CN102708567B - Visual perception-based three-dimensional image quality objective evaluation method - Google Patents
Visual perception-based three-dimensional image quality objective evaluation method Download PDFInfo
- Publication number
- CN102708567B CN102708567B CN201210144039.1A CN201210144039A CN102708567B CN 102708567 B CN102708567 B CN 102708567B CN 201210144039 A CN201210144039 A CN 201210144039A CN 102708567 B CN102708567 B CN 102708567B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- dis
- msubsup
- pixel point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 80
- 230000016776 visual perception Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 44
- 230000000007 visual effect Effects 0.000 claims abstract description 42
- 230000004927 fusion Effects 0.000 claims abstract description 35
- 230000008859 change Effects 0.000 claims abstract description 22
- 230000008447 perception Effects 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 230000005764 inhibitory process Effects 0.000 claims abstract description 7
- 230000000873 masking effect Effects 0.000 claims description 44
- 230000001629 suppression Effects 0.000 claims description 20
- 230000004044 response Effects 0.000 claims description 17
- 238000012800 visualization Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 230000004438 eyesight Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000005286 illumination Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000013441 quality evaluation Methods 0.000 abstract description 7
- 238000005259 measurement Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000001525 retina Anatomy 0.000 description 3
- 241001182632 Akko Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- YYJNOYZRYGDPNH-MFKUBSTISA-N fenpyroximate Chemical compound C=1C=C(C(=O)OC(C)(C)C)C=CC=1CO/N=C/C=1C(C)=NN(C)C=1OC1=CC=CC=C1 YYJNOYZRYGDPNH-MFKUBSTISA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
The invention discloses a visual perception-based three-dimensional image quality objective evaluation method which comprises the steps of: firstly, obtaining an objective evaluation measurement value of each pixel point through calculating a local phase characteristic and a local amplitude characteristic of each pixel point in left and right viewpoint images of a three-dimensional image, dividing the three-dimensional image into a shielding region, a binocular inhibition region and a binocular fusion region by a region detection method; and secondly, evaluating all regions respectively and fusing evaluation results to obtain a final image quality objective evaluation prediction value. The visual perception-based three-dimensional image quality objective evaluation method has the advantages that the obtained information for reflecting local phase and local amplitude characteristics has strong stability and can well reflect quality change condition of the three-dimensional image, and the image quality evaluation method of the shielding region, the binocular inhibition region and the binocular fusion region can well reflect the visual perception characteristic of the human visual system, and is effectively improved in correlation of objective evaluation result and subjective perception.
Description
Technical Field
The invention relates to an image quality evaluation method, in particular to a stereoscopic image quality objective evaluation method based on visual perception.
Background
With the rapid development of image coding technology and stereoscopic display technology, the stereoscopic image technology has received more and more extensive attention and application, and has become a current research hotspot. The stereo image technology utilizes the binocular parallax principle of human eyes, the left and right viewpoint images from the same scene are respectively and independently received by binoculars, and binocular parallax is formed through brain fusion, so that the stereo image with depth feeling and reality feeling is appreciated. Due to the influence of an acquisition system and storage compression and transmission equipment, a series of distortions are inevitably introduced into the stereo image, and compared with a single-channel image, the stereo image needs to ensure the image quality of two channels simultaneously, so that the quality evaluation of the stereo image is of great significance. However, currently, there is no effective objective evaluation method for evaluating the quality of stereoscopic images. Therefore, establishing an effective objective evaluation model of the quality of the stereo image has very important significance.
The existing three-dimensional image quality objective evaluation method directly applies the plane image quality evaluation method to the evaluation of the three-dimensional image quality, however, the process of fusing the left and right viewpoint images of the three-dimensional image to generate the three-dimensional effect is not a simple process of superposing the left and right viewpoint images and is difficult to express by a simple mathematical method, so that how to effectively simulate the binocular three-dimensional fusion in the three-dimensional image quality evaluation process and how to modulate the objective evaluation result according to the visual masking characteristic of human eyes so that the objective evaluation result is more in line with the human visual system is a problem which needs to be researched and solved in the process of evaluating the three-dimensional image quality objectively.
Disclosure of Invention
The invention aims to solve the technical problem of providing a stereoscopic image quality objective evaluation method based on visual perception, which can effectively improve the correlation between objective evaluation results and subjective perception.
The technical scheme adopted by the invention for solving the technical problems is as follows: a stereoscopic image quality objective evaluation method based on visual perception is characterized by comprising the following steps:
making SorgFor original undistorted stereo image, let SdisFor the distorted stereo image to be evaluated, SorgIs noted as { Lorg(x, y) }, adding SorgIs noted as { Rorg(x, y) }, adding SdisIs noted as { Ldis(x, y) }, adding SdisIs noted as { Rdis(x, y) }, wherein (x, y) denotes a coordinate position of a pixel point in the left viewpoint image and the right viewpoint image, x is 1. ltoreq. x.ltoreq.W, y is 1. ltoreq. y.ltoreq.H, W denotes a width of the left viewpoint image and the right viewpoint image, H denotes a height of the left viewpoint image and the right viewpoint image, L is Lorg(x, y) represents { L }orgThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rorg(x, y) represents { RorgThe pixel value L of the pixel point with the coordinate position (x, y) in (x, y) } isdis(x, y) represents { L }disThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rdis(x, y) represents { RdisThe coordinate position in (x, y) is the pixel value of the pixel point of (x, y);
secondly, respectively extracting { L ] by using visual masking effect of human stereoscopic vision perception on background illumination and contrastdis(x, y) } binocular minimum perceivable change image and { R }dis(x, y) } binocular minimum perceivable change images, respectively noted asAndwherein,represents { Ldis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y),represents { Rdis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y);
utilizing area detection algorithm to respectively obtain { Ldis(x, y) } and { R }disThe region type of each pixel point in (x, y) } is marked as p, wherein p belongs to {1,2,3}, p =1 represents an occlusion region, p =2 represents a binocular suppression region, and p =3 represents a binocular fusion region; then will { LdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { LdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { LdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion regionWill { RdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { RdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { RdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion region
Separately calculating { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe local phase characteristic and the local amplitude characteristic of each pixel in (x, y) } will be { LorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { LdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwherein,represents { LorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { LdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LdisThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RdisThe local amplitude characteristic of a pixel point with the coordinate position (x, y) in the (x, y) };
according to { Lorg(x, y) } and { LdisCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristicdis(x, y) } the objective evaluation metric for each pixel point, will be { LdisThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }L(x,y)}, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>w</mi>
<mi>LP</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>w</mi>
<mi>LA</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
</mrow>
</math> According to { Rorg(x, y) } and { R }disCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristic of each pixel point in the (x, y) } matrix, and calculating the { Rdis(x, y) } the objective evaluation metric for each pixel point, will be { R }disThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }R(x,y)}, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>w</mi>
<mi>LP</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>w</mi>
<mi>LA</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
</mrow>
</math> Wherein Q isL(x, y) represents { L }dis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> QR(x, y) represents { Rdis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> wLP、wLAand b is a training parameter, T1And T2Is a control parameter;
according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristic of the human visual system to the sheltered areadisThe objective evaluation metric of the occlusion region in (1) is marked as Qnc, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>nc</mi>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>nc</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>nc</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msubsup>
<mi>N</mi>
<mi>L</mi>
<mi>nc</mi>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>N</mi>
<mi>R</mi>
<mi>nc</mi>
</msubsup>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> Wherein,represents { Ldis(x, y) } the number of pixel points with the area type of p =1,represents { Rdis(x, y) } the number of pixel points with the area type of p = 1;
is according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular inhibition areadisThe objective evaluation metric of the binocular suppression area in (1) is marked as Qbs, Where max () is a function taking the maximum value, <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bs</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
</math>
according to { Ldis(x, y) } and { R }dis(xY) and calculating S by using the visual perception characteristics of the human visual system to the binocular fusion areadisThe objective evaluation metric value of the binocular fusion area in (1) is marked as Qbf, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>bf</mi>
</msub>
<mo>=</mo>
<mn>0.7</mn>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> Wherein, <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>;</mo>
</mrow>
</math>
ninthly to SdisObjective evaluation metric Q of occlusion region in (1)nc、SdisObjective evaluation metric Q of the binocular suppression area in (1)bsAnd SdisObjective evaluation metric value Q of binocular fusion area in (1)bfCarrying out fusion to obtain SdisThe predicted value of the objective evaluation of image quality is marked as Q, Q = wnc×Qnc+wbs×Qbs+wbf×QbfWherein w isnc、wbfAnd wbsAre weighting parameters.
The concrete process of the second step is as follows:
② 1, calculating { LdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }l(x,y)},Wherein, Tl(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgl(x, y) represents { L }disAll pixel points in a 5 × 5 window centered on a pixel point whose coordinate position is (x, y) in (x, y) } are within a window of 5 × 5Average value of brightness of;
2, calculating { LdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x, y) wherein Tc(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehl(x, y) represents the pair { L }disThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)l(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07;
2- (3) pairs of { LdisVisualization threshold set of luminance masking effects of (x, y) } { Tl(x, y) } and a visual threshold set of contrast masking effects { T }c(x, y) } to obtain { Ldis(x, y) } binocular minimum perceivable change image, noted
② 4, calculating { RdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }r(x,y)},Wherein, Tr(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgr(x, y) represents { RdisAverage brightness values of all pixel points in a 5 multiplied by 5 window with the pixel point with the coordinate position as (x, y) as the center in (x, y) };
② 5, calculating { RdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c′(x,y)},Tc′(x,y)=K(bgr(x,y))+ehr(x, y) wherein Tc' (x, y) denotes { RdisThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehr(x, y) represents the pair { RdisThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)r(x,y))=-10-6×(0.7×bgr(x,y)2+32×bgr(x,y))+0.07;
2- (6) pairs of { RdisVisualization threshold set of luminance masking effects of (x, y) } { Tr(x, y) } and a visual threshold set of contrast masking effects { T }c' (x, y) } to obtain { Rdis(x, y) } binocular minimum perceivable change image, noted <math>
<mrow>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>T</mi>
<mi>r</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<msup>
<mi>c</mi>
<mo>′</mo>
</msup>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
</math>
In the step III, the region detection algorithm is utilized to respectively obtain { L }dis(x, y) } and { R }disThe specific process of the area type of each pixel point in (x, y) } is as follows:
③ 1, calculating by adopting a block matching methodorg(x, y) } and { R }org(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 2, calculating by adopting a block matching methoddis(x, y) } and { R }dis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 3, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, if so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) Region type of pixel pointMarked as p =1, then step c-6 is performed, otherwise step c-4 is performed, where x is greater than or equal to 11≤W,1≤y1≤H;
③ 4, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =2, then step (c-6) is executed, otherwise, step (c-5) is executed;
③ 5, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe pixel value of the pixel point with the middle coordinate position (x1, y1)If so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3;
③ 6, return to the step of ③ 3 to continue to determine Ldis(x, y) } of the residueUntil { L }disDetermining the region types of all pixel points in (x, y) };
thirdly-7, calculating the R by adopting a block matching methodorg(x, y) } and { Lorg(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
thirdly-8, calculating R by adopting a block matching methoddis(x, y) } and { Ldis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 9, judgmentThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, then { R } will bedisThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =1, then step- (c-12) is executed, otherwise, step- (c-10) is executed, wherein x is more than or equal to 11≤W,1≤y1≤H;
③ 10, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =2, then step c-12 is executed, otherwise step c-11 is executed;
③ 11, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3;
③ 12, return to the step of ③ -9 to continue to determine Rdis(x, y) the area type of the remaining pixel points in the (x, y) } until the { R } is reacheddisAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
In the step (iv) { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe acquisition process of the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } comprises the following steps:
tetra-1, pair { LorgCarrying out phase consistency transformation on each pixel point in (x, y) to obtain { L }orgEven symmetric frequency response and odd symmetric frequency response of each pixel point in (x, y) } in different scales and directions are converted into { L }orgEven symmetric frequency responses of pixel points with coordinate positions (x, y) in different scales and directions are recorded as eα,θ(x, y) will { LorgThe odd symmetric frequency response of the pixel point with the coordinate position (x, y) in different scales and directions is marked as oα,θ(x, y), wherein alpha represents a scale factor of the filter, 1 ≦ alpha ≦ 4, theta represents a direction factor of the filter, 1 ≦ theta ≦ 4;
fourthly-2, calculating { LorgThe phase consistency characteristics of each pixel point in (x, y) in different directions are shown as LorgThe phase consistency characteristics of pixel points with coordinate positions (x, y) in different directions in (x, y) are marked as PCθ(x,y), <math>
<mrow>
<msub>
<mi>PC</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>E</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> Wherein, <math>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>E</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>F</mi>
<mi>θ</mi>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>θ</mi>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>F</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>H</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
</math>
fourthly-3, according to { LorgCalculating the direction corresponding to the maximum phase consistency characteristic of each pixel point in (x, y) } and calculating the { Lorg(x, y) } local phase features and local amplitude features for each pixel point, for { LorgThe pixel point with (x, y) coordinate position in (x, y) } is firstly found out the phase consistency characteristic PC of the pixel point in different directionsθFinding out the direction corresponding to the maximum phase consistency feature in (x, y), and marking as the directionθmAgain according to thetamCalculation of { LorgThe local phase characteristic and the local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y) } are respectively and correspondingly marked asAnd <math>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>arctan</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>H</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msub>
<mi>F</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> wherein, <math>
<mrow>
<msub>
<mi>F</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>H</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe even-symmetric frequency response of the frequency domain,represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe arctan () is an inverted cosine function;
fourthly-4, obtaining { L ] according to the steps from the fourth step-1 to the fourth step-3orgOperation of local phase feature and local amplitude feature of each pixel in (x, y) } obtains { R } in the same mannerorg(x,y)}、{Ldis(x, y) } and { R }disLocal phase features and local amplitude features of each pixel in (x, y) }.
Compared with the prior art, the invention has the advantages that:
1) the method provided by the invention considers that different areas have different responses to the stereo perception, divides the stereo image into the shielding area, the binocular inhibition area and the binocular fusion area, carries out evaluation respectively, and fuses evaluation results to obtain the final evaluation score, so that the evaluation results are more perceptually in line with the human visual system.
2) The method of the invention obtains the objective evaluation metric value of each pixel point by calculating the local phase characteristic and the local amplitude characteristic of each pixel point in the left and right viewpoint images of the stereo image, and effectively improves the correlation between the objective evaluation result and the subjective perception because the obtained local phase characteristic and the local amplitude characteristic have stronger stability and can better reflect the quality change condition of the stereo image.
3) According to the method, the binocular minimum perceptible change image is obtained according to the stereoscopic vision characteristics of human eyes, and objective evaluation metric values of all pixel points in the occlusion area, the binocular inhibition area and the binocular fusion area are weighted to different degrees, so that the evaluation result is more in line with a human vision system, and the correlation between the objective evaluation result and subjective perception is improved.
Drawings
FIG. 1 is a block diagram of an overall implementation of the method of the present invention;
fig. 2a is a left viewpoint image of Akko (640 × 480 size) stereo image;
fig. 2b is a right viewpoint image of an Akko (size 640 × 480) stereoscopic image;
fig. 3a is a left viewpoint image of an altmobit (size 1024 × 768) stereoscopic image;
fig. 3b is a right view image of an altmobit (size 1024 × 768) stereoscopic image;
fig. 4a is a left viewpoint image of a balloon (size 1024 × 768) stereoscopic image;
fig. 4b is a right viewpoint image of a balloon (size 1024 × 768) stereoscopic image;
fig. 5a is a left viewpoint image of a Doorflower (size 1024 × 768) stereoscopic image;
fig. 5b is a right viewpoint image of a Doorflower (size 1024 × 768) stereoscopic image;
fig. 6a is a left view image of a Kendo (size 1024 × 768) stereoscopic image;
fig. 6b is a right view image of a Kendo (size 1024 × 768) stereoscopic image;
fig. 7a is a left view image of a LeaveLaptop (size 1024 × 768) stereoscopic image;
fig. 7b is a right view image of a LeaveLaptop (size 1024 × 768) stereoscopic image;
fig. 8a is a left viewpoint image of a lovedual 1 (size 1024 × 768) stereoscopic image;
fig. 8b is a right viewpoint image of a lovedual 1 (size 1024 × 768) stereoscopic image;
fig. 9a is a left view image of a newsapper (size 1024 × 768) stereoscopic image;
fig. 9b is a right view image of a newsapper (size 1024 × 768) stereoscopic image;
FIG. 10a is a left viewpoint image of Puppy (size 720 × 480) stereo image;
FIG. 10b is a right viewpoint image of Puppy (size 720 × 480) stereoscopic image;
fig. 11a is a left viewpoint image of a Soccer2 (size 720 × 480) stereoscopic image;
fig. 11b is a right viewpoint image of a Soccer2 (size 720 × 480) stereoscopic image;
fig. 12a is a left viewpoint image of a Horse (size 720 × 480) stereoscopic image;
fig. 12b is a right view image of a Horse (size 720 × 480) stereoscopic image;
fig. 13a is a left viewpoint image of an Xmas (size 640 × 480) stereoscopic image;
fig. 13b is a right view image of an Xmas (size 640 × 480) stereoscopic image;
fig. 14 is a scatter plot of the difference between the objective evaluation prediction value of image quality and the average subjective score of each distorted stereoscopic image in the set of distorted stereoscopic images.
Detailed Description
The invention is described in further detail below with reference to the accompanying examples.
The invention provides a stereoscopic image quality objective evaluation method based on visual perception, the overall implementation block diagram of which is shown in figure 1, and the method comprises the following steps:
making SorgFor original undistorted stereo image, let SdisFor the distorted stereo image to be evaluated, SorgIs noted as { Lorg(x, y) }, adding SorgIs noted as { Rorg(x, y) }, adding SdisIs noted as { Ldis(x, y) }, adding SdisIs noted as { Rdis(x, y) }, wherein (x, y) denotes a coordinate position of a pixel point in the left viewpoint image and the right viewpoint image, x is 1. ltoreq. x.ltoreq.W, y is 1. ltoreq. y.ltoreq.H, W denotes a width of the left viewpoint image and the right viewpoint image, H denotes a height of the left viewpoint image and the right viewpoint image, L is Lorg(x, y) represents { L }orgThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rorg(x, y) represents { RorgThe pixel value L of the pixel point with the coordinate position (x, y) in (x, y) } isdis(x, y) represents { L }disThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rdis(x, y) represents { RdisAnd the coordinate position in the (x, y) is the pixel value of the pixel point of (x, y).
The human visual characteristics indicate that the human eye is imperceptible to a property or noise that changes less in the image unless the intensity of the change of the property or noise exceeds a threshold, which is the minimum perceptible distortion (JND). However, the visual masking effect of human eyes is a local effect, which is influenced by background illumination, texture complexity and other factors, and the brighter the background is, the more complex the texture is, and the higher the threshold value is. Therefore, the invention respectively extracts L by using the visual masking effect of human stereoscopic vision perception on background illumination and contrastdis(x, y) } binocular minimum perceivable change image and { R }dis(x, y) } binocular minimum perceivable change images, respectively noted asAndwherein,represents { Ldis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y),represents { Rdis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y).
In this embodiment, the specific process of step two is:
② 1, calculating { LdisLuminance masking effect of (x, y) } and luminance masking effect of the sameIs marked as { T }l(x,y)},Wherein, Tl(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgl(x, y) represents { L }disAnd (x, y) } average brightness of all pixels in a 5 × 5 window with the pixel with the coordinate position (x, y) as the center.
2, calculating { LdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x, y) wherein Tc(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehl(x, y) represents the pair { L }disThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)l(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07。
2- (3) pairs of { LdisVisualization threshold set of luminance masking effects of (x, y) } { Tl(x, y) } and a visual threshold set of contrast masking effects { T }c(x, y) } to obtain { Ldis(x, y) } binocular minimum perceivable change image, noted
② 4, calculating { RdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }r(x,y)},Wherein, Tr(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgr(x, y) represents { RdisAnd (x, y) } average brightness of all pixels in a 5 × 5 window with the pixel with the coordinate position (x, y) as the center.
② 5, calculating { RdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c′(x,y)},Tc′(x,y)=K(bgr(x,y))+ehr(x, y) wherein Tc' (x, y) denotes { RdisThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehr(x, y) represents the pair { RdisThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)r(x,y))=-10-6×(0.7×bgr(x,y)2+32×bgr(x,y))+0.07。
2- (6) pairs of { RdisVisualization threshold set of luminance masking effects of (x, y) } { Tr(x, y) } and a visual threshold set of contrast masking effects { T }c' (x, y) } to obtain { Rdis(x, y) } binocular minimum perceivable change image, noted <math>
<mrow>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>T</mi>
<mi>r</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<msup>
<mi>c</mi>
<mo>′</mo>
</msup>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
</math>
Utilizing area detection algorithm to respectively obtain { Ldis(x, y) } and { R }disThe region type of each pixel point in (x, y) } is marked as p, wherein p belongs to {1,2,3}, p =1 represents an occlusion region, p =2 represents a binocular suppression region, and p =3 represents a binocular fusion region; then will { LdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { LdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { LdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion regionWill { RdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { RdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { RdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion region
In this embodiment, step three uses region detection algorithm to obtain { L }dis(x, y) } and { R }disThe specific process of the area type of each pixel point in (x, y) } is as follows:
③ 1, calculating by adopting a block matching methodorg(x, y) } and { R }org(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
③ 2, calculating by adopting a block matching methoddis(x, y) } and { R }dis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
③ 3, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, if so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =1, then step- (c-6) is executed, otherwise, step- (c-4) is executed, wherein x is more than or equal to 11≤W,1≤y1≤H。
③ 4, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point of (1) is marked as p =2, then step (c-6) is executed, otherwise, step (c-5) is executed.
③ 5, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3.
③ 6, return to the step of ③ 3 to continue to determine Ldis(x, y) } the region types of the remaining pixel points, up to { L }disAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
Thirdly-7, calculating the R by adopting a block matching methodorg(x, y) } and { Lorg(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
Thirdly-8, calculating R by adopting a block matching methoddis(x, y) } and { Ldis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
③ 9, judgmentThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, then { R } will bedisThe coordinate position in (x, y) } is (x)1,y1) Is marked as p =1, and then the step is executed③ 12, otherwise, executing the step of ③ 10, wherein, x is less than or equal to 11≤W,1≤y1≤H。
③ 10, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point of (1) is marked as p =2, then step (c-12) is performed, otherwise, step (c-11) is performed.
③ 11, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3.
③ 12, return to the step of ③ -9 to continue to determine RdisThe remaining pixels in (x, y) } areRegion type of point, up to { RdisAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
Here, the block matching method is a conventional classical block matching method, and a basic idea thereof is to divide an image into small blocks, and for each small block of a left-viewpoint image (right-viewpoint image), a small block having the largest correlation is searched for in a right-viewpoint image (left-viewpoint image), and a spatial displacement amount between the two small blocks is a parallax.
Separately calculating { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe local phase characteristic and the local amplitude characteristic of each pixel in (x, y) } will be { LorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { LdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwherein,represents { LorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { LdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LdisThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RdisAnd (x, y) the local amplitude characteristic of the pixel point with the coordinate position (x, y).
In this embodiment, { L ] in step (iv)org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe acquisition process of the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } comprises the following steps:
tetra-1, pair { LorgCarrying out phase consistency transformation on each pixel point in (x, y) to obtain { L }orgEven symmetric frequency response and odd symmetric frequency response of each pixel point in (x, y) } in different scales and directions are converted into { L }orgEven symmetric frequency responses of pixel points with coordinate positions (x, y) in different scales and directions are recorded as eα,θ(x, y) will { LorgThe odd symmetric frequency response of the pixel point with the coordinate position (x, y) in different scales and directions is marked as oα,θ(x, y), wherein alpha represents the scale factor of the filter, 1 ≦ alpha ≦ 4, theta represents the direction factor of the filter, and 1 ≦ theta ≦ 4.
Fourthly-2, calculating { LorgThe phase consistency characteristics of each pixel point in (x, y) in different directions are shown as LorgThe phase consistency characteristics of pixel points with coordinate positions (x, y) in different directions in (x, y) are marked as PCθ(x,y), <math>
<mrow>
<msub>
<mi>PC</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>E</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> Wherein, <math>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>E</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>F</mi>
<mi>θ</mi>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>H</mi>
<mi>θ</mi>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>F</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>H</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
</math>
fourthly-3, according to { LorgCalculating the direction corresponding to the maximum phase consistency characteristic of each pixel point in (x, y) } and calculating the { Lorg(x, y) } local phase features and local amplitude features for each pixel point, for { LorgThe pixel point with (x, y) coordinate position in (x, y) } is firstly found out the phase consistency characteristic PC of the pixel point in different directionsθFinding out the direction corresponding to the maximum phase consistency characteristic in (x, y), and marking as thetamAgain according to thetamCalculation of { LorgLocal phase of pixel point with coordinate position (x, y) in (x, y) }Features and local amplitude features, respectivelyAnd <math>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>arctan</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>H</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msub>
<mi>F</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> wherein, <math>
<mrow>
<msub>
<mi>F</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>H</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe even-symmetric frequency response of the frequency domain,represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe odd symmetric frequency response of (1), arctan () is an inverted cosine function.
Fourthly-4, obtaining { L ] according to the steps from the fourth step-1 to the fourth step-3orgOperation of local phase feature and local amplitude feature of each pixel in (x, y) } obtains { R } in the same mannerorg(x,y)}、{Ldis(x, y) } and { R }disLocal phase features and local amplitude features of each pixel in (x, y) }.
According to { Lorg(x, y) } and { LdisCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristicdis(x, y) } the objective evaluation metric for each pixel point, will be { LdisThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }L(x,y)}, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>w</mi>
<mi>LP</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>w</mi>
<mi>LA</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
</mrow>
</math> According to { Rorg(x, y) } and { R }disCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristic of each pixel point in the (x, y) } matrix, and calculating the { Rdis(x, y) } the objective evaluation metric for each pixel point, will be { R }disThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }R(x,y)}, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>w</mi>
<mi>LP</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>w</mi>
<mi>LA</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
</mrow>
</math> Wherein Q isL(x, y) represents { L }dis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> QR(x, y) represents { Rdis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LP</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>1</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>org</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msubsup>
<mi>LA</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>T</mi>
<mn>2</mn>
</msub>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> wLP、wLAand b is a training parameter, T1And T2Are control parameters.
In this embodiment, w is taken according to the different effects of the local phase characteristic and the local amplitude characteristic on the stereo image quality variationLP=0.9834、wLA=0.2915, b =0, take T1=0.85、T2=160。
And sixthly, the occlusion area is mainly formed by pixels with unsuccessful parallax matching in the distorted stereo image and comprises an occlusion area of the left viewpoint image and an occlusion area of the right viewpoint image, and the perception of a human visual characteristic system to the occlusion areas mainly plays a main role in monocular vision. Thus the present invention is based on { L }dis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristic of the human visual system to the sheltered areadisThe objective evaluation metric of the occlusion region in (1) is marked as Qnc, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>nc</mi>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>nc</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>nc</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msubsup>
<mi>N</mi>
<mi>L</mi>
<mi>nc</mi>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>N</mi>
<mi>R</mi>
<mi>nc</mi>
</msubsup>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> Wherein,represents { Ldis(x, y) } the number of pixel points with the area type of p =1,represents { Rdis(x, y) } the number of pixel points with the area type of p = 1.
The characteristics of the human visual system indicate that if the difference between the image contents of the corresponding areas of the retina of the left eye and the retina of the right eye is large or the parallax value between the two areas is large, the human visual system cannot perform binocular fusion operation on the information of conflict between the two eyes, the binocular masking processing is performed, and the high-quality viewpoints inhibit the low-quality viewpoints in the binocular masking processing process. Thus the present invention is based on { L }dis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular inhibition areadisThe objective evaluation metric of the binocular suppression area in (1) is marked as Qbs,Where max () is a function taking the maximum value, <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bs</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>.</mo>
</mrow>
</math>
the human visual characteristics show that if the difference of the image contents of the corresponding areas of the left and right eye retinas is small, the human visual system carries out binocular superposition (fusion) operation on the areas, so that the visual sensitivity of the two eyes to the areas is 1.4 times that of the eyes. Thus the present invention is based on { L }dis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular fusion regiondisThe objective evaluation metric value of the binocular fusion area in (1) is marked as Qbf, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>bf</mi>
</msub>
<mo>=</mo>
<mn>0.7</mn>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> Wherein, <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>.</mo>
</mrow>
</math>
ninthly to SdisObjective evaluation metric Q of occlusion region in (1)nc、SdisObjective evaluation metric Q of the binocular suppression area in (1)bsAnd SdisObjective evaluation metric value Q of binocular fusion area in (1)bfCarrying out fusion to obtain SdisThe predicted value of the objective evaluation of image quality is marked as Q, Q = wnc×Qnc+wbs×Qbs+wbf×QbfWherein w isnc、wbfAnd wbsAre weighting parameters. In this embodiment, take wnc=0.1163、wbf=0.4119 and wbs=0.4718。
In the present embodiment, the 12 undistorted stereo images shown in fig. 2a and 2b, fig. 3a and 3b, fig. 4a and 4b, fig. 5a and 5b, fig. 6a and 6b, fig. 7a and 7b, fig. 8a and 8b, fig. 9a and 9b, fig. 10a and 10b, fig. 11a and 11b, fig. 12a and 12b, and fig. 13a and 13b are used to create 312 distorted stereo images under different degrees of JPEG compression, JPEG2000 compression, gaussian blur, white noise, and h.264 coding distortion to analyze the distorted stereo image S obtained by the method of the present inventiondisThe correlation between the predicted value and the average subjective score difference is objectively evaluated, wherein 60 distorted stereoscopic images are compressed by JPEG, 60 distorted stereoscopic images are compressed by JPEG2000, 60 distorted stereoscopic images are compressed by Gaussian Blur, 60 distorted stereoscopic images are blurred by White Noise (White Noise), and 72 distorted stereoscopic images are encoded by H.264. And the average subjective score difference of each distorted stereo image in the distorted stereo image set is respectively obtained by the existing subjective quality evaluation method and is recorded as DMOS,DMOS =100-MOS, where MOS denotes the mean subjective score, DMOS ∈ [0,100]。
In this embodiment, 4 common objective parameters of the image quality evaluation method are used as evaluation indexes, that is, Pearson correlation coefficient (PLCC), Spearman correlation coefficient (SROCC), Kendall correlation coefficient (KROCC), mean square error (RMSE), stereo image evaluation accuracy of the objective model in which PLCC and rmsc reflect distortion, and SROCC and KROCC reflect monotonicity thereof. The image quality objective evaluation predicted value of the distorted stereo image calculated according to the method is subjected to five-parameter Logistic function nonlinear fitting, and the higher the PLCC, SROCC and KROCC values are, the lower the RMSE value is, the better the correlation between the objective evaluation method and the average subjective score difference is. The PLCC, SROCC, KROCC and RMSE coefficients reflecting the three-dimensional image objective evaluation model performance are shown in Table 1, and the data listed in Table 1 shows that the correlation between the final image quality objective evaluation predicted value of the distorted three-dimensional image obtained by the method and the average subjective score difference value is very high, which indicates that the objective evaluation result is more consistent with the result of human eye subjective perception, and the effectiveness of the method is enough to explain.
Fig. 14 shows a scatter diagram of the difference between the objective evaluation prediction value of the image quality of each distorted stereoscopic image in the distorted stereoscopic image set and the average subjective score, and the more concentrated the scatter is, the better the consistency between the objective model and the subjective perception is. As can be seen from fig. 14, the scatter diagram obtained by the method of the present invention is more concentrated, and the goodness of fit with the subjective evaluation data is higher.
TABLE 1 correlation between objective evaluation prediction value and subjective score of image quality of distorted stereoscopic image obtained by the method of the present invention
Claims (4)
1. A stereoscopic image quality objective evaluation method based on visual perception is characterized by comprising the following steps:
making SorgFor original undistorted stereo image, let SdisFor the distorted stereo image to be evaluated, SorgIs noted as { Lorg(x, y) }, adding SorgIs noted as { Rorg(x, y) }, adding SdisIs noted as { Ldis(x, y) }, adding SdisIs noted as { Rdis(x, y) }, wherein (x, y) representsX is more than or equal to 1 and less than or equal to W, y is more than or equal to 1 and less than or equal to H, W represents the width of the left viewpoint image and the right viewpoint image, H represents the height of the left viewpoint image and the right viewpoint image, L represents the coordinate position of the pixel points in the left viewpoint image and the right viewpoint image, and L represents the height of the left viewpoint image and the right viewpoint imageorg(x, y) represents { L }orgThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rorg(x, y) represents { RorgThe pixel value L of the pixel point with the coordinate position (x, y) in (x, y) } isdis(x, y) represents { L }disThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rdis(x, y) represents { RdisThe coordinate position in (x, y) is the pixel value of the pixel point of (x, y);
secondly, respectively extracting { L ] by using visual masking effect of human stereoscopic vision perception on background illumination and contrastdis(x, y) } binocular minimum perceivable change image and { R }dis(x, y) } binocular minimum perceivable change images, respectively noted asAndwherein,represents { Ldis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y),represents { Rdis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y);
utilizing area detection algorithm to respectively obtain { Ldis(x, y) } and { R }disThe region type of each pixel point in (x, y) } is marked as p, wherein p belongs to {1,2,3}, where p ═ 1 represents an occlusion region, p ═ 2 represents a binocular rejection region, and p ═ 3 represents a binocular fusion region; then will { LdisThe sheltering area formed by pixel points with all area types of p ═ 1 in (x, y) } is recorded as the sheltering areaWill { LdisThe binocular suppression area formed by all pixel points with the area type p ═ 2 in (x, y) } is recorded as a binocular suppression areaWill { LdisThe binocular fusion area formed by all pixel points with the area type p ═ 3 in (x, y) } is recorded as a binocular fusion areaWill { RdisThe sheltering area formed by pixel points with all area types of p ═ 1 in (x, y) } is recorded as the sheltering areaWill { RdisThe binocular suppression area formed by all pixel points with the area type p ═ 2 in (x, y) } is recorded as a binocular suppression areaWill { RdisThe binocular fusion area formed by all pixel points with the area type p ═ 3 in (x, y) } is recorded as a binocular fusion area
Separately calculating { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe local phase characteristic and the local amplitude characteristic of each pixel in (x, y) } will be { LorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { LdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwherein,represents { LorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { LdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LdisThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RdisThe local amplitude characteristic of a pixel point with the coordinate position (x, y) in the (x, y) };
according to { Lorg(x, y) } and { LdisCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristicdis(x, y) } the objective evaluation metric for each pixel point, will be { LdisThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }L(x,y)}, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>w</mi>
<mi>LP</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>w</mi>
<mi>LA</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>L</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
</mrow>
</math> According to { Rorg(x, y) } and { R }disCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristic of each pixel point in the (x, y) } matrix, and calculating the { Rdis(x, y) } the objective evaluation metric for each pixel point, will be { R }disThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }R(x,y)}, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>R</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>w</mi>
<mi>LP</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LP</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>w</mi>
<mi>LA</mi>
</msub>
<mo>×</mo>
<msubsup>
<mi>S</mi>
<mi>R</mi>
<mi>LA</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mo>,</mo>
</mrow>
</math> Wherein Q isL(x, y) represents { L }dis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y),
QR(x, y) represents { Rdis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y),
wLP、wLAand b is a training parameter, T1And T2Is a control parameter;
according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristic of the human visual system to the sheltered areadisThe objective evaluation metric of the occlusion region in (1) is marked as Qnc,Wherein,represents { Ldis(x, y) } the number of pixel points with the area type p being 1,represents { Rdis(x, y) } the number of pixel points with the area type p being 1;
is according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular inhibition areadisThe objective evaluation metric of the binocular suppression area in (1) is marked as Qbs, Where max () is a function taking the maximum value, <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bs</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math>
according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular fusion regiondisThe objective evaluation metric value of the binocular fusion area in (1) is marked as Qbf, <math>
<mrow>
<msub>
<mi>Q</mi>
<mi>bf</mi>
</msub>
<mo>=</mo>
<mn>0.7</mn>
<mo>×</mo>
<mrow>
<mo>(</mo>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>Q</mi>
<mi>R</mi>
<mi>bf</mi>
</msubsup>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> Wherein, <math>
<mrow>
<msubsup>
<mi>Q</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
<mo>=</mo>
<mfrac>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<msub>
<mi>Q</mi>
<mi>L</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>×</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munder>
<mi>Σ</mi>
<mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>∈</mo>
<msubsup>
<mi>Ω</mi>
<mi>L</mi>
<mi>bf</mi>
</msubsup>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>/</mo>
<msubsup>
<mi>J</mi>
<mi>L</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math>
ninthly to SdisObjective evaluation metric Q of occlusion region in (1)nc、SdisObjective evaluation metric Q of the binocular suppression area in (1)bsAnd SdisObjective evaluation metric value Q of binocular fusion area in (1)bfCarrying out fusion to obtain SdisThe predicted value of the objective evaluation of image quality is recorded as Q, Q is wnc×Qnc+wbs×Qbs+wbf×QbfWherein w isnc、wbfAnd wbsAre weighting parameters.
2. The objective evaluation method for stereoscopic image quality based on visual perception according to claim 1, wherein the specific process of the step (II) is as follows:
② 1, calculating { LdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }l(x,y)},Wherein, Tl(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgl(x, y) represents { L }disAverage brightness values of all pixel points in a 5 multiplied by 5 window with the pixel point with the coordinate position as (x, y) as the center in (x, y) };
2, calculating { LdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x, y) wherein Tc(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehl(x, y) represents the pair { L }disThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)l(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07;
2- (3) pairs of { LdisVisualization threshold set of luminance masking effects of (x, y) } { Tl(x, y) } and a visual threshold set of contrast masking effects { T }c(x, y) } to obtain { Ldis(x, y) } binocular minimum perceivable change image, noted
② 4, calculating { RdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }r(x,y)},Wherein, Tr(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgr(x, y) represents { RdisAverage brightness values of all pixel points in a 5 multiplied by 5 window with the pixel point with the coordinate position as (x, y) as the center in (x, y) };
② 5, calculating { RdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c'(x,y)},Tc'(x,y)=K(bgr(x,y))+ehr(x, y) wherein Tc'(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehr(x, y) represents the pair { RdisThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)r(x,y))=-10-6×(0.7×bgr(x,y)2+32×bgr(x,y))+0.07;
2- (6) pairs of { RdisVisualization threshold set of luminance masking effects of (x, y) } { Tr(x, y) } and a visual threshold set of contrast masking effects { T }c'(x, y) } to obtain { R }disBinocular minimum observable of (x, y) }Feeling change image, is recorded as <math>
<mrow>
<msubsup>
<mi>J</mi>
<mi>R</mi>
<mi>dis</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>T</mi>
<mi>r</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>T</mi>
<msup>
<mi>c</mi>
<mo>′</mo>
</msup>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mrow>
</math>
3. The objective evaluation method for stereo image quality based on visual perception according to claim 1 or 2, characterized in that in the step (c), region detection algorithm is used to obtain { L } respectivelydis(x, y) } and { R }disThe specific process of the area type of each pixel point in (x, y) } is as follows:
③ 1, calculating by adopting a block matching methodorg(x, y) } and { R }org(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 2, calculating by adopting a block matching methoddis(x, y) } and { R }dis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 3, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, if so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p 1, then step- (c) -6 is executed, otherwise, step- (c) -4 is executed, wherein x is more than or equal to 11≤W,1≤y1≤H;
③ 4, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) Of pixel pointsThe area type is marked as p-2, then step- (6) is executed, otherwise, step- (5) is executed;
③ 5, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p being 3;
③ 6, return to the step of ③ 3 to continue to determine Ldis(x, y) } the region types of the remaining pixel points, up to { L }disDetermining the region types of all pixel points in (x, y) };
thirdly-7, calculating the R by adopting a block matching methodorg(x, y) } and { Lorg(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
thirdly-8, calculating R by adopting a block matching methoddis(x, y) } and { Ldis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 9, judgmentThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, then { R } will bedisThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p 1, then the step- (12) is executed, otherwise, the step- (10) is executed, wherein x is more than or equal to 11≤W,1≤y1≤H;
③ 10, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point is marked as p is 2, and then the step is executedStep three-12, otherwise, executing step three-11;
③ 11, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p being 3;
③ 12, return to the step of ③ -9 to continue to determine Rdis(x, y) the area type of the remaining pixel points in the (x, y) } until the { R } is reacheddisAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
4. The objective evaluation method for stereoscopic image quality based on visual perception according to claim 3, wherein { L ] in the step (c)org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe acquisition process of the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } comprises the following steps:
tetra-1, pair { LorgCarrying out phase consistency transformation on each pixel point in (x, y) to obtain { L }orgEven symmetric frequency response and odd symmetric frequency response of each pixel point in (x, y) } in different scales and directions are converted into { L }orgEven symmetric frequency responses of pixel points with coordinate positions (x, y) in different scales and directions are recorded as eα,θ(x, y) will { LorgThe sum of pixel points with coordinate positions (x, y) in (x, y) is different in sizeThe odd symmetric frequency response of the direction is noted as oα,θ(x, y), wherein alpha represents a scale factor of the filter, 1 ≦ alpha ≦ 4, theta represents a direction factor of the filter, 1 ≦ theta ≦ 4;
fourthly-2, calculating { LorgThe phase consistency characteristics of each pixel point in (x, y) in different directions are shown as LorgThe phase consistency characteristics of pixel points with coordinate positions (x, y) in different directions in (x, y) are marked as PCθ(x,y), <math>
<mrow>
<msub>
<mi>PC</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>E</mi>
<mi>θ</mi>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
</mrow>
</math> Wherein, <math>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<mi>θ</mi>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math>
fourthly-3, according to { LorgCalculating the direction corresponding to the maximum phase consistency characteristic of each pixel point in (x, y) } and calculating the { Lorg(x, y) } local phase features and local amplitude features for each pixel point, for { LorgThe pixel point with (x, y) coordinate position in (x, y) } is firstly found out the phase consistency characteristic PC of the pixel point in different directionsθFinding out the direction corresponding to the maximum phase consistency characteristic in (x, y), and marking as thetamAgain according toθm calculates { L }orgThe local phase characteristic and the local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y) } are respectively and correspondingly marked asAnd <math>
<mrow>
<msubsup>
<mi>LP</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>arctan</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>H</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msub>
<mi>F</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>LA</mi>
<mi>L</mi>
<mi>org</mi>
</msubsup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> wherein, <math>
<mrow>
<msub>
<mi>F</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
<msub>
<mi>H</mi>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<munderover>
<mi>Σ</mi>
<mrow>
<mi>α</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mn>4</mn>
</munderover>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msub>
<mi>A</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msqrt>
<msub>
<mi>e</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
<mo>+</mo>
<msub>
<mi>o</mi>
<mrow>
<mi>α</mi>
<mo>,</mo>
<msub>
<mi>θ</mi>
<mi>m</mi>
</msub>
</mrow>
</msub>
<msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>,</mo>
<mi>y</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</msqrt>
<mo>,</mo>
</mrow>
</math> represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe even-symmetric frequency response of the frequency domain,represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe arctan () is an inverted cosine function;
fourthly-4, obtaining { L ] according to the steps from the fourth step-1 to the fourth step-3orgOperation of local phase feature and local amplitude feature of each pixel in (x, y) } obtains { R } in the same mannerorg(x,y)}、{Ldis(x, y) } and { R }disLocal phase features and local amplitude features of each pixel in (x, y) }.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210144039.1A CN102708567B (en) | 2012-05-11 | 2012-05-11 | Visual perception-based three-dimensional image quality objective evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210144039.1A CN102708567B (en) | 2012-05-11 | 2012-05-11 | Visual perception-based three-dimensional image quality objective evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102708567A CN102708567A (en) | 2012-10-03 |
CN102708567B true CN102708567B (en) | 2014-12-10 |
Family
ID=46901287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210144039.1A Expired - Fee Related CN102708567B (en) | 2012-05-11 | 2012-05-11 | Visual perception-based three-dimensional image quality objective evaluation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102708567B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103108209B (en) * | 2012-12-28 | 2015-03-11 | 宁波大学 | Stereo image objective quality evaluation method based on integration of visual threshold value and passage |
WO2014113915A1 (en) * | 2013-01-22 | 2014-07-31 | Silicon Image, Inc. | Mechanism for facilitating dynamic phase detection with high jitter tolerance for images of media streams |
CN103096125B (en) * | 2013-02-22 | 2015-03-04 | 吉林大学 | Stereoscopic video visual comfort evaluation method based on region segmentation |
CN103413298B (en) * | 2013-07-17 | 2016-02-24 | 宁波大学 | A kind of objective evaluation method for quality of stereo images of view-based access control model characteristic |
CN103914835B (en) * | 2014-03-20 | 2016-08-17 | 宁波大学 | A kind of reference-free quality evaluation method for fuzzy distortion stereo-picture |
CN104574399A (en) * | 2015-01-06 | 2015-04-29 | 天津大学 | Image quality evaluation method based on multi-scale vision significance and gradient magnitude |
CN105376563B (en) * | 2015-11-17 | 2017-03-22 | 浙江科技学院 | No-reference three-dimensional image quality evaluation method based on binocular fusion feature similarity |
CN105828061B (en) * | 2016-05-11 | 2017-09-29 | 宁波大学 | A kind of virtual view quality evaluating method of view-based access control model masking effect |
CN106022362A (en) * | 2016-05-13 | 2016-10-12 | 天津大学 | Reference-free image quality objective evaluation method for JPEG2000 compression distortion |
CN113362315B (en) * | 2021-06-22 | 2022-09-30 | 中国科学技术大学 | Image quality evaluation method and evaluation model based on multi-algorithm fusion |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008115410A2 (en) * | 2007-03-16 | 2008-09-25 | Sti Medical Systems, Llc | A method to provide automated quality feedback to imaging devices to achieve standardized imaging data |
CN101833766A (en) * | 2010-05-11 | 2010-09-15 | 天津大学 | Stereo image objective quality evaluation algorithm based on GSSIM |
CN101841726A (en) * | 2010-05-24 | 2010-09-22 | 宁波大学 | Three-dimensional video asymmetrical coding method |
CN101872479A (en) * | 2010-06-09 | 2010-10-27 | 宁波大学 | Three-dimensional image objective quality evaluation method |
CN102271279A (en) * | 2011-07-22 | 2011-12-07 | 宁波大学 | Objective analysis method for just noticeable change step length of stereo images |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7512286B2 (en) * | 2003-10-27 | 2009-03-31 | Hewlett-Packard Development Company, L.P. | Assessing image quality |
US8086007B2 (en) * | 2007-10-18 | 2011-12-27 | Siemens Aktiengesellschaft | Method and system for human vision model guided medical image quality assessment |
-
2012
- 2012-05-11 CN CN201210144039.1A patent/CN102708567B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008115410A2 (en) * | 2007-03-16 | 2008-09-25 | Sti Medical Systems, Llc | A method to provide automated quality feedback to imaging devices to achieve standardized imaging data |
CN101833766A (en) * | 2010-05-11 | 2010-09-15 | 天津大学 | Stereo image objective quality evaluation algorithm based on GSSIM |
CN101841726A (en) * | 2010-05-24 | 2010-09-22 | 宁波大学 | Three-dimensional video asymmetrical coding method |
CN101872479A (en) * | 2010-06-09 | 2010-10-27 | 宁波大学 | Three-dimensional image objective quality evaluation method |
CN102271279A (en) * | 2011-07-22 | 2011-12-07 | 宁波大学 | Objective analysis method for just noticeable change step length of stereo images |
Also Published As
Publication number | Publication date |
---|---|
CN102708567A (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102708567B (en) | Visual perception-based three-dimensional image quality objective evaluation method | |
CN104036501B (en) | A kind of objective evaluation method for quality of stereo images based on rarefaction representation | |
CN103152600B (en) | Three-dimensional video quality evaluation method | |
CN103413298B (en) | A kind of objective evaluation method for quality of stereo images of view-based access control model characteristic | |
CN104394403B (en) | A kind of stereoscopic video quality method for objectively evaluating towards compression artefacts | |
CN103136748B (en) | The objective evaluation method for quality of stereo images of a kind of feature based figure | |
Wang et al. | Quaternion representation based visual saliency for stereoscopic image quality assessment | |
CN102333233A (en) | Stereo image quality objective evaluation method based on visual perception | |
CN102521825B (en) | Three-dimensional image quality objective evaluation method based on zero watermark | |
CN102595185A (en) | Stereo image quality objective evaluation method | |
CN104036502B (en) | A kind of without with reference to fuzzy distortion stereo image quality evaluation methodology | |
CN104658001A (en) | Non-reference asymmetric distorted stereo image objective quality assessment method | |
CN102843572B (en) | Phase-based stereo image quality objective evaluation method | |
CN102750706B (en) | Depth significance-based stereopicture just noticeable difference (JND) model building method | |
Geng et al. | A stereoscopic image quality assessment model based on independent component analysis and binocular fusion property | |
CN104954778A (en) | Objective stereo image quality assessment method based on perception feature set | |
CN102903107B (en) | Three-dimensional picture quality objective evaluation method based on feature fusion | |
CN102999911B (en) | Three-dimensional image quality objective evaluation method based on energy diagrams | |
Hachicha et al. | No-reference stereo image quality assessment based on joint wavelet decomposition and statistical models | |
CN103200420B (en) | Three-dimensional picture quality objective evaluation method based on three-dimensional visual attention | |
CN103369348B (en) | Three-dimensional image quality objective evaluation method based on regional importance classification | |
CN104361583A (en) | Objective quality evaluation method of asymmetrically distorted stereo images | |
CN102999912B (en) | A kind of objective evaluation method for quality of stereo images based on distortion map | |
CN103108209B (en) | Stereo image objective quality evaluation method based on integration of visual threshold value and passage | |
CN105069794A (en) | Binocular rivalry based totally blind stereo image quality evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141210 Termination date: 20170511 |