CN103064136B - Combined microlens array for integrated imaging three-dimensional (3D) display and manufacturing method thereof - Google Patents
Combined microlens array for integrated imaging three-dimensional (3D) display and manufacturing method thereof Download PDFInfo
- Publication number
- CN103064136B CN103064136B CN201310014861.0A CN201310014861A CN103064136B CN 103064136 B CN103064136 B CN 103064136B CN 201310014861 A CN201310014861 A CN 201310014861A CN 103064136 B CN103064136 B CN 103064136B
- Authority
- CN
- China
- Prior art keywords
- microlens array
- photoresist
- grating
- array
- pinhole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 117
- 239000000758 substrate Substances 0.000 claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229920002379 silicone rubber Polymers 0.000 claims description 54
- 239000004945 silicone rubber Substances 0.000 claims description 52
- 239000011368 organic material Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 21
- 239000011521 glass Substances 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 10
- 238000000206 photolithography Methods 0.000 claims description 9
- 238000004049 embossing Methods 0.000 claims description 8
- 239000012943 hotmelt Substances 0.000 claims description 8
- 238000007650 screen-printing Methods 0.000 claims description 8
- 239000003431 cross linking reagent Substances 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 12
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 description 9
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- -1 polydimethylsiloxane Polymers 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000005051 trimethylchlorosilane Substances 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
技术领域 technical field
本发明涉及集成成像3D显示技术领域,尤其涉及一种用于集成成像3D显示的组合微透镜阵列及其制作方法。 The invention relates to the technical field of integrated imaging 3D display, in particular to a combined microlens array for integrated imaging 3D display and a manufacturing method thereof.
背景技术 Background technique
集成成像(Integral Imaging,II)作为一种自由立体显示技术,是一种全真三维光学成像的新方法。集成成像3D显示技术采用微透镜阵列或小孔光栅来实现三维目标立体特征信息记录和立体图像重构。与其他立体显示技术相比,该技术具有不需要辅助设备和相干光源;能够提供全视差、连续视点、全彩色的真三维实时立体图像;能够有效克服传统多视点自由立体显示出现的辐辏与焦点调节范围导致的视觉疲劳现象;能与现有高清晰度电视制式有很好的兼容性等优点,已成为3D显示领域中的重要研究课题。 Integrated imaging (Integral Imaging, II), as an autostereoscopic display technology, is a new method of true three-dimensional optical imaging. Integrated imaging 3D display technology uses microlens arrays or pinhole gratings to achieve three-dimensional object stereoscopic feature information recording and stereoscopic image reconstruction. Compared with other stereoscopic display technologies, this technology does not require auxiliary equipment and coherent light sources; it can provide true three-dimensional real-time stereoscopic images with full parallax, continuous viewpoints, and full color; it can effectively overcome the convergence and focus of traditional multi-view autostereoscopic display The visual fatigue phenomenon caused by the adjustment range and the good compatibility with the existing high-definition television system have become important research topics in the field of 3D display.
其中,微透镜阵列或小孔光栅是集成成像3D显示系统的关键组成部分,其结构优化设计和制作工艺的研究对高性能集成成像3D显示技术有重要作用。单一微透镜阵列实现的3D显示装置,显示亮度高,但单一微透镜阵列中透镜与透镜之间的间隙同样能透光,因此增大图像干扰以及微单元图像之间的串扰,降低显示的分辨率。而单一小孔光栅不会造成图像串扰,但由于小孔必须远小于微单元图像的尺寸,才能保证显示图像清晰,这样势必造成显示亮度降低。 Among them, the microlens array or pinhole grating is a key component of the integrated imaging 3D display system, and the research on its structure optimization design and manufacturing process plays an important role in the high-performance integrated imaging 3D display technology. The 3D display device realized by a single microlens array has high display brightness, but the gap between the lenses in the single microlens array can also transmit light, thus increasing image interference and crosstalk between micro-unit images and reducing the resolution of the display Rate. A single small-hole grating will not cause image crosstalk, but since the small holes must be much smaller than the size of the micro-unit image to ensure a clear display image, this will inevitably result in a decrease in display brightness.
针对单一微透镜阵列和单一小孔光栅存在的上述不足,本发明结合小孔光栅和微透镜阵列的优势,提出一种新用于集成成像3D显示的组合微透镜阵列及其制作方法。 Aiming at the above shortcomings of single microlens array and single pinhole grating, the present invention combines the advantages of pinhole grating and microlens array to propose a new combined microlens array for integrated imaging 3D display and its manufacturing method.
发明内容 Contents of the invention
有鉴于此,本发明的目的是提供一种用于集成成像3D显示的组合微透镜阵列及其制作方法。 In view of this, the object of the present invention is to provide a composite microlens array for integrated imaging 3D display and a manufacturing method thereof.
本发明提供一种用于集成成像3D显示的组合微透镜阵列,其特征在于,包括: The present invention provides a combined microlens array for integrated imaging 3D display, characterized in that it comprises:
一基板; a substrate;
一小孔光栅,设置于所述基板的一表面,所述小孔光栅是一带有镂空小孔阵列的不透明金属或光刻胶;以及 A small hole grating is arranged on a surface of the substrate, and the small hole grating is an opaque metal or photoresist with a hollow hole array; and
一微透镜阵列,设置于所述基板含有所述小孔光栅的一面,所述微透镜阵列由与所述小孔光栅的小孔阵列小孔一一对应的透镜单元组成,且所述透镜单元位于所述对应的小孔阵列小孔中。 A microlens array, arranged on the side of the substrate containing the pinhole grating, the microlens array is composed of lens units corresponding to the pinhole array pinholes of the pinhole grating, and the lens unit located in the corresponding apertures of the array of apertures.
在本发明一实施例中,所述基板是透明玻璃、透明有机材料或透明聚合物材料。 In an embodiment of the present invention, the substrate is transparent glass, transparent organic material or transparent polymer material.
在本发明一实施例中,所述小孔阵列小孔与微透镜阵列透镜单元的形状一致、大小相等,且中心一一对齐;其中微透镜阵列用于集成成像3D显示中微单元图像获取和重构,小孔阵列的不透光部分用于降低或消除单一微透镜阵列由于微透镜单元之间间隙透过光线的干扰以及微透镜单元之间造成的串扰。 In an embodiment of the present invention, the small holes of the small hole array and the lens units of the microlens array have the same shape and size, and their centers are aligned one by one; wherein the microlens array is used for image acquisition and In reconstruction, the opaque part of the small hole array is used to reduce or eliminate the interference of the light transmitted through the gap between the microlens units of a single microlens array and the crosstalk between the microlens units.
在本发明一实施例中,所述小孔阵列小孔与微透镜阵列透镜单元的形状为圆形或正多边形。 In an embodiment of the present invention, the shape of the apertures of the aperture array and the lens unit of the microlens array is a circle or a regular polygon.
本发明还提供一种用于集成成像3D显示的组合微透镜阵列的制作方法,采用的第一种制作方法具体方案为:提供一种用于集成成像3D显示的组合微透镜阵列的制作方法,其特征在于,包含以下步骤: The present invention also provides a method for manufacturing a combined microlens array for integrated imaging 3D display, and the specific scheme of the first manufacturing method adopted is as follows: providing a method for manufacturing a combined microlens array for integrated imaging 3D display, It is characterized in that it comprises the following steps:
S11:提供一基板并采用光刻、刻蚀或丝网印刷在其一表面制作一小孔光栅; S11: Provide a substrate and make a grating with a small hole on one surface thereof by photolithography, etching or screen printing;
S12:在所述基板设置有所述小孔光栅的一面均匀涂覆一层透明负光刻胶; S12: Uniformly coating a layer of transparent negative photoresist on the side of the substrate provided with the pinhole grating;
S13:采用背曝光方式,从所述基板未设置所述小孔光栅的一面进行曝光并显影;所述光刻胶被所述小孔光栅阻挡的部分将被显影液去除,留下未被所述小孔光栅阻挡的光刻胶柱状图案阵列; S13: Adopting the back exposure method, exposing and developing from the side of the substrate where the pinhole grating is not provided; the part of the photoresist blocked by the pinhole grating will be removed by the developing solution, leaving the part not covered by the pinhole grating. The photoresist columnar pattern array blocked by the small hole grating;
S14:采用光刻胶热熔法使所述光刻胶柱状图案阵列熔化变形,形成光刻胶微透镜阵列,从而得到所述的组合微透镜阵列。 S14: Using a photoresist hot-melt method to melt and deform the photoresist columnar pattern array to form a photoresist microlens array, thereby obtaining the combined microlens array.
在本发明一实施例中,所述小孔光栅是一带有镂空小孔阵列的不透明金属或光刻胶;所述微透镜阵列由与所述小孔光栅的小孔阵列小孔一一对应的透镜单元组成。 In one embodiment of the present invention, the small hole grating is an opaque metal or photoresist with a hollow small hole array; lens unit.
本发明采用的第二种制作方法具体方案为:提供一种用于集成成像3D显示的组合微透镜阵列的制作方法,其特征在于,包含以下步骤: The specific scheme of the second manufacturing method adopted in the present invention is: to provide a method for manufacturing a combined microlens array for integrated imaging 3D display, which is characterized in that it includes the following steps:
S21:提供两片基板并采用光刻、刻蚀或丝网印刷分别在其一表面制作一小孔光栅; S21: Provide two substrates and use photolithography, etching or screen printing to make a small hole grating on one surface respectively;
S22:取所述步骤S21中制备的其中一片基板并在其设置有所述小孔光栅的一面均匀涂覆一层透明负光刻胶; S22: Take one of the substrates prepared in the step S21 and uniformly coat a layer of transparent negative photoresist on the side provided with the pinhole grating;
S23:采用背曝光方式,从所述步骤S22中制备的含小孔光栅的基板未设置有小孔光栅的一面进行曝光并显影,所述光刻胶被所述小孔光栅阻挡的部分将被显影液去除,留下未被所述小孔光栅阻挡的光刻胶柱状图案阵列; S23: Using the back exposure method, exposing and developing from the side of the substrate containing the pinhole grating prepared in the step S22 that is not provided with the pinhole grating, the part of the photoresist blocked by the pinhole grating will be The developer solution is removed, leaving the photoresist columnar pattern array not blocked by the aperture grating;
S24:取所述步骤S23中制备的含光刻胶柱状图案阵列的基板,采用光刻胶热熔法使所述光刻胶柱状图案阵列熔化变形,形成光刻胶微透镜阵列; S24: Taking the substrate containing the photoresist columnar pattern array prepared in the step S23, using a photoresist hot-melt method to melt and deform the photoresist columnar pattern array to form a photoresist microlens array;
S25:取所述步骤S24中制备的含光刻胶微透镜阵列的基板,并使用硅橡胶制作所述光刻胶微透镜阵列的硅橡胶负模板; S25: Take the substrate containing the photoresist microlens array prepared in the step S24, and use silicone rubber to make a silicone rubber negative template of the photoresist microlens array;
S26:利用所述硅橡胶负模板,采用热压印或紫外压印在所述步骤S21中制备的另一片设置有小孔光栅的基板上制作一透明有机材料微透镜阵列,从而得到所述的组合微透镜阵列。 S26: Using the silicone rubber negative template, hot embossing or ultraviolet embossing is used to fabricate a transparent organic material microlens array on the other substrate provided with the pinhole grating prepared in the step S21, so as to obtain the Combined microlens array.
在本发明一实施例中,所述小孔光栅是一带有镂空小孔阵列的不透明金属或光刻胶;所述微透镜阵列由与所述小孔光栅的小孔阵列小孔一一对应的透镜单元组成。 In one embodiment of the present invention, the small hole grating is an opaque metal or photoresist with a hollow small hole array; lens unit.
在本发明一实施例中,所述步骤S25的具体步骤为: In an embodiment of the present invention, the specific steps of the step S25 are:
S251:按所述硅橡胶所需比例制备单体和交联剂的混合物; S251: Prepare a mixture of monomers and crosslinking agents according to the required ratio of the silicone rubber;
S252:将所述含光刻胶微透镜阵列的基板放置于一容器中,倒入所述混合物并静置; S252: placing the substrate containing the photoresist microlens array in a container, pouring the mixture and leaving it still;
S253:待所述混合物起泡全部消除后将该容器放入烘箱,待所述混合物完全固化后取出; S253: Put the container into an oven after all the bubbles of the mixture are eliminated, and take it out after the mixture is completely cured;
S254:将所述混合物与所述含光刻胶微透镜阵列的基板分离,并切割所述混合物形成所述的硅橡胶负模板。 S254: Separate the mixture from the substrate containing the photoresist microlens array, and cut the mixture to form the silicone rubber negative template.
在本发明一实施例中,所述步骤S26的具体步骤为: In an embodiment of the present invention, the specific steps of the step S26 are:
S261:将所述硅橡胶负模板放置于密封容器中进行抽真空,使其具有负压; S261: Place the silicone rubber negative template in a sealed container for vacuuming, so that it has a negative pressure;
S262:在所述步骤S21中制备的另一片设置有小孔光栅的基板含有所述小孔光栅的一面均匀涂覆一层透明有机材料; S262: On the other substrate provided with the pinhole grating prepared in the step S21, the side containing the pinhole grating is evenly coated with a layer of transparent organic material;
S263:把所述具有负压的硅橡胶负模板放置于所述透明有机材料上并使其中心与所述小孔光栅的小孔中心一一对齐,并且使所述硅橡胶负模板与所述小孔光栅相接触; S263: Place the silicone rubber negative template with negative pressure on the transparent organic material and align its center with the aperture center of the aperture grating one by one, and align the silicone rubber negative template with the The pinhole gratings are in contact;
S264:由于所述硅橡胶负模板具有负压,所述透明有机材料在负压力和毛细力的共同作用下将形成与所述硅橡胶负模板相对应的透明有机材料微透镜阵列; S264: Since the silicone rubber negative template has a negative pressure, the transparent organic material will form a transparent organic material microlens array corresponding to the silicone rubber negative template under the combined action of negative pressure and capillary force;
S265:采用冷却固化或紫外固化的方式使所述透明有机材料微透镜阵列固化; S265: curing the transparent organic material microlens array by means of cooling and curing or ultraviolet curing;
S266:将所述硅橡胶负模板与所述透明有机材料微透镜阵列分离。 S266: Separate the silicone rubber negative template from the transparent organic material microlens array.
本发明的显著优点在于:把微透镜阵列和小孔光栅有机结合起来,使得微透镜阵列和小孔光栅优势互补,有效解决了单一微透镜阵列带来的图像串扰严重和分辨率降低的问题以及由单一小孔光栅带来的显示亮度降低的问题,易于实现高性能集成成像3D显示。并且,本发明提供的组合微透镜阵列制作方法简单、成本低廉。 The remarkable advantage of the present invention is that: the microlens array and the pinhole grating are organically combined, so that the advantages of the microlens array and the pinhole grating are complementary, effectively solving the problems of serious image crosstalk and resolution reduction caused by a single microlens array and The problem of reduced display brightness caused by a single aperture grating is easy to realize high-performance integrated imaging 3D display. Moreover, the manufacturing method of the combined microlens array provided by the invention is simple and low in cost.
附图说明 Description of drawings
图1为本发明一种用于集成成像3D显示的组合微透镜阵列的结构示意图。 FIG. 1 is a schematic structural diagram of a combined microlens array for integrated imaging 3D display according to the present invention.
图2a-2d为采用本发明第一种制作方法的制作流程剖面示意图。 2a-2d are schematic cross-sectional views of the production process using the first production method of the present invention.
图3为采用本发明第二种制作方法制作的硅橡胶负模板剖面示意图。 Fig. 3 is a schematic cross-sectional view of a silicone rubber negative template produced by the second production method of the present invention.
图4为采用本发明第二种制作方法在所述步骤S21中制备的另一片基板含有小孔光栅的一面均匀涂覆一层透明有机材料206剖面示意图。 FIG. 4 is a schematic cross-sectional view of another substrate prepared in the step S21 by adopting the second manufacturing method of the present invention, the side containing the pinhole grating uniformly coated with a layer of transparent organic material 206 .
图5为采用本发明第二种制作方法利用硅橡胶负模板制作透明有机材料微透镜阵列剖面示意图。 Fig. 5 is a schematic cross-sectional view of a transparent organic material microlens array fabricated by using a silicone rubber negative template using the second fabrication method of the present invention.
图6为采用本发明第二种制作方法制作的用于集成成像3D显示的组合微透镜阵列剖面示意图。 FIG. 6 is a schematic cross-sectional view of a combined microlens array for integrated imaging 3D display manufactured by the second manufacturing method of the present invention.
具体实施方式 Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下将通过具体实施例和相关附图,对本发明作进一步详细说明。 In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below through specific embodiments and related drawings.
本发明提供一种用于集成成像3D显示的组合微透镜阵列,其特征在于,包括: The present invention provides a combined microlens array for integrated imaging 3D display, characterized in that it comprises:
一基板; a substrate;
一小孔光栅,设置于所述基板的一表面,所述小孔光栅是一带有镂空小孔阵列的不透明金属或光刻胶;以及 A small hole grating is arranged on a surface of the substrate, and the small hole grating is an opaque metal or photoresist with a hollow hole array; and
一微透镜阵列,设置于所述基板含有所述小孔光栅的一面,所述微透镜阵列由与所述小孔光栅的小孔阵列小孔一一对应的透镜单元组成,且所述透镜单元位于所述对应的小孔阵列小孔中。 A microlens array, arranged on the side of the substrate containing the pinhole grating, the microlens array is composed of lens units corresponding to the pinhole array pinholes of the pinhole grating, and the lens unit located in the corresponding apertures of the array of apertures.
本发明还提供一种用于集成成像3D显示的组合微透镜阵列的制作方法,采用的第一种制作方法具体方案为:提供一种用于集成成像3D显示的组合微透镜阵列的制作方法,其特征在于,包含以下步骤: The present invention also provides a method for manufacturing a combined microlens array for integrated imaging 3D display, and the specific scheme of the first manufacturing method adopted is as follows: providing a method for manufacturing a combined microlens array for integrated imaging 3D display, It is characterized in that it comprises the following steps:
S11:提供一基板并采用光刻、刻蚀或丝网印刷在其一表面制作一小孔光栅; S11: Provide a substrate and make a grating with a small hole on one surface thereof by photolithography, etching or screen printing;
S12:在所述基板设置有所述小孔光栅的一面均匀涂覆一层透明负光刻胶; S12: Uniformly coating a layer of transparent negative photoresist on the side of the substrate provided with the pinhole grating;
S13:采用背曝光方式,从所述基板未设置所述小孔光栅的一面进行曝光并显影;所述光刻胶被所述小孔光栅阻挡的部分将被显影液去除,留下未被所述小孔光栅阻挡的光刻胶柱状图案阵列; S13: Adopting the back exposure method, exposing and developing from the side of the substrate where the pinhole grating is not provided; the part of the photoresist blocked by the pinhole grating will be removed by the developing solution, leaving the part not covered by the pinhole grating. The photoresist columnar pattern array blocked by the small hole grating;
S14:采用光刻胶热熔法使所述光刻胶柱状图案阵列熔化变形,形成光刻胶微透镜阵列,从而得到所述的组合微透镜阵列。 S14: Using a photoresist hot-melt method to melt and deform the photoresist columnar pattern array to form a photoresist microlens array, thereby obtaining the combined microlens array.
所述小孔光栅是一带有镂空小孔阵列的不透明金属或光刻胶;所述微透镜阵列由与所述小孔光栅的小孔阵列小孔一一对应的透镜单元组成。 The pinhole grating is an opaque metal or photoresist with a hollowed pinhole array; the microlens array is composed of lens units corresponding to the pinhole array pinholes of the pinhole grating.
本发明采用的第二种制作方法具体方案为:提供一种用于集成成像3D显示的组合微透镜阵列的制作方法,其特征在于,包含以下步骤: The specific scheme of the second manufacturing method adopted in the present invention is: to provide a method for manufacturing a combined microlens array for integrated imaging 3D display, which is characterized in that it includes the following steps:
S21:提供两片基板并采用光刻、刻蚀或丝网印刷分别在其一表面制作一小孔光栅; S21: Provide two substrates and use photolithography, etching or screen printing to make a small hole grating on one surface respectively;
S22:取所述步骤S21中制备的其中一片基板并在其设置有所述小孔光栅的一面均匀涂覆一层透明负光刻胶; S22: Take one of the substrates prepared in the step S21 and uniformly coat a layer of transparent negative photoresist on the side provided with the pinhole grating;
S23:采用背曝光方式,从所述步骤S22中制备的含小孔光栅的基板未设置有小孔光栅的一面进行曝光并显影,所述光刻胶被所述小孔光栅阻挡的部分将被显影液去除,留下未被所述小孔光栅阻挡的光刻胶柱状图案阵列; S23: Using the back exposure method, exposing and developing from the side of the substrate containing the pinhole grating prepared in the step S22 that is not provided with the pinhole grating, the part of the photoresist blocked by the pinhole grating will be The developer solution is removed, leaving the photoresist columnar pattern array not blocked by the aperture grating;
S24:取所述步骤S23中制备的含光刻胶柱状图案阵列的基板,采用光刻胶热熔法使所述光刻胶柱状图案阵列熔化变形,形成光刻胶微透镜阵列; S24: Taking the substrate containing the photoresist columnar pattern array prepared in the step S23, using a photoresist hot-melt method to melt and deform the photoresist columnar pattern array to form a photoresist microlens array;
S25:取所述步骤S24中制备的含光刻胶微透镜阵列的基板,并使用硅橡胶制作所述光刻胶微透镜阵列的硅橡胶负模板; S25: Take the substrate containing the photoresist microlens array prepared in the step S24, and use silicone rubber to make a silicone rubber negative template of the photoresist microlens array;
S26:利用所述硅橡胶负模板,采用热压印或紫外压印在所述步骤S21中制备的另一片设置有小孔光栅的基板上制作一透明有机材料微透镜阵列,从而得到所述的组合微透镜阵列。 S26: Using the silicone rubber negative template, hot embossing or ultraviolet embossing is used to fabricate a transparent organic material microlens array on the other substrate provided with the pinhole grating prepared in the step S21, so as to obtain the Combined microlens array.
所述小孔光栅是一带有镂空小孔阵列的不透明金属或光刻胶;所述微透镜阵列由与所述小孔光栅的小孔阵列小孔一一对应的透镜单元组成。 The pinhole grating is an opaque metal or photoresist with a hollowed pinhole array; the microlens array is composed of lens units corresponding to the pinhole array pinholes of the pinhole grating.
所述步骤S25的具体步骤为: The concrete steps of described step S25 are:
S251:按所述硅橡胶所需比例制备单体和交联剂的混合物; S251: Prepare a mixture of monomers and crosslinking agents according to the required ratio of the silicone rubber;
S252:将所述含光刻胶微透镜阵列的基板放置于一容器中,倒入所述混合物并静置; S252: placing the substrate containing the photoresist microlens array in a container, pouring the mixture and leaving it still;
S253:待所述混合物起泡全部消除后将该容器放入烘箱,待所述混合物完全固化后取出; S253: Put the container into an oven after all the bubbles of the mixture are eliminated, and take it out after the mixture is completely cured;
S254:将所述混合物与所述含光刻胶微透镜阵列的基板分离,并切割所述混合物形成所述的硅橡胶负模板。 S254: Separate the mixture from the substrate containing the photoresist microlens array, and cut the mixture to form the silicone rubber negative template.
所述步骤S26的具体步骤为: The concrete steps of described step S26 are:
S261:将所述硅橡胶负模板放置于密封容器中进行抽真空,使其具有负压; S261: Place the silicone rubber negative template in a sealed container for vacuuming, so that it has a negative pressure;
S262:在所述步骤S21中制备的另一片设置有小孔光栅的基板含有所述小孔光栅的一面均匀涂覆一层透明有机材料; S262: On the other substrate provided with the pinhole grating prepared in the step S21, the side containing the pinhole grating is evenly coated with a layer of transparent organic material;
S263:把所述具有负压的硅橡胶负模板放置于所述透明有机材料上并使其中心与所述小孔光栅的小孔中心一一对齐,并且使所述硅橡胶负模板与所述小孔光栅相接触; S263: Place the silicone rubber negative template with negative pressure on the transparent organic material and align its center with the aperture center of the aperture grating one by one, and align the silicone rubber negative template with the The pinhole gratings are in contact;
S264:由于所述硅橡胶负模板具有负压,所述透明有机材料在负压力和毛细力的共同作用下将形成与所述硅橡胶负模板相对应的透明有机材料微透镜阵列; S264: Since the silicone rubber negative template has a negative pressure, the transparent organic material will form a transparent organic material microlens array corresponding to the silicone rubber negative template under the combined action of negative pressure and capillary force;
S265:采用冷却固化或紫外固化使所述透明有机材料微透镜阵列固化; S265: curing the transparent organic material microlens array by cooling or ultraviolet curing;
S266:将所述硅橡胶负模板与所述透明有机材料微透镜阵列分离。 S266: Separate the silicone rubber negative template from the transparent organic material microlens array.
如图1所示,本发明还提供一种用于集成成像3D显示的组合微透镜阵列,其特征在于,包括: As shown in Figure 1, the present invention also provides a combined microlens array for integrated imaging 3D display, characterized in that it includes:
一基板1; a substrate 1;
一小孔光栅2,设置于所述基板1的一表面,所述小孔光栅2是一带有镂空小孔阵列的不透明金属或光刻胶;以及 A small hole grating 2 is arranged on a surface of the substrate 1, the small hole grating 2 is an opaque metal or photoresist with a hollow hole array; and
一微透镜阵列3,设置于所述基板1含有所述小孔光栅2的一面,所述微透镜阵列3由与所述小孔光栅2的小孔阵列小孔一一对应的透镜单元组成,且所述透镜单元位于所述对应的小孔阵列小孔中。 A microlens array 3 is arranged on the side of the substrate 1 containing the pinhole grating 2, the microlens array 3 is composed of lens units corresponding to the pinhole array pinholes of the pinhole grating 2 one by one, And the lens unit is located in the corresponding hole of the hole array.
所述基板是透明玻璃、透明有机材料或透明聚合物材料。所述小孔光栅的小孔阵列与所述微透镜阵列的透镜单元的形状相同且大小相等且中心一一对齐;其中微透镜阵列用于集成成像3D显示中微单元图像获取和重构,小孔阵列的不透光部分用于降低或消除单一微透镜阵列由于透镜间隙透过光线的干扰以及透镜单元之间造成的串扰。所述小孔阵列小孔与微透镜阵列透镜单元的形状为圆形或正多边形,在本发明中并不以此为限。所述光刻胶微透镜阵列的厚度由光刻胶种类和涂覆厚度决定。 The substrate is transparent glass, transparent organic material or transparent polymer material. The pinhole array of the pinhole grating has the same shape and the same size as the lens unit of the microlens array, and the centers are aligned one by one; wherein the microlens array is used for image acquisition and reconstruction of the microunit in the integrated imaging 3D display, and the small The opaque part of the hole array is used to reduce or eliminate the interference of the light transmitted through the lens gap of the single microlens array and the crosstalk caused between the lens units. The shape of the apertures of the aperture array and the lens unit of the microlens array is a circle or a regular polygon, which is not limited in the present invention. The thickness of the photoresist microlens array is determined by the type of photoresist and the coating thickness.
在图中,为了表示清楚放大了层和区域的厚度,但作为示意图不应该被认为严格反映了几何尺寸的比例关系。参考图是本发明的理想化实施例的示意图,本发明所示的实施例不应该被认为仅限于图中所示的区域的特定形状,而是包括所得到的形状(比如制造引起的偏差)。在本实施例中均以矩形表示,图中的表示是示意性的,但这不应该被认为限制本发明的范围。 In the drawings, the thicknesses of layers and regions are exaggerated for clarity, but as schematic diagrams, they should not be considered to strictly reflect the proportional relationship of geometric dimensions. The referenced figures are schematic illustrations of idealized embodiments of the present invention, and the illustrated embodiments of the present invention should not be considered limited to the particular shapes of the regions shown in the figures, but include resulting shapes (such as manufacturing-induced deviations) . All are represented by rectangles in this embodiment, and the representation in the figure is schematic, but this should not be considered as limiting the scope of the present invention.
为了让一般技术人员更好的理解本发明,优选的,本发明具体实施例中基板选用玻璃基板,小孔光栅选用Cr薄膜,用于制作硅橡胶负模板的硅橡胶材料选用聚二甲基硅氧烷(PDMS)且其单体和交联剂的比列选用10:1,用于制作光刻胶微透镜阵列的材料选用SU8 3050,用于制作透明有机材料微透镜阵列的材料选用NOA81。 In order to allow those of ordinary skill to better understand the present invention, preferably, in the specific embodiment of the present invention, the substrate is selected from a glass substrate, the aperture grating is selected from a Cr film, and the silicone rubber material used to make the silicone rubber negative template is selected from polydimethylsiloxane. The ratio of oxane (PDMS) and its monomer to crosslinking agent is 10:1. The material used to make the photoresist microlens array is SU8 3050, and the material used to make the transparent organic material microlens array is NOA81.
实施例一Embodiment one
如图2a-2d所示,图2a-2d为采用本发明第一种制作方法的制作流程剖面示意图,本实施例中微透镜阵列是透明光刻胶,所以采用第一种制作方法,其具体方案包括以下步骤: As shown in Figures 2a-2d, Figures 2a-2d are schematic cross-sectional views of the production process using the first production method of the present invention. In this embodiment, the microlens array is a transparent photoresist, so the first production method is adopted, and its specific The protocol includes the following steps:
S11:提供一基板101并采用光刻、刻蚀或丝网印刷在其一表面制作一小孔光栅102: S11: Provide a substrate 101 and fabricate a small hole grating 102 on one surface thereof by photolithography, etching or screen printing:
选取一块所需尺寸的玻璃基板进行划片后置于玻璃清洗液Win-10的水溶液中(体积比为Win-10 : DI水= 3 : 97),利用频率为32KHz的超声机清洗15min,喷淋2min后,再置于玻璃清洗液Win-41的水溶液中(体积比为Win-41 : DI水= 5 : 95),利用频率为40KHz的超声机清洗10min,经循环自来水喷淋漂洗2min后,再利用频率为28KHz的超声机在DI纯净水中清洗10min,经氮气枪吹干后置于50℃洁净烘箱中保温30min以上备用。 Select a glass substrate of the required size for scribing, place it in the aqueous solution of glass cleaning solution Win-10 (volume ratio is Win-10 : DI water = 3 : 97), clean it with an ultrasonic machine with a frequency of 32KHz for 15 minutes, spray After spraying for 2 minutes, put it in the aqueous solution of glass cleaning solution Win-41 (volume ratio is Win-41 : DI water = 5 : 95), use an ultrasonic machine with a frequency of 40KHz to clean for 10 minutes, and then spray and rinse with circulating tap water for 2 minutes. , and then use an ultrasonic machine with a frequency of 28KHz to wash in DI pure water for 10 minutes, dry it with a nitrogen gun, and then place it in a clean oven at 50°C for more than 30 minutes for later use.
取出上述制备的玻璃基板101,在其中一面利用磁控溅射方法制备一层厚度大于100nm的Cr薄膜,在Cr薄膜上均匀涂覆一层光刻胶RJZ304,110℃烘烤20分钟后,经过曝光和显影后在Cr薄膜上形成具有小孔光栅图案的光刻胶;将该玻璃基板置于含Ce(NH4)2(NO3)6 和 HClO4 的水溶液刻蚀液中,暴露的金属部分(具有小孔光栅图案光刻胶的镂空小孔部分,本实施例中镂空小孔部分为圆形)被刻蚀,被光刻胶保护的金属留下来,光刻胶清洗后,最终形成小孔光栅102。 Take out the glass substrate 101 prepared above, prepare a Cr film with a thickness greater than 100 nm on one side by using the magnetron sputtering method, uniformly coat a layer of photoresist RJZ304 on the Cr film, bake at 110 ° C for 20 minutes, and then After exposure and development, a photoresist with a small hole grating pattern is formed on the Cr film; the glass substrate is placed in an aqueous etching solution containing Ce(NH4)2(NO3)6 and HClO4, and the exposed metal part (with The hollow hole part of the small hole grating pattern photoresist (in this embodiment, the hollow small hole part is a circle) is etched, and the metal protected by the photoresist is left. After the photoresist is cleaned, the small hole grating is finally formed 102.
:在所述基板101设置有所述小孔光栅102的一面均匀涂覆一层透明负光刻胶104: : uniformly coating a layer of transparent negative photoresist 104 on the side of the substrate 101 provided with the pinhole grating 102:
在步骤S11制备的玻璃基板101含有小孔光栅102的一面上均匀涂覆一层光刻胶SU8 3050, 65℃烘烤2分钟,95℃烘烤5分钟。 On the side of the glass substrate 101 prepared in step S11 containing the small hole grating 102, evenly coat a layer of photoresist SU8 3050, bake at 65°C for 2 minutes, and bake at 95°C for 5 minutes.
:采用背曝光方式,从所述基板101未设置所述小孔光栅102的一面进行曝光并显影;所述光刻胶被所述小孔光栅阻挡的部分将被显影液去除,留下未被所述小孔光栅阻挡的光刻胶柱状图案阵列: : adopt back exposure method, expose and develop from the side of the substrate 101 that is not provided with the pinhole grating 102; the part of the photoresist blocked by the pinhole grating will be removed by the developer, leaving The photoresist columnar pattern array blocked by the pinhole grating:
采用背曝光方式,即从玻璃基板101不含小孔光栅102的表面射入紫外光105进行曝光,此时小孔光栅102作为曝光掩膜版,所述光刻胶被小孔光栅102不透光部分遮挡的SU8 3050光刻胶在显影中被清洗掉,只留下被曝光的光刻胶柱状图案阵列,在本实施例中,所述光刻胶柱状图案阵列形状为圆柱状,即为光刻胶圆柱状阵列106。 The back exposure method is adopted, that is, ultraviolet light 105 is injected from the surface of the glass substrate 101 without the pinhole grating 102 for exposure. At this time, the pinhole grating 102 is used as an exposure mask, and the photoresist is impervious to the pinhole grating 102. The SU8 3050 photoresist partially blocked by light is washed away during development, leaving only the exposed photoresist columnar pattern array. In this embodiment, the shape of the photoresist columnar pattern array is cylindrical, which is Photoresist cylindrical array 106 .
:采用光刻胶热熔法使所述光刻胶柱状图案阵列熔化变形,形成光刻胶微透镜阵列103,从而得到所述的组合微透镜阵列: : Using a photoresist hot-melt method to melt and deform the photoresist columnar pattern array to form a photoresist microlens array 103, thereby obtaining the combined microlens array:
将步骤S13制备的光刻胶圆柱状阵列106进行均匀加热,加热温度范围一般在100℃到300℃之间(取决于光刻胶及所需微透镜的曲率半径)。优选的,本实施例采用的加热温度为150℃,光刻胶圆柱状阵列106受热熔化变形,冷却后形成光刻胶微透镜阵列103。此时,光刻胶微透镜阵列103和小孔光栅102组合在同一透明玻璃基板101上,形成本发明一种用于集成成像3D显示的组合微透镜阵列。 The photoresist cylindrical array 106 prepared in step S13 is uniformly heated, and the heating temperature range is generally between 100° C. and 300° C. (depending on the photoresist and the radius of curvature of the required microlens). Preferably, the heating temperature adopted in this embodiment is 150° C., the photoresist cylindrical array 106 is heated and melted and deformed, and the photoresist microlens array 103 is formed after cooling. At this time, the photoresist microlens array 103 and the pinhole grating 102 are combined on the same transparent glass substrate 101 to form a combined microlens array for integrated imaging 3D display of the present invention.
实施例二Embodiment two
当微透镜阵列不是光刻胶材料时,不能采用光刻方式来制备,此时采用软印刷方法,本实施例采用第二种制作方法,其具体方案包括以下步骤: When the microlens array is not a photoresist material, it cannot be prepared by photolithography. At this time, a soft printing method is used. This embodiment adopts the second manufacturing method. The specific scheme includes the following steps:
S21:提供两片基板并采用光刻、刻蚀或丝网印刷分别在其一表面制作一小孔光栅: S21: Provide two substrates and use photolithography, etching or screen printing to make a small hole grating on one surface:
选取两块所需尺寸的玻璃基板进行划片后置于玻璃清洗液Win-10的水溶液中(体积比为Win-10 : DI水= 3 : 97),利用频率为32KHz的超声机清洗15min,喷淋2min后,再置于玻璃清洗液Win-41的水溶液中(体积比为Win-41 : DI水= 5 : 95),利用频率为40KHz的超声机清洗10min,经循环自来水喷淋漂洗2min后,再利用频率为28KHz的超声机在DI纯净水中清洗10min,经氮气枪吹干后置于50℃洁净烘箱中保温30min以上备用。 Select two glass substrates of the required size for scribing and place them in the aqueous solution of glass cleaning solution Win-10 (volume ratio is Win-10 : DI water = 3 : 97), and use an ultrasonic machine with a frequency of 32KHz to clean them for 15 minutes. After spraying for 2 minutes, put it in the aqueous solution of glass cleaning solution Win-41 (volume ratio is Win-41 : DI water = 5 : 95), use an ultrasonic machine with a frequency of 40KHz to clean for 10 minutes, and then spray and rinse with circulating tap water for 2 minutes Finally, use an ultrasonic machine with a frequency of 28KHz to wash in DI pure water for 10 minutes, dry it with a nitrogen gun, and then place it in a clean oven at 50°C for more than 30 minutes for later use.
取出上述制备的两片玻璃基板,分别在这两块洁净玻璃基板的其中一面利用磁控溅射方法制备一层厚度大于100nm的Cr薄膜,并在Cr薄膜上均匀涂覆一层光刻胶RJZ304,110℃烘烤20分钟后,经过曝光和显影在Cr薄膜上形成具有小孔光栅图案的光刻胶;将该两片玻璃基板置于含Ce(NH4)2(NO3)6 和 HClO4 的水溶液刻蚀液中,暴露的金属部分(具有小孔光栅图案光刻胶的镂空小孔部分,本实施例中镂空小孔部分为圆形)被刻蚀,被光刻胶保护的金属留下来,光刻胶清洗后,最终形成小孔光栅。 Take out the two glass substrates prepared above, prepare a layer of Cr film with a thickness greater than 100nm on one side of the two clean glass substrates by magnetron sputtering method, and evenly coat a layer of photoresist RJZ304 on the Cr film , after baking at 110°C for 20 minutes, a photoresist with a small hole grating pattern was formed on the Cr film after exposure and development; the two glass substrates were placed in an aqueous solution containing Ce(NH4)2(NO3)6 and HClO4 In the etching solution, the exposed metal part (the hollow hole part with the photoresist of the small hole grating pattern, the hollow hole part is circular in this embodiment) is etched, and the metal protected by the photoresist remains, After the photoresist is cleaned, the pinhole grating is finally formed.
:取所述步骤S21中制备的其中一片基板并在其设置有所述小孔光栅的一面均匀涂覆一层光刻胶: : Take one of the substrates prepared in the step S21 and evenly coat a layer of photoresist on the side provided with the aperture grating:
取所述步骤S21中制备的其中一片基板并在其设置有所述小孔光栅的一面均匀涂覆一层透明负光刻胶SU8 3050,65℃烘烤2分钟,95℃烘烤5分钟。 Take one of the substrates prepared in step S21 and evenly coat a layer of transparent negative photoresist SU8 3050 on the side provided with the pinhole grating, bake at 65°C for 2 minutes, and bake at 95°C for 5 minutes.
:采用背曝光方式,从所述步骤S22中制备的含小孔光栅的基板未设置有小孔光栅的一面进行曝光并显影,所述光刻胶被所述小孔光栅阻挡的部分将被显影液去除,留下未被所述小孔光栅阻挡的光刻胶柱状图案阵列: : Adopting the back exposure method, exposing and developing from the side of the substrate containing the pinhole grating prepared in the step S22 that is not provided with the pinhole grating, the part of the photoresist blocked by the pinhole grating will be developed Liquid removal, leaving an array of photoresist columnar patterns not blocked by the aperture grating:
采用背曝光方式,从所述步骤S22中制备的含小孔光栅的基板不含小孔光栅的一面射入紫外光进行曝光,此时小孔光栅作为曝光掩膜版,被小孔光栅不透光部分遮挡的SU8 3050光刻胶在显影中被清洗掉,只留下被曝光的光刻胶柱状图案阵列,在本实施例中,所述光刻胶柱状图案阵列形状为圆柱状,即为光刻胶圆柱状阵列。 Using the back exposure method, the substrate containing the pinhole grating prepared in the step S22 is exposed to ultraviolet light from the side that does not contain the pinhole grating. At this time, the pinhole grating is used as an exposure mask and is impermeable by the pinhole grating. The SU8 3050 photoresist partially blocked by light is washed away during development, leaving only the exposed photoresist columnar pattern array. In this embodiment, the shape of the photoresist columnar pattern array is cylindrical, which is Photoresist cylindrical array.
:取所述步骤S23中制备的含光刻胶柱状图案阵列的基板,采用光刻胶热熔法使所述光刻胶柱状图案阵列熔化变形,形成光刻胶微透镜阵列: : Take the substrate containing the photoresist columnar pattern array prepared in the step S23, and use the photoresist hot-melt method to melt and deform the photoresist columnar pattern array to form a photoresist microlens array:
取所述步骤S23中制备的含光刻胶柱状图案阵列的基板进行均匀加热,加热温度范围一般在100℃到300℃之间(取决于光刻胶及所需微透镜的曲率半径)。优选的,本实施例采用的加热温度为150℃,光刻胶圆柱状阵列受热熔化变形,冷却后形成光刻胶微透镜阵列。 The substrate containing the photoresist columnar pattern array prepared in step S23 is uniformly heated, and the heating temperature range is generally between 100°C and 300°C (depending on the photoresist and the radius of curvature of the required microlens). Preferably, the heating temperature used in this embodiment is 150° C., the photoresist cylindrical array is heated and melted and deformed, and the photoresist microlens array is formed after cooling.
:取所述步骤S24中制备的含光刻胶微透镜阵列的基板,并使用硅橡胶制作所述光刻胶微透镜阵列的硅橡胶负模板: : Get the substrate containing the photoresist microlens array prepared in the step S24, and use silicon rubber to make the silicon rubber negative template of the photoresist microlens array:
取所述步骤S24中制备的含光刻胶微透镜阵列的平滑基板密封置于装有三甲基氯硅烷分子(TMCS)的容器里,放置约5分钟后取出,此时该光刻胶微透镜阵列表面自组装一层TMCS,用于防粘。按所述硅橡胶所需比例制备单体和交联剂的混合物,即按单体和交联剂10:1的比列配置聚二甲基硅氧烷(PDMS)混合物,搅拌至均匀混合。将上述自组装一层TMCS的含光刻胶微透镜阵列的平滑基板水平放置于一容器中,倒入聚二甲基硅氧烷(PDMS)混合物,静置约30分钟至起泡全部消除,将该容器放入80℃烘箱两小时以上,待PDMS完全固化后取出,将PDMS与该光刻胶微透镜阵列分离,切割PDMS形成光刻胶微透镜阵列的硅橡胶负模板204。 Take the smooth substrate containing the photoresist microlens array prepared in step S24 and seal it in a container containing trimethylchlorosilane molecules (TMCS), and take it out after about 5 minutes. At this time, the photoresist microlens A layer of TMCS is self-assembled on the surface of the array for anti-sticking. Prepare a mixture of monomer and crosslinking agent according to the required ratio of the silicone rubber, that is, configure a polydimethylsiloxane (PDMS) mixture in a ratio of 10:1 between the monomer and the crosslinking agent, and stir until uniformly mixed. Put the above-mentioned self-assembled layer of TMCS smooth substrate containing photoresist microlens array horizontally in a container, pour polydimethylsiloxane (PDMS) mixture, and let it stand for about 30 minutes until all the bubbles are eliminated. Put the container in an oven at 80° C. for more than two hours, take it out after the PDMS is completely cured, separate the PDMS from the photoresist microlens array, and cut the PDMS to form a silicone rubber negative template 204 for the photoresist microlens array.
:利用所述硅橡胶负模板,采用热压印或紫外压印在所述步骤S21中制备的另一片设置有小孔光栅的基板上制作一透明有机材料微透镜阵列,从而得到所述的组合微透镜阵列: : Utilizing the silicone rubber negative template, adopting thermal embossing or ultraviolet embossing to make a transparent organic material microlens array on another substrate prepared in the step S21 provided with a small hole grating, thereby obtaining the combination Microlens array:
优选的,本实施例选用NOA81作为透明有机材料微透镜阵列的材料,首先,将步骤S25制成的硅橡胶负模板204密封置于装有三甲基氯硅烷分子(TMCS)的容器里,放置约5分钟后取出,此时硅橡胶负模板204表面自组装一层TMCS,用于防粘。然后将该硅橡胶负模板204放置于密封容器中进行抽真空,由于硅橡胶材料为多孔材料,该方法使得该硅橡胶负模板204具有负压。接下来将步骤S21制成的另一块含小孔光栅的基板201含有小孔光栅202的一面均匀涂覆一层透明有机材料206(NOA81),把具有负压的硅橡胶负模板204对齐放置于NOA81上,并使硅橡胶负模板204的中心与小孔光栅202的小孔中心一一对齐;并且使所述硅橡胶负模板突出的部分与所述小孔光栅不透明部分直接接触,从而使透明有机材料NOA81在所述硅橡胶覆膜板的凹进部分与所述小孔光栅的小孔阵列中形成透镜单元。由于硅橡胶负模板204具有负压,流体状NOA81在负压力和毛细力的共同作用下将形成与硅橡胶负模板204相应的透明有机材料微透镜阵列203,经紫外光205曝光大于100秒后,流体状NOA81固化。将硅橡胶负模板204与所述含小孔光栅的基板201分离,所述透明有机材料微透镜阵列203和所述小孔光栅202组合在同一基板201上,形成本发明一种用于集成成像3D显示的组合微透镜阵列。 Preferably, in this embodiment, NOA81 is selected as the material of the transparent organic material microlens array. First, the silicone rubber negative template 204 prepared in step S25 is sealed and placed in a container containing trimethylchlorosilane molecules (TMCS), and placed for about Take it out after 5 minutes, at this time, a layer of TMCS is self-assembled on the surface of the silicone rubber negative template 204 for anti-sticking. Then place the silicone rubber negative template 204 in a sealed container for vacuuming. Since the silicone rubber material is a porous material, this method makes the silicone rubber negative template 204 have a negative pressure. Next, the surface of another substrate 201 containing pinhole gratings produced in step S21 containing pinhole gratings 202 is evenly coated with a layer of transparent organic material 206 (NOA81), and the silicone rubber negative template 204 with negative pressure is aligned and placed on the NOA81, and align the center of the silicone rubber negative template 204 with the aperture center of the aperture grating 202; and make the protruding part of the silicone rubber negative template directly contact with the opaque part of the aperture grating, thereby making the The organic material NOA81 forms a lens unit in the concave portion of the silicone rubber film-coated plate and the aperture array of the aperture grating. Since the silicone rubber negative template 204 has a negative pressure, the fluid-like NOA81 will form a transparent organic material microlens array 203 corresponding to the silicone rubber negative template 204 under the joint action of the negative pressure and capillary force, and after being exposed to ultraviolet light 205 for more than 100 seconds , Fluid NOA81 solidified. The silicone rubber negative template 204 is separated from the substrate 201 containing the small hole grating, and the transparent organic material microlens array 203 and the small hole grating 202 are combined on the same substrate 201 to form an integrated imaging system of the present invention. Combined microlens array for 3D display.
上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above-listed preferred embodiments have further described the purpose, technical solutions and advantages of the present invention in detail. It should be understood that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310014861.0A CN103064136B (en) | 2013-01-16 | 2013-01-16 | Combined microlens array for integrated imaging three-dimensional (3D) display and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310014861.0A CN103064136B (en) | 2013-01-16 | 2013-01-16 | Combined microlens array for integrated imaging three-dimensional (3D) display and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103064136A CN103064136A (en) | 2013-04-24 |
CN103064136B true CN103064136B (en) | 2014-12-31 |
Family
ID=48106834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310014861.0A Expired - Fee Related CN103064136B (en) | 2013-01-16 | 2013-01-16 | Combined microlens array for integrated imaging three-dimensional (3D) display and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103064136B (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103475889B (en) * | 2013-09-01 | 2015-02-18 | 西安电子科技大学 | Method for obtaining micro cell image array in real time based on double cameras |
NZ762223A (en) * | 2014-03-05 | 2022-02-25 | Univ Arizona | Wearable 3d augmented reality display with variable focus and/or object recognition |
CN103986926B (en) * | 2014-05-26 | 2015-11-11 | 四川大学 | A kind of integration imaging 3D display unit without crosstalk |
CN104407442A (en) * | 2014-05-31 | 2015-03-11 | 福州大学 | Integrated imaging 3D display micro-lens array and 3D manufacturing method thereof |
CN104407441B (en) * | 2014-05-31 | 2017-03-08 | 福州大学 | A kind of integration imaging 3D display microlens array and preparation method thereof |
CN104064122B (en) * | 2014-07-05 | 2016-05-04 | 福州大学 | A kind of LED bore hole 3D display unit |
CN104345359B (en) * | 2014-10-28 | 2017-01-18 | 京东方科技集团股份有限公司 | Micro lens array, manufacturing method of micro lens array, image obtaining device and display device |
CN104635337B (en) * | 2015-02-17 | 2017-03-01 | 吉林大学 | The honeycomb fashion lens arra method for designing of stereo-picture display resolution can be improved |
CN104765080B (en) * | 2015-04-24 | 2016-08-24 | 华进半导体封装先导技术研发中心有限公司 | A kind of preparation method of lens arra |
CN105242332B (en) * | 2015-11-16 | 2016-09-14 | 中国电子科技集团公司第四十四研究所 | Big array high uniformity microlens array preparation method |
CN105607163B (en) * | 2016-03-03 | 2017-07-11 | 北京理工大学 | A kind of impression manufacture method on the surface with lenticule or microlens array structure |
CN107765438B (en) * | 2016-08-18 | 2020-09-15 | 群睿股份有限公司 | Image display device and image display method |
CN107783212A (en) * | 2016-08-30 | 2018-03-09 | 环视先进数字显示无锡有限公司 | Micron LED display module second order wide viewing angle grating manufacture methods and display module |
CN106501884A (en) * | 2016-11-30 | 2017-03-15 | 电子科技大学 | A kind of processing technology of sub-wavelength structure plano-convex microlens array |
CN106626097B (en) * | 2016-12-13 | 2018-07-27 | 莱特巴斯光学仪器(镇江)有限公司 | A kind of production technology of asymmetric lens |
CN106526843B (en) * | 2016-12-26 | 2020-07-17 | Tcl新技术(惠州)有限公司 | Method and device for simulating naked eye 3D grating |
CN108363197B (en) * | 2017-01-26 | 2019-10-15 | 中国科学院上海生命科学研究院 | Light field microscope system, light field microscope and optical components thereof |
CN108375840B (en) * | 2018-02-23 | 2021-07-27 | 北京耐德佳显示技术有限公司 | Light field display unit based on small array image source and three-dimensional near-to-eye display device using light field display unit |
TWI688790B (en) | 2019-03-28 | 2020-03-21 | 中強光電股份有限公司 | Display apparatus |
CN110441838A (en) * | 2019-08-07 | 2019-11-12 | 南京邮电大学 | Preparation method based on titanium dioxide organic and inorganic photosensitive composite film abnormity convex lens array |
CN110954977B (en) * | 2019-12-06 | 2021-06-15 | 中国科学院长春光学精密机械与物理研究所 | Preparation method of cycloolefin copolymer microlens array |
CN111054918B (en) * | 2019-12-26 | 2021-01-19 | 武汉大学 | Method for accurately preparing superfine metal micro-pillar array suitable for controllable biosensor spacing |
CN111353480A (en) * | 2020-04-26 | 2020-06-30 | 欧菲微电子技术有限公司 | Micro-lens assembly, preparation method, optical fingerprint module and electronic device |
CN113703185A (en) * | 2020-05-22 | 2021-11-26 | 北京芯海视界三维科技有限公司 | Method for manufacturing lenticular grating |
CN112099112A (en) * | 2020-09-03 | 2020-12-18 | 深圳市隆利科技股份有限公司 | Manufacturing method of LED lamp panel |
CN114545534A (en) * | 2020-11-24 | 2022-05-27 | 京东方科技集团股份有限公司 | Lens assembly, manufacturing method thereof and display device |
CN113238306B (en) * | 2021-04-19 | 2022-07-05 | 福州大学 | Multifocal microlens array and preparation method for improving depth of field of integrated imaging 3D display |
CN113835234A (en) * | 2021-10-09 | 2021-12-24 | 闽都创新实验室 | A naked-eye 3D display device with integrated imaging and preparation method thereof |
CN116125569B (en) * | 2023-04-14 | 2023-09-12 | 福建福特科光电股份有限公司 | Preparation method of microlens array based on nanoimprint lithography |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100537994B1 (en) * | 2004-04-27 | 2005-12-20 | 한국생산기술연구원 | Method for manufacturing a micro multi-layer lens |
KR100703095B1 (en) * | 2005-10-14 | 2007-04-06 | 삼성전기주식회사 | High sag lens manufacturing method and high sag lens manufactured by this method |
KR100857723B1 (en) * | 2006-12-15 | 2008-09-10 | 한국생산기술연구원 | Micro lens pattern forming method, method of manufacturing core mold for light guide plate and method of manufacturing light guide plate using core mold |
CN101339364B (en) * | 2008-08-13 | 2011-01-26 | 中国科学院上海光学精密机械研究所 | Method for manufacturing micro-lens array by soft mould impression |
US20110175981A1 (en) * | 2010-01-19 | 2011-07-21 | Chun-Hung Lai | 3d color image sensor |
CN102004323B (en) * | 2010-09-25 | 2012-05-23 | 四川大学 | Convergent type integrated imaging stereo display method and device for increasing viewing angle |
KR101042501B1 (en) * | 2010-11-17 | 2011-06-17 | 이주현 | Lens array sheet with light transmission adjustment filter |
CN102608768B (en) * | 2012-03-31 | 2015-10-14 | 福州大学 | LED-based two-sided stereo display device of optical grating and preparation method thereof |
CN102681046B (en) * | 2012-05-17 | 2014-04-16 | 中北大学 | Method for preparing large-area NOA73 curved-surface micro lens array |
CN102868900B (en) * | 2012-10-09 | 2014-06-18 | 四川大学 | Wide viewing angle and crosstalk-free integrated imaging three-dimensional display device |
CN102866508A (en) * | 2012-10-12 | 2013-01-09 | 福州大学 | Light-emitting diode (LED) naked eye three-dimensional display device capable of achieving two-dimensional/three-dimensional (2D/3D) switching and manufacturing method thereof |
-
2013
- 2013-01-16 CN CN201310014861.0A patent/CN103064136B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103064136A (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103064136B (en) | Combined microlens array for integrated imaging three-dimensional (3D) display and manufacturing method thereof | |
CN104407441B (en) | A kind of integration imaging 3D display microlens array and preparation method thereof | |
CN104407442A (en) | Integrated imaging 3D display micro-lens array and 3D manufacturing method thereof | |
US7399421B2 (en) | Injection molded microoptics | |
CN101339364B (en) | Method for manufacturing micro-lens array by soft mould impression | |
CN101801652B (en) | Mass production of micro-optical devices, corresponding tools, and resultant structures | |
CN102967890B (en) | Simple preparation method and application of polydimethylsiloxane (PDMS) polymer microlens array | |
CN100447619C (en) | Liquid crystal display device and production method thereof, and projector | |
CN108139507A (en) | The manufacturing method and lenticule of lenticule | |
CN102681046A (en) | Method for preparing large-area NOA73 curved-surface micro lens array | |
He et al. | Fabrication and characterization of biologically inspired curved-surface artificial compound eyes | |
CN102540284A (en) | Method for preparing micro-lens array based on negative photoresist and mask moving exposure process | |
JP2000231007A (en) | Formation of array pattern with fine recesses and planar lens array, liquid crystal display device and planar oil trap produced by the forming method | |
CN113238306B (en) | Multifocal microlens array and preparation method for improving depth of field of integrated imaging 3D display | |
CN103033860A (en) | Method for making square aperture plane micro-lens array with high filling coefficient | |
WO2016065811A1 (en) | Micro lens array and manufacturing method therefor, image acquisition device and display device | |
CN104656246A (en) | Electrowetting display substrate, manufacturing method for electrowetting display substrate, and electrowetting display device | |
CN101598819A (en) | Plated film lens and preparation method thereof | |
JP2005242109A (en) | Manufacturing method and apparatus for microlens and the microlens | |
CN104252081A (en) | Liquid crystal micro-lens array and manufacturing method thereof | |
CN117872517A (en) | A curved compound eye lens and a method for preparing the same | |
KR100811086B1 (en) | Manufacturing method of micro lens array mold and manufacturing method of micro lens array using same | |
CN109407472A (en) | Preparation method, making apparatus and the product of light microchannel plate | |
CN214623098U (en) | Double-sided micro-lens array | |
JP4502719B2 (en) | Optical element and optical element manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141231 |