Nothing Special   »   [go: up one dir, main page]

CN102708567B - Visual perception-based three-dimensional image quality objective evaluation method - Google Patents

Visual perception-based three-dimensional image quality objective evaluation method Download PDF

Info

Publication number
CN102708567B
CN102708567B CN201210144039.1A CN201210144039A CN102708567B CN 102708567 B CN102708567 B CN 102708567B CN 201210144039 A CN201210144039 A CN 201210144039A CN 102708567 B CN102708567 B CN 102708567B
Authority
CN
China
Prior art keywords
mrow
msub
dis
msubsup
pixel point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210144039.1A
Other languages
Chinese (zh)
Other versions
CN102708567A (en
Inventor
邵枫
顾珊波
郁梅
蒋刚毅
李福翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201210144039.1A priority Critical patent/CN102708567B/en
Publication of CN102708567A publication Critical patent/CN102708567A/en
Application granted granted Critical
Publication of CN102708567B publication Critical patent/CN102708567B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses a visual perception-based three-dimensional image quality objective evaluation method which comprises the steps of: firstly, obtaining an objective evaluation measurement value of each pixel point through calculating a local phase characteristic and a local amplitude characteristic of each pixel point in left and right viewpoint images of a three-dimensional image, dividing the three-dimensional image into a shielding region, a binocular inhibition region and a binocular fusion region by a region detection method; and secondly, evaluating all regions respectively and fusing evaluation results to obtain a final image quality objective evaluation prediction value. The visual perception-based three-dimensional image quality objective evaluation method has the advantages that the obtained information for reflecting local phase and local amplitude characteristics has strong stability and can well reflect quality change condition of the three-dimensional image, and the image quality evaluation method of the shielding region, the binocular inhibition region and the binocular fusion region can well reflect the visual perception characteristic of the human visual system, and is effectively improved in correlation of objective evaluation result and subjective perception.

Description

Stereoscopic image quality objective evaluation method based on visual perception
Technical Field
The invention relates to an image quality evaluation method, in particular to a stereoscopic image quality objective evaluation method based on visual perception.
Background
With the rapid development of image coding technology and stereoscopic display technology, the stereoscopic image technology has received more and more extensive attention and application, and has become a current research hotspot. The stereo image technology utilizes the binocular parallax principle of human eyes, the left and right viewpoint images from the same scene are respectively and independently received by binoculars, and binocular parallax is formed through brain fusion, so that the stereo image with depth feeling and reality feeling is appreciated. Due to the influence of an acquisition system and storage compression and transmission equipment, a series of distortions are inevitably introduced into the stereo image, and compared with a single-channel image, the stereo image needs to ensure the image quality of two channels simultaneously, so that the quality evaluation of the stereo image is of great significance. However, currently, there is no effective objective evaluation method for evaluating the quality of stereoscopic images. Therefore, establishing an effective objective evaluation model of the quality of the stereo image has very important significance.
The existing three-dimensional image quality objective evaluation method directly applies the plane image quality evaluation method to the evaluation of the three-dimensional image quality, however, the process of fusing the left and right viewpoint images of the three-dimensional image to generate the three-dimensional effect is not a simple process of superposing the left and right viewpoint images and is difficult to express by a simple mathematical method, so that how to effectively simulate the binocular three-dimensional fusion in the three-dimensional image quality evaluation process and how to modulate the objective evaluation result according to the visual masking characteristic of human eyes so that the objective evaluation result is more in line with the human visual system is a problem which needs to be researched and solved in the process of evaluating the three-dimensional image quality objectively.
Disclosure of Invention
The invention aims to solve the technical problem of providing a stereoscopic image quality objective evaluation method based on visual perception, which can effectively improve the correlation between objective evaluation results and subjective perception.
The technical scheme adopted by the invention for solving the technical problems is as follows: a stereoscopic image quality objective evaluation method based on visual perception is characterized by comprising the following steps:
making SorgFor original undistorted stereo image, let SdisFor the distorted stereo image to be evaluated, SorgIs noted as { Lorg(x, y) }, adding SorgIs noted as { Rorg(x, y) }, adding SdisIs noted as { Ldis(x, y) }, adding SdisIs noted as { Rdis(x, y) }, wherein (x, y) denotes a coordinate position of a pixel point in the left viewpoint image and the right viewpoint image, x is 1. ltoreq. x.ltoreq.W, y is 1. ltoreq. y.ltoreq.H, W denotes a width of the left viewpoint image and the right viewpoint image, H denotes a height of the left viewpoint image and the right viewpoint image, L is Lorg(x, y) represents { L }orgThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rorg(x, y) represents { RorgThe pixel value L of the pixel point with the coordinate position (x, y) in (x, y) } isdis(x, y) represents { L }disThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rdis(x, y) represents { RdisThe coordinate position in (x, y) is the pixel value of the pixel point of (x, y);
secondly, respectively extracting { L ] by using visual masking effect of human stereoscopic vision perception on background illumination and contrastdis(x, y) } binocular minimum perceivable change image and { R }dis(x, y) } binocular minimum perceivable change images, respectively noted asAndwherein,represents { Ldis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y),represents { Rdis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y);
utilizing area detection algorithm to respectively obtain { Ldis(x, y) } and { R }disThe region type of each pixel point in (x, y) } is marked as p, wherein p belongs to {1,2,3}, p =1 represents an occlusion region, p =2 represents a binocular suppression region, and p =3 represents a binocular fusion region; then will { LdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { LdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { LdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion regionWill { RdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { RdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { RdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion region
Separately calculating { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe local phase characteristic and the local amplitude characteristic of each pixel in (x, y) } will be { LorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { LdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwherein,represents { LorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { LdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LdisThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RdisThe local amplitude characteristic of a pixel point with the coordinate position (x, y) in the (x, y) };
according to { Lorg(x, y) } and { LdisCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristicdis(x, y) } the objective evaluation metric for each pixel point, will be { LdisThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }L(x,y)}, <math> <mrow> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mi>LP</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>LA</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mrow> </math> According to { Rorg(x, y) } and { R }disCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristic of each pixel point in the (x, y) } matrix, and calculating the { Rdis(x, y) } the objective evaluation metric for each pixel point, will be { R }disThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }R(x,y)}, <math> <mrow> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mi>LP</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>LA</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mrow> </math> Wherein Q isL(x, y) represents { L }dis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math> <mrow> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> QR(x, y) represents { Rdis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math> <mrow> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> wLP、wLAand b is a training parameter, T1And T2Is a control parameter;
according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristic of the human visual system to the sheltered areadisThe objective evaluation metric of the occlusion region in (1) is marked as Qnc <math> <mrow> <msub> <mi>Q</mi> <mi>nc</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>nc</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>nc</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>N</mi> <mi>L</mi> <mi>nc</mi> </msubsup> <mo>+</mo> <msubsup> <mi>N</mi> <mi>R</mi> <mi>nc</mi> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow> </math> Wherein,represents { Ldis(x, y) } the number of pixel points with the area type of p =1,represents { Rdis(x, y) } the number of pixel points with the area type of p = 1;
is according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular inhibition areadisThe objective evaluation metric of the binocular suppression area in (1) is marked as Qbs Q bs = max ( Q L bs , Q R bs ) , Where max () is a function taking the maximum value, <math> <mrow> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bs</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bs</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
according to { Ldis(x, y) } and { R }dis(xY) and calculating S by using the visual perception characteristics of the human visual system to the binocular fusion areadisThe objective evaluation metric value of the binocular fusion area in (1) is marked as Qbf <math> <mrow> <msub> <mi>Q</mi> <mi>bf</mi> </msub> <mo>=</mo> <mn>0.7</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bf</mi> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bf</mi> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bf</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bf</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
ninthly to SdisObjective evaluation metric Q of occlusion region in (1)nc、SdisObjective evaluation metric Q of the binocular suppression area in (1)bsAnd SdisObjective evaluation metric value Q of binocular fusion area in (1)bfCarrying out fusion to obtain SdisThe predicted value of the objective evaluation of image quality is marked as Q, Q = wnc×Qnc+wbs×Qbs+wbf×QbfWherein w isnc、wbfAnd wbsAre weighting parameters.
The concrete process of the second step is as follows:
② 1, calculating { LdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }l(x,y)},Wherein, Tl(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgl(x, y) represents { L }disAll pixel points in a 5 × 5 window centered on a pixel point whose coordinate position is (x, y) in (x, y) } are within a window of 5 × 5Average value of brightness of;
2, calculating { LdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x, y) wherein Tc(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehl(x, y) represents the pair { L }disThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)l(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07;
2- (3) pairs of { LdisVisualization threshold set of luminance masking effects of (x, y) } { Tl(x, y) } and a visual threshold set of contrast masking effects { T }c(x, y) } to obtain { Ldis(x, y) } binocular minimum perceivable change image, noted J L dis ( x , y ) = T l ( x , y ) + T c ( x , y ) ;
② 4, calculating { RdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }r(x,y)},Wherein, Tr(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgr(x, y) represents { RdisAverage brightness values of all pixel points in a 5 multiplied by 5 window with the pixel point with the coordinate position as (x, y) as the center in (x, y) };
② 5, calculating { RdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c′(x,y)},Tc′(x,y)=K(bgr(x,y))+ehr(x, y) wherein Tc' (x, y) denotes { RdisThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehr(x, y) represents the pair { RdisThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)r(x,y))=-10-6×(0.7×bgr(x,y)2+32×bgr(x,y))+0.07;
2- (6) pairs of { RdisVisualization threshold set of luminance masking effects of (x, y) } { Tr(x, y) } and a visual threshold set of contrast masking effects { T }c' (x, y) } to obtain { Rdis(x, y) } binocular minimum perceivable change image, noted <math> <mrow> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <msup> <mi>c</mi> <mo>&prime;</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
In the step III, the region detection algorithm is utilized to respectively obtain { L }dis(x, y) } and { R }disThe specific process of the area type of each pixel point in (x, y) } is as follows:
③ 1, calculating by adopting a block matching methodorg(x, y) } and { R }org(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 2, calculating by adopting a block matching methoddis(x, y) } and { R }dis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 3, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, if so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) Region type of pixel pointMarked as p =1, then step c-6 is performed, otherwise step c-4 is performed, where x is greater than or equal to 11≤W,1≤y1≤H;
③ 4, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =2, then step (c-6) is executed, otherwise, step (c-5) is executed;
③ 5, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe pixel value of the pixel point with the middle coordinate position (x1, y1)If so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3;
③ 6, return to the step of ③ 3 to continue to determine Ldis(x, y) } of the residueUntil { L }disDetermining the region types of all pixel points in (x, y) };
thirdly-7, calculating the R by adopting a block matching methodorg(x, y) } and { Lorg(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
thirdly-8, calculating R by adopting a block matching methoddis(x, y) } and { Ldis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 9, judgmentThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, then { R } will bedisThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =1, then step- (c-12) is executed, otherwise, step- (c-10) is executed, wherein x is more than or equal to 11≤W,1≤y1≤H;
③ 10, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =2, then step c-12 is executed, otherwise step c-11 is executed;
③ 11, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3;
③ 12, return to the step of ③ -9 to continue to determine Rdis(x, y) the area type of the remaining pixel points in the (x, y) } until the { R } is reacheddisAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
In the step (iv) { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe acquisition process of the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } comprises the following steps:
tetra-1, pair { LorgCarrying out phase consistency transformation on each pixel point in (x, y) to obtain { L }orgEven symmetric frequency response and odd symmetric frequency response of each pixel point in (x, y) } in different scales and directions are converted into { L }orgEven symmetric frequency responses of pixel points with coordinate positions (x, y) in different scales and directions are recorded as eα,θ(x, y) will { LorgThe odd symmetric frequency response of the pixel point with the coordinate position (x, y) in different scales and directions is marked as oα,θ(x, y), wherein alpha represents a scale factor of the filter, 1 ≦ alpha ≦ 4, theta represents a direction factor of the filter, 1 ≦ theta ≦ 4;
fourthly-2, calculating { LorgThe phase consistency characteristics of each pixel point in (x, y) in different directions are shown as LorgThe phase consistency characteristics of pixel points with coordinate positions (x, y) in different directions in (x, y) are marked as PCθ(x,y), <math> <mrow> <msub> <mi>PC</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>E</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>F</mi> <mi>&theta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>F</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
fourthly-3, according to { LorgCalculating the direction corresponding to the maximum phase consistency characteristic of each pixel point in (x, y) } and calculating the { Lorg(x, y) } local phase features and local amplitude features for each pixel point, for { LorgThe pixel point with (x, y) coordinate position in (x, y) } is firstly found out the phase consistency characteristic PC of the pixel point in different directionsθFinding out the direction corresponding to the maximum phase consistency feature in (x, y), and marking as the directionθmAgain according to thetamCalculation of { LorgThe local phase characteristic and the local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y) } are respectively and correspondingly marked asAnd <math> <mrow> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <msub> <mi>H</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>F</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein, <math> <mrow> <msub> <mi>F</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>H</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe even-symmetric frequency response of the frequency domain,represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe arctan () is an inverted cosine function;
fourthly-4, obtaining { L ] according to the steps from the fourth step-1 to the fourth step-3orgOperation of local phase feature and local amplitude feature of each pixel in (x, y) } obtains { R } in the same mannerorg(x,y)}、{Ldis(x, y) } and { R }disLocal phase features and local amplitude features of each pixel in (x, y) }.
Compared with the prior art, the invention has the advantages that:
1) the method provided by the invention considers that different areas have different responses to the stereo perception, divides the stereo image into the shielding area, the binocular inhibition area and the binocular fusion area, carries out evaluation respectively, and fuses evaluation results to obtain the final evaluation score, so that the evaluation results are more perceptually in line with the human visual system.
2) The method of the invention obtains the objective evaluation metric value of each pixel point by calculating the local phase characteristic and the local amplitude characteristic of each pixel point in the left and right viewpoint images of the stereo image, and effectively improves the correlation between the objective evaluation result and the subjective perception because the obtained local phase characteristic and the local amplitude characteristic have stronger stability and can better reflect the quality change condition of the stereo image.
3) According to the method, the binocular minimum perceptible change image is obtained according to the stereoscopic vision characteristics of human eyes, and objective evaluation metric values of all pixel points in the occlusion area, the binocular inhibition area and the binocular fusion area are weighted to different degrees, so that the evaluation result is more in line with a human vision system, and the correlation between the objective evaluation result and subjective perception is improved.
Drawings
FIG. 1 is a block diagram of an overall implementation of the method of the present invention;
fig. 2a is a left viewpoint image of Akko (640 × 480 size) stereo image;
fig. 2b is a right viewpoint image of an Akko (size 640 × 480) stereoscopic image;
fig. 3a is a left viewpoint image of an altmobit (size 1024 × 768) stereoscopic image;
fig. 3b is a right view image of an altmobit (size 1024 × 768) stereoscopic image;
fig. 4a is a left viewpoint image of a balloon (size 1024 × 768) stereoscopic image;
fig. 4b is a right viewpoint image of a balloon (size 1024 × 768) stereoscopic image;
fig. 5a is a left viewpoint image of a Doorflower (size 1024 × 768) stereoscopic image;
fig. 5b is a right viewpoint image of a Doorflower (size 1024 × 768) stereoscopic image;
fig. 6a is a left view image of a Kendo (size 1024 × 768) stereoscopic image;
fig. 6b is a right view image of a Kendo (size 1024 × 768) stereoscopic image;
fig. 7a is a left view image of a LeaveLaptop (size 1024 × 768) stereoscopic image;
fig. 7b is a right view image of a LeaveLaptop (size 1024 × 768) stereoscopic image;
fig. 8a is a left viewpoint image of a lovedual 1 (size 1024 × 768) stereoscopic image;
fig. 8b is a right viewpoint image of a lovedual 1 (size 1024 × 768) stereoscopic image;
fig. 9a is a left view image of a newsapper (size 1024 × 768) stereoscopic image;
fig. 9b is a right view image of a newsapper (size 1024 × 768) stereoscopic image;
FIG. 10a is a left viewpoint image of Puppy (size 720 × 480) stereo image;
FIG. 10b is a right viewpoint image of Puppy (size 720 × 480) stereoscopic image;
fig. 11a is a left viewpoint image of a Soccer2 (size 720 × 480) stereoscopic image;
fig. 11b is a right viewpoint image of a Soccer2 (size 720 × 480) stereoscopic image;
fig. 12a is a left viewpoint image of a Horse (size 720 × 480) stereoscopic image;
fig. 12b is a right view image of a Horse (size 720 × 480) stereoscopic image;
fig. 13a is a left viewpoint image of an Xmas (size 640 × 480) stereoscopic image;
fig. 13b is a right view image of an Xmas (size 640 × 480) stereoscopic image;
fig. 14 is a scatter plot of the difference between the objective evaluation prediction value of image quality and the average subjective score of each distorted stereoscopic image in the set of distorted stereoscopic images.
Detailed Description
The invention is described in further detail below with reference to the accompanying examples.
The invention provides a stereoscopic image quality objective evaluation method based on visual perception, the overall implementation block diagram of which is shown in figure 1, and the method comprises the following steps:
making SorgFor original undistorted stereo image, let SdisFor the distorted stereo image to be evaluated, SorgIs noted as { Lorg(x, y) }, adding SorgIs noted as { Rorg(x, y) }, adding SdisIs noted as { Ldis(x, y) }, adding SdisIs noted as { Rdis(x, y) }, wherein (x, y) denotes a coordinate position of a pixel point in the left viewpoint image and the right viewpoint image, x is 1. ltoreq. x.ltoreq.W, y is 1. ltoreq. y.ltoreq.H, W denotes a width of the left viewpoint image and the right viewpoint image, H denotes a height of the left viewpoint image and the right viewpoint image, L is Lorg(x, y) represents { L }orgThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rorg(x, y) represents { RorgThe pixel value L of the pixel point with the coordinate position (x, y) in (x, y) } isdis(x, y) represents { L }disThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rdis(x, y) represents { RdisAnd the coordinate position in the (x, y) is the pixel value of the pixel point of (x, y).
The human visual characteristics indicate that the human eye is imperceptible to a property or noise that changes less in the image unless the intensity of the change of the property or noise exceeds a threshold, which is the minimum perceptible distortion (JND). However, the visual masking effect of human eyes is a local effect, which is influenced by background illumination, texture complexity and other factors, and the brighter the background is, the more complex the texture is, and the higher the threshold value is. Therefore, the invention respectively extracts L by using the visual masking effect of human stereoscopic vision perception on background illumination and contrastdis(x, y) } binocular minimum perceivable change image and { R }dis(x, y) } binocular minimum perceivable change images, respectively noted asAndwherein,represents { Ldis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y),represents { Rdis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y).
In this embodiment, the specific process of step two is:
② 1, calculating { LdisLuminance masking effect of (x, y) } and luminance masking effect of the sameIs marked as { T }l(x,y)},Wherein, Tl(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgl(x, y) represents { L }disAnd (x, y) } average brightness of all pixels in a 5 × 5 window with the pixel with the coordinate position (x, y) as the center.
2, calculating { LdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x, y) wherein Tc(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehl(x, y) represents the pair { L }disThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)l(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07。
2- (3) pairs of { LdisVisualization threshold set of luminance masking effects of (x, y) } { Tl(x, y) } and a visual threshold set of contrast masking effects { T }c(x, y) } to obtain { Ldis(x, y) } binocular minimum perceivable change image, noted J L dis ( x , y ) = T l ( x , y ) + T c ( x , y ) .
② 4, calculating { RdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }r(x,y)},Wherein, Tr(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgr(x, y) represents { RdisAnd (x, y) } average brightness of all pixels in a 5 × 5 window with the pixel with the coordinate position (x, y) as the center.
② 5, calculating { RdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c′(x,y)},Tc′(x,y)=K(bgr(x,y))+ehr(x, y) wherein Tc' (x, y) denotes { RdisThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehr(x, y) represents the pair { RdisThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)r(x,y))=-10-6×(0.7×bgr(x,y)2+32×bgr(x,y))+0.07。
2- (6) pairs of { RdisVisualization threshold set of luminance masking effects of (x, y) } { Tr(x, y) } and a visual threshold set of contrast masking effects { T }c' (x, y) } to obtain { Rdis(x, y) } binocular minimum perceivable change image, noted <math> <mrow> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <msup> <mi>c</mi> <mo>&prime;</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
Utilizing area detection algorithm to respectively obtain { Ldis(x, y) } and { R }disThe region type of each pixel point in (x, y) } is marked as p, wherein p belongs to {1,2,3}, p =1 represents an occlusion region, p =2 represents a binocular suppression region, and p =3 represents a binocular fusion region; then will { LdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { LdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { LdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion regionWill { RdisThe sheltering area formed by all pixel points with the area type p =1 in (x, y) } is recorded asWill { RdisThe binocular suppression area formed by all pixel points with the area type p =2 in (x, y) } is recorded as a binocular suppression areaWill { RdisThe binocular fusion region formed by all pixel points with the region type p =3 in (x, y) } is recorded as a binocular fusion region
In this embodiment, step three uses region detection algorithm to obtain { L }dis(x, y) } and { R }disThe specific process of the area type of each pixel point in (x, y) } is as follows:
③ 1, calculating by adopting a block matching methodorg(x, y) } and { R }org(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
③ 2, calculating by adopting a block matching methoddis(x, y) } and { R }dis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
③ 3, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, if so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p =1, then step- (c-6) is executed, otherwise, step- (c-4) is executed, wherein x is more than or equal to 11≤W,1≤y1≤H。
③ 4, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point of (1) is marked as p =2, then step (c-6) is executed, otherwise, step (c-5) is executed.
③ 5, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3.
③ 6, return to the step of ③ 3 to continue to determine Ldis(x, y) } the region types of the remaining pixel points, up to { L }disAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
Thirdly-7, calculating the R by adopting a block matching methodorg(x, y) } and { Lorg(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
Thirdly-8, calculating R by adopting a block matching methoddis(x, y) } and { Ldis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y).
③ 9, judgmentThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, then { R } will bedisThe coordinate position in (x, y) } is (x)1,y1) Is marked as p =1, and then the step is executed③ 12, otherwise, executing the step of ③ 10, wherein, x is less than or equal to 11≤W,1≤y1≤H。
③ 10, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point of (1) is marked as p =2, then step (c-12) is performed, otherwise, step (c-11) is performed.
③ 11, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point of (1) is marked as p = 3.
③ 12, return to the step of ③ -9 to continue to determine RdisThe remaining pixels in (x, y) } areRegion type of point, up to { RdisAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
Here, the block matching method is a conventional classical block matching method, and a basic idea thereof is to divide an image into small blocks, and for each small block of a left-viewpoint image (right-viewpoint image), a small block having the largest correlation is searched for in a right-viewpoint image (left-viewpoint image), and a spatial displacement amount between the two small blocks is a parallax.
Separately calculating { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe local phase characteristic and the local amplitude characteristic of each pixel in (x, y) } will be { LorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { LdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwherein,represents { LorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { LdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LdisThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RdisAnd (x, y) the local amplitude characteristic of the pixel point with the coordinate position (x, y).
In this embodiment, { L ] in step (iv)org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe acquisition process of the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } comprises the following steps:
tetra-1, pair { LorgCarrying out phase consistency transformation on each pixel point in (x, y) to obtain { L }orgEven symmetric frequency response and odd symmetric frequency response of each pixel point in (x, y) } in different scales and directions are converted into { L }orgEven symmetric frequency responses of pixel points with coordinate positions (x, y) in different scales and directions are recorded as eα,θ(x, y) will { LorgThe odd symmetric frequency response of the pixel point with the coordinate position (x, y) in different scales and directions is marked as oα,θ(x, y), wherein alpha represents the scale factor of the filter, 1 ≦ alpha ≦ 4, theta represents the direction factor of the filter, and 1 ≦ theta ≦ 4.
Fourthly-2, calculating { LorgThe phase consistency characteristics of each pixel point in (x, y) in different directions are shown as LorgThe phase consistency characteristics of pixel points with coordinate positions (x, y) in different directions in (x, y) are marked as PCθ(x,y), <math> <mrow> <msub> <mi>PC</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>E</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>F</mi> <mi>&theta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>F</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
fourthly-3, according to { LorgCalculating the direction corresponding to the maximum phase consistency characteristic of each pixel point in (x, y) } and calculating the { Lorg(x, y) } local phase features and local amplitude features for each pixel point, for { LorgThe pixel point with (x, y) coordinate position in (x, y) } is firstly found out the phase consistency characteristic PC of the pixel point in different directionsθFinding out the direction corresponding to the maximum phase consistency characteristic in (x, y), and marking as thetamAgain according to thetamCalculation of { LorgLocal phase of pixel point with coordinate position (x, y) in (x, y) }Features and local amplitude features, respectivelyAnd <math> <mrow> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <msub> <mi>H</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>F</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein, <math> <mrow> <msub> <mi>F</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>H</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe even-symmetric frequency response of the frequency domain,represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe odd symmetric frequency response of (1), arctan () is an inverted cosine function.
Fourthly-4, obtaining { L ] according to the steps from the fourth step-1 to the fourth step-3orgOperation of local phase feature and local amplitude feature of each pixel in (x, y) } obtains { R } in the same mannerorg(x,y)}、{Ldis(x, y) } and { R }disLocal phase features and local amplitude features of each pixel in (x, y) }.
According to { Lorg(x, y) } and { LdisCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristicdis(x, y) } the objective evaluation metric for each pixel point, will be { LdisThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }L(x,y)}, <math> <mrow> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mi>LP</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>LA</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mrow> </math> According to { Rorg(x, y) } and { R }disCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristic of each pixel point in the (x, y) } matrix, and calculating the { Rdis(x, y) } the objective evaluation metric for each pixel point, will be { R }disThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }R(x,y)}, <math> <mrow> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mi>LP</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>LA</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mrow> </math> Wherein Q isL(x, y) represents { L }dis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math> <mrow> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> QR(x, y) represents { Rdis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y), <math> <mrow> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> wLP、wLAand b is a training parameter, T1And T2Are control parameters.
In this embodiment, w is taken according to the different effects of the local phase characteristic and the local amplitude characteristic on the stereo image quality variationLP=0.9834、wLA=0.2915, b =0, take T1=0.85、T2=160。
And sixthly, the occlusion area is mainly formed by pixels with unsuccessful parallax matching in the distorted stereo image and comprises an occlusion area of the left viewpoint image and an occlusion area of the right viewpoint image, and the perception of a human visual characteristic system to the occlusion areas mainly plays a main role in monocular vision. Thus the present invention is based on { L }dis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristic of the human visual system to the sheltered areadisThe objective evaluation metric of the occlusion region in (1) is marked as Qnc <math> <mrow> <msub> <mi>Q</mi> <mi>nc</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>nc</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>nc</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>N</mi> <mi>L</mi> <mi>nc</mi> </msubsup> <mo>+</mo> <msubsup> <mi>N</mi> <mi>R</mi> <mi>nc</mi> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow> </math> Wherein,represents { Ldis(x, y) } the number of pixel points with the area type of p =1,represents { Rdis(x, y) } the number of pixel points with the area type of p = 1.
The characteristics of the human visual system indicate that if the difference between the image contents of the corresponding areas of the retina of the left eye and the retina of the right eye is large or the parallax value between the two areas is large, the human visual system cannot perform binocular fusion operation on the information of conflict between the two eyes, the binocular masking processing is performed, and the high-quality viewpoints inhibit the low-quality viewpoints in the binocular masking processing process. Thus the present invention is based on { L }dis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular inhibition areadisThe objective evaluation metric of the binocular suppression area in (1) is marked as QbsWhere max () is a function taking the maximum value, <math> <mrow> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bs</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bs</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow> </math>
the human visual characteristics show that if the difference of the image contents of the corresponding areas of the left and right eye retinas is small, the human visual system carries out binocular superposition (fusion) operation on the areas, so that the visual sensitivity of the two eyes to the areas is 1.4 times that of the eyes. Thus the present invention is based on { L }dis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular fusion regiondisThe objective evaluation metric value of the binocular fusion area in (1) is marked as Qbf <math> <mrow> <msub> <mi>Q</mi> <mi>bf</mi> </msub> <mo>=</mo> <mn>0.7</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bf</mi> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bf</mi> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bf</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bf</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow> </math>
ninthly to SdisObjective evaluation metric Q of occlusion region in (1)nc、SdisObjective evaluation metric Q of the binocular suppression area in (1)bsAnd SdisObjective evaluation metric value Q of binocular fusion area in (1)bfCarrying out fusion to obtain SdisThe predicted value of the objective evaluation of image quality is marked as Q, Q = wnc×Qnc+wbs×Qbs+wbf×QbfWherein w isnc、wbfAnd wbsAre weighting parameters. In this embodiment, take wnc=0.1163、wbf=0.4119 and wbs=0.4718。
In the present embodiment, the 12 undistorted stereo images shown in fig. 2a and 2b, fig. 3a and 3b, fig. 4a and 4b, fig. 5a and 5b, fig. 6a and 6b, fig. 7a and 7b, fig. 8a and 8b, fig. 9a and 9b, fig. 10a and 10b, fig. 11a and 11b, fig. 12a and 12b, and fig. 13a and 13b are used to create 312 distorted stereo images under different degrees of JPEG compression, JPEG2000 compression, gaussian blur, white noise, and h.264 coding distortion to analyze the distorted stereo image S obtained by the method of the present inventiondisThe correlation between the predicted value and the average subjective score difference is objectively evaluated, wherein 60 distorted stereoscopic images are compressed by JPEG, 60 distorted stereoscopic images are compressed by JPEG2000, 60 distorted stereoscopic images are compressed by Gaussian Blur, 60 distorted stereoscopic images are blurred by White Noise (White Noise), and 72 distorted stereoscopic images are encoded by H.264. And the average subjective score difference of each distorted stereo image in the distorted stereo image set is respectively obtained by the existing subjective quality evaluation method and is recorded as DMOS,DMOS =100-MOS, where MOS denotes the mean subjective score, DMOS ∈ [0,100]。
In this embodiment, 4 common objective parameters of the image quality evaluation method are used as evaluation indexes, that is, Pearson correlation coefficient (PLCC), Spearman correlation coefficient (SROCC), Kendall correlation coefficient (KROCC), mean square error (RMSE), stereo image evaluation accuracy of the objective model in which PLCC and rmsc reflect distortion, and SROCC and KROCC reflect monotonicity thereof. The image quality objective evaluation predicted value of the distorted stereo image calculated according to the method is subjected to five-parameter Logistic function nonlinear fitting, and the higher the PLCC, SROCC and KROCC values are, the lower the RMSE value is, the better the correlation between the objective evaluation method and the average subjective score difference is. The PLCC, SROCC, KROCC and RMSE coefficients reflecting the three-dimensional image objective evaluation model performance are shown in Table 1, and the data listed in Table 1 shows that the correlation between the final image quality objective evaluation predicted value of the distorted three-dimensional image obtained by the method and the average subjective score difference value is very high, which indicates that the objective evaluation result is more consistent with the result of human eye subjective perception, and the effectiveness of the method is enough to explain.
Fig. 14 shows a scatter diagram of the difference between the objective evaluation prediction value of the image quality of each distorted stereoscopic image in the distorted stereoscopic image set and the average subjective score, and the more concentrated the scatter is, the better the consistency between the objective model and the subjective perception is. As can be seen from fig. 14, the scatter diagram obtained by the method of the present invention is more concentrated, and the goodness of fit with the subjective evaluation data is higher.
TABLE 1 correlation between objective evaluation prediction value and subjective score of image quality of distorted stereoscopic image obtained by the method of the present invention

Claims (4)

1. A stereoscopic image quality objective evaluation method based on visual perception is characterized by comprising the following steps:
making SorgFor original undistorted stereo image, let SdisFor the distorted stereo image to be evaluated, SorgIs noted as { Lorg(x, y) }, adding SorgIs noted as { Rorg(x, y) }, adding SdisIs noted as { Ldis(x, y) }, adding SdisIs noted as { Rdis(x, y) }, wherein (x, y) representsX is more than or equal to 1 and less than or equal to W, y is more than or equal to 1 and less than or equal to H, W represents the width of the left viewpoint image and the right viewpoint image, H represents the height of the left viewpoint image and the right viewpoint image, L represents the coordinate position of the pixel points in the left viewpoint image and the right viewpoint image, and L represents the height of the left viewpoint image and the right viewpoint imageorg(x, y) represents { L }orgThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rorg(x, y) represents { RorgThe pixel value L of the pixel point with the coordinate position (x, y) in (x, y) } isdis(x, y) represents { L }disThe coordinate position in (x, y) } is the pixel value of the pixel point with (x, y), Rdis(x, y) represents { RdisThe coordinate position in (x, y) is the pixel value of the pixel point of (x, y);
secondly, respectively extracting { L ] by using visual masking effect of human stereoscopic vision perception on background illumination and contrastdis(x, y) } binocular minimum perceivable change image and { R }dis(x, y) } binocular minimum perceivable change images, respectively noted asAndwherein,represents { Ldis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y),represents { Rdis(x, y) } binocular minimum perceivable change imageThe middle coordinate position is the pixel value of the pixel point of (x, y);
utilizing area detection algorithm to respectively obtain { Ldis(x, y) } and { R }disThe region type of each pixel point in (x, y) } is marked as p, wherein p belongs to {1,2,3}, where p ═ 1 represents an occlusion region, p ═ 2 represents a binocular rejection region, and p ═ 3 represents a binocular fusion region; then will { LdisThe sheltering area formed by pixel points with all area types of p ═ 1 in (x, y) } is recorded as the sheltering areaWill { LdisThe binocular suppression area formed by all pixel points with the area type p ═ 2 in (x, y) } is recorded as a binocular suppression areaWill { LdisThe binocular fusion area formed by all pixel points with the area type p ═ 3 in (x, y) } is recorded as a binocular fusion areaWill { RdisThe sheltering area formed by pixel points with all area types of p ═ 1 in (x, y) } is recorded as the sheltering areaWill { RdisThe binocular suppression area formed by all pixel points with the area type p ═ 2 in (x, y) } is recorded as a binocular suppression areaWill { RdisThe binocular fusion area formed by all pixel points with the area type p ═ 3 in (x, y) } is recorded as a binocular fusion area
Separately calculating { L }org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe local phase characteristic and the local amplitude characteristic of each pixel in (x, y) } will be { LorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RorgThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { LdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwill { RdisThe local phase characteristics and the local amplitude characteristics of all pixel points in (x, y) } are respectively expressed as setsAndwherein,represents { LorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RorgThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RorgThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { LdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { LdisThe local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y),represents { RdisThe coordinate position in (x, y) is the local phase characteristic of the pixel point of (x, y),represents { RdisThe local amplitude characteristic of a pixel point with the coordinate position (x, y) in the (x, y) };
according to { Lorg(x, y) } and { LdisCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristicdis(x, y) } the objective evaluation metric for each pixel point, will be { LdisThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }L(x,y)}, <math> <mrow> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mi>LP</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>LA</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mrow> </math> According to { Rorg(x, y) } and { R }disCalculating the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } according to the local phase characteristic and the local amplitude characteristic of each pixel point in the (x, y) } matrix, and calculating the { Rdis(x, y) } the objective evaluation metric for each pixel point, will be { R }disThe objective evaluation metric values of all the pixel points in (x, y) are collectively expressed as { Q }R(x,y)}, <math> <mrow> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mi>LP</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>LA</mi> </msub> <mo>&times;</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mrow> </math> Wherein Q isL(x, y) represents { L }dis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y),
<math> <mrow> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msubsup> <mi>S</mi> <mi>L</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
QR(x, y) represents { Rdis(x, y) the objective evaluation metric value of the pixel point with coordinate position (x, y),
<math> <mrow> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LP</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> <mrow> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LP</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>,</mo> <msubsup> <mi>S</mi> <mi>R</mi> <mi>LA</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> <mrow> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>org</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>LA</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
wLP、wLAand b is a training parameter, T1And T2Is a control parameter;
according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristic of the human visual system to the sheltered areadisThe objective evaluation metric of the occlusion region in (1) is marked as QncWherein,represents { Ldis(x, y) } the number of pixel points with the area type p being 1,represents { Rdis(x, y) } the number of pixel points with the area type p being 1;
is according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular inhibition areadisThe objective evaluation metric of the binocular suppression area in (1) is marked as Qbs Q bs = max ( Q L bs , Q R bs ) , Where max () is a function taking the maximum value, <math> <mrow> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bs</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bs</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bs</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
according to { Ldis(x, y) } and { R }dis(x, y) and calculating S by using the visual perception characteristics of the human visual system to the binocular fusion regiondisThe objective evaluation metric value of the binocular fusion area in (1) is marked as Qbf <math> <mrow> <msub> <mi>Q</mi> <mi>bf</mi> </msub> <mo>=</mo> <mn>0.7</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bf</mi> </msubsup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bf</mi> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <msubsup> <mi>Q</mi> <mi>L</mi> <mi>bf</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>L</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>L</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
<math> <mrow> <msubsup> <mi>Q</mi> <mi>R</mi> <mi>bf</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <msub> <mi>Q</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mi>&Sigma;</mi> <mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msubsup> <mi>&Omega;</mi> <mi>R</mi> <mi>bf</mi> </msubsup> </mrow> </munder> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
ninthly to SdisObjective evaluation metric Q of occlusion region in (1)nc、SdisObjective evaluation metric Q of the binocular suppression area in (1)bsAnd SdisObjective evaluation metric value Q of binocular fusion area in (1)bfCarrying out fusion to obtain SdisThe predicted value of the objective evaluation of image quality is recorded as Q, Q is wnc×Qnc+wbs×Qbs+wbf×QbfWherein w isnc、wbfAnd wbsAre weighting parameters.
2. The objective evaluation method for stereoscopic image quality based on visual perception according to claim 1, wherein the specific process of the step (II) is as follows:
② 1, calculating { LdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }l(x,y)},Wherein, Tl(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgl(x, y) represents { L }disAverage brightness values of all pixel points in a 5 multiplied by 5 window with the pixel point with the coordinate position as (x, y) as the center in (x, y) };
2, calculating { LdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c(x,y)},Tc(x,y)=K(bgl(x,y))+ehl(x, y) wherein Tc(x, y) represents { L }disThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehl(x, y) represents the pair { L }disThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)l(x,y))=-10-6×(0.7×bgl(x,y)2+32×bgl(x,y))+0.07;
2- (3) pairs of { LdisVisualization threshold set of luminance masking effects of (x, y) } { Tl(x, y) } and a visual threshold set of contrast masking effects { T }c(x, y) } to obtain { Ldis(x, y) } binocular minimum perceivable change image, noted J L dis ( x , y ) = T l ( x , y ) + T c ( x , y ) ;
② 4, calculating { RdisVisualization threshold set of luminance masking effect of (x, y) }, denoted as { T }r(x,y)},Wherein, Tr(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the brightness masking effect of the pixel point of (x, y), bgr(x, y) represents { RdisAverage brightness values of all pixel points in a 5 multiplied by 5 window with the pixel point with the coordinate position as (x, y) as the center in (x, y) };
② 5, calculating { RdisVisualization threshold set of contrast masking effect of (x, y) }, denoted as { T }c'(x,y)},Tc'(x,y)=K(bgr(x,y))+ehr(x, y) wherein Tc'(x, y) represents { RdisThe coordinate position in (x, y) is the visual threshold value of the contrast masking effect of the pixel point of (x, y), ehr(x, y) represents the pair { RdisThe pixel points with the coordinate positions (x, y) in (x, y) are respectively subjected to edge filtering in the horizontal direction and the vertical direction to obtain an average gradient value K (bg)r(x,y))=-10-6×(0.7×bgr(x,y)2+32×bgr(x,y))+0.07;
2- (6) pairs of { RdisVisualization threshold set of luminance masking effects of (x, y) } { Tr(x, y) } and a visual threshold set of contrast masking effects { T }c'(x, y) } to obtain { R }disBinocular minimum observable of (x, y) }Feeling change image, is recorded as <math> <mrow> <msubsup> <mi>J</mi> <mi>R</mi> <mi>dis</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>T</mi> <msup> <mi>c</mi> <mo>&prime;</mo> </msup> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
3. The objective evaluation method for stereo image quality based on visual perception according to claim 1 or 2, characterized in that in the step (c), region detection algorithm is used to obtain { L } respectivelydis(x, y) } and { R }disThe specific process of the area type of each pixel point in (x, y) } is as follows:
③ 1, calculating by adopting a block matching methodorg(x, y) } and { R }org(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 2, calculating by adopting a block matching methoddis(x, y) } and { R }dis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 3, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, if so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p 1, then step- (c) -6 is executed, otherwise, step- (c) -4 is executed, wherein x is more than or equal to 11≤W,1≤y1≤H;
③ 4, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) Of pixel pointsThe area type is marked as p-2, then step- (6) is executed, otherwise, step- (5) is executed;
③ 5, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { L }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p being 3;
③ 6, return to the step of ③ 3 to continue to determine Ldis(x, y) } the region types of the remaining pixel points, up to { L }disDetermining the region types of all pixel points in (x, y) };
thirdly-7, calculating the R by adopting a block matching methodorg(x, y) } and { Lorg(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
thirdly-8, calculating R by adopting a block matching methoddis(x, y) } and { Ldis(x, y) } parallax images, noted asWherein,to representThe middle coordinate position is the pixel value of the pixel point of (x, y);
③ 9, judgmentThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf 255, then { R } will bedisThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p 1, then the step- (12) is executed, otherwise, the step- (10) is executed, wherein x is more than or equal to 11≤W,1≤y1≤H;
③ 10, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not greater thanThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The region type of the pixel point is marked as p is 2, and then the step is executedStep three-12, otherwise, executing step three-11;
③ 11, judgeThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointWhether or not it is less than or equal toThe middle coordinate position is (x)1,y1) Pixel value of the pixel pointIf so, then { R }disThe coordinate position in (x, y) } is (x)1,y1) The area type of the pixel point is marked as p being 3;
③ 12, return to the step of ③ -9 to continue to determine Rdis(x, y) the area type of the remaining pixel points in the (x, y) } until the { R } is reacheddisAnd (x, y) finishing determining the area types of all pixel points in the (x, y) }.
4. The objective evaluation method for stereoscopic image quality based on visual perception according to claim 3, wherein { L ] in the step (c)org(x,y)}、{Rorg(x,y)}、{Ldis(x, y) } and { R }disThe acquisition process of the local phase characteristic and the local amplitude characteristic of each pixel point in (x, y) } comprises the following steps:
tetra-1, pair { LorgCarrying out phase consistency transformation on each pixel point in (x, y) to obtain { L }orgEven symmetric frequency response and odd symmetric frequency response of each pixel point in (x, y) } in different scales and directions are converted into { L }orgEven symmetric frequency responses of pixel points with coordinate positions (x, y) in different scales and directions are recorded as eα,θ(x, y) will { LorgThe sum of pixel points with coordinate positions (x, y) in (x, y) is different in sizeThe odd symmetric frequency response of the direction is noted as oα,θ(x, y), wherein alpha represents a scale factor of the filter, 1 ≦ alpha ≦ 4, theta represents a direction factor of the filter, 1 ≦ theta ≦ 4;
fourthly-2, calculating { LorgThe phase consistency characteristics of each pixel point in (x, y) in different directions are shown as LorgThe phase consistency characteristics of pixel points with coordinate positions (x, y) in different directions in (x, y) are marked as PCθ(x,y), <math> <mrow> <msub> <mi>PC</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>E</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>F</mi> <mi>&theta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> <msub> <mi>F</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <mi>&theta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
fourthly-3, according to { LorgCalculating the direction corresponding to the maximum phase consistency characteristic of each pixel point in (x, y) } and calculating the { Lorg(x, y) } local phase features and local amplitude features for each pixel point, for { LorgThe pixel point with (x, y) coordinate position in (x, y) } is firstly found out the phase consistency characteristic PC of the pixel point in different directionsθFinding out the direction corresponding to the maximum phase consistency characteristic in (x, y), and marking as thetamAgain according toθm calculates { L }orgThe local phase characteristic and the local amplitude characteristic of the pixel point with the coordinate position (x, y) in (x, y) } are respectively and correspondingly marked asAnd <math> <mrow> <msubsup> <mi>LP</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <msub> <mi>H</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>F</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msubsup> <mi>LA</mi> <mi>L</mi> <mi>org</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein, <math> <mrow> <msub> <mi>F</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>H</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>&alpha;</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <msub> <mi>e</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>o</mi> <mrow> <mi>&alpha;</mi> <mo>,</mo> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>,</mo> </mrow> </math> represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe even-symmetric frequency response of the frequency domain,represents { Lorg(x, y) in the (x, y) } the pixel point with the coordinate position of (x, y) is in the direction theta corresponding to different scales and the maximum phase consistency characteristicmThe arctan () is an inverted cosine function;
fourthly-4, obtaining { L ] according to the steps from the fourth step-1 to the fourth step-3orgOperation of local phase feature and local amplitude feature of each pixel in (x, y) } obtains { R } in the same mannerorg(x,y)}、{Ldis(x, y) } and { R }disLocal phase features and local amplitude features of each pixel in (x, y) }.
CN201210144039.1A 2012-05-11 2012-05-11 Visual perception-based three-dimensional image quality objective evaluation method Expired - Fee Related CN102708567B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210144039.1A CN102708567B (en) 2012-05-11 2012-05-11 Visual perception-based three-dimensional image quality objective evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210144039.1A CN102708567B (en) 2012-05-11 2012-05-11 Visual perception-based three-dimensional image quality objective evaluation method

Publications (2)

Publication Number Publication Date
CN102708567A CN102708567A (en) 2012-10-03
CN102708567B true CN102708567B (en) 2014-12-10

Family

ID=46901287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210144039.1A Expired - Fee Related CN102708567B (en) 2012-05-11 2012-05-11 Visual perception-based three-dimensional image quality objective evaluation method

Country Status (1)

Country Link
CN (1) CN102708567B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108209B (en) * 2012-12-28 2015-03-11 宁波大学 Stereo image objective quality evaluation method based on integration of visual threshold value and passage
WO2014113915A1 (en) * 2013-01-22 2014-07-31 Silicon Image, Inc. Mechanism for facilitating dynamic phase detection with high jitter tolerance for images of media streams
CN103096125B (en) * 2013-02-22 2015-03-04 吉林大学 Stereoscopic video visual comfort evaluation method based on region segmentation
CN103413298B (en) * 2013-07-17 2016-02-24 宁波大学 A kind of objective evaluation method for quality of stereo images of view-based access control model characteristic
CN103914835B (en) * 2014-03-20 2016-08-17 宁波大学 A kind of reference-free quality evaluation method for fuzzy distortion stereo-picture
CN104574399A (en) * 2015-01-06 2015-04-29 天津大学 Image quality evaluation method based on multi-scale vision significance and gradient magnitude
CN105376563B (en) * 2015-11-17 2017-03-22 浙江科技学院 No-reference three-dimensional image quality evaluation method based on binocular fusion feature similarity
CN105828061B (en) * 2016-05-11 2017-09-29 宁波大学 A kind of virtual view quality evaluating method of view-based access control model masking effect
CN106022362A (en) * 2016-05-13 2016-10-12 天津大学 Reference-free image quality objective evaluation method for JPEG2000 compression distortion
CN113362315B (en) * 2021-06-22 2022-09-30 中国科学技术大学 Image quality evaluation method and evaluation model based on multi-algorithm fusion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115410A2 (en) * 2007-03-16 2008-09-25 Sti Medical Systems, Llc A method to provide automated quality feedback to imaging devices to achieve standardized imaging data
CN101833766A (en) * 2010-05-11 2010-09-15 天津大学 Stereo image objective quality evaluation algorithm based on GSSIM
CN101841726A (en) * 2010-05-24 2010-09-22 宁波大学 Three-dimensional video asymmetrical coding method
CN101872479A (en) * 2010-06-09 2010-10-27 宁波大学 Three-dimensional image objective quality evaluation method
CN102271279A (en) * 2011-07-22 2011-12-07 宁波大学 Objective analysis method for just noticeable change step length of stereo images

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512286B2 (en) * 2003-10-27 2009-03-31 Hewlett-Packard Development Company, L.P. Assessing image quality
US8086007B2 (en) * 2007-10-18 2011-12-27 Siemens Aktiengesellschaft Method and system for human vision model guided medical image quality assessment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115410A2 (en) * 2007-03-16 2008-09-25 Sti Medical Systems, Llc A method to provide automated quality feedback to imaging devices to achieve standardized imaging data
CN101833766A (en) * 2010-05-11 2010-09-15 天津大学 Stereo image objective quality evaluation algorithm based on GSSIM
CN101841726A (en) * 2010-05-24 2010-09-22 宁波大学 Three-dimensional video asymmetrical coding method
CN101872479A (en) * 2010-06-09 2010-10-27 宁波大学 Three-dimensional image objective quality evaluation method
CN102271279A (en) * 2011-07-22 2011-12-07 宁波大学 Objective analysis method for just noticeable change step length of stereo images

Also Published As

Publication number Publication date
CN102708567A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102708567B (en) Visual perception-based three-dimensional image quality objective evaluation method
CN104036501B (en) A kind of objective evaluation method for quality of stereo images based on rarefaction representation
CN103152600B (en) Three-dimensional video quality evaluation method
CN103413298B (en) A kind of objective evaluation method for quality of stereo images of view-based access control model characteristic
CN104394403B (en) A kind of stereoscopic video quality method for objectively evaluating towards compression artefacts
CN103136748B (en) The objective evaluation method for quality of stereo images of a kind of feature based figure
Wang et al. Quaternion representation based visual saliency for stereoscopic image quality assessment
CN102333233A (en) Stereo image quality objective evaluation method based on visual perception
CN102521825B (en) Three-dimensional image quality objective evaluation method based on zero watermark
CN102595185A (en) Stereo image quality objective evaluation method
CN104036502B (en) A kind of without with reference to fuzzy distortion stereo image quality evaluation methodology
CN104658001A (en) Non-reference asymmetric distorted stereo image objective quality assessment method
CN102843572B (en) Phase-based stereo image quality objective evaluation method
CN102750706B (en) Depth significance-based stereopicture just noticeable difference (JND) model building method
Geng et al. A stereoscopic image quality assessment model based on independent component analysis and binocular fusion property
CN104954778A (en) Objective stereo image quality assessment method based on perception feature set
CN102903107B (en) Three-dimensional picture quality objective evaluation method based on feature fusion
CN102999911B (en) Three-dimensional image quality objective evaluation method based on energy diagrams
Hachicha et al. No-reference stereo image quality assessment based on joint wavelet decomposition and statistical models
CN103200420B (en) Three-dimensional picture quality objective evaluation method based on three-dimensional visual attention
CN103369348B (en) Three-dimensional image quality objective evaluation method based on regional importance classification
CN104361583A (en) Objective quality evaluation method of asymmetrically distorted stereo images
CN102999912B (en) A kind of objective evaluation method for quality of stereo images based on distortion map
CN103108209B (en) Stereo image objective quality evaluation method based on integration of visual threshold value and passage
CN105069794A (en) Binocular rivalry based totally blind stereo image quality evaluation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20170511