Nothing Special   »   [go: up one dir, main page]

CN102731234A - CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen - Google Patents

CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen Download PDF

Info

Publication number
CN102731234A
CN102731234A CN2012102302469A CN201210230246A CN102731234A CN 102731234 A CN102731234 A CN 102731234A CN 2012102302469 A CN2012102302469 A CN 2012102302469A CN 201210230246 A CN201210230246 A CN 201210230246A CN 102731234 A CN102731234 A CN 102731234A
Authority
CN
China
Prior art keywords
noble metal
molecular sieve
carbon monoxide
benzene
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012102302469A
Other languages
Chinese (zh)
Inventor
曹勇
倪吉
于磊
刘永梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2012102302469A priority Critical patent/CN102731234A/en
Publication of CN102731234A publication Critical patent/CN102731234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属催化合成技术领域,具体为一种CO促进的分子氧直接氧化羟化芳烃化合物的方法。本发明方法以芳烃化合物为底物,使用由负载型贵金属催化剂与含Ti、V、Cu或Fe的杂原子分子筛或杂多酸盐组成的组合催化剂,以水与有机溶剂的混合液为溶剂;通入CO与O2,在CO促进下,由分子氧直接氧化羟化芳烃化合物,制得相应的酚类化合物。本发明方法所用设备及工艺简单,目标产物的分离相对容易,反应条件温和,体系环境友好,是一条绿色工艺路线。The invention belongs to the technical field of catalytic synthesis, and specifically relates to a method for directly oxidizing hydroxylated aromatic compounds with molecular oxygen promoted by CO. The method of the present invention uses an aromatic hydrocarbon compound as a substrate, uses a combined catalyst composed of a supported noble metal catalyst and a heteroatom molecular sieve or heteropolyacid salt containing Ti, V, Cu or Fe, and uses a mixed solution of water and an organic solvent as a solvent; Through CO and O 2 , under the promotion of CO, the hydroxylated aromatic compound is directly oxidized by molecular oxygen to prepare the corresponding phenolic compound. The equipment and process used in the method of the invention are simple, the separation of the target product is relatively easy, the reaction conditions are mild, the system environment is friendly, and it is a green process route.

Description

一种CO促进的分子氧直接氧化羟化芳烃化合物的方法A CO-promoted method for the direct oxidation of hydroxylated aromatic compounds by molecular oxygen

技术领域 technical field

本发明属催化合成技术领域,具体涉及一种芳烃化合物直接羟化的方法。 The invention belongs to the technical field of catalytic synthesis, and in particular relates to a method for direct hydroxylation of aromatic compounds.

背景技术 Background technique

芳烃化合物的羟化产物是化工和制药领域中重要的化合物。譬如:对羟基苯甲酸甲酯是医药,食品,香料,胶片中的防腐添加剂,也是强力杀菌剂。然而,目前芳香化合物的羟化产物绝大多数经由多步反应方法制的,其过程复杂,对设备要求高,对生产不利。芳烃羟化产物之一的苯酚是一种十分重要的大宗有机化工原料,在医药中间体、农药、香料、染料、助剂、树脂领域有广阔的应用。目前苯酚的主要生产方法为异丙苯氧化法,该方法经历三步反应,主要缺陷在与工艺繁复,能耗高,对设备腐蚀严重,特别是其副产物丙酮需求量远低于苯酚。因此,研究由芳香化合物直接羟化制酚类化合物的新工艺受到广泛关注。 Hydroxylation products of aromatic compounds are important compounds in the chemical and pharmaceutical fields. For example: Methyl p-hydroxybenzoate is a preservative additive in medicine, food, spices, and film, and it is also a strong bactericide. However, at present, most of the hydroxylation products of aromatic compounds are prepared through multi-step reaction methods, the process is complicated, the equipment requirements are high, and it is not good for production. Phenol, one of the hydroxylation products of aromatic hydrocarbons, is a very important bulk organic chemical raw material, and has broad applications in the fields of pharmaceutical intermediates, pesticides, spices, dyes, auxiliaries, and resins. At present, the main production method of phenol is the cumene oxidation method. This method undergoes a three-step reaction. The main disadvantages are complicated processes, high energy consumption, and serious corrosion of equipment. In particular, the demand for its by-product acetone is much lower than that of phenol. Therefore, the study of new processes for the direct hydroxylation of aromatic compounds to phenolic compounds has received widespread attention.

现有的苯一步羟化制苯酚的新工艺,若按所使用的氧化剂划分,则以过氧化氢为氧化剂的相关研究最多。文献(K.M. Parida,D. Rath,Appl. Catal. A:Gen.,321(2007):101-108)以Cu/MCM-41为催化剂,在醋酸中液相合成苯酚,苯的转化率及苯酚选择性分别为21%和94%。另外,中国专利CN129961C公开了以酸处理的活性碳作催化剂,在液相反应条件下,苯转化率为11-13%。另外以N2O为氧化剂也有一些报道。文献(D. Meloni,R. Monaci,V. Solinas,et al,J. Catal.,314(2003):169-178)以Fe-MFI分子筛为催化剂,气相反应合成苯酚,反应温度为400oC下,苯的转化率及苯酚选择性分别为20%和90%。上述方法与传统方法相比,虽然简化了工艺,提高了原子利用率,但是主要不足在于N2O与过氧化氢价格较昂贵,且基于氧化剂的苯酚选择性不高。 The existing new process of one-step hydroxylation of benzene to phenol, if divided according to the oxidant used, hydrogen peroxide is the most relevant research. Literature (KM Parida, D. Rath, Appl. Catal. A: Gen., 321 (2007): 101-108) used Cu/MCM-41 as catalyst to synthesize phenol in acetic acid in liquid phase, the conversion rate of benzene and phenol The selectivities were 21% and 94%, respectively. In addition, Chinese patent CN129961C discloses that acid-treated activated carbon is used as a catalyst, and under liquid phase reaction conditions, the conversion rate of benzene is 11-13%. In addition, there are some reports using N 2 O as the oxidizing agent. Literature (D. Meloni, R. Monaci, V. Solinas, et al, J. Catal., 314 (2003): 169-178) used Fe-MFI molecular sieve as a catalyst to synthesize phenol by gas phase reaction at a reaction temperature of 400 o C The conversion of benzene and the selectivity of phenol were 20% and 90%, respectively. Compared with the traditional method, the above method simplifies the process and improves the utilization rate of atoms, but the main disadvantages are that N 2 O and hydrogen peroxide are expensive, and the selectivity of phenol based on the oxidizing agent is not high.

以分子氧为氧化剂实现苯环直接羟化一直以来是工业界和学术研究中的目标,被认为是催化领域十大最具挑战性的课题。早在1888年,Friedel和Crafts就已尝试了以氧气为氧化剂,三氯化铝为催化剂,在气相反应条件下的苯直接羟化研究。从此以后,以钼、钨、铜或钒基材料为催化剂的研究层出不穷,文献(H. Yamanaka,R. Hamada,H. Nibuta,et al,J. Mol. Catal. A: Chemical,178(2002):89-95)以Cu/ZSM-5为催化剂所得的苯酚收率为1.5%;文献(Y. Liu,K. Murata,M. Inaba,Catal. Commun.,6(2005):679-683)以[(C4H9)4N]5[PW11CuO39(H2O)]为催化剂,液相氧化苯合成苯酚,苯的转化率及苯酚的选择性分别为9.2%和91.8%。以分子氧为氧化剂时,虽然其价格低廉,但是苯的转化率较低,通常不超过20 %。针对以分子氧为氧化剂,对苯氧化能力低的问题,文献(S. Niwa,M. Eswaramoorthy,J. Nair,et al,Science,295(2002):105-107)以钯膜为催化剂,氧气为氧源,氢气为助剂,原料苯在固定床反应器中可以转化为苯酚,但苯的转化率不高,且氢气对苯酚的选择性较低。另外,文献(S.L. Shu,Y. Huang,X.J. Hu,J. Phys. Chem. C,113(2009):19618-19622)经过反复实验认为,上述钯膜催化剂在该反应条件下并无催化苯直接羟化的性能,且在催化剂表面发生的氢气与氧气的燃烧反应极易造成膜催化剂结构的损毁,对催化剂稳定性十分不利。因此以氢气为助剂的分子氧氧化苯直接羟化过程的应用前景有待商榷。 The direct hydroxylation of benzene rings using molecular oxygen as an oxidant has long been a goal in both industrial and academic research, and is considered one of the top ten most challenging topics in the field of catalysis. As early as 1888, Friedel and Crafts had tried to study the direct hydroxylation of benzene under gas phase reaction conditions with oxygen as oxidant and aluminum trichloride as catalyst. Since then, research on molybdenum, tungsten, copper or vanadium-based materials as catalysts has emerged in an endless stream, literature (H. Yamanaka, R. Hamada, H. Nibuta, et al, J. Mol. Catal. A: Chemical, 178 (2002) : 89-95) The yield of phenol obtained by using Cu/ZSM-5 as a catalyst was 1.5%; literature (Y. Liu, K. Murata, M. Inaba, Catal. Commun., 6 (2005): 679-683) Using [(C 4 H 9 ) 4 N] 5 [PW 11 CuO 39 (H 2 O)] as catalyst, benzene was oxidized to phenol in liquid phase. The conversion of benzene and the selectivity of phenol were 9.2% and 91.8%, respectively. When molecular oxygen is used as an oxidant, although its price is low, the conversion rate of benzene is low, usually not more than 20%. Aiming at the problem of low benzene oxidation ability when molecular oxygen is used as oxidant, the literature (S. Niwa, M. Eswaramoorthy, J. Nair, et al, Science, 295 (2002): 105-107) uses palladium membrane as catalyst, oxygen As an oxygen source, hydrogen as an auxiliary agent, the raw material benzene can be converted into phenol in a fixed bed reactor, but the conversion rate of benzene is not high, and the selectivity of hydrogen to phenol is low. In addition, the literature (SL Shu, Y. Huang, XJ Hu, J. Phys. Chem. C, 113 (2009): 19618-19622) concluded through repeated experiments that the above-mentioned palladium membrane catalyst did not directly catalyze benzene under the reaction conditions. The performance of hydroxylation, and the combustion reaction of hydrogen and oxygen on the surface of the catalyst can easily cause damage to the structure of the membrane catalyst, which is very detrimental to the stability of the catalyst. Therefore, the application prospect of the direct hydroxylation process of molecular oxygen oxidation of benzene with hydrogen as auxiliary agent remains to be discussed.

发明内容 Contents of the invention

本发明的目的在于提供一种芳烃直接羟化制酚化合物的新方法,以克服现有芳烃羟化工艺中现存的问题。 The purpose of the present invention is to provide a new method for the direct hydroxylation of aromatic hydrocarbons to produce phenolic compounds, so as to overcome the existing problems in the existing aromatic hydrocarbon hydroxylation process.

本发明提供的解决方案是:以芳烃化合物为底物,使用由负载型贵金属催化剂与含Ti、V、Cu或Fe的杂原子分子筛或杂多酸盐组成的组合催化剂,以水与有机溶剂的混合液为溶剂;通入CO与O2,CO与O2按压力比为0.1:1~9:1,总压力为0.5~3 MPa;在CO促进下,由分子氧直接氧化羟化芳烃化合物,反应温度为20-150 oC,制得相应的酚类化合物;其中,所述底物和溶剂按质量比为0.01:1~0.2:1。  The solution provided by the present invention is: use aromatic compounds as substrates, use a combined catalyst composed of supported noble metal catalysts and heteroatom molecular sieves or heteropolyacids containing Ti, V, Cu or Fe, and use water and organic solvents The mixed solution is a solvent; CO and O 2 are fed in, the pressure ratio of CO and O 2 is 0.1:1 to 9:1, and the total pressure is 0.5 to 3 MPa; under the promotion of CO, the hydroxylated aromatic compound is directly oxidized by molecular oxygen , the reaction temperature is 20-150 oC , and the corresponding phenolic compound is prepared; wherein, the mass ratio of the substrate and the solvent is 0.01:1-0.2:1.

本发明中,所述负载型贵金属催化剂中的金属选自Pt、Pd、Rh、Ru、Ir、Au或Ag中的一种或几种,载体选自TiO2、CeO2、Fe2O3、Al2O3及ZrO2中的一种或几种。所述的负载型贵金属催化剂可通过如下方法制备:共沉淀法、沉积沉淀法,胶体法或浸渍法。 In the present invention, the metal in the supported noble metal catalyst is selected from one or more of Pt, Pd, Rh, Ru, Ir, Au or Ag, and the carrier is selected from TiO 2 , CeO 2 , Fe 2 O 3 , One or more of Al 2 O 3 and ZrO 2 . The supported noble metal catalyst can be prepared by the following methods: coprecipitation method, deposition precipitation method, colloid method or impregnation method.

本发明中,含Ti、V、Cu或Fe的杂原子分子筛或杂多酸盐选自含有Ti、V、Cu或Fe的MFI、MWW、MCM、HMS、Beta或SBA构型的氧化硅分子筛,含Cu的磷酸铝分子筛及含V的钨酸盐或钼酸盐中的一种或几种。 In the present invention, the heteroatom molecular sieve or heteropolyacid salt containing Ti, V, Cu or Fe is selected from silica molecular sieves of MFI, MWW, MCM, HMS, Beta or SBA configuration containing Ti, V, Cu or Fe, One or more of Cu-containing aluminum phosphate molecular sieve and V-containing tungstate or molybdate.

所述底物与组合催化剂中贵金属催化剂的摩尔比为50:1~1000:1;组合催化剂中,所述负载型贵金属催化剂与所述杂原子分子筛或杂多酸盐的质量比为0.5:1~2:1。 The molar ratio of the substrate to the noble metal catalyst in the combined catalyst is 50:1 to 1000:1; in the combined catalyst, the mass ratio of the supported noble metal catalyst to the heteroatom molecular sieve or heteropolyacid salt is 0.5:1 ~2:1.

本发明中,反应溶剂为有机溶剂与水的混合溶剂,所述的有机溶剂选自甲醇、丙酮、乙腈或乙酸;所述混合溶剂中有机溶剂与水按体积比为1:9~9:1。 In the present invention, the reaction solvent is a mixed solvent of an organic solvent and water, and the organic solvent is selected from methanol, acetone, acetonitrile or acetic acid; the volume ratio of the organic solvent to water in the mixed solvent is 1:9 to 9:1 .

本发明中,所述芳烃化合物是取代/未取代的苯和取代/未取代的稠环芳烃。所述的取代基为烷基、烷氧基、羟基、氟、氯、溴、碘、氰基、酰基、三氟甲基、硝基或羧基中的一种或几种。 In the present invention, the aromatic hydrocarbon compound is substituted/unsubstituted benzene and substituted/unsubstituted condensed ring aromatic hydrocarbon. The substituents are one or more of alkyl, alkoxy, hydroxyl, fluorine, chlorine, bromine, iodine, cyano, acyl, trifluoromethyl, nitro or carboxyl.

相比于现有方法,本发明具有如下优点:环境友好,反应腐蚀小,三废处理负担轻,能满足清洁生产的要求,有利于大规模生产;反应条件温和,是一条绿色工艺路线。所使用的催化剂为多相催化剂,操作简单,产物与催化剂分离容易。 Compared with the existing method, the present invention has the following advantages: environmental friendliness, less reaction corrosion, light waste treatment burden, can meet the requirements of clean production, and is conducive to large-scale production; mild reaction conditions, is a green process route. The catalyst used is a heterogeneous catalyst, the operation is simple, and the separation of the product and the catalyst is easy.

具体实施方式 Detailed ways

下面通过实施例进一步详述本发明,但本发明的内容并不局限于此。 The present invention is described in further detail below through examples, but the content of the present invention is not limited thereto.

实施例1:称取0.664 g H2PtCl6·9H2O、0.420 g PdCl2、0.508 g RhCl3、0.646 g RuCl3·3H2O、0.670 g H2IrCl6·6H2O或0.390 g AgNO3分别投入6只100 mL烧杯中,再分别加入5 g ZrO2和20 mL水,搅拌下80 oC水浴中小心蒸干水,所得的样品在100 oC烘箱中烘12小时,将固体转入坩埚中在350 oC下马弗炉中焙烧2小时,再在5% H2/Ar气流中300 oC下焙烧2小时后。冷却后制得催化剂,表示为Pt/ZrO2-Im、Pd/ZrO2-Im、Rh/ZrO2-Im、Ru/ZrO2-Im、Ir/ZrO2-Im或Ag/ZrO2-Im。 Example 1: Weigh 0.664 g H 2 PtCl 6 ·9H 2 O, 0.420 g PdCl 2 , 0.508 g RhCl 3 , 0.646 g RuCl 3 ·3H 2 O, 0.670 g H 2 IrCl 6 ·6H 2 O or 0.390 g AgNO 3 Put them into six 100 mL beakers respectively, then add 5 g ZrO 2 and 20 mL water respectively, carefully evaporate the water in an 80 o C water bath under stirring, and dry the obtained samples in an oven at 100 o C for 12 hours, transfer the solid to Put it into a crucible and bake in a muffle furnace at 350 o C for 2 hours, and then bake it in a 5% H 2 /Ar flow at 300 o C for 2 hours. After cooling a catalyst is obtained, denoted as Pt/ZrO 2 -Im, Pd/ZrO 2 -Im, Rh/ZrO 2 -Im, Ru/ZrO 2 -Im, Ir/ZrO 2 -Im or Ag/ZrO 2 -Im.

实施例2:称取0.664 g H2PtCl6·9H2O或0.420 g PdCl2分别投入2只盛有100 mL烧杯中,再加入5 g TiO2和40 mL 0.25M NaOH的乙二醇溶液,室温下搅拌1小时后,将温度升至140 oC继续搅拌3小时,将沉淀过滤,用蒸馏水洗涤3次,在100 oC下干燥12小时,冷却后制得催化剂,表示为Pt/TiO2-CD或Pd/TiO2-CD。 Example 2: Weigh 0.664 g H 2 PtCl 6 9H 2 O or 0.420 g PdCl 2 into two 100 mL beakers respectively, then add 5 g TiO 2 and 40 mL 0.25M NaOH in ethylene glycol solution, After stirring at room temperature for 1 hour, raise the temperature to 140 o C and continue stirring for 3 hours, filter the precipitate, wash with distilled water three times, dry at 100 o C for 12 hours, and obtain the catalyst after cooling, expressed as Pt/TiO 2 -CD or Pd/TiO 2 -CD.

实施例3:将0.104 g HAuCl4·4H2O,0.5 L水投入1 L烧杯中,80 oC搅拌条件下滴入浓度为0.2 M的氢氧化钠溶液至pH为7左右,再投入5 g CeO2,80 oC下继续搅拌2小时,将沉淀过滤,用蒸馏水洗涤至无Cl-,在100 oC下干燥12小时,最后在300 oC下马弗炉焙烧4小时。冷却后制得催化剂,表示为Au/CeO2-DP。 Example 3: Put 0.104 g HAuCl 4 4H 2 O, 0.5 L of water into a 1 L beaker, drop in a 0.2 M sodium hydroxide solution with stirring at 80 o C until the pH is about 7, and then add 5 g CeO 2 , continued stirring at 80 o C for 2 hours, filtered the precipitate, washed it with distilled water until it was free of Cl - , dried it at 100 o C for 12 hours, and finally roasted it in a muffle furnace at 300 o C for 4 hours. After cooling a catalyst was obtained, denoted as Au/CeO 2 -DP.

实施例4:将0.468 g HAuCl4·4H2O,12.65 g Fe(NO3)3·9H2O,0.5 L水投入1 L烧杯中,80 oC搅拌条件下滴入浓度为0.2 M的氢氧化钠溶液至pH为8左右,继续搅拌30分钟,将沉淀过滤,用蒸馏水洗涤至无Cl-,在100 oC下干燥12小时,最后在300 oC下马弗炉焙烧4小时。冷却后制得催化剂,表示为Au/Fe2O3-CP。 Example 4: Put 0.468 g HAuCl 4 4H 2 O, 12.65 g Fe(NO 3 ) 3 9H 2 O, and 0.5 L water into a 1 L beaker, and drop in 0.2 M hydrogen with stirring at 80 o C Sodium oxide solution until the pH is about 8, continue to stir for 30 minutes, filter the precipitate, wash with distilled water until there is no Cl - , dry at 100 o C for 12 hours, and finally bake in a muffle furnace at 300 o C for 4 hours. After cooling a catalyst was obtained, denoted as Au/Fe 2 O 3 -CP.

实施例5:称量实施例1到实施例4中所制备的催化剂0.1 g、0.1 g Ti-MWW分子筛与2 mmol苯投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表1。 Embodiment 5: Weigh 0.1 g of the catalyst prepared in Examples 1 to 4, 0.1 g of Ti-MWW molecular sieve and 2 mmol of benzene and put it into a 100 mL stainless steel autoclave filled with 5 mL of water and 5 mL of acetone, and then After replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave was raised to 80 o C, 0.5 MPa of carbon monoxide was introduced, and then oxygen was introduced until the total pressure was 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 1.

  the

    表1实施例5结果Table 1 Example 5 results

负载型贵金属催化剂Supported noble metal catalyst 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % Pt/ZrO2-ImPt/ZrO 2 -Im 5858 9292 88 Pd/ZrO2-ImPd/ZrO 2 -Im 5656 9393 77 Rh/ZrO2-ImRh/ZrO 2 -Im 3232 9696 44 Ru/ZrO2-ImRu/ZrO 2 -Im 3131 9595 55 Ir/ZrO2-ImIr/ZrO 2 -Im 4747 9595 44 Ag/ZrO2-ImAg/ZrO 2 -Im 1313 9797 33 Pt/TiO2-CDPt/TiO 2 -CD 4242 9494 66 Pd/TiO2-CDPd/TiO 2 -CD 4747 9494 66 Au/CeO2-DPAu/CeO 2 -DP 4545 9494 66 Au/Fe2O3-CPAu/Fe 2 O 3 -CP 3636 9595 55

实施例6:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度分别升值40 oC、50 oC、60 oC、70 oC或80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表2。 Example 6: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol benzene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After the air, the internal temperature of the autoclave was raised to 40 o C, 50 o C, 60 o C, 70 o C or 80 o C, and 0.5 MPa of carbon monoxide was introduced, and then oxygen was introduced to a total pressure of 1 MPa, and stirred for 4 hours. The product was determined by gas chromatography. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 2.

表2实施例6结果Table 2 embodiment 6 result

反应温度oCReaction temperature o C 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % 4040 3131 9797 33 5050 3737 9797 33 6060 4242 9595 55 7070 4949 9494 66 8080 5858 9292 88

实施例7:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯投入盛有有机溶剂(甲醇、丙酮或乙腈)与水共10 mL的100 mL不锈钢高压釜中,有机溶剂与水的体积比分别为1:2、1:1或2:1,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表3。 Example 7: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol benzene into a 100 mL stainless steel autoclave filled with 10 mL of organic solvent (methanol, acetone or acetonitrile) and water, The volume ratio of organic solvent to water is 1:2, 1:1 or 2:1 respectively. After replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave is raised to 80 o C, and 0.5 MPa of carbon monoxide is introduced, and then Oxygen to a total pressure of 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 3.

表3实施例8结果Table 3 embodiment 8 result

水 mLwater mL 有机溶剂/体积 mLOrganic solvent/volume mL 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % 3.33.3 甲醇/6.7Methanol/6.7 3939 9797 33 55 甲醇/5Methanol/5 5353 9393 77 6.76.7 甲醇/3.3Methanol/3.3 4545 9696 44 3.33.3 丙酮/6.7Acetone/6.7 5555 9494 66 55 丙酮/5Acetone/5 5858 9292 88 6.76.7 丙酮/3.3Acetone/3.3 4545 9696 44 3.33.3 乙腈/6.7Acetonitrile/6.7 3232 9595 55 55 乙腈/5Acetonitrile/5 4444 9595 55 6.76.7 乙腈3.3Acetonitrile 3.3 4848 9494 66

 实施例9:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯投入分别盛有5 mL、8 mL、10 mL、15 mL或20 mL体积比为1:1的水与丙酮混合溶剂的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表4。 Example 9: Weigh 0.1 g of Pt/ZrO 2 -Im, 0.1 g of Ti-MWW molecular sieve and 2 mmol of benzene into 5 mL, 8 mL, 10 mL, 15 mL or 20 mL of benzene with a volume ratio of 1:1. In a 100 mL stainless steel autoclave with a mixed solvent of water and acetone, after replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave was raised to 80 o C, 0.5 MPa of carbon monoxide was introduced, and then oxygen was introduced until the total pressure was 1 MPa. After stirring for 4 hours, the product was determined by gas chromatography. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 4.

表4实施例9结果Table 4 Example 9 Results

溶剂体积mLSolvent volume mL 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % 55 5656 9191 99 88 5757 9292 88 1010 5858 9292 88 1515 5151 9494 66 2020 4646 9494 66

实施例10:称量0.1 g Pt/ZrO2-Im与2 mmol苯投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,再分别投入0.1 g TS-1、Ti-MWW、Ti-Beta、Ti-MCM-41、Ti-SBA-15、Ti-HMS、Fe-ZSM-5、Cu-AlPO4-5、Cu-SBA-15、V-SBA-15分子筛或H4PMo11VO40,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表5。 Example 10: Weigh 0.1 g of Pt/ZrO 2 -Im and 2 mmol of benzene into a 100 mL stainless steel autoclave filled with 5 mL of water and 5 mL of acetone, and then add 0.1 g of TS-1, Ti-MWW, and Ti -Beta, Ti-MCM-41, Ti-SBA-15, Ti-HMS, Fe-ZSM-5, Cu-AlPO 4 -5, Cu-SBA-15, V-SBA-15 molecular sieve or H 4 PMo 11 VO 40 , then replace the air in the autoclave with carbon monoxide, increase the internal temperature of the autoclave to 80 o C, feed 0.5 MPa carbon monoxide, and then feed oxygen until the total pressure is 1 MPa, stir for 4 hours, and measure the product by gas chromatography. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 5.

表5实施例10结果Table 5 embodiment 10 result

催化剂catalyst 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % TS-1TS-1 4141 9696 4 4 Ti-MWWTi-MWW 5858 9292 88 Ti-MCM-41Ti-MCM-41 3838 9494 66 Ti-SBA-15Ti-SBA-15 3939 9595 55 Ti-HMSTi-HMS 1414 9797 33 Fe-ZSM-5Fe-ZSM-5 1515 9393 77 Cu-AlPO4-5Cu-AlPO 4 -5 2626 8282 1818 Cu-SBA-15Cu-SBA-15 21twenty one 8989 1111 V-SBA-15V-SBA-15 3939 8888 1212 H4PMo11VO40 H 4 PMo 11 VO 40 5353 9797 33

实施例11:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,按一氧化碳与氧气压力比分别为1:9、3:7、1:1、7:3或9:1先后通入一氧化碳与氧气,控制总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表6。 Example 11: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol benzene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After adding air, raise the internal temperature of the autoclave to 80 o C. According to the pressure ratio of carbon monoxide and oxygen at 1:9, 3:7, 1:1, 7:3 or 9:1, carbon monoxide and oxygen are successively introduced to control the total pressure. It was 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 6.

表6实施例11结果Table 6 Example 11 results

一氧化碳 MPacarbon monoxide MPa 氧气MPaOxygen MPa 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % 0.10.1 0.90.9 1111 9999 11 0.30.3 0.70.7 3939 9494 66 0.50.5 0.50.5 5858 9292 88 0.70.7 0.30.3 5050 9595 55 0.90.9 0.10.1 3232 9696 44

 实施例12:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯投入盛有5 mL水与5 mL丙酮的100mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,按一氧化碳与氧气压力比为1:1先后通入一氧化碳与氧气,控制总压分别为0.5、1、2或3 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表7。 Example 12: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol benzene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the air in the autoclave with carbon monoxide Finally, the internal temperature of the autoclave was increased to 80 o C, and carbon monoxide and oxygen were introduced successively according to the pressure ratio of carbon monoxide and oxygen at 1:1, and the total pressure was controlled to be 0.5, 1, 2 or 3 MPa respectively, and stirred for 4 hours. Chromatographic determination. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 7.

表7实施例12结果Table 7 Example 12 results

总压 MPatotal pressure MPa 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % 0.50.5 4040 9393 77 11 5858 9292 88 22 6464 9191 99 33 7171 9090 1010

 实施例13:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol甲苯投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。甲苯转化率为53 %,对甲基苯酚选择性为98 %。 Example 13: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol toluene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After the air is removed, the internal temperature of the autoclave is raised to 80 o C, 0.5 MPa carbon monoxide is introduced, and then oxygen is introduced until the total pressure is 1 MPa, stirred for 4 hours, and the product is determined by gas chromatography. Toluene conversion rate is 53%, p-cresol selectivity is 98%.

实施例14:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯甲醚投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯甲醚转化率为46 %,对甲氧基苯酚选择性为98 %。 Example 14: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol anisole into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the high pressure with carbon monoxide After the air in the autoclave, the internal temperature of the autoclave was raised to 80 o C, 0.5 MPa carbon monoxide was introduced, and then oxygen was introduced until the total pressure was 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. Anisole conversion rate is 46%, p-methoxyphenol selectivity is 98%.

实施例15:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol氯苯投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。氯苯转化率为32 %,对氯苯酚选择性为99 %。 Example 15: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol chlorobenzene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After neutralizing the air, raise the internal temperature of the autoclave to 80 o C, feed 0.5 MPa carbon monoxide, and then feed oxygen until the total pressure is 1 MPa, stir for 4 hours, and measure the product by gas chromatography. The conversion rate of chlorobenzene is 32%, and the selectivity to p-chlorophenol is 99%.

实施例16:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯甲酸投入盛有5 mL水与5 mL丙酮的100mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯甲酸转化率为29 %,对羟基苯甲酸选择性为98 %。 Example 16: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol benzoic acid into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After the air is removed, the internal temperature of the autoclave is raised to 80 o C, 0.5 MPa carbon monoxide is introduced, and then oxygen is introduced until the total pressure is 1 MPa, stirred for 4 hours, and the product is determined by gas chromatography. The conversion rate of benzoic acid is 29%, and the selectivity of p-hydroxybenzoic acid is 98%.

实施例17:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol苯酚投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯酚转化率为68 %,对苯二酚选择性为70 %,邻苯二酚的选择性30 %。 Example 17: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol phenol into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After the air is removed, the internal temperature of the autoclave is raised to 80 o C, 0.5 MPa carbon monoxide is introduced, and then oxygen is introduced until the total pressure is 1 MPa, stirred for 4 hours, and the product is determined by gas chromatography. The conversion rate of phenol was 68%, the selectivity of hydroquinone was 70%, and the selectivity of catechol was 30%.

实施例18:称量0.1 g Pt/ZrO2-Im、0.1 g Ti-MWW分子筛与2 mmol萘投入盛有5 mL水与5 mL丙酮的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。萘转化率为47 %,β-萘酚选择性为64 %,α-萘酚选择性为36 %。 Example 18: Weigh 0.1 g Pt/ZrO 2 -Im, 0.1 g Ti-MWW molecular sieve and 2 mmol naphthalene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetone, and then replace the autoclave with carbon monoxide After the air is removed, the internal temperature of the autoclave is raised to 80 o C, 0.5 MPa carbon monoxide is introduced, and then oxygen is introduced until the total pressure is 1 MPa, stirred for 4 hours, and the product is determined by gas chromatography. The conversion of naphthalene was 47%, the selectivity of β-naphthol was 64%, and the selectivity of α-naphthol was 36%.

实施例19:称量实施例1到实施例4中所制备的催化剂0.1 g、0.1 mmol H5SW11VO40杂多酸与2 mmol苯投入盛有5 mL水与5 mL乙酸的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率、苯酚选择性及对苯二酚选择性见表8。 Example 19: Weigh 0.1 g of the catalyst prepared in Examples 1 to 4, 0.1 mmol H 5 SW 11 VO 40 heteropolyacid and 2 mmol benzene and put it into 100 mL stainless steel containing 5 mL water and 5 mL acetic acid In the autoclave, after replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave was raised to 80 o C, and 0.5 MPa carbon monoxide was introduced, and then oxygen was fed to a total pressure of 1 MPa, stirred for 4 hours, and the product was analyzed by gas chromatography. Determination. Benzene conversion rate, phenol selectivity and hydroquinone selectivity are shown in Table 8.

表8实施例19结果:Table 8 embodiment 19 results:

负载型贵金属催化剂Supported noble metal catalyst 苯转化率 %Benzene conversion % 苯酚选择性 %Phenol selectivity % 对苯二酚选择性 %Hydroquinone selectivity % Pt/ZrO2-ImPt/ZrO 2 -Im 3636 8787 1313 Pd/ZrO2-ImPd/ZrO 2 -Im 4242 8383 1717 Rh/ZrO2-ImRh/ZrO 2 -Im 2727 8989 1111 Ru/ZrO2-ImRu/ZrO 2 -Im 3030 8989 1111 Ir/ZrO2-ImIr/ZrO 2 -Im 3131 9090 1010 Ag/ZrO2-ImAg/ZrO 2 -Im 1111 9393 77 Au/CeO2-DPAu/CeO 2 -DP 1818 9494 66

实施例20:称量0.1 g Pd/ZrO2-Im、0.1 mmol H5SMo11VO40杂多酸与2 mmol苯投入盛有5 mL水与5 mL乙酸的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。苯转化率为38 %,苯酚选择性为85 %,对苯二酚选择性为15 %。 Example 20: Weigh 0.1 g Pd/ZrO 2 -Im, 0.1 mmol H 5 SMo 11 VO 40 heteropolyacid and 2 mmol benzene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetic acid, and then use After replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave was raised to 80 o C, 0.5 MPa of carbon monoxide was introduced, and then oxygen was introduced until the total pressure was 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. The conversion rate of benzene was 38%, the selectivity of phenol was 85%, and the selectivity of hydroquinone was 15%.

实施例21:称量0.1 g Pd/ZrO2-Im、0.1 mmol H5SW11VO40杂多酸与2 mmol萘投入盛有5 mL水与5 mL乙酸的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。萘转化率为39 %,β-萘酚选择性为69 %,α-萘酚选择性为31 %。 Example 21: Weigh 0.1 g Pd/ZrO 2 -Im, 0.1 mmol H 5 SW 11 VO 40 heteropoly acid and 2 mmol naphthalene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetic acid, and then use After replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave was raised to 80 o C, 0.5 MPa of carbon monoxide was introduced, and then oxygen was introduced until the total pressure was 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. The conversion of naphthalene was 39%, the selectivity of β-naphthol was 69%, and the selectivity of α-naphthol was 31%.

实施例22:称量0.1 g Pd/ZrO2-Im、0.1 mmol H5SW11VO40杂多酸与2 mmol甲苯投入盛有5 mL水与5 mL乙酸的100 mL不锈钢高压釜中,然后用一氧化碳置换高压釜中空气后,将高压釜内部温度升值80 oC,通入0.5 MPa一氧化碳,再通入氧气至总压为1 MPa,搅拌4小时,产品用气相色谱法测定。甲苯转化率为42 %,对甲基苯酚选择性为88 %。 Example 22: Weigh 0.1 g Pd/ZrO 2 -Im, 0.1 mmol H 5 SW 11 VO 40 heteropoly acid and 2 mmol toluene into a 100 mL stainless steel autoclave filled with 5 mL water and 5 mL acetic acid, and then use After replacing the air in the autoclave with carbon monoxide, the internal temperature of the autoclave was raised to 80 o C, 0.5 MPa of carbon monoxide was introduced, and then oxygen was introduced until the total pressure was 1 MPa, stirred for 4 hours, and the product was determined by gas chromatography. Toluene conversion rate is 42%, p-cresol selectivity is 88%.

Claims (10)

1. A method for hydroxylating aromatic hydrocarbon compounds by molecular oxygen direct oxidation promoted by CO is characterized in that aromatic hydrocarbon compounds are used as substrates, a combined catalyst consisting of a supported noble metal catalyst and a heteroatom molecular sieve or heteropoly acid salt containing Ti, V, Cu or Fe is used, and a mixed solution of water and an organic solvent is used as a solvent; introducing CO and O2CO and O2The pressure ratio is 0.1: 1-9: 1, the total pressure is 0.5-3 MPa; under the promotion of CO, the aromatic hydrocarbon compound is directly oxidized and hydroxylated by molecular oxygen, and the reaction temperature is 20-150 DEG oCTo prepare corresponding phenolic compounds; wherein,the mass ratio of the substrate to the solvent is 0.01: 1-0.2: 1.
2. the method of claim 1, wherein the supported noble metal catalyst comprises one or more metals selected from the group consisting of Pt, Pd, Rh, Ru, Ir, Au, and Ag.
3. The method of claim 1 wherein the supported noble metal catalyst support is selected from the group consisting of TiO2、CeO2、Fe2O3、Al2O3And ZrO2One or more of them.
4. The method according to claim 2 or 3, wherein the supported noble metal catalyst is prepared by the following method: coprecipitation, precipitation, colloid or impregnation.
5. The method of claim 1, wherein the heteroatom molecular sieve or heteropolyacid salt containing Ti, V, Cu or Fe is selected from one or more of a silica molecular sieve containing Ti, V, Cu or Fe in MFI, MWW, MCM, HMS, Beta or SBA configuration, an aluminum phosphate molecular sieve containing Cu and tungstate or molybdate containing V.
6. The method of claim 1, wherein the molar ratio of the substrate to the noble metal catalyst in the combined catalyst is from 50: 1-1000: 1; in the combined catalyst, the mass ratio of the supported noble metal catalyst to the heteroatom molecular sieve or heteropolyacid salt is 0.5: 1-2: 1.
7. the method according to claim 1, wherein the volume ratio of the organic solvent to the water in the mixed solvent is 1: 9-9: 1.
8. the method of claim 7, wherein the organic solvent is selected from methanol, acetone, acetonitrile, or acetic acid.
9. The method of claim 1, wherein the aromatic hydrocarbon compounds are substituted/unsubstituted benzene and substituted/unsubstituted polycyclic aromatic hydrocarbons.
10. The method according to claim 9, wherein the substituent of the substituted benzene and the substituted polycyclic aromatic hydrocarbon is one or more of alkyl, alkoxy, hydroxyl, fluorine, chlorine, bromine, iodine, cyano, acyl, trifluoromethyl, nitro or carboxyl.
CN2012102302469A 2012-07-05 2012-07-05 CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen Pending CN102731234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102302469A CN102731234A (en) 2012-07-05 2012-07-05 CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102302469A CN102731234A (en) 2012-07-05 2012-07-05 CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen

Publications (1)

Publication Number Publication Date
CN102731234A true CN102731234A (en) 2012-10-17

Family

ID=46987628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102302469A Pending CN102731234A (en) 2012-07-05 2012-07-05 CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen

Country Status (1)

Country Link
CN (1) CN102731234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549413A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Nanogold catalyst for preparing phenol through direct hydroxylation of benzene as well as preparation method and application of nanogold catalyst
CN104549414A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Catalyst for hydroxylating aromatics directly and preparation method of catalyst
CN110407225A (en) * 2018-04-28 2019-11-05 中国石油化工股份有限公司 One kind Titanium Sieve Molecular Sieve containing noble metal and its synthetic method and application
CN111116320A (en) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 Method for preparing benzenediol by directly hydroxylating phenol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982015A (en) * 1989-09-26 1991-01-01 Shell Oil Company Process for the oxidation of benzene to phenol
US5504260A (en) * 1993-09-17 1996-04-02 Bayer Aktiengesellschaft Catalytic oxidation
CN1460666A (en) * 2003-07-02 2003-12-10 清华大学 New aromatic compound hydrogen peroxide hydroxylation synthesis method
CN101302141A (en) * 2008-07-09 2008-11-12 黑龙江大学 A method for directly synthesizing phenol by catalytic molecular oxygen liquid phase oxidation of benzene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982015A (en) * 1989-09-26 1991-01-01 Shell Oil Company Process for the oxidation of benzene to phenol
US5504260A (en) * 1993-09-17 1996-04-02 Bayer Aktiengesellschaft Catalytic oxidation
CN1460666A (en) * 2003-07-02 2003-12-10 清华大学 New aromatic compound hydrogen peroxide hydroxylation synthesis method
CN101302141A (en) * 2008-07-09 2008-11-12 黑龙江大学 A method for directly synthesizing phenol by catalytic molecular oxygen liquid phase oxidation of benzene

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MASAYUKI TANI ET AL.: "Hydroxylation of Benzene to Phenol under Air and Carbon Monoxide Catalyzed by Molybdovanadophosphoric Acid", 《ANGEW. CHEM. INT. ED.》, vol. 44, 31 December 2005 (2005-12-31), pages 2586 - 2588 *
任永利等: "铜磷铝分子筛的合成及其对苯液相氧化制苯酚的催化性能", 《催化学报》, vol. 25, no. 5, 31 May 2004 (2004-05-31), pages 357 - 362 *
尹双凤等: "分子氧催化氧化苯直接合成苯酚", 《化学进展》, vol. 19, no. 5, 31 May 2007 (2007-05-31), pages 735 - 744 *
顾颖颖等: "Fe,V取代SBA-15分子筛的合成及其对苯羟基化反应的催化", 《化学学报》, vol. 65, no. 21, 31 December 2007 (2007-12-31), pages 2423 - 2427 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104549413A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Nanogold catalyst for preparing phenol through direct hydroxylation of benzene as well as preparation method and application of nanogold catalyst
CN104549414A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Catalyst for hydroxylating aromatics directly and preparation method of catalyst
CN104549414B (en) * 2013-10-28 2017-02-08 中国石油化工股份有限公司 Catalyst for hydroxylating aromatics directly and preparation method of catalyst
CN104549413B (en) * 2013-10-28 2017-05-17 中国石油化工股份有限公司 Nanogold catalyst for preparing phenol through direct hydroxylation of benzene as well as preparation method and application of nanogold catalyst
CN110407225A (en) * 2018-04-28 2019-11-05 中国石油化工股份有限公司 One kind Titanium Sieve Molecular Sieve containing noble metal and its synthetic method and application
CN110407225B (en) * 2018-04-28 2021-07-09 中国石油化工股份有限公司 Titanium-silicon molecular sieve containing noble metal and synthesis method and application thereof
CN111116320A (en) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 Method for preparing benzenediol by directly hydroxylating phenol

Similar Documents

Publication Publication Date Title
US10435345B2 (en) Circular economy methods of preparing unsaturated compounds
JP6040933B2 (en) Method for producing p-xylene and / or p-tolualdehyde
KR20110046515A (en) Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
CN101306986A (en) A kind of method preparing benzaldehyde by styrene catalytic oxidation
CN101613269B (en) Method for preparing phenylformic acid through liquid phase oxidation of methylbenzene
Wang et al. Brønsted–Lewis dual acidic ionic liquid immobilized on mesoporous silica materials as an efficient cooperative catalyst for Mannich reactions
CN102731234A (en) CO (carbon monoxide)-promoted method for directly oxygenizing hydroxylated aromatic compound by molecular oxygen
CN106111173A (en) A kind of for being prepared the catalyst of pyruvate by lactate and preparing the method for pyruvate
CN102850154A (en) Method for directly oxidizing and hydroxylating aromatic hydrocarbons by using molecular oxygen under CO promotion
CN108002968B (en) Method for preparing carboxylic acid compounds by oxidizing and breaking carbon-carbon bonds of ketone compounds
CN1871064B (en) Catalyst composition and use thereof in ethane oxidation
CN109456161A (en) A kind of method of visible light catalytic oxidation fracture carbon-carbon bond
US9321714B1 (en) Processes and catalysts for conversion of 2,5-dimethylfuran derivatives to terephthalate
CN104016857B (en) The method preparing methyl formate
CN102010376B (en) Synthesis of ionic liquid aqueous phase catalysis quinoxaline compound
CN104193670A (en) Synthesis and application of novel catalyst used in preparation of arone by carrying out catalytic oxidation on ethylbenzene and derivative of ethylbenzene
CN105566061A (en) Beta-pinene selective hydroxylation oxidation method and product thereof
Du et al. Dehydrogenation of Cyclohexanones to Phenols: A Mini Review
CN102807469B (en) Method for preparing tertiary butanol by oxidizing iso-butane
CN106146276A (en) A kind of method of phenol compound catalysis oxidative synthesis benzoquinone compound
CN105669598B (en) A kind of australene allylic process for selective oxidation and products thereof
CN107216229B (en) A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons
CN102807481B (en) Method for preparing methyl ethyl ketone by oxidizing normal butane
CN102050711A (en) Method for preparing acraldehyde
CN104549414A (en) Catalyst for hydroxylating aromatics directly and preparation method of catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121017