CN102707203A - Discriminating and measuring method for partial discharge modes of transformer - Google Patents
Discriminating and measuring method for partial discharge modes of transformer Download PDFInfo
- Publication number
- CN102707203A CN102707203A CN2012100347713A CN201210034771A CN102707203A CN 102707203 A CN102707203 A CN 102707203A CN 2012100347713 A CN2012100347713 A CN 2012100347713A CN 201210034771 A CN201210034771 A CN 201210034771A CN 102707203 A CN102707203 A CN 102707203A
- Authority
- CN
- China
- Prior art keywords
- discharge
- transformer
- electrode
- oil
- partial discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000003909 pattern recognition Methods 0.000 claims abstract description 24
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 238000012360 testing method Methods 0.000 claims description 57
- 239000011111 cardboard Substances 0.000 claims description 38
- 239000000123 paper Substances 0.000 claims description 18
- 238000001228 spectrum Methods 0.000 claims description 17
- 238000007667 floating Methods 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 229910001369 Brass Inorganic materials 0.000 claims description 3
- 239000010951 brass Substances 0.000 claims description 3
- 238000007872 degassing Methods 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 5
- 238000007654 immersion Methods 0.000 claims 4
- 238000004088 simulation Methods 0.000 claims 2
- 206010038743 Restlessness Diseases 0.000 claims 1
- 230000003321 amplification Effects 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 239000011087 paperboard Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000000691 measurement method Methods 0.000 abstract description 6
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000003750 conditioning effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000011800 void material Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
本发明公开了一种变压器局部放电模式识别的测量方法,利用在测量装置中测量不同的局部放电模型的放电情况,并将测量结果采集分析后制成图谱、计算出指纹后构成指纹库,变压器中未知类型的放电只需将其利用测量装置采集分析后制成图谱、计算出指纹后与指纹库中的指纹信息对照,即可识别变压器的局部放电类型。本发明建立了变压器局部放电指纹库,利用各种放电谱图提供的信息,能区分不同类型的放电,为指纹诊断和模式识别技术的应用提供了有价值的数据,具有很好的工程实用价值,其可信度为99.5%。
The invention discloses a measurement method for partial discharge pattern recognition of a transformer. The discharge conditions of different partial discharge models are measured in a measurement device, and the measurement results are collected and analyzed to make a map, and the fingerprint is calculated to form a fingerprint library. For the unknown type of discharge in the transformer, it is only necessary to use the measuring device to collect and analyze it to make a map, calculate the fingerprint and compare it with the fingerprint information in the fingerprint database to identify the partial discharge type of the transformer. The invention establishes a transformer partial discharge fingerprint database, uses the information provided by various discharge spectrograms, can distinguish different types of discharges, provides valuable data for the application of fingerprint diagnosis and pattern recognition technology, and has good engineering practical value , with a confidence level of 99.5%.
Description
技术领域 technical field
本发明涉及于电力变压器故障诊断领域,具体涉及一种变压器局部放电模式识别的测量方法。The invention relates to the field of power transformer fault diagnosis, in particular to a measurement method for transformer partial discharge pattern recognition.
背景技术 Background technique
运行中的电力变压器绝缘结构复杂,可能发生的内部放电点和放电类型的种类很多,通常有如下类型:The insulation structure of power transformers in operation is complex, and there are many types of internal discharge points and discharge types that may occur, usually as follows:
(1)绕组中部油-隔板绝缘中油隙放电;(1) Oil gap discharge in the middle of the winding oil-baffle insulation;
(2)绕组端部油隙放电;(2) Oil gap discharge at the end of the winding;
(3)接触绝缘导线和绝缘纸(引线绝缘、搭接绝缘)的油隙放电;(3) Oil gap discharge in contact with insulated wires and insulating paper (lead insulation, lap insulation);
(4)引线、搭接线等油纸绝缘中的局部放电;(4) Partial discharge in oil-paper insulation such as lead wires and lap wires;
(5)线圈间(纵绝缘)的油隙放电;(5) Oil gap discharge between coils (longitudinal insulation);
(6)匝间绝缘局部击穿;(6) Partial breakdown of inter-turn insulation;
(7)绝缘纸沿面滑闪放电。(7) The insulating paper slides and flashes along the surface.
放电部位大多在某些油隙、油楔、空气隙、有悬浮电位的金属体、导体尖角和固体表面上。因而主要可归纳为油中尖端型放电、油-屏障型放电、油中气泡型放电、纸(纸板)内部空隙型放电、纸(纸板)沿面型放电、悬浮电位体型放电等多种典型的放电形式。Most of the discharge parts are on certain oil gaps, oil wedges, air gaps, metal bodies with floating potentials, sharp corners of conductors and solid surfaces. Therefore, it can be mainly classified into a variety of typical discharges such as point discharge in oil, oil-barrier discharge, bubble discharge in oil, internal void discharge in paper (cardboard), paper (cardboard) along surface discharge, and suspension potential discharge. form.
数字化测量为局部放电的研究提供了强有力的手段,使局部放电测量技术进入了一个新阶段。通过数字化测量,可以使研究和检测人员更准确、更简单地了解变压器的绝缘状况,从而使得局部放电识别不再象以前那样主要依靠测试人员的试验经验。迄今为止,数字化测量基本都是针对脉冲电流法进行的,它根据IEC60270标准进行检测,具有许多明显的优点,但仍存在一些不足:测量频率低(通常在1MHz以下),损失了大量局部放电特征信息;用于在线检测时,易受现场干扰影响;现有标准指纹(统计算子组成的放电模式)库提供的标准放电模式太少,难以全面准确地诊断。The digital measurement provides a powerful method for the research of partial discharge, which makes the partial discharge measurement technology enter a new stage. Through digital measurement, research and inspection personnel can understand the insulation condition of transformers more accurately and easily, so that the identification of partial discharge no longer relies mainly on the test personnel's experimental experience as before. So far, the digital measurement is basically carried out for the pulse current method, which is tested according to the IEC60270 standard, which has many obvious advantages, but there are still some shortcomings: the measurement frequency is low (usually below 1MHz), and a large number of partial discharge characteristics are lost information; when used for online detection, it is susceptible to on-site interference; the existing standard fingerprint (discharge pattern composed of statistical calculations) library provides too few standard discharge patterns, and it is difficult to diagnose comprehensively and accurately.
发明内容Contents of the invention
本发明设计一种可以识别变压器中放电的放电类型的变压器局部放电模式识别的测量方法。The invention designs a measurement method for identifying the partial discharge pattern of a transformer that can identify the discharge type of the discharge in the transformer.
变压器局部放电模式识别的测量方法,其特征在于,具体包括以下步骤:The method for measuring the partial discharge pattern recognition of a transformer is characterized in that it specifically includes the following steps:
1)构建局部放电模型:1) Build a partial discharge model:
根据实验室中的测试结果,将变压器中的放电类型归纳为五类:纸(纸板)内部空隙型放电、纸(纸板)沿面型放电、悬浮电位体型放电、油中气泡型放电、油-屏障型放电;According to the test results in the laboratory, the discharge types in the transformer are classified into five categories: paper (cardboard) internal void discharge, paper (cardboard) surface discharge, floating potential body discharge, oil bubble discharge, oil-barrier type discharge;
①构建纸(纸板)内部空隙型放电模型① Construct the internal void discharge model of paper (cardboard)
采用板-板电极和试品一,试品一为两层厚1.0mm的浸油绝缘纸板中间夹一层厚0.5~1.5mm的绝缘纸板,试品一置于板-板电极的两个板电极之间,浸入变压器油中;由于几层介质,介质与电极间都存在大量的气隙,在外加高压下,这些气隙发生内部放电,模拟纸板的内部空隙放电;Use plate-plate electrode and test sample 1. Test sample 1 is two layers of 1.0mm thick oil-impregnated insulating cardboard sandwiching a layer of 0.5-1.5mm thick insulating cardboard. Test sample 1 is placed on the two plates of the plate-plate electrode. The electrodes are immersed in transformer oil; due to several layers of medium, there are a large number of air gaps between the medium and the electrodes. Under the external high voltage, internal discharge occurs in these air gaps, simulating the internal gap discharge of cardboard;
②构建纸(纸板)沿面型放电模型② Construct paper (cardboard) creeping discharge model
采用相距15mm板-板电极和试品二,试品二为经过预处理的2.5mm厚的绝缘纸板,试品二置于板-板电极的两个板电极之间,浸入变压器油中,模拟绝缘纸板的沿面放电;Using a plate-plate electrode with a distance of 15mm and test sample 2, test sample 2 is a pretreated 2.5mm thick insulating cardboard, test sample 2 is placed between the two plate electrodes of the plate-plate electrode, immersed in transformer oil, and simulated Surface discharge of insulating cardboard;
③构建悬浮电位体型放电模型③ Constructing a floating potential body discharge model
采用柱电极、板电极和试品三,试品三为一金属导体,试品三置于作为悬浮电极的板电极与作为高压电极的柱电极之间,柱电极与板电极间的距离选为4mm;整个模型浸入变压器油中,模拟悬浮电位放电;Column electrode, plate electrode and sample three are used, sample three is a metal conductor, sample three is placed between the plate electrode as the suspension electrode and the column electrode as the high-voltage electrode, and the distance between the column electrode and the plate electrode is selected as 4mm; the whole model is immersed in transformer oil to simulate the floating potential discharge;
④构建油中气泡型放电模型④Construct the bubble type discharge model in oil
采用板电极、柱电极和试品四,试品四为1.0mm干燥的绝缘纸板,试品四夹在板电极与柱电极之间,浸入变压器油中;由于试品四事先并未浸油,因此纸板表面和纸板内部会附有较多的气泡,当电极加压时,利于发生油中气泡放电,模拟油中气泡型放电;Plate electrode, column electrode and test sample 4 are used. Test sample 4 is 1.0mm dry insulating cardboard. Test sample 4 is sandwiched between plate electrode and column electrode and immersed in transformer oil. Since test sample 4 has not been immersed in oil beforehand, Therefore, there will be more air bubbles on the surface of the cardboard and inside the cardboard. When the electrode is pressurized, it is conducive to the occurrence of bubble discharge in oil, simulating the discharge of bubbles in oil;
⑤构建油-屏障型放电模型⑤ Constructing an oil-barrier discharge model
采用板电极、尖电极和试品五,试品五为1mm厚度的油浸纸板,油浸纸板紧贴板电极,尖电极与油浸纸板相距1mm,将整个模型浸入变压器油中,模拟油-屏障型放电;Plate electrode, pointed electrode and test sample 5 are used. Test sample 5 is an oil-soaked cardboard with a thickness of 1mm. Barrier discharge;
2)构建测量装置2) Build the measuring device
变压器局部放电模式识别的测量装置包括有实验电源,实验电源接入自耦调压器,由自耦调压器输出后接入隔离变压器,由隔离变压器输出后接入无局放试验变压器,无局放试验变压器串联一个低通高阻阻抗后与一个静电电压表并联,再与相互串联的耦合电容、检测阻抗并联,再分别与步骤1)中的局部放电模型并联;将步骤1)中的局部放电模型并联放于一封闭的变压器箱体中,箱体中充满变压器油,箱体外壳接地,形成屏蔽结构;箱体壁上安装有特高频传感器,特高频传感器分别通过电缆与频谱分析仪和信号调理单元连接,频谱分析仪和信号调理单元连接工业控制计算机;The measuring device for transformer partial discharge pattern recognition includes an experimental power supply, which is connected to an auto-transformer, connected to an isolation transformer after output from the auto-transformer, and connected to a non-PD test transformer after output from the isolation transformer. The partial discharge test transformer is connected in series with a low-pass high-resistance impedance and then connected in parallel with an electrostatic voltmeter, then connected in parallel with the coupling capacitance and detection impedance connected in series, and then connected in parallel with the partial discharge model in step 1) respectively; The partial discharge model is placed in parallel in a closed transformer box, the box is filled with transformer oil, and the box shell is grounded to form a shielding structure; UHF sensors are installed on the box wall, and the UHF sensors pass through the cables and frequency spectrum respectively. The analyzer is connected to the signal conditioning unit, and the spectrum analyzer and the signal conditioning unit are connected to the industrial control computer;
3)设置装置的参数并测量变压器局部放电模型的放电参数3) Set the parameters of the device and measure the discharge parameters of the transformer partial discharge model
①采集局部放电模型放电对应的宽带频域数据,与背景噪声相比较,选取最优频率作为中心频率,将频谱分析仪的中心频率调节到最优频率,带宽设置为5MHz左右;① Collect the broadband frequency domain data corresponding to partial discharge model discharge, compare it with the background noise, select the optimal frequency as the center frequency, adjust the center frequency of the spectrum analyzer to the optimal frequency, and set the bandwidth to about 5MHz;
②高压电源通过高压套管分别给步骤1)中的局部放电模型供电;②The high-voltage power supply respectively supplies power to the partial discharge model in step 1) through the high-voltage bushing;
③每一种局部放电模型放电产生的电磁波分别由安装在箱体壁上的特高频传感器接收后,经过50Ω的测量电缆分别送入频谱分析仪和信号调理单元,由其中的混频放大滤波等模块处理后,由工业控制计算机通过NI5112采集卡采集并记录放电的放电量q、电压u、放电时间t;③Electromagnetic waves generated by the discharge of each partial discharge model are respectively received by the UHF sensor installed on the wall of the box, and sent to the spectrum analyzer and signal conditioning unit respectively through the 50Ω measurement cable, and are amplified and filtered by the frequency mixing After the modules are processed, the industrial control computer collects and records the discharge quantity q, voltage u, and discharge time t through the NI5112 acquisition card;
④每一种局部放电模型重复步骤③五次以上;④ Repeat step ③ for more than five times for each partial discharge model;
⑤将上述步骤得出的各局部放电模型放电的放电量q、电压u、放电时间t制成谱图,然后计算出这些谱图的由统计算子组成的指纹,多次实验的局部放电模型的放电的指纹就构成了指纹库;⑤ The discharge quantity q, voltage u, and discharge time t of each partial discharge model obtained in the above steps are made into spectrograms, and then the fingerprints of these spectrograms are calculated, and the partial discharge model of multiple experiments The discharge fingerprint constitutes the fingerprint library;
4)局部放电模型的测量结果应用于未知类型的放电中4) The measurement results of the partial discharge model are applied to the unknown type of discharge
对于未知类型的放电,经采集、谱图计算、指纹计算后得到的指纹值与指纹库中每种放电的指纹相比较,识别出放电类型。For an unknown type of discharge, the fingerprint value obtained after collection, spectrum calculation, and fingerprint calculation is compared with the fingerprint of each discharge in the fingerprint database to identify the discharge type.
所述的变压器局部放电模式识别的测量方法,其特征在于:所述的变压器油为经过脱水、脱气处理后的纯净的#25变压器油。The method for measuring the partial discharge pattern recognition of the transformer is characterized in that: the transformer oil is pure # 25 transformer oil after dehydration and degassing treatment.
所述的变压器局部放电模式识别的测量方法,其特征在于:所述的板电极、柱电极、尖电极的材质为黄铜;板电极尺寸为φ100×15mm;柱电极尺寸为φ20×25mm;尖电极尺寸为尖径5mm,尖端曲率半径0.04mm,锥角30°尖长15mm。The method for measuring the partial discharge pattern recognition of the transformer is characterized in that: the material of the plate electrode, the column electrode and the pointed electrode is brass; the size of the plate electrode is φ100×15mm; the size of the column electrode is φ20×25mm; The electrode size is tip diameter 5mm, tip curvature radius 0.04mm, cone angle 30° and tip length 15mm.
所述的变压器局部放电模式识别的测量方法,其特征在于:所述的无局放试验变压器的额定电压UN=100kV,额定功率SN=10kVA,100kV下放电量小于3pC。The method for measuring the partial discharge pattern recognition of the transformer is characterized in that: the rated voltage U N of the partial discharge-free test transformer is 100kV, the rated power S N is 10kVA, and the discharge capacity at 100kV is less than 3pC.
所述的变压器局部放电模式识别的测量方法,其特征在于:所述的低通高阻阻抗为选用水电阻,阻值为200-300kΩ。The method for measuring the partial discharge pattern recognition of a transformer is characterized in that: the low-pass high-resistance impedance is a water resistance with a resistance value of 200-300 kΩ.
所述的变压器局部放电模式识别的测量方法,其特征在于:所述的耦合电容的电容量为100pF,能承受的工频实验电压为100kV,100kV下的放电量小于2pC。The method for measuring the partial discharge pattern recognition of a transformer is characterized in that: the capacitance of the coupling capacitor is 100pF, the withstand power frequency test voltage is 100kV, and the discharge capacity at 100kV is less than 2pC.
本发明的原理是:Principle of the present invention is:
本发明利用在测量装置中测量不同的局部放电模型的放电情况,并将测量结果采集分析后制成图谱、计算出指纹后构成指纹库,变压器中未知类型的放电只需将其利用测量装置采集分析后制成图谱、计算出指纹后与指纹库中的指纹信息对照,即可识别变压器的局部放电类型。The invention uses the measuring device to measure the discharge conditions of different partial discharge models, collects and analyzes the measurement results to make an atlas, and calculates the fingerprints to form a fingerprint library. The unknown type of discharge in the transformer only needs to be collected by the measuring device After the analysis, the atlas is made, the fingerprint is calculated and compared with the fingerprint information in the fingerprint database, the partial discharge type of the transformer can be identified.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明建立了变压器局部放电指纹库,利用各种放电谱图提供的信息,能区分不同类型的放电,为指纹诊断和模式识别技术的应用提供了有价值的数据,具有很好的工程实用价值,其可信度为99.5%。The invention establishes a transformer partial discharge fingerprint database, uses the information provided by various discharge spectrograms, can distinguish different types of discharges, provides valuable data for the application of fingerprint diagnosis and pattern recognition technology, and has good engineering practical value , with a confidence level of 99.5%.
附图说明 Description of drawings
图1为五种典型的局部放电模型(其中(a)为内部空隙型放电模型,(b)为沿面型放电模型,(c)为悬浮电位体型放电模型,(d)为油中气泡型放电模型,(e)油-屏障型放电模型)。Figure 1 shows five typical partial discharge models (where (a) is an internal void type discharge model, (b) is a creeping surface type discharge model, (c) is a floating potential body type discharge model, and (d) is a bubble type discharge in oil model, (e) oil-barrier discharge model).
图2为利用本发明的测量方法对某种类型的局部放电信号的识别结果。Fig. 2 is the identification result of a certain type of partial discharge signal using the measurement method of the present invention.
图3为变压器局部放电测量装置的实验接线图。Figure 3 is the experimental wiring diagram of the transformer partial discharge measurement device.
图4为本发明的总框图。Figure 4 is a general block diagram of the present invention.
具体实施方式 Detailed ways
如图1~图4所示,变压器局部放电模式识别的测量方法,具体包括以下步骤:As shown in Figures 1 to 4, the measurement method for transformer partial discharge pattern recognition includes the following steps:
1)构建局部放电模型:1) Build a partial discharge model:
根据实验室中的测试结果,将变压器中的放电类型归纳为五类:纸(纸板)内部空隙型放电、纸(纸板)沿面型放电、悬浮电位体型放电、油中气泡型放电、油-屏障型放电;According to the test results in the laboratory, the discharge types in the transformer are classified into five categories: paper (cardboard) internal void discharge, paper (cardboard) surface discharge, floating potential body discharge, oil bubble discharge, oil-barrier type discharge;
①构建纸(纸板)内部空隙型放电模型① Construct the internal void discharge model of paper (cardboard)
采用板-板电极102和试品一,试品一为两层厚1.0mm的浸油绝缘纸板101中间夹一层厚0.5~1.5mm的绝缘纸板,试品一置于板-板电极102的两个板电极之间,浸入变压器油中;由于几层介质,介质与电极间都存在大量的气隙,在外加高压下,这些气隙发生内部放电,模拟纸板的内部空隙放电;Use plate-plate electrode 102 and test sample 1. Test sample 1 is two layers of 1.0mm thick oil-impregnated insulating cardboard 101 with a layer of 0.5-1.5mm thick insulating cardboard sandwiched between them. Test sample 1 is placed on the plate-plate electrode 102. The two plate electrodes are immersed in transformer oil; due to several layers of medium, there are a large number of air gaps between the medium and the electrodes. Under the external high voltage, internal discharge occurs in these air gaps, simulating the internal gap discharge of cardboard;
②构建纸(纸板)沿面型放电模型② Construct paper (cardboard) creeping discharge model
采用相距15mm板-板电极102和试品二,试品二为经过预处理的2.5mm厚的绝缘纸板101,试品二置于板-板电极102的两个板电极之间,浸入变压器油中,模拟绝缘纸板的沿面放电;Use a plate-plate electrode 102 with a distance of 15mm and test sample 2. Test sample 2 is a pretreated 2.5mm thick insulating cardboard 101. Test sample 2 is placed between the two plate electrodes of the plate-plate electrode 102 and immersed in transformer oil. In , the creeping discharge of insulating cardboard is simulated;
③构建悬浮电位体型放电模型③ Constructing a floating potential body discharge model
采用柱电极103、板电极102和试品三,试品三为一金属导体,试品三置于作为悬浮电极的板电极102与作为高压电极的柱电极103之间,柱电极103与板电极102间的距离选为4mm;整个模型浸入变压器油中,模拟悬浮电位放电;A column electrode 103, a plate electrode 102, and a test sample three are adopted. The test sample three is a metal conductor. The test sample three is placed between the plate electrode 102 as a suspension electrode and the column electrode 103 as a high-voltage electrode. The column electrode 103 and the plate electrode The distance between 102 is selected as 4mm; the whole model is immersed in transformer oil to simulate the floating potential discharge;
④构建油中气泡型放电模型④Construct the bubble type discharge model in oil
采用板电极102、柱电极103和试品四,试品四为1.0mm干燥的绝缘纸板101,试品四夹在板电极102与柱电极103之间,浸入变压器油中;由于试品四事先并未浸油,因此纸板表面和纸板内部会附有较多的气泡,当电极加压时,利于发生油中气泡放电,模拟油中气泡型放电;Plate electrode 102, column electrode 103 and test sample 4 are used. Test sample 4 is a 1.0 mm dry insulating cardboard 101. Test sample 4 is sandwiched between plate electrode 102 and column electrode 103 and immersed in transformer oil; It is not immersed in oil, so there will be more bubbles on the surface of the cardboard and inside the cardboard. When the electrode is pressurized, it is conducive to the occurrence of bubble discharge in oil, simulating the discharge of bubbles in oil;
⑤构建油-屏障型放电模型⑤ Constructing an oil-barrier discharge model
采用板电极102、尖电极104和试品五,试品五为1mm厚度的油浸绝缘纸板101,油浸绝缘纸板101紧贴板电极102,尖电极104与油浸绝缘纸板101相距1mm,将整个模型浸入变压器油中,模拟油-屏障型放电;Use plate electrode 102, pointed electrode 104 and test sample 5. Test sample 5 is an oil-impregnated insulating cardboard 101 with a thickness of 1 mm. The whole model is immersed in transformer oil to simulate oil-barrier discharge;
2)构建测量装置2) Build the measuring device
变压器局部放电模式识别的测量装置包括有实验电源,实验电源接入自耦调压器T1,由自耦调压器T1输出后接入隔离变压器T2,由隔离变压器T2输出后接入无局放试验变压器T3,无局放试验变压器T3串联一个低通高阻阻抗Z后与一个静电电压表EVM并联,再与相互串联的耦合电容CK、检测阻抗Zm并联,再分别与步骤1)中的局部放电模型Cx并联;将步骤1)中的局部放电模型Cx并联放于一封闭的变压器箱体中,箱体中充满变压器油,箱体外壳接地,形成屏蔽结构;箱体壁上安装有特高频传感器301,特高频传感器301分别通过电缆C1与频谱分析仪302和信号调理单元303连接,频谱分析仪302和信号调理单元303连接工业控制计算机304;The measuring device for transformer partial discharge pattern recognition includes an experimental power supply, which is connected to the auto-transformer T1, which is output by the auto-transformer T1 and then connected to the isolation transformer T2, which is output by the isolation transformer T2 and then connected to the non-PD The test transformer T3 and the non-PD test transformer T3 are connected in series with a low-pass high-resistance impedance Z and then connected in parallel with an electrostatic voltmeter EVM, and then connected in parallel with the coupling capacitance C K and the detection impedance Z m connected in series, and then respectively connected with step 1) The partial discharge model C x in parallel; put the partial discharge model C x in step 1) in parallel in a closed transformer box, the box is filled with transformer oil, and the box shell is grounded to form a shielding structure; the box wall
3)设置装置的参数并测量变压器局部放电模型的放电参数3) Set the parameters of the device and measure the discharge parameters of the transformer partial discharge model
①采集局部放电模型放电对应的宽带频域数据,与背景噪声相比较,选取最优频率作为中心频率,将频谱分析仪的中心频率调节到最优频率,带宽设置为5MHz左右;① Collect the broadband frequency domain data corresponding to partial discharge model discharge, compare it with the background noise, select the optimal frequency as the center frequency, adjust the center frequency of the spectrum analyzer to the optimal frequency, and set the bandwidth to about 5MHz;
②高压电源通过高压套管分别给步骤1)中的局部放电模型供电;②The high-voltage power supply respectively supplies power to the partial discharge model in step 1) through the high-voltage bushing;
③每一种局部放电模型放电产生的电磁波分别由安装在箱体壁上的特高频传感器接收后,经过50Ω的测量电缆分别送入频谱分析仪和信号调理单元,由其中的混频放大滤波等模块处理后,由工业控制计算机通过NI5112采集卡采集并记录放电的放电量q、电压u、放电时间t;③Electromagnetic waves generated by the discharge of each partial discharge model are respectively received by the UHF sensor installed on the wall of the box, and sent to the spectrum analyzer and signal conditioning unit respectively through the 50Ω measurement cable, and are amplified and filtered by the frequency mixing After the modules are processed, the industrial control computer collects and records the discharge quantity q, voltage u, and discharge time t through the NI5112 acquisition card;
④每一种局部放电模型重复步骤③五次以上;④ Repeat step ③ for more than five times for each partial discharge model;
⑤将上述步骤得出的各局部放电模型放电的放电量q、电压u、放电时间t制成谱图,然后计算出这些谱图的由统计算子组成的指纹,多次实验的局部放电模型的放电的指纹就构成了指纹库;⑤ The discharge quantity q, voltage u, and discharge time t of each partial discharge model obtained in the above steps are made into spectrograms, and then the fingerprints of these spectrograms are calculated, and the partial discharge model of multiple experiments The discharge fingerprint constitutes the fingerprint library;
4)局部放电模型的测量结果应用于未知类型的放电中4) The measurement results of the partial discharge model are applied to the unknown type of discharge
对于未知类型的放电,经采集、谱图计算、指纹计算后得到的指纹值与指纹库中每种放电的指纹相比较,识别出放电类型。For an unknown type of discharge, the fingerprint value obtained after collection, spectrum calculation, and fingerprint calculation is compared with the fingerprint of each discharge in the fingerprint database to identify the discharge type.
变压器油为经过脱水、脱气处理后的纯净的#25变压器油。Transformer oil is pure # 25 transformer oil after dehydration and degassing.
板电极、柱电极、尖电极的材质为黄铜;板电极尺寸为φ100×15mm;柱电极尺寸为φ20×25mm;尖电极尺寸为尖径5mm,尖端曲率半径0.04mm,锥角30°尖长15mm。The material of plate electrode, column electrode and tip electrode is brass; the size of plate electrode is φ100×15mm; the size of column electrode is φ20×25mm; the size of tip electrode is tip diameter 5mm, tip curvature radius 0.04mm, cone angle 30° tip length 15mm.
无局放试验变压器的额定电压UN=100kV,额定功率SN=10kVA,100kV下放电量小于3pC。The rated voltage U N of the non-partial discharge test transformer is 100kV, the rated power S N is 10kVA, and the discharge capacity at 100kV is less than 3pC.
变压器局部放电模式识别的测量方法,其特征在于:所述的低通高阻阻抗为选用水电阻,阻值为300kΩ。The method for measuring the partial discharge pattern recognition of a transformer is characterized in that: the low-pass high-resistance impedance is a water resistance with a resistance value of 300kΩ.
变压器局部放电模式识别的测量方法,其特征在于:所述的耦合电容的电容量为100pF,能承受的工频实验电压为100kV,100kV下的放电量小于2pC。The method for measuring the partial discharge pattern recognition of a transformer is characterized in that: the capacitance of the coupling capacitor is 100pF, the withstand power frequency test voltage is 100kV, and the discharge capacity at 100kV is less than 2pC.
隔离变压器T2可有效地抑制电网中窜入的高次谐波,改善供电电源的品质。为避免高压引线电晕放电,引线采用了光滑铜杆,所有连接头均经过特殊处理。低通高阻阻抗Z选用水电阻,它在局部放电模型Cx突然击穿时,起限流作用,保护实验设备,同时也有助于抑制电源侧的干扰。水电阻阻值的选取必须合适,过大可能影响模型上的电压,过小则起不到保护作用,实验中取为300kΩ。耦合电容CK的作用,一方面是隔离工频高压,使检测阻抗Zm上承受的电压很低,以保证测量装置能安全工作;另一方面将试品的局部放电信号耦合到检测阻抗Zm上来。The isolation transformer T2 can effectively suppress the high-order harmonics entering the grid and improve the quality of the power supply. In order to avoid corona discharge of high-voltage leads, smooth copper rods are used for the leads, and all connectors are specially treated. The low-pass high-resistance impedance Z uses water resistance, which acts as a current limiter to protect the experimental equipment when the partial discharge model C x breaks down suddenly, and also helps to suppress the interference on the power supply side. The selection of the resistance value of the water resistance must be appropriate. If it is too large, it may affect the voltage on the model. If it is too small, it will not have a protective effect. In the experiment, it is 300kΩ. The role of the coupling capacitor C K , on the one hand, is to isolate the power frequency high voltage, so that the voltage on the detection impedance Z m is very low, so as to ensure that the measuring device can work safely; on the other hand, it couples the partial discharge signal of the test product to the detection impedance Z m up.
整个模式识别的数据流程如图4所示,首先对测量方法所得数据进行后续处理,将时域的局部放电数据进行软件峰值处理,模拟硬件峰值保持。同时,将工频电压周期分为500个相位窗,在每个相位窗内,将超过阈值的最大数据进行峰值保持,然后将所得结果按放电量、电压、相位、周期的格式存储。The data flow of the entire pattern recognition is shown in Figure 4. First, the data obtained by the measurement method is followed up, and the partial discharge data in the time domain is subjected to software peak processing and simulated hardware peak hold. At the same time, the power frequency voltage cycle is divided into 500 phase windows, and in each phase window, the maximum data exceeding the threshold is held for peak value, and then the obtained results are stored in the format of discharge capacity, voltage, phase, and cycle.
然后对多个工频周期的放电信号进行统计,得到局部放电的各种分布谱图。然后以相位窗为单位统计测量所得到的多个工频周期的各种局部放电参数。系统计算并显示三种重要的基于相位分窗的放电谱图:最大放电量相位分布平均放电量相位分布放电次数相位分布系统提取 H(q)和H(p)共五种二维放电谱图、三维放电谱图以及放电椭圆图。Then the discharge signals of multiple power frequency cycles are counted to obtain various distribution spectrograms of partial discharge. Then the various partial discharge parameters of multiple power frequency cycles obtained are statistically measured in units of phase windows. The system calculates and displays three important discharge spectra based on phase windowing: maximum discharge phase distribution Average discharge phase distribution Phase distribution of discharge times system extraction There are five kinds of two-dimensional discharge spectra of H(q) and H(p), Three-dimensional discharge spectrum and discharge ellipsogram.
然后将各种分布进行统计分析,用定量的参数(统计算子)来描述某种分布的形状特征。本发明参照TE571,除选取国际上流行的29个统计算子之外,还首次添加了相位中值μ,共包括37个统计算子,包括偏斜度Sk、突出度Ku、局部峰个数Pe、放电不对称度Q、相位不对称度φ、互相关因子cc、相位中值μ、修正相关因子mcc等,利用这些特征指纹可进行放电类型识别。Then various distributions are statistically analyzed, and quantitative parameters (statistical operators) are used to describe the shape characteristics of a certain distribution. The present invention refers to TE571, in addition to selecting 29 popular statistical operators in the world, it also adds phase median μ for the first time, including a total of 37 statistical operators, including skewness Sk, protruding degree Ku, and number of local peaks Pe, discharge asymmetry Q, phase asymmetry φ, cross-correlation factor cc, phase median μ, correction correlation factor mcc, etc. These characteristic fingerprints can be used to identify discharge types.
此外,还可以根据实际需要从37个统计算子中选取部分统计算子,研究能较好地反映放电特征变化的特征算子,从而可以简化后续的模式识别算法。In addition, some statistical operators can be selected from the 37 statistical operators according to actual needs, and the characteristic operators that can better reflect the change of discharge characteristics can be studied, so that the subsequent pattern recognition algorithm can be simplified.
考虑到原始数据和不同的放电类型在实际应用中将不断积累,本发明采用了较为开放的放电指纹库管理方式,采用从大到小一级级的指纹库存放格式,形成了一个完善的指纹库管理和维护系统。总体上采用“设备级-问题级-指纹级”的结构,增加了系统的灵活性。在实际应用中,当用户在不同的级别获得新的有价值的数据时即可向相应的级别进行数据添加,这样大大提高了系统的可扩充性。Considering that the original data and different discharge types will continue to accumulate in practical applications, the present invention adopts a relatively open discharge fingerprint library management method, and adopts a one-level fingerprint library storage format from large to small to form a complete fingerprint database. Library management and maintenance system. Generally, the structure of "device level-problem level-fingerprint level" is adopted, which increases the flexibility of the system. In practical applications, when users obtain new and valuable data at different levels, they can add data to the corresponding level, which greatly improves the scalability of the system.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100347713A CN102707203A (en) | 2012-02-16 | 2012-02-16 | Discriminating and measuring method for partial discharge modes of transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100347713A CN102707203A (en) | 2012-02-16 | 2012-02-16 | Discriminating and measuring method for partial discharge modes of transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102707203A true CN102707203A (en) | 2012-10-03 |
Family
ID=46900133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100347713A Pending CN102707203A (en) | 2012-02-16 | 2012-02-16 | Discriminating and measuring method for partial discharge modes of transformer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102707203A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103077402A (en) * | 2012-12-28 | 2013-05-01 | 湖北省电力公司电力科学研究院 | Transformer partial-discharging mode recognition method based on singular value decomposition algorithm |
CN103135085A (en) * | 2013-02-07 | 2013-06-05 | 广东电网公司电力科学研究院 | High-repeatability standard bubble discharge model device |
CN103630811A (en) * | 2013-11-29 | 2014-03-12 | 广州供电局有限公司 | Digital partial discharge detecting system |
CN104076258A (en) * | 2014-07-17 | 2014-10-01 | 重庆大学 | Discharge generation device of discharge simulation experiment system for particles in transformer oil |
CN104655945A (en) * | 2015-03-12 | 2015-05-27 | 国家电网公司 | Device and method for measuring space charge distribution of oil-paper combination insulating component |
CN105606966A (en) * | 2015-12-21 | 2016-05-25 | 安徽理工大学 | Partial discharge pattern recognition method based on mixed neural network algorithm |
CN105606962A (en) * | 2015-09-10 | 2016-05-25 | 广州供电局有限公司 | Casing pipe insulation air gap defect simulation device and manufacturing method thereof |
CN105629144A (en) * | 2016-03-11 | 2016-06-01 | 华乘电气科技(上海)股份有限公司 | High voltage switchgear partial discharge diagnosis method and system based on fingerprint database |
CN106771938A (en) * | 2017-03-22 | 2017-05-31 | 广东工业大学 | A kind of solid insulation ring main unit Partial Discharge Pattern Recognition Method and device |
CN109709459A (en) * | 2019-01-28 | 2019-05-03 | 国网安徽省电力有限公司电力科学研究院 | A spectral analysis method for partial discharge online monitoring data |
CN110361622A (en) * | 2019-07-12 | 2019-10-22 | 台州宏创电力集团有限公司 | Method for diagnosing faults, device, equipment and the storage medium of partial discharge of transformer |
CN110361637A (en) * | 2019-07-22 | 2019-10-22 | 西南交通大学 | A kind of simulation experiment platform and method for studying cable terminal discharge Acoustic Emission Characteristic |
CN110426609A (en) * | 2019-07-18 | 2019-11-08 | 中原工学院 | A kind of more partial discharge form simulations of transformer and test macro |
CN110542842A (en) * | 2019-09-29 | 2019-12-06 | 广东电网有限责任公司 | 10kV switch cabinet partial discharge simulation device and method |
CN110888030A (en) * | 2019-11-26 | 2020-03-17 | 深圳供电局有限公司 | Short air gap discharge identification circuit, method and system of transformer |
CN111289858A (en) * | 2020-03-19 | 2020-06-16 | 山东电力设备有限公司 | Method for judging partial discharge inside transformer |
CN113138323A (en) * | 2021-03-12 | 2021-07-20 | 深圳供电局有限公司 | Partial discharge type recognition device |
CN113533910A (en) * | 2021-06-10 | 2021-10-22 | 中国电力科学研究院有限公司 | A method and system suitable for partial discharge early warning of converter transformers |
CN113866569A (en) * | 2021-04-01 | 2021-12-31 | 全球能源互联网研究院有限公司 | A method and device for multi-PD source fingerprint location based on broadband radio frequency detection |
CN114280433A (en) * | 2021-12-02 | 2022-04-05 | 西南交通大学 | Transformer bushing partial discharge risk assessment method based on amplification circuit |
CN115602191A (en) * | 2022-12-12 | 2023-01-13 | 杭州兆华电子股份有限公司(Cn) | Noise elimination method of transformer voiceprint detection system |
WO2024098825A1 (en) * | 2022-11-10 | 2024-05-16 | 云南电网有限责任公司红河供电局 | Method and apparatus for analyzing oil paper insulation cavity defect under effect of harmonics |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102129017A (en) * | 2010-12-30 | 2011-07-20 | 杭州柯林电力设备有限公司 | Case-based intelligent local discharge fault identification system and identification method |
CN102193052A (en) * | 2010-03-08 | 2011-09-21 | 湖北省电力试验研究院 | Method for jointly evaluating insulation state of oil paper by using multiple statistical parameters |
-
2012
- 2012-02-16 CN CN2012100347713A patent/CN102707203A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102193052A (en) * | 2010-03-08 | 2011-09-21 | 湖北省电力试验研究院 | Method for jointly evaluating insulation state of oil paper by using multiple statistical parameters |
CN102129017A (en) * | 2010-12-30 | 2011-07-20 | 杭州柯林电力设备有限公司 | Case-based intelligent local discharge fault identification system and identification method |
Non-Patent Citations (3)
Title |
---|
李梅: "油纸绝缘局部放电超高频检测方法的研究", 《高压电器》 * |
王国利 等: "变压器典型局放模型超高频放电信号分析", 《高电压技术》 * |
王国利 等: "电力变压器典型局放模型放电脉冲的特性研究", 《高电压技术》 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014101579A1 (en) * | 2012-12-28 | 2014-07-03 | 国家电网公司 | Method for identifying a transformer local discharge mode based on a singular value decomposition algorithm |
CN103077402B (en) * | 2012-12-28 | 2016-05-11 | 国家电网公司 | Partial discharge of transformer mode identification method based on singular value decomposition algorithm |
CN103077402A (en) * | 2012-12-28 | 2013-05-01 | 湖北省电力公司电力科学研究院 | Transformer partial-discharging mode recognition method based on singular value decomposition algorithm |
CN103135085A (en) * | 2013-02-07 | 2013-06-05 | 广东电网公司电力科学研究院 | High-repeatability standard bubble discharge model device |
CN103630811A (en) * | 2013-11-29 | 2014-03-12 | 广州供电局有限公司 | Digital partial discharge detecting system |
CN104076258A (en) * | 2014-07-17 | 2014-10-01 | 重庆大学 | Discharge generation device of discharge simulation experiment system for particles in transformer oil |
CN104655945B (en) * | 2015-03-12 | 2018-04-24 | 国家电网公司 | A kind of device and method for measuring oil-paper combination insulation space of components distribution of charges |
CN104655945A (en) * | 2015-03-12 | 2015-05-27 | 国家电网公司 | Device and method for measuring space charge distribution of oil-paper combination insulating component |
CN105606962A (en) * | 2015-09-10 | 2016-05-25 | 广州供电局有限公司 | Casing pipe insulation air gap defect simulation device and manufacturing method thereof |
CN105606962B (en) * | 2015-09-10 | 2018-06-08 | 广州供电局有限公司 | Casing insulative air gap defects simulation device and preparation method thereof |
CN105606966A (en) * | 2015-12-21 | 2016-05-25 | 安徽理工大学 | Partial discharge pattern recognition method based on mixed neural network algorithm |
CN105629144A (en) * | 2016-03-11 | 2016-06-01 | 华乘电气科技(上海)股份有限公司 | High voltage switchgear partial discharge diagnosis method and system based on fingerprint database |
CN105629144B (en) * | 2016-03-11 | 2018-12-04 | 华乘电气科技(上海)股份有限公司 | High-tension switch gear partial discharge diagnostic method and system based on fingerprint base |
CN106771938A (en) * | 2017-03-22 | 2017-05-31 | 广东工业大学 | A kind of solid insulation ring main unit Partial Discharge Pattern Recognition Method and device |
CN106771938B (en) * | 2017-03-22 | 2019-12-10 | 广东工业大学 | Method and device for identifying partial discharge mode of solid insulation ring main unit |
CN109709459A (en) * | 2019-01-28 | 2019-05-03 | 国网安徽省电力有限公司电力科学研究院 | A spectral analysis method for partial discharge online monitoring data |
CN110361622A (en) * | 2019-07-12 | 2019-10-22 | 台州宏创电力集团有限公司 | Method for diagnosing faults, device, equipment and the storage medium of partial discharge of transformer |
CN110426609A (en) * | 2019-07-18 | 2019-11-08 | 中原工学院 | A kind of more partial discharge form simulations of transformer and test macro |
CN110426609B (en) * | 2019-07-18 | 2022-01-28 | 中原工学院 | Transformer multi-partial discharge form simulation and test system |
CN110361637A (en) * | 2019-07-22 | 2019-10-22 | 西南交通大学 | A kind of simulation experiment platform and method for studying cable terminal discharge Acoustic Emission Characteristic |
CN110542842B (en) * | 2019-09-29 | 2024-04-12 | 广东电网有限责任公司 | 10kV switch cabinet partial discharge simulation device and method |
CN110542842A (en) * | 2019-09-29 | 2019-12-06 | 广东电网有限责任公司 | 10kV switch cabinet partial discharge simulation device and method |
CN110888030A (en) * | 2019-11-26 | 2020-03-17 | 深圳供电局有限公司 | Short air gap discharge identification circuit, method and system of transformer |
CN110888030B (en) * | 2019-11-26 | 2022-09-02 | 深圳供电局有限公司 | Short air gap discharge identification circuit, method and system of transformer |
CN111289858A (en) * | 2020-03-19 | 2020-06-16 | 山东电力设备有限公司 | Method for judging partial discharge inside transformer |
CN113138323A (en) * | 2021-03-12 | 2021-07-20 | 深圳供电局有限公司 | Partial discharge type recognition device |
CN113138323B (en) * | 2021-03-12 | 2024-04-19 | 深圳供电局有限公司 | Partial discharge type recognition device |
CN113866569A (en) * | 2021-04-01 | 2021-12-31 | 全球能源互联网研究院有限公司 | A method and device for multi-PD source fingerprint location based on broadband radio frequency detection |
CN113866569B (en) * | 2021-04-01 | 2022-10-21 | 全球能源互联网研究院有限公司 | Multi-partial discharge source fingerprint positioning method and device based on broadband radio frequency detection |
CN113533910A (en) * | 2021-06-10 | 2021-10-22 | 中国电力科学研究院有限公司 | A method and system suitable for partial discharge early warning of converter transformers |
CN114280433A (en) * | 2021-12-02 | 2022-04-05 | 西南交通大学 | Transformer bushing partial discharge risk assessment method based on amplification circuit |
WO2024098825A1 (en) * | 2022-11-10 | 2024-05-16 | 云南电网有限责任公司红河供电局 | Method and apparatus for analyzing oil paper insulation cavity defect under effect of harmonics |
CN115602191A (en) * | 2022-12-12 | 2023-01-13 | 杭州兆华电子股份有限公司(Cn) | Noise elimination method of transformer voiceprint detection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102707203A (en) | Discriminating and measuring method for partial discharge modes of transformer | |
CN103257306B (en) | Method for diagnosing direct current partial discharging insulation state of converter transformer and measurement system | |
Fuhr | Procedure for identification and localization of dangerous PD sources in power transformers | |
Gao et al. | Analysis of the intrinsic characteristics of the partial discharge induced by typical defects in GIS | |
CN201522543U (en) | Transformer winding inter-turn partial discharge joint detection and diagnosis platform | |
CN102103183B (en) | Partial discharge measurement device under impulse voltage on site and signal processing method thereof | |
CN102539527A (en) | GIS (gas insulated substation) partial discharge mode identification method based on ultrasonic testing | |
CN107728014B (en) | Method and system based on multiple sensor signals characteristic identificating equipment insulation defect | |
CN106841905A (en) | A kind of recognition methods of transformer short circuit fault and device | |
Gu et al. | Gas-insulated switchgear PD signal analysis based on Hilbert-Huang transform with fractal parameters enhancement | |
CN108120907A (en) | The partial discharge diagnostic method of feature extraction under a kind of tremendously low frequency voltage based on power frequency | |
Robles et al. | Shielding effect of power transformers tanks in the ultra-high-frequency detection of partial discharges | |
CN112147445A (en) | Partial discharge detection method and system | |
Wang et al. | Measurement and analysis of partial discharge using an ultra-high frequency sensor for gas insulated structures | |
Florkowski | Influence of harmonics on partial discharge measurements and interpretation of phase-resolved patterns | |
CN112816838A (en) | GIS equipment defect diagnosis device and method based on FFT, VMD and LS-SVM | |
CN116910470A (en) | GIS combined electrical apparatus partial discharge fault mode identification method | |
Kunicki et al. | Analysis on partial discharges variability in mineral oil under long-term AC voltage | |
CN107037338A (en) | A kind of GIS oscillatory surges pressure test default kind identification method | |
Ardila-Rey et al. | Automatic selection of frequency bands for the power ratios separation technique in partial discharge measurements: part II, PD source recognition and applications | |
Rodríguez-Serna et al. | Partial discharges measurements for condition monitoring and diagnosis of power transformers: a review | |
CN111999614A (en) | Local discharge multi-source fusion detection early warning method for high-voltage switch cabinet | |
Phung | Computer-based partial discharge detection and characterisation | |
Li et al. | Partial discharge monitoring system for PD characteristics of typical defects in GIS using UHF method | |
CN202512199U (en) | Measuring device for identifying partial discharge modes of transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121003 |