发送任何信号以避免和主用户产生干扰;(2b) Use a selective strategy to report the initial detection results to the fusion center. When the cognitive user does not perceive the existence of the primary user during the primary user signal detection phase, it sends an encoded indication signal to the fusion center, otherwise it does not send it to the fusion center any signal to avoid interference with the primary user;

(2c)、融合中心对接收到的原始能量检测值Yi做出主用户判决“H0或H1”,将判决结果等效为一个节点决策,再联合步骤(2b)中向融合中心汇报的检测结果(包括H0或H1)作出主用户是否存在的最终判决。(2c), the fusion center makes a primary user decision “H 0 or H 1 ” on the received original energy detection value Y i , and the judgment result is equivalent to a node decision, and then reports to the fusion center in joint step (2b) The detection results (including H 0 or H 1 ) make the final judgment on whether the primary user exists.

进一步的技术方案包括:Further technical solutions include:

步骤(1)中设置2个大小不同的门限值λ1和λ2,λ1<λ2,当能量检测值Yi>λ2时,将检测结果Di判为1,即主用户信号存在H1;当能量检测值Yi<λ1时,将检测结果Di判为0,即主用户信号不存在H0;当能量检测值位于λ1<Yi<λ2区间时,则保留原始能量检测值Yi;检测结果Di表示为:In step (1), set two threshold values λ 1 and λ 2 with different sizes, λ 1 < λ 2 , when the energy detection value Y i > λ 2 , the detection result D i is judged as 1, that is, the primary user signal H 1 exists; when the energy detection value Y i1 , the detection result D i is judged as 0, that is, the primary user signal does not exist H 0 ; when the energy detection value is in the range of λ 1 <Y i2 , then Keep the original energy detection value Y i ; the detection result D i is expressed as:

DD. ii == 00 ,, 00 << YY ii << &lambda;&lambda; 11 YY ii ,, &lambda;&lambda; 11 << YY ii << &lambda;&lambda; 22 11 ,, YY ii >> &lambda;&lambda; 22 -- -- -- (( 11 ))

在步骤(2)中,认知用户CUi在主用户频段的第i个子信道向融合中心发送信号βi(k),融合中心相应的接收信号表示为:In step (2), the cognitive user CU i sends a signal β i (k) to the fusion center on the ith sub-channel of the main user frequency band, and the corresponding received signal of the fusion center is expressed as:

ythe y cc ii (( kk ,, 22 )) == pp sthe s hh icic (( kk ,, 22 )) &beta;&beta; ii (( kk ,, 22 )) ++ pp pp hh pcpc (( kk )) &alpha;&alpha; (( kk ,, 22 )) ++ nno cc ii (( kk ,, 22 )) -- -- -- (( 22 ))

其中k表示认知用户分配到的时隙,pp表示主用户的发射功率,ps表示认知用户的发射功率;hic(k)和hpc(k)分别表示CUi到融合中心和主用户到融合中心的无线信道增益;(k,2)表示零均值和方差为N0的加性高斯白噪声;Where k represents the time slot assigned to the cognitive user, p p represents the transmit power of the primary user, and p s represents the transmit power of the cognitive user; h ic (k) and h pc (k) represent CU i to fusion center and The wireless channel gain from the primary user to the fusion center; (k,2) represents additive white Gaussian noise with zero mean and variance N 0 ;

&beta;&beta; ii (( kk )) == DD. ii ,, Hh ii (( kk ,, 11 )) == Hh 00 00 ,, Hh ii (( kk ,, 11 )) == Hh 11 -- -- -- (( 33 ))

&alpha;&alpha; (( kk ,, 22 )) == 00 ,, Hh (( kk )) == Hh 00 sthe s (( kk ,, 22 )) ,, Hh (( kk )) == Hh 11 -- -- -- (( 44 ))

其中s(k,2)表示主用户在初始检测结果报告阶段的发射信号,根据式(2)融合中心解码βi(k);Where s(k,2) represents the primary user’s transmitted signal in the initial detection result reporting stage, according to equation (2) fusion center decoding β i (k);

根据香农信道编码定理,当认知用户CUi与融合中心产生中断时,融合中心在相应子信道上无法接收信号或成功解码,此时融合中心认为认知用户CUi没有发送信号,默认CUi的初始检测结果Hi(k,2)=H1或Yi;当融合中心在相应子信道上成功接收信号并解码,那么融合中心认为CUi发送了信号,即融合中心默认CUi的初始检测结果为Hi(k,2)=H0;融合中心接收到的来自认知用户CUi的初始检测结果表示为:According to the Shannon channel coding theorem, when the cognitive user CU i is interrupted with the fusion center, the fusion center cannot receive the signal or successfully decode the signal on the corresponding sub-channel. At this time, the fusion center believes that the cognitive user CU i has not sent a signal, and the default CU i The initial detection result H i (k,2)=H 1 or Y i ; when the fusion center successfully receives and decodes the signal on the corresponding sub-channel, then the fusion center considers that CU i sent the signal, that is , the fusion center defaults to the initial The detection result is H i (k,2)=H 0 ; the initial detection result received by the fusion center from the cognitive user CU i is expressed as:

其中Θ(k,2)=1表示认知用户CUi到融合中心之间发生中断,其中μ表示时间带宽乘积,γs表示认知用户发射功率,γp表示主用户发射功率;Θ(k,2)=0表示认知用户CUi到融合中心之间没有发生中断;Where Θ(k,2)=1 means that there is an interruption between the cognitive user CU i and the fusion center, where μ represents the time-bandwidth product, γ s represents the transmit power of the cognitive user, and γ p represents the transmit power of the primary user; Θ(k ,2)=0 means that there is no interruption between the cognitive user CU i and the fusion center;

发生中断表示为:An interruption is indicated by:

11 -- aa Mm loglog 22 (( 11 ++ || hh icic (( kk )) || 22 &CenterDot;&Center Dot; &gamma;&gamma; sthe s || &beta;&beta; ii (( kk )) || 22 || hh pcpc (( kk )) || 22 &CenterDot;&Center Dot; &gamma;&gamma; pp || &alpha;&alpha; (( kk ,, 22 )) || 22 ++ 11 )) << 11 &mu;&mu; -- -- -- (( 66 ))

其中a为信号检测开销时间,M为认知用户数量。Where a is the overhead time of signal detection, and M is the number of cognitive users.

在步骤2(c)中,融合中心采用等增益合并准则对接收到的原始能量检测值Yi作出主用户判决“H0或H1”,再通过“或”准则和步骤(2b)中向融合中心汇报的检测结果综合作出主用户是否存在的最终判决。In step 2(c), the fusion center uses the equal-gain combination criterion to make a primary user decision “H 0 or H 1 ” on the received original energy detection value Y i , and then uses the “or” criterion and step (2b) to The detection results reported by the fusion center comprehensively make a final judgment on whether the primary user exists.

最终判决对应的感知结果表示为:The perception result corresponding to the final decision is expressed as:

(7)其中Y指融合中心采用等增益合并准则对接收到的原始能量检测值作出的主用户判决结果,Hi(k,2)为采用逻辑“或”准则对本地判决的检测结果进行处理得到的结果。 (7) of which Y refers to the primary user judgment result made by the fusion center on the received original energy detection value by using the equal-gain combination criterion, H i (k, 2) is the result obtained by processing the detection result of the local decision by adopting the logical "or" criterion.

本发明的有益效果:本发明采用协作频谱感知技术,避免了因无线环境中存在路径损耗、阴影效应、多径效应和隐藏终端等问题,使得传统单节点检测的检测概率降低,甚至无法检测出主用户的存在,从而对主用户通信造成干扰。由于在传统的协作频谱感知方案中,一般均假设认知用户与融合中心之间存在专有控制信道,但这需要额外的无线频谱资源,并且需要对专有控制信道资源进行动态管理,增加了系统实现的复杂度,本发明抛开传统的专有控制信道,通过平均分配未被主用户使用的频段,各认知用户在分配到的时隙上通过选择式的数据传输方案,将初始检测结果汇报给融合中心,避免对主用户通信产生干扰,有效的提高了检测概率,并提高了频谱利用率。Beneficial effects of the present invention: the present invention adopts cooperative spectrum sensing technology to avoid problems such as path loss, shadow effect, multipath effect and hidden terminals in the wireless environment, which reduces the detection probability of traditional single-node detection, and even fails to detect The existence of the primary user causes interference to the communication of the primary user. In the traditional cooperative spectrum sensing scheme, it is generally assumed that there is a dedicated control channel between the cognitive user and the fusion center, but this requires additional wireless spectrum resources and requires dynamic management of dedicated control channel resources, which increases the The complexity of the system implementation, the present invention abandons the traditional dedicated control channel, by evenly allocating the frequency bands not used by the primary user, each cognitive user uses a selective data transmission scheme on the allocated time slot, and the initial detection The results are reported to the fusion center to avoid interference to the communication of the main user, effectively improve the detection probability, and improve the spectrum utilization rate.

附图说明Description of drawings

图1为本发明的协作频谱感知系统模型框图;Fig. 1 is a block diagram of a collaborative spectrum sensing system model of the present invention;

图2为双门限能量检测判决图;Fig. 2 is a double-threshold energy detection decision diagram;

图3为不同检测概率下,传统方案与改进方案的虚警概率比较性能曲线图;Figure 3 is a comparison performance curve of the false alarm probability between the traditional scheme and the improved scheme under different detection probabilities;

图4为不同主用户信号检测开销时间下,虚警概率随检测概率的变化曲线图;Fig. 4 is a graph showing the variation of false alarm probability with detection probability under different primary user signal detection overhead times;

图5为本发明的基于双门限能量检测的选择式协作频谱感知方法的流程图。FIG. 5 is a flow chart of the selective cooperative spectrum sensing method based on dual-threshold energy detection in the present invention.

具体实施方案specific implementation plan

下面结合附图对本发明的原理和具体实施方式作进一步详细描述:Principle of the present invention and specific embodiment are described in further detail below in conjunction with accompanying drawing:

图1所示为本发明的协作频谱感知系统模型图,协作频谱感知系统中包括一个主用户、M个认知用户和一个信息融合中心。Fig. 1 is a model diagram of the cooperative spectrum sensing system of the present invention, and the cooperative spectrum sensing system includes a primary user, M cognitive users and an information fusion center.

一种基于双门限能量检测的选择式协作频谱感知方法,包括如下步骤:A selective cooperative spectrum sensing method based on dual-threshold energy detection, comprising the following steps:

1、主用户信号检测阶段1. Primary user signal detection stage

在时隙k的第一阶段,即主用户信号检测阶段。主用户信号检测阶段采用的是双门限能量检测方法,通过设置2个大小不同的门限值λ1和λ2(λ1<λ2)来划分接收信号能量值(图2为双门限能量检测判决框图),M个认知用户独自对主用户信号进行频谱感知,获得能量检测值Yi,i=1,2…M。当能量检测值Yi>λ2时,将检测结果Di判为1,即主用户信号存在H1,当能量检测值Yi<λ1时,将检测结果Di判为0,即主用户信号不存在H0。当检测能量值落在λ1<Yi<λ2区间时,则认知用户保留原始能量检测值YiIn the first stage of time slot k, that is, the primary user signal detection stage. The primary user signal detection stage adopts the double-threshold energy detection method, and divides the energy value of the received signal by setting two different threshold values λ 1 and λ 21 < λ 2 ) (Figure 2 shows the double-threshold energy detection Judgment block diagram), M cognitive users independently perform spectrum sensing on the primary user signal, and obtain energy detection values Y i , i=1, 2...M. When the energy detection value Y i2 , the detection result D i is judged as 1, that is, the primary user signal exists H 1 , and when the energy detection value Y i1 , the detection result D i is judged as 0, that is, the primary user signal exists User signal does not exist H 0 . When the detected energy value falls within the interval of λ 1 <Y i2 , the cognitive user retains the original detected energy value Y i .

则检测结果Di可表示为:Then the detection result D i can be expressed as:

DD. ii == 00 ,, 00 << YY ii << &lambda;&lambda; 11 YY ii ,, &lambda;&lambda; 11 << YY ii << &lambda;&lambda; 22 11 ,, YY ii >> &lambda;&lambda; 22 -- -- -- (( 11 ))

2、初始检测结果报告阶段2. Initial test result reporting stage

在时隙k的第二阶段,即初始检测结果报告阶段。各认知用户CUi平均分配主用户频段,各认知用户CUi在分配到的子时隙上,将各自的检测结果报告给融合中心。各认知用户CUi采用选择式策略向融合中心汇报初始检测结果,如果认知用户CUi在主用户检测阶段没有感知到主用户存在(本地判决结果为H0的认知用户),则向融合中心发送一个经过编码后的指示信号;否则不向融合中心发送任何信号以避免和主用户产生干扰,此时报告给融合中心的检测结果默认为Yi或H1,该检测结果不是通过指示信号的传送报告给融合中心的,而是通过信号中断这一形式表现的。In the second phase of time slot k, that is, the initial detection result reporting phase. Each cognitive user CU i is evenly allocated the primary user frequency band, and each cognitive user CU i reports its detection results to the fusion center on the allocated sub-slots. Each cognitive user CU i adopts a selective strategy to report the initial detection result to the fusion center. If the cognitive user CU i does not perceive the existence of the primary user during the primary user detection phase (the cognitive user whose local decision result is H 0 ), it will report to the fusion center. The fusion center sends an encoded indication signal; otherwise, no signal is sent to the fusion center to avoid interference with the primary user. At this time, the detection result reported to the fusion center is Y i or H 1 by default, and the detection result does not pass the indication The transmission of the signal is reported to the fusion center, but it is expressed in the form of signal interruption.

认知用户CUi在主用户频段的第i个子信道向融合中心发送信号βi(k),融合中心相应的接收信号可以表示为:Cognitive user CU i sends a signal β i (k) to the fusion center on the ith sub-channel of the main user frequency band, and the corresponding received signal of the fusion center can be expressed as:

ythe y cc ii (( kk ,, 22 )) == pp sthe s hh icic (( kk ,, 22 )) &beta;&beta; ii (( kk ,, 22 )) ++ pp pp hh pcpc (( kk )) &alpha;&alpha; (( kk ,, 22 )) ++ nno cc ii (( kk ,, 22 )) -- -- -- (( 22 ))

其中pp表示主用户的发射功率,ps表示认知用户的发射功率;hic(k)和hpc(k)分别表示CUi到融合中心和主用户到融合中心的无线信道增益;(k,2)表示零均值和方差为N0的加性高斯白噪声。where p p represents the transmit power of the primary user, p s represents the transmit power of the cognitive user; h ic (k) and h pc (k) represent the wireless channel gains from CU i to the fusion center and from the primary user to the fusion center, respectively; (k,2) represents additive white Gaussian noise with zero mean and variance N 0 .

&beta;&beta; ii (( kk )) == DD. ii ,, Hh ii (( kk ,, 11 )) == Hh 00 00 ,, Hh ii (( kk ,, 11 )) == Hh 11 -- -- -- (( 33 ))

&alpha;&alpha; (( kk ,, 22 )) == 00 ,, Hh (( kk )) == Hh 00 sthe s (( kk ,, 22 )) ,, Hh (( kk )) == Hh 11 -- -- -- (( 44 ))

其中s(k,2)表示主用户在时隙k第二阶段的发射信号,根据式(2)融合中心解码βi(k)。Where s(k,2) represents the primary user's transmitted signal in the second phase of time slot k, and β i (k) is decoded according to the fusion center according to formula (2).

根据香农信道编码定理,如果信道容量低于信息传输速率,无论采用何种解码器都不能正确恢复原始信号,并称为发生中断。当认知用户CUi与融合中心产生中断时,融合中心在相应子信道上无法接收信号或成功解码,此时融合中心认为认知用户CUi没有发送信号,默认CUi的初始检测结果Hi(k,2)=H1或Yi,即认知用户的初始检测结果为主用户存在或检测值为原始能量值。如果融合中心在相应子信道上成功接收信号并解码,那么融合中心则认为CUi发送了信号,即融合中心默认CUi的初始检测结果为Hi(k,2)=H0。因此,融合中心接收来自认知用户CUi的初始检测结果可以表示为:According to Shannon's channel coding theorem, if the channel capacity is lower than the information transmission rate, no matter what kind of decoder is used, the original signal cannot be restored correctly, and it is called an interruption. When the cognitive user CU i is disconnected from the fusion center, the fusion center cannot receive the signal or successfully decode it on the corresponding sub-channel. At this time, the fusion center believes that the cognitive user CU i has not sent a signal, and defaults to the initial detection result H i of CU i (k,2)=H 1 or Y i , that is, the initial detection result of the cognitive user exists as the primary user or the detection value is the original energy value. If the fusion center successfully receives and decodes the signal on the corresponding sub-channel, then the fusion center considers that CU i sent the signal, that is, the fusion center defaults that the initial detection result of CU i is H i (k,2)=H 0 . Therefore, the initial detection result received by the fusion center from cognitive user CU i can be expressed as:

其中Θ(k,2)=1表示认知用户CUi到融合中心之间发生中断,其中μ表示时间带宽乘积,γs表示认知用户发射功率和γp表示主用户发射功率;Θ(k,2)=0则表示认知用户CUi到融合中心之间没有发生中断。发生中断表示为:Where Θ(k,2)=1 means that there is an interruption between the cognitive user CU i and the fusion center, where μ represents the time-bandwidth product, γ s represents the transmit power of the cognitive user and γ p represents the transmit power of the primary user; Θ(k ,2)=0 means that there is no interruption between the cognitive user CU i and the fusion center. An interruption is indicated by:

11 -- aa Mm loglog 22 (( 11 ++ || hh icic (( kk )) || 22 &CenterDot;&CenterDot; &gamma;&gamma; sthe s || &beta;&beta; ii (( kk )) || 22 || hh pcpc (( kk )) || 22 &CenterDot;&CenterDot; &gamma;&gamma; pp || &alpha;&alpha; (( kk ,, 22 )) || 22 ++ 11 )) << 11 &mu;&mu; -- -- -- (( 66 ))

其中a为信号检测开销时间,M为认知用户数量。Where a is the overhead time of signal detection, and M is the number of cognitive users.

融合中心首先将步骤(1)中保留的并由融合中心接收的原始能量检测值Yi进行等增益(EGC)合并融合,作出主用户“H0或H1”判决,将该判决结果等效为一个节点决策,再根据“或”准则与其他决策节点(针对发送指示信号的认知用户,检测结果为H0;针对没有发送指示信号且没有保留原始能量检测值Yi的认知用户,检测结果为H1)做出最终的感知结果,即作出主用户是否存在的最终判决。The fusion center first performs equal-gain (EGC) fusion on the original energy detection value Y i retained in step (1) and received by the fusion center, and makes a judgment of the primary user "H 0 or H 1 ", and the judgment result is equivalent to Make a decision for a node, and then communicate with other decision nodes according to the "or" criterion (for cognitive users who send indication signals, the detection result is H 0 ; for cognitive users who do not send indication signals and do not retain the original energy detection value Yi, detection The result is H 1 ) Make the final perception result, that is, make the final judgment on whether the primary user exists.

考虑逻辑“或”准则,感知结果可表示为:(7)Considering the logical "or" criterion, the perception result can be expressed as: (7)

在瑞利衰落信道下,认知无线电系统中认知用户的初始检测概率、虚警概率、漏检概率分别表示如下:Under the Rayleigh fading channel, the initial detection probability, false alarm probability and missed detection probability of cognitive users in the cognitive radio system are expressed as follows:

PdPD ii (( &mu;&mu; )) == PP {{ YY ii >> &lambda;&lambda; 22 || Hh 11 }}

== &Integral;&Integral; xx QQ &mu;&mu; (( 22 &gamma;&gamma; &OverBar;&OverBar; ,, &lambda;&lambda; 22 )) &CenterDot;&CenterDot; ff &gamma;&gamma; (( xx )) dxdx -- -- -- (( 88 ))

== ee -- &lambda;&lambda; 22 22 &Sigma;&Sigma; nno == 00 &mu;&mu; -- 22 11 nno !! (( &lambda;&lambda; 22 22 )) nno ++ (( 11 ++ &gamma;&gamma; &OverBar;&OverBar; &gamma;&gamma; &OverBar;&OverBar; )) &mu;&mu; -- 11 [[ ee -- &lambda;&lambda; 22 22 (( 11 ++ &gamma;&gamma; &OverBar;&OverBar; )) ]] -- ee -- &lambda;&lambda; 22 22 &Sigma;&Sigma; nno == 00 &mu;&mu; -- 22 11 nno !! (( &lambda;&lambda; 22 &gamma;&gamma; &OverBar;&OverBar; 22 (( 11 ++ &gamma;&gamma; &OverBar;&OverBar; )) )) nno ]]

PmPM ii == 11 -- &Delta;&Delta; 11 ,, jj -- PdPD ii -- -- -- (( 99 ))

PfPf ii == PP {{ YY ii >> &lambda;&lambda; 22 || Hh oo }} == &Gamma;&Gamma; (( &mu;&mu; ,, &lambda;&lambda; 22 22 )) &Gamma;&Gamma; (( &mu;&mu; )) -- -- -- (( 1010 ))

其中Qu表示广义马库姆(Marcum)函数;Γ(μ)和Γ(μ,λ2/2)表示完整和不完整Gamma函数;表示平均信噪比,fγ(x)表示衰落情况下信噪比的概率分布函数。where Q u represents the generalized Marcum (Marcum) function; Γ(μ) and Γ(μ,λ 2 /2) represent complete and incomplete Gamma functions; represents the average SNR, and f γ (x) represents the probability distribution function of the SNR under fading conditions.

根据式(6)、(7)、(8),可以得出采用逻辑“或”准则时,无需专有控制信道的协作频谱感知在融合中心时的检测概率为:According to formulas (6), (7), and (8), it can be concluded that when the logical "or" criterion is adopted, the detection probability of cooperative spectrum sensing without a dedicated control channel at the fusion center is:

PdPD oror proposedproposed == 11 -- &Sigma;&Sigma; KK == 00 Mm -- 11 Mm KK &Pi;&Pi; ii == 11 KK PmPM &CenterDot;&CenterDot; &Pi;&Pi; jj == 11 Mm -- KK &Delta;&Delta; 11 ,, jj &CenterDot;&CenterDot; {{ 11 -- PdPD jj [[ (( Mm -- KK )) &CenterDot;&Center Dot; &mu;&mu; ]] }} -- &Pi;&Pi; ii == 11 Mm PmPM

(11)(11)

式中 In the formula

其表示主用户存在时检测量Yi落在门限值λ1和λ2之间的概率。分别表示认知用户CUi到融合中心的无线信道增益hic(k)所服从的均值和主用户到融合中心的无线信道增益hpc(k)所服从的均值。 It represents the probability that the detection quantity Y i falls between the threshold values λ 1 and λ 2 when the primary user exists. and Respectively represent the mean value of the wireless channel gain h ic (k) from the cognitive user CUi to the fusion center and the mean value of the wireless channel gain h pc (k) from the primary user to the fusion center.

根据式(6)、(7)、(10),可以得出采用逻辑“或”准则时,无需专有控制信道的协作频谱感知在融合中心时的虚警概率为:According to equations (6), (7), and (10), it can be concluded that when the logical "or" criterion is adopted, the false alarm probability of cooperative spectrum sensing without a dedicated control channel in the fusion center is:

PfPf oror proposedproposed == 11 -- &Sigma;&Sigma; KK == 00 Mm -- 11 Mm KK &Pi;&Pi; ii == 11 KK PnPn &CenterDot;&Center Dot; &Pi;&Pi; jj == 11 Mm -- KK &Delta;&Delta; 00 ,, jj &CenterDot;&Center Dot; {{ 11 -- &Gamma;&Gamma; {{ [[ (( Mm -- KK )) &CenterDot;&CenterDot; &mu;&mu; ]] ,, &lambda;&lambda; 22 }} &Gamma;&Gamma; [[ (( Mm -- KK )) &CenterDot;&CenterDot; &mu;&mu; ]] }} -- &Pi;&Pi; ii == 11 Mm PnPn

(13)(13)

式中 In the formula

Δ0,j=P{λ1<Yi<λ2|H0}表示主用户不存在时检测量Yi落在门限值λ1和λ2之间的概率。Δ 0,j =P{λ 1 <Y i2 |H 0 } indicates the probability that the detection quantity Y i falls between the threshold values λ 1 and λ 2 when the primary user does not exist.

本发明提出的基于双门限能量检测的无需专有控制信道的选择式协作频谱感知的方法的虚警概率与传统的双门限能量检测法的虚警概率比较可参阅图3。从图3可以看出,在低检测概率区域所提出的协作频谱感知方案的虚警概率明显大于传统的协作频谱感知方案,这是因为为了保证主用户通信服务质量不受影响,使得认知用户的初始检测概率Pdi必须满足一定的门限值条件(如式(15)所示);Refer to FIG. 3 for a comparison of the false alarm probability of the dual-threshold energy detection-based selective cooperative spectrum sensing method without a dedicated control channel proposed by the present invention with that of the traditional dual-threshold energy detection method. It can be seen from Figure 3 that the false alarm probability of the cooperative spectrum sensing scheme proposed in the low detection probability area is significantly greater than that of the traditional cooperative spectrum sensing scheme. The initial detection probability Pd i must meet a certain threshold condition (as shown in formula (15));

PdPD ii &GreaterEqual;&Greater Equal; 11 -- &gamma;&gamma; pp &CenterDot;&CenterDot; &sigma;&sigma; pdpd 22 &CenterDot;&CenterDot; Mm [[ 11 -- (( 11 -- PoutPout )) 11 // Mm ]] &gamma;&gamma; sthe s &CenterDot;&Center Dot; &sigma;&sigma; idid 22 &CenterDot;&CenterDot; (( 11 -- PoutPout )) 11 // Mm &CenterDot;&CenterDot; (( 22 RR pp -- 11 )) -- -- -- (( 1515 ))

Pout表示给定的主用户通信中断概率门限,Rp表示主用户数据传输速率。Pout represents the given primary user communication interruption probability threshold, and R p represents the data transmission rate of the primary user.

在高检测概率区域,提出的协作频谱感知方案的虚警概率几乎与传统的协作频谱感知方案一样,实际的认知无线电系统中,例如IEEE无线区域网标准规定频谱感知的检测概率必须大于0.9,从这角度上看本文提出的方案在不损失ROC性能的前提下,有效地节省了专有报告信道资源。In the high detection probability area, the false alarm probability of the proposed cooperative spectrum sensing scheme is almost the same as that of the traditional cooperative spectrum sensing scheme. In the actual cognitive radio system, for example, the IEEE wireless area network standard stipulates that the detection probability of spectrum sensing must be greater than 0.9. From this point of view, the scheme proposed in this paper effectively saves the dedicated report channel resources without losing the ROC performance.

图4给出了不同主用户信号检测开销时间下,虚警概率随检测概率的变化曲线。从图4可以看出通过合理的增加主用户信号的检测时间,可以有效的改善认知用户的初始检测性能,本发明方案的虚警概率也随之下降。Figure 4 shows the change curve of the false alarm probability with the detection probability under different primary user signal detection overhead times. It can be seen from FIG. 4 that by reasonably increasing the detection time of the primary user signal, the initial detection performance of the cognitive user can be effectively improved, and the false alarm probability of the solution of the present invention is also reduced accordingly.

综上所述本发明的方法的贡献在于:In summary, the contribution of the method of the present invention is:

1、采用协作频谱感知技术,避免因无线环境中存在路径损耗、阴影效应、多径效应和隐藏终端等问题,使得传统单节点检测的检测概率降低,甚至无法检测出主用户的存在,从而对主用户通信造成干扰。1. Adopt cooperative spectrum sensing technology to avoid problems such as path loss, shadow effect, multipath effect and hidden terminals in the wireless environment, which reduce the detection probability of traditional single-node detection, and even fail to detect the existence of the primary user. Primary user communication causing interference.

2、采用选择式策略汇报检测结果技术,避免了一些检测结果不可靠的数据传输到融合中心,降低了融合中心数据处理的复杂度,同时避免了对主用户通信的干扰。2. Adopt selective strategy to report detection results technology, which avoids the transmission of unreliable data to the fusion center, reduces the complexity of data processing in the fusion center, and avoids interference to the communication of the main user.

3、采用无需专有控制信道技术,减少因传统的协作频谱感知方案中假设认知用户与融合中心之间存在专有控制信道,减少了额外的无线频谱资源,避免了对专有控制信道资源进行动态管理,降低了系统实现的复杂度。3. Adopting no proprietary control channel technology, reducing additional wireless spectrum resources and avoiding the need for proprietary control channel resources due to the assumption that there is a dedicated control channel between the cognitive user and the fusion center in the traditional cooperative spectrum sensing scheme Dynamic management reduces the complexity of system implementation.

4、采用双门限能量检测技术,避免了协作频谱检测中存在难以确定唯一判决门限、多径衰落和阴影衰落等问题。4. The dual-threshold energy detection technology is used to avoid problems such as difficulty in determining a unique decision threshold, multipath fading, and shadow fading in cooperative spectrum detection.

上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围。The above embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.

Claims (5)

1.一种基于双门限能量检测的选择式协作频谱感知方法,其特征在于,包含如下步骤:1. A selective collaborative spectrum sensing method based on double-threshold energy detection, characterized in that, comprising the steps: (1)、主用户信号检测阶段:(1), primary user signal detection stage: (1a)、认知无线电系统中各认知用户对主用户信号进行本地频谱感知,得到感知到的主用户能量检测值Yi(1a), each cognitive user in the cognitive radio system performs local spectrum sensing on the primary user signal, and obtains the detected energy detection value Y i of the primary user; (1b)、判断各认知用户检测到的主用户能量值Yi与两门限值λ1和λ2的关系,当能量检测值Yi落在两门限值λ1和λ2之外,直接进行本地判决“H0或H1”,H0表示主用户不存在,H1表示主用户存在;(1b), judging the relationship between the primary user energy value Y i detected by each cognitive user and the two threshold values λ 1 and λ 2 , when the energy detection value Y i falls outside the two threshold values λ 1 and λ 2 , directly make a local decision "H 0 or H 1 ", H 0 means that the primary user does not exist, and H 1 means that the primary user exists; (1c)、如果能量检测值Yi落在两门限值λ1和λ2之间,不直接进行本地判决,认知用户需要保留原始能量检测值Yi(1c), if the energy detection value Y i falls between two thresholds λ 1 and λ 2 , local judgment is not directly performed, and the cognitive user needs to retain the original energy detection value Y i ; (2)初始检测结果报告阶段(2) Initial test result reporting stage (2a)、各认知用户平均分配主用户频段,认知用户在分配到的子时隙上,将各自的检测结果报告给融合中心;(2a), each cognitive user is evenly allocated the primary user frequency band, and the cognitive users report their respective detection results to the fusion center on the allocated sub-slots; (2b)采用选择式策略向融合中心汇报初始检测结果,当认知用户在主用户信号检测阶段未感知到主用户存在,则向融合中心发送一个经过编码的指示信号;否则不向融合中心发送任何信号以避免和主用户产生干扰,检测结果默认为Yi或H1(2b) Use a selective strategy to report the initial detection results to the fusion center. When the cognitive user does not perceive the existence of the primary user during the primary user signal detection phase, send an encoded indication signal to the fusion center; otherwise, do not send it to the fusion center Any signal to avoid interference with the primary user, the detection result defaults to Y i or H 1 ; (2c)、融合中心对接收到的原始能量检测值Yi做出主用户判决“H0或H1”,将判决结果等效为一个节点决策,再联合步骤(2b)中向融合中心汇报的检测结果作出主用户是否存在的最终判决。(2c), the fusion center makes a primary user decision "H 0 or H 1 " on the received original energy detection value Y i , and the judgment result is equivalent to a node decision, and then reports to the fusion center in the joint step (2b) The detection results make the final judgment on whether the primary user exists. 2.根据权利要求1所述的一种基于双门限能量检测的选择式协作频谱感知方法,其特征在于,步骤(1)中设置2个大小不同的门限值λ1和λ2,λ1<λ2,当能量检测值Yi>λ2时,将检测结果Di判为1,即主用户信号存在H1;当能量检测值Yi<λ1时,将检测结果Di判为0,即主用户信号不存在H0;当能量检测值位于λ1<Yi<λ2区间时,则保留原始能量检测值Yi2. A kind of selective collaborative spectrum sensing method based on dual-threshold energy detection according to claim 1, characterized in that, in step (1), two different thresholds λ 1 and λ 2 are set, λ 12 , when the energy detection value Y i2 , the detection result D i is judged as 1, that is, the primary user signal exists H 1 ; when the energy detection value Y i1 , the detection result D i is judged as 0, that is, the primary user signal does not exist H 0 ; when the energy detection value is in the range of λ 1 <Y i2 , the original energy detection value Y i is retained; 检测结果Di表示为:The detection result D i is expressed as: DD. ii == 00 ,, 00 << YY ii << &lambda;&lambda; 11 YY ii ,, &lambda;&lambda; 11 << YY ii << &lambda;&lambda; 22 11 ,, YY ii >> &lambda;&lambda; 22 -- -- -- (( 11 )) 3.根据权利要求1所述的一种基于双门限能量检测的选择式协作频谱感知方法,其特征在于,在步骤(2)中,3. A kind of selective collaborative spectrum sensing method based on dual-threshold energy detection according to claim 1, characterized in that, in step (2), 认知用户CUi在主用户频段的第i个子信道向融合中心发送信号βi(k),融合中心相应的接收信号表示为:Cognitive user CU i sends a signal β i (k) to the fusion center on the ith sub-channel of the main user frequency band, and the corresponding received signal of the fusion center is expressed as: ythe y cc ii (( kk ,, 22 )) == pp sthe s hh icic (( kk ,, 22 )) &beta;&beta; ii (( kk ,, 22 )) ++ pp pp hh pcpc (( kk )) &alpha;&alpha; (( kk ,, 22 )) ++ nno cc ii (( kk ,, 22 )) -- -- -- (( 22 )) 其中k表示认知用户分配到的时隙,pp表示主用户的发射功率,ps表示认知用户的发射功率;hic(k)和hpc(k)分别表示CUi到融合中心和主用户到融合中心的无线信道增益;表示零均值和方差为N0的加性高斯白噪声;Where k represents the time slot assigned to the cognitive user, p p represents the transmit power of the primary user, and p s represents the transmit power of the cognitive user; h ic (k) and h pc (k) represent CU i to fusion center and The wireless channel gain from the primary user to the fusion center; Represents additive white Gaussian noise with zero mean and variance N 0 ; &beta;&beta; ii (( kk )) == DD. ii ,, Hh ii (( kk ,, 11 )) == Hh 00 00 ,, Hh ii (( kk ,, 11 )) == Hh 11 -- -- -- (( 33 )) &alpha;&alpha; (( kk ,, 22 )) == 00 ,, Hh (( kk )) == Hh 00 sthe s (( kk ,, 22 )) ,, Hh (( kk )) == Hh 11 -- -- -- (( 44 )) 其中s(k,2)表示主用户在初始检测结果报告阶段的发射信号,根据式(2)融合中心解码βi(k);Where s(k,2) represents the primary user’s transmitted signal in the initial detection result reporting stage, according to equation (2) fusion center decoding β i (k); 根据香农信道编码定理,当认知用户CUi与融合中心产生中断时,融合中心在相应子信道上无法接收信号或成功解码,此时融合中心认为认知用户CUi没有发送信号,默认CUi的初始检测结果Hi(k,2)=H1或Yi;当融合中心在相应子信道上成功接收信号并解码,那么融合中心认为CUi发送了信号,即融合中心默认CUi的初始检测结果为Hi(k,2)=H0;融合中心接收到的来自认知用户CUi的初始检测结果表示为:According to the Shannon channel coding theorem, when the cognitive user CU i is interrupted with the fusion center, the fusion center cannot receive the signal or successfully decode the signal on the corresponding sub-channel. At this time, the fusion center believes that the cognitive user CU i has not sent a signal, and the default CU i The initial detection result H i (k,2)=H 1 or Y i ; when the fusion center successfully receives and decodes the signal on the corresponding sub-channel, then the fusion center considers that CU i sent the signal, that is , the fusion center defaults to the initial The detection result is H i (k,2)=H 0 ; the initial detection result received by the fusion center from the cognitive user CU i is expressed as: 其中表示认知用户CUi到融合中心之间发生中断,Θ(k,2)=0表示认知用户CUi到融合中心之间没有发生中断;in Indicates that an interruption occurs between the cognitive user CU i and the fusion center, and Θ(k, 2)=0 indicates that there is no interruption between the cognitive user CU i and the fusion center; 发生中断表示为:An interruption is indicated by: 11 -- aa Mm loglog 22 (( 11 ++ || hh icic (( kk )) || 22 &CenterDot;&CenterDot; &gamma;&gamma; sthe s || &beta;&beta; ii (( kk )) || 22 || hh pcpc (( kk )) || 22 &CenterDot;&CenterDot; &gamma;&gamma; pp || &alpha;&alpha; (( kk ,, 22 )) || 22 ++ 11 )) << 11 &mu;&mu; -- -- -- (( 66 )) 其中a为信号检测开销时间,M为认知用户数量,μ表示时间带宽乘积,γs表示认知用户发射功率,γp表示主用户发射功率。Where a is the overhead time of signal detection, M is the number of cognitive users, μ is the time-bandwidth product, γ s is the transmit power of cognitive users, and γ p is the transmit power of primary users. 4.根据权利要求1所述的一种基于双门限能量检测的选择式协作频谱感知方法,其特征在于,在步骤2(c)中,融合中心采用等增益合并准则对接收到的原始能量检测值Yi作出主用户判决“H0或H1”,再通过“或”准则和步骤(2b)中向融合中心汇报的检测结果综合作出主用户是否存在的最终判决。4. A kind of selective collaborative spectrum sensing method based on double-threshold energy detection according to claim 1, characterized in that, in step 2 (c), the fusion center adopts the equal-gain combination criterion to detect the original energy received Value Y i makes the primary user decision "H 0 or H 1 ", and then makes a final decision on whether the primary user exists through the "or" criterion and the detection results reported to the fusion center in step (2b). 5.根据权利要求3或4任意一项所述的一种基于双门限能量检测的选择式协作频谱感知方法,其特征在于,最终判决对应的感知结果表示为:5. A selective cooperative spectrum sensing method based on dual-threshold energy detection according to any one of claims 3 or 4, wherein the sensing result corresponding to the final decision is expressed as: Hh cc (( kk )) == &CirclePlus;&CirclePlus; YY &CirclePlus;&CirclePlus; ii == 11 KK Hh ii (( kk ,, 22 )) -- -- -- (( 77 )) 其中Y指融合中心采用等增益合并准则对接收到的原始能量检测值作出的主用户判决结果,为采用逻辑“或”准则对本地判决的检测结果进行处理得到的结果。in Y refers to the primary user judgment result made by the fusion center on the received original energy detection value by using the equal-gain combination criterion, It is the result obtained by processing the detection result of the local decision by adopting the logical "or" criterion.
CN201310211159.3A 2013-05-29 2013-05-29 Selecting type cooperation spectrum sensing method based on double-threshold energy detection Expired - Fee Related CN103281143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310211159.3A CN103281143B (en) 2013-05-29 2013-05-29 Selecting type cooperation spectrum sensing method based on double-threshold energy detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310211159.3A CN103281143B (en) 2013-05-29 2013-05-29 Selecting type cooperation spectrum sensing method based on double-threshold energy detection

Publications (2)

Publication Number Publication Date
CN103281143A CN103281143A (en) 2013-09-04
CN103281143B true CN103281143B (en) 2015-02-18

Family

ID=49063607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310211159.3A Expired - Fee Related CN103281143B (en) 2013-05-29 2013-05-29 Selecting type cooperation spectrum sensing method based on double-threshold energy detection

Country Status (1)

Country Link
CN (1) CN103281143B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103581922A (en) * 2013-10-09 2014-02-12 北京科技大学 Cooperative spectrum sensing method based on multi-process D-S evidence theory
CN103888207A (en) * 2014-03-27 2014-06-25 北京邮电大学 Method for detecting maximum channel capacity of soft cooperation based on cooperation in cognitive radio system
CN103929259B (en) * 2014-04-29 2015-12-09 哈尔滨工业大学 A Cooperative Adaptive Spectrum Sensing Method Based on Multi-bit Decision in Cognitive OFDM System
CN104038298B (en) * 2014-06-12 2019-06-14 北京邮电大学 An adaptive joint spectrum detection method for satellite networks based on link sensing
CN104767578B (en) * 2015-03-23 2017-04-19 南京邮电大学 Double-threshold energy sensing method and system based on self-adaptation detecting length
CN104968001B (en) * 2015-07-10 2018-06-05 河海大学常州校区 A kind of cooperative frequency spectrum sensing method of Energy Efficient
CN106856418B (en) * 2017-01-22 2020-02-18 华南理工大学 Collaborative Spectrum Sensing Method in Cognitive Vehicle Ad Hoc Networks
CN106936527B (en) * 2017-03-15 2021-02-02 莆田学院 A dual-threshold-based multi-user cooperative spectrum sensing method
CN108540247B (en) * 2018-01-10 2021-03-05 河海大学常州校区 Spectrum sensing and information transmission method with energy collection in cognitive wireless network
CN108880712B (en) * 2018-08-02 2020-10-13 重庆大学 Two-step cooperative stochastic resonance energy detection method
CN116131978B (en) * 2023-04-11 2023-06-13 北京华航测通科技有限公司 Cognitive satellite network cooperative spectrum sensing method and cognitive satellite network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615926A (en) * 2009-07-31 2009-12-30 东南大学 Asynchronous Cooperative Spectrum Sensing Method in Cognitive Radio
CN101789836A (en) * 2010-02-02 2010-07-28 浙江大学 Cooperative spectrum sensing method capable of saving cost on network communication
CN102136874A (en) * 2011-04-29 2011-07-27 电子科技大学 Iterative cooperative spectrum sensing method
CN102571241A (en) * 2012-02-20 2012-07-11 江苏新大诚信息技术有限公司 Improved double-threshold cooperative spectrum sensing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768252B2 (en) * 2007-03-01 2010-08-03 Samsung Electro-Mechanics Systems and methods for determining sensing thresholds of a multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615926A (en) * 2009-07-31 2009-12-30 东南大学 Asynchronous Cooperative Spectrum Sensing Method in Cognitive Radio
CN101789836A (en) * 2010-02-02 2010-07-28 浙江大学 Cooperative spectrum sensing method capable of saving cost on network communication
CN102136874A (en) * 2011-04-29 2011-07-27 电子科技大学 Iterative cooperative spectrum sensing method
CN102571241A (en) * 2012-02-20 2012-07-11 江苏新大诚信息技术有限公司 Improved double-threshold cooperative spectrum sensing method

Also Published As

Publication number Publication date
CN103281143A (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN103281143B (en) Selecting type cooperation spectrum sensing method based on double-threshold energy detection
CN105227253A (en) A Novel Dual-Threshold Cooperative Spectrum Sensing Algorithm Based on Energy Detection
CN101867424B (en) Cooperative frequency spectrum sensing method for cognitive radio network
CN106412927B (en) Optimal resource allocation method for cooperative transmission energy harvesting cognitive radio network
CN102790995B (en) Information channel gain estimation method based on cognitive radio
CN106656374A (en) Cooperative broadband spectrum sensing method based on double-threshold energy detection
CN101207621A (en) A Power Allocation Method for Reducing Outage Probability in AF-DSTC Cooperative Communication Protocol
CN104202789A (en) Cognitive relay node selection method giving consideration of both energy effectiveness and transmission reliability
CN101742539A (en) A method and system for configuring wireless resources
CN108540247B (en) Spectrum sensing and information transmission method with energy collection in cognitive wireless network
CN105959939A (en) Authorized user safe transmission oriented power distribution method in cognitive wireless network
CN103326797B (en) Cooperative frequency spectrum sensing method in cognition network
CN108632830B (en) Anti-interference cooperative spectrum access method based on information and energy cooperative transmission
WO2022077523A1 (en) Method and apparatus for determining channel congestion parameter
CN104968001B (en) A kind of cooperative frequency spectrum sensing method of Energy Efficient
CN103747528B (en) High-low-speed-integrated link self-adaption cooperative communication method and system
CN106936527A (en) A kind of multi-user&#39;s cooperation frequency spectrum sensing method based on double threshold
CN102740432B (en) Dynamic transmission power control method
CN106656297A (en) Cognitive orthogonal cooperative transmission method in the presence of primary user interference
CN108601086B (en) Bandwidth self-adaption method
CN105554894A (en) Method for cooperatively controlling transmitting power of H2H and M2M terminals in mobile network
CN102938675B (en) Incremental cooperative sensing method on basis of n-out-of-K fusion rule
CN103957599A (en) Joint power allocation method based on perception and iterative search
CN111225435B (en) 5G downlink NOMA transmission method in incomplete primary user interference information
CN108696913A (en) ARQ wireless network information safety transmission method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150218

Termination date: 20170529

CF01 Termination of patent right due to non-payment of annual fee