CN102681091A - Tunable optical delay line based on coupled optical waveguides - Google Patents
Tunable optical delay line based on coupled optical waveguides Download PDFInfo
- Publication number
- CN102681091A CN102681091A CN2012101061018A CN201210106101A CN102681091A CN 102681091 A CN102681091 A CN 102681091A CN 2012101061018 A CN2012101061018 A CN 2012101061018A CN 201210106101 A CN201210106101 A CN 201210106101A CN 102681091 A CN102681091 A CN 102681091A
- Authority
- CN
- China
- Prior art keywords
- waveguides
- waveguide
- optical
- coupled
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 66
- 230000008878 coupling Effects 0.000 claims abstract description 32
- 238000010168 coupling process Methods 0.000 claims abstract description 32
- 238000005859 coupling reaction Methods 0.000 claims abstract description 32
- 239000006185 dispersion Substances 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 16
- 230000005540 biological transmission Effects 0.000 abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- 238000010586 diagram Methods 0.000 description 22
- 239000004038 photonic crystal Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000000872 buffer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
本发明公开了一种基于耦合光波导的可调光延时线,由两根互相平行或垂直的光波导构成,当两根波导相互靠近至0.3-0.8μm时,通过倏逝波互相耦合。它主要由两根具有不同色散曲线的光波导所组成,且两波导的色散曲线在相位匹配的波长节点处相交。两根波导相互耦合,耦合模的群速度在交点处经历了快速的跳变,产生延时,通过热光效应的调节,光信号可在较大范围内达到低失真传输及延时可调的效果。
The invention discloses an adjustable optical delay line based on coupling optical waveguides, which is composed of two optical waveguides parallel or perpendicular to each other. When the two waveguides are close to each other to 0.3-0.8 μm, they are coupled with each other through evanescent waves. It is mainly composed of two optical waveguides with different dispersion curves, and the dispersion curves of the two waveguides intersect at the phase-matched wavelength nodes. The two waveguides are coupled to each other, and the group velocity of the coupled mode undergoes a rapid jump at the intersection point, resulting in a delay. Through the adjustment of the thermo-optic effect, the optical signal can achieve low-distortion transmission and adjustable delay in a wide range. Effect.
Description
技术领域 technical field
本发明涉及一种基于耦合光波导的可调光延时线, 属于硅基光子学领域。 The invention relates to an adjustable optical delay line based on a coupling optical waveguide, belonging to the field of silicon-based photonics. the
背景技术 Background technique
硅基光子器件是近年来的研究热点, 许多无源和有源的光子器件被研究人员所提出, 包括缓存器, 滤波器, 开关, 调制器, 探测器及激光器等。这些分立器件或者混合集成可用于片上光信号处理。光信号的延时(或缓存)是时域光信号处理中的基本功能。光子不能够被存储, 因此光缓存实现的方法是使光信号在导光介质中延时一段时间, 可以从减慢光的传播速度与延长传输介质长度量方面考虑。目前提出两类实现光缓存方法:慢光型和光纤延时线型。对于慢光型光缓存结构, 硅基微环谐振器及光子晶体波导被广泛的应用。调节相应波导或器件的色散是达到延迟的有效途径, 除了微环和光子晶体, 波导的耦合也是一种有效调节波导传输以及色散性能的方法。 Silicon-based photonic devices are a research hotspot in recent years. Many passive and active photonic devices have been proposed by researchers, including buffers, filters, switches, modulators, detectors and lasers. These discrete devices or hybrid integrations can be used for on-chip optical signal processing. Delaying (or buffering) of optical signals is a basic function in time-domain optical signal processing. Photons cannot be stored, so the method of optical caching is to delay the optical signal for a period of time in the light-guiding medium, which can be considered in terms of slowing down the propagation speed of light and extending the length of the transmission medium. At present, two types of optical buffering methods are proposed: slow optical type and optical fiber delay line type. For slow-light optical buffer structures, silicon-based microring resonators and photonic crystal waveguides are widely used. Adjusting the dispersion of the corresponding waveguide or device is an effective way to achieve delay. In addition to microrings and photonic crystals, waveguide coupling is also an effective way to adjust waveguide transmission and dispersion performance. the
综合已报道的慢光型光缓存器类型, 在波导结构及器件原理等方面, 都需要进行拓展创新, 以满足应用的要求。 Based on the reported types of slow-light optical buffers, in terms of waveguide structure and device principles, it is necessary to expand and innovate to meet the application requirements. the
发明内容 Contents of the invention
本发明的目的在于克服上述现有技术的不足, 提出一种基于耦合光波导的可调光延时线,该耦合光波导由两根具有不同色散特性的光波导所组成, 两个波导之间的耦合引起结构的色散, 在相位匹配的波长节点处耦合模的群速度经历了快速的跳变, 产生延时。加入热电极后,通过热光效应的调节, 光信号可在较大范围内达到低失真传输及延时可调的效果。波导耦合能力的强弱决定了热光效应对群速度调节的敏感性。 The purpose of the present invention is to overcome the deficiencies of the above-mentioned prior art, and propose an adjustable optical delay line based on coupling optical waveguides. The coupling optical waveguides are composed of two optical waveguides with different dispersion characteristics. The coupling caused by the dispersion of the structure, the group velocity of the coupled mode undergoes a rapid jump at the phase-matched wavelength node, resulting in a delay. After adding the thermal electrode, through the adjustment of the thermo-optic effect, the optical signal can achieve low-distortion transmission and adjustable delay in a wide range. The strength of waveguide coupling determines the sensitivity of thermo-optic effect to group velocity adjustment. the
本发明的技术解决方案如下: Technical solution of the present invention is as follows:
一种基于耦合光波导的可调光延时线, 其特点在于:该可调光延时线由两根互相平行或垂直的光波导构成,当两根波导相互靠近至0.3-0.8 μm时,通过倏逝波互相耦合。 A dimmable optical delay line based on coupled optical waveguides is characterized in that: the adjustable optical delay line is composed of two mutually parallel or perpendicular optical waveguides, when the two waveguides are close to each other to 0.3-0.8 μm, are coupled to each other by evanescent waves.
所述的两根光波导是具有不同色散曲线的光波导, 且色散曲线在相位匹配的波长节点处相交。 The two optical waveguides are optical waveguides with different dispersion curves, and the dispersion curves intersect at phase-matched wavelength nodes. the
所述的两根光波导分别为一根脊型硅波导和一根缝隙波导、一根脊型硅波导和一根脊型氮化硅波导,二根脊型硅波导或一根脊型硅波导和一根光子晶体波导。 The two optical waveguides are respectively a ridge silicon waveguide and a slot waveguide, a ridge silicon waveguide and a ridge silicon nitride waveguide, two ridge silicon waveguides or a ridge silicon waveguide and a photonic crystal waveguide. the
所述的两根光波导相互耦合, 耦合模的群速度在交点处产生跳变。 The two optical waveguides are coupled to each other, and the group velocity of the coupled mode jumps at the intersection point. the
与现有技术相比,本发明的有益效果是两根波导相互耦合, 耦合模的群速度在交点处经历了快速的跳变, 产生延时。通过热光效应的调节, 光信号可在较大范围内达到低失真传输及延时可调的效果。 Compared with the prior art, the beneficial effect of the present invention is that the two waveguides are coupled to each other, and the group velocity of the coupled mode undergoes a rapid jump at the intersection point, resulting in time delay. Through the adjustment of the thermo-optic effect, the optical signal can achieve low-distortion transmission and adjustable delay in a wide range. the
附图说明 Description of drawings
图1为本发明中第一种实施例的两根波导(脊型硅(Si)波导和缝隙硅波导)水平的结构示意图。 FIG. 1 is a schematic diagram of the horizontal structure of two waveguides (ridge silicon (Si) waveguide and slot silicon waveguide) in the first embodiment of the present invention. the
图2为耦合光波导的有效折射率图。 Figure 2 is a diagram of the effective refractive index of a coupled optical waveguide. the
图3为激发的对称模在耦合光波导中的模式分布图。 Fig. 3 is a mode distribution diagram of the excited symmetric mode in the coupling optical waveguide. the
图4为热电极的结构示意图。 Figure 4 is a schematic diagram of the structure of the thermal electrode. the
图5为耦合光波导的群速度色散图。 Figure 5 is a group velocity dispersion diagram of coupled optical waveguides. the
图6为耦合光波导两种模式下的群速度色散图与相应的脉冲延时图 Figure 6 is the group velocity dispersion diagram and the corresponding pulse delay diagram under the two modes of the coupled optical waveguide
图7为本发明中第二种实施例的两根波导(脊型硅(Si)波导和脊型氮化硅(Si3N4)波导耦合)水平耦合的结构示意图。 Fig. 7 is a schematic structural diagram of horizontal coupling of two waveguides (coupling of ridge silicon (Si) waveguide and ridge silicon nitride (Si 3 N 4 ) waveguide) in the second embodiment of the present invention.
图8为本发明中第三种实施例的两根波导(脊型硅(Si)波导和脊型氮化硅(Si3N4)波导耦合)垂直耦合的结构示意图。 Fig. 8 is a schematic structural diagram of vertical coupling of two waveguides (coupling of ridge silicon (Si) waveguide and ridge silicon nitride (Si 3 N 4 ) waveguide) in the third embodiment of the present invention.
图9为本发明中第四种实施例的两根波导(两个不同尺寸的脊型硅(Si)波导耦合)水平耦合的结构示意图。 FIG. 9 is a schematic structural diagram of the horizontal coupling of two waveguides (two ridge-shaped silicon (Si) waveguides coupling with different sizes) in the fourth embodiment of the present invention. the
图10为本发明中第五种实施例的两根波导(脊型硅(Si)波导和光子晶体波导耦合)水平耦合的结构示意图。 Fig. 10 is a schematic structural diagram of the horizontal coupling of two waveguides (ridge silicon (Si) waveguide and photonic crystal waveguide coupling) in the fifth embodiment of the present invention. the
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步阐述,但不以此限制本发明的保护范围。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the protection scope of the present invention is not limited thereto. the
图1为本发明中第一种实施例的两根波导(脊型硅(Si)波导和缝隙硅波导)水平的结构示意图。如图所示, 可调光延时线由互相平行的一根脊型硅(Si)波导1和一根缝隙波导2组成。当两根波导相互靠近时(大约0.3-0.8 μm),通过倏逝波相互耦合。该耦合波导结构可以支持对称与反对称两种耦合光波导模式,在相位匹配的波长节点处, 两种耦合模的群速度经历了快速的跳变, 产生较大的延时变化量。图2是对应于图1耦合光波导的有效折射率图。其中,脊型硅(Si)波导的截面积为300 nm×340 nm, 缝隙光波导的截面积为440 nm×340 nm,缝隙宽度为20 nm,两根波导的间隔距离为500 nm,硅和氧化层材料的折射率分别为3.478及1.444。由该图可知,在短波长范围,对称模接近于脊型光波导模,反对称模接近于缝隙光波导模;在长波长范围,对称模接近于缝隙光波导模,反对称模接近于脊型光波导模。图3所示为在不同的波长情况下,激发的对称模在耦合光波导中的模式分布图,能量分布情况与图2相吻合。耦合光波导的结构色散可以通过级联分别激发不同耦合模的两个耦合波导来补偿, 产生低色散的效果。
FIG. 1 is a schematic diagram of the horizontal structure of two waveguides (ridge silicon (Si) waveguide and slot silicon waveguide) in the first embodiment of the present invention. As shown in the figure, the adjustable optical delay line is composed of a ridge silicon (Si)
图4所示为热电极的结构示意图。首先在做好的波导中淀积一层氧化硅(oxide),然后淀积金属钨(W)作为热电极。热电极选择高电阻率的材料,比如钨(W)、铬(Cr)、氮化钛(TiN)等。为了折中响应速度及顶部金属对光场的吸收,氧化硅(oxide)的厚度h需适中,一般为0.5-1μm。氧化硅的厚度太厚,会影响器件的响应速度,氧化硅的厚度太薄会影响顶部金属对光场的吸收。本实施例中oxide的厚度h选择0.9μm,热电极的宽度w选择12.5μm。 Figure 4 shows a schematic diagram of the thermode structure. First deposit a layer of silicon oxide (oxide) in the finished waveguide, and then deposit metal tungsten (W) as a hot electrode. The hot electrode is made of high resistivity materials, such as tungsten (W), chromium (Cr), titanium nitride (TiN), etc. In order to compromise the response speed and the absorption of the light field by the top metal, the thickness h of silicon oxide (oxide) needs to be moderate, generally 0.5-1 μm. Too thick silicon oxide will affect the response speed of the device, and too thin silicon oxide will affect the absorption of the light field by the top metal. In this embodiment, the thickness h of the oxide is selected to be 0.9 μm, and the width w of the hot electrode is selected to be 12.5 μm. the
图5是对应于图1的群速度色散图,当温度升高,相位匹配波长节点位置发生红移。如图5所示,随着温度的升高,当光信号加载在对称模式的载波上,信号的延时增大;当光信号加载在反对称模式的载波上,信号的延时 减小,从而达到延时量可调的效果。波导耦合能力的强弱决定了热光效应或电光效应对群速度调节的敏感性。 Fig. 5 is the group velocity dispersion diagram corresponding to Fig. 1, when the temperature increases, the position of the phase-matching wavelength node redshifts. As shown in Figure 5, as the temperature increases, when the optical signal is loaded on the carrier of the symmetrical mode, the delay of the signal increases; when the optical signal is loaded on the carrier of the anti-symmetrical mode, the delay of the signal decreases, So as to achieve the effect of adjustable delay. The strength of waveguide coupling determines the sensitivity of thermo-optic effect or electro-optic effect to group velocity adjustment. the
图6是对应于图1的耦合光波导在两种模式下的群速度色散图与相应的脉冲延时图。虽然群延时在相位匹配的波长节点处对温度的变化非常敏感, 但相应的群延时色散非常大。耦合光波导长度设计为10 cm, 图6(a)所示的是耦合光波导中对称模式的群延时色散, 图6(b)所示的是一个半高宽为10 ps的高斯脉冲加载在对称模式的传输情况, 当温度增长50oC 时可得到了大约190 ps的延时增加。图6(c),(d)所示的是一个非对称模式作为载波, 当温度升高所引起的延时减小。通过热光效应, 该耦合光波导的延时量可调。图6(e)所示为分别激发不同耦合模的长度为5 cm的两个耦合光波导级联的色散曲线, 色散可以通过该方法得到补偿, 从而产生低色散的效果,如图6(f)所示。由图6 (a) 和 (b) 可知, 两种耦合模的色散曲线互补, 因此, 如图6 (e) 和 (f), 色散可以通过级联分别激发不同耦合模的两个耦合光波导来补偿, 两个耦合结构的光信号延时变化量减小, 产生低色散的效果。 Fig. 6 is the group velocity dispersion diagram and the corresponding pulse delay diagram of the coupling optical waveguide in two modes corresponding to Fig. 1 . Although the group delay is very sensitive to temperature changes at the phase-matched wavelength node, the corresponding group delay dispersion is very large. The length of the coupling optical waveguide is designed to be 10 cm. Figure 6(a) shows the group delay dispersion of the symmetric mode in the coupling optical waveguide, and Figure 6(b) shows a Gaussian pulse loading with half maximum width of 10 ps In the case of symmetric mode transmission, a delay increase of about 190 ps is obtained when the temperature increases by 50 o C. Figure 6(c), (d) shows an asymmetrical pattern as the carrier, and the delay caused by increasing the temperature decreases. Through the thermo-optic effect, the delay amount of this coupled optical waveguide is adjustable. Figure 6(e) shows the dispersion curves of the cascade of two coupled optical waveguides with a length of 5 cm that respectively excite different coupled modes. The dispersion can be compensated by this method, resulting in a low dispersion effect, as shown in Figure 6(f ) shown. From Figure 6 (a) and (b), it can be seen that the dispersion curves of the two coupled modes are complementary, therefore, as shown in Figure 6 (e) and (f), the dispersion can excite two coupled optical waveguides of different coupled modes by cascading To compensate, the variation of the optical signal delay of the two coupling structures is reduced, resulting in the effect of low dispersion.
图7为本发明中第二种实施例的两根波导,脊型硅(Si)波导和脊型氮化硅(Si3N4)波导的水平耦合结构示意图。该耦合波导可引起总体的结构色散, 在热光效应的调节下达到延时可调的效果。图8为本发明中第三种实施例的两根波导(脊型硅(Si)波导和脊型氮化硅(Si3N4)波导耦合)垂直耦合的结构示意图。图9为本发明中第四种实施例的两根波导(两个不同尺寸的脊型硅(Si)波导耦合)水平耦合的结构示意图,小尺寸硅波导的基模与大尺寸硅波导的二阶模相互耦合, 可达到延时可调的效果。图10为本发明中第五种实施例的两根波导(脊型硅(Si)波导和光子晶体波导耦合)水平耦合的结构示意图,同样可达到延时可调的效果。 Fig. 7 is a schematic diagram of the horizontal coupling structure of two waveguides, a ridge silicon (Si) waveguide and a ridge silicon nitride (Si 3 N 4 ) waveguide, in the second embodiment of the present invention. The coupling waveguide can cause the overall structural dispersion, and achieve the effect of adjustable delay under the adjustment of thermo-optic effect. Fig. 8 is a schematic structural diagram of vertical coupling of two waveguides (coupling of ridge silicon (Si) waveguide and ridge silicon nitride (Si 3 N 4 ) waveguide) in the third embodiment of the present invention. Figure 9 is a schematic diagram of the horizontal coupling of two waveguides (two ridge-shaped silicon (Si) waveguides of different sizes) in the fourth embodiment of the present invention. The order modes are coupled with each other, which can achieve the effect of adjustable delay. Fig. 10 is a schematic structural diagram of the horizontal coupling of two waveguides (ridge silicon (Si) waveguide and photonic crystal waveguide coupling) in the fifth embodiment of the present invention, which can also achieve the effect of adjustable delay.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101061018A CN102681091A (en) | 2012-04-12 | 2012-04-12 | Tunable optical delay line based on coupled optical waveguides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101061018A CN102681091A (en) | 2012-04-12 | 2012-04-12 | Tunable optical delay line based on coupled optical waveguides |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102681091A true CN102681091A (en) | 2012-09-19 |
Family
ID=46813282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101061018A Pending CN102681091A (en) | 2012-04-12 | 2012-04-12 | Tunable optical delay line based on coupled optical waveguides |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102681091A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104238010A (en) * | 2014-09-22 | 2014-12-24 | 电子科技大学 | Front end input waveguide structure of direction coupling optical waveguide detector |
CN107204813A (en) * | 2017-07-28 | 2017-09-26 | 浙江九州量子信息技术股份有限公司 | A kind of phase code device based on silicon substrate integrated waveguide |
CN107390317A (en) * | 2017-06-30 | 2017-11-24 | 清华大学 | A kind of Dispersion managed method and integrated light guide suitable for integrated light guide |
CN111781676A (en) * | 2020-06-29 | 2020-10-16 | 南京大学 | A Bragg Waveguide Grating Modulator |
CN114859466A (en) * | 2022-05-23 | 2022-08-05 | 中国科学技术大学 | A Flat Near Zero Dispersion Optical Waveguide Structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101296037A (en) * | 2008-06-05 | 2008-10-29 | 上海交通大学 | Device and method for optically controlled and adjustable optical delay line based on silicon-based microring |
CN102393550A (en) * | 2011-11-17 | 2012-03-28 | 中国科学院半导体研究所 | Dimming delay line for silica delay and manufacturing method thereof |
-
2012
- 2012-04-12 CN CN2012101061018A patent/CN102681091A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101296037A (en) * | 2008-06-05 | 2008-10-29 | 上海交通大学 | Device and method for optically controlled and adjustable optical delay line based on silicon-based microring |
CN102393550A (en) * | 2011-11-17 | 2012-03-28 | 中国科学院半导体研究所 | Dimming delay line for silica delay and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
LINJIE ZHOU,JIANPING CHEN,XIAOMENG SUN,JINGYA XIE,HAIKE ZHU: "Optical signal processing using silicon resonance and slow-light structures", 《PROCEEDINGS OF SPIE》, vol. 8266, 28 February 2012 (2012-02-28) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104238010A (en) * | 2014-09-22 | 2014-12-24 | 电子科技大学 | Front end input waveguide structure of direction coupling optical waveguide detector |
CN104238010B (en) * | 2014-09-22 | 2017-12-01 | 电子科技大学 | A kind of front end input waveguide structure of direction coupling optical waveguide detector |
CN107390317A (en) * | 2017-06-30 | 2017-11-24 | 清华大学 | A kind of Dispersion managed method and integrated light guide suitable for integrated light guide |
CN107390317B (en) * | 2017-06-30 | 2019-09-20 | 清华大学 | A dispersion control method suitable for integrated optical waveguide and integrated optical waveguide |
CN107204813A (en) * | 2017-07-28 | 2017-09-26 | 浙江九州量子信息技术股份有限公司 | A kind of phase code device based on silicon substrate integrated waveguide |
CN111781676A (en) * | 2020-06-29 | 2020-10-16 | 南京大学 | A Bragg Waveguide Grating Modulator |
CN114859466A (en) * | 2022-05-23 | 2022-08-05 | 中国科学技术大学 | A Flat Near Zero Dispersion Optical Waveguide Structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Moradi et al. | Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators | |
Rakhshani et al. | Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application | |
CN101403811B (en) | Surface Plasmon Tunable Optical Resonant Ring Filters | |
JP5853880B2 (en) | Light modulator | |
CN102681091A (en) | Tunable optical delay line based on coupled optical waveguides | |
JP2014142411A (en) | Light modulator | |
US7509006B2 (en) | Optical device | |
CN110308573A (en) | A Mach-Zehnder Electro-Optic Modulator Based on Silicon/PLZT Hybrid Waveguide | |
JP7315034B2 (en) | optical device | |
Moradi et al. | All-optical NOR and NOT logic gates based on ring resonator-based plasmonic nanostructures | |
US9091807B2 (en) | Compact tunable photonic crystal nanobeam cavity with low power consumption | |
CN115016154A (en) | Polarization filtering type intensity modulator based on lithium niobate thin film | |
Yang et al. | Theoretical investigation of a multi-functional logic device based on plasmonic Mach-Zehnder interferometer waveguides | |
CN112462534B (en) | Ultra-close range metal electrode thermal modulation phase shifter | |
KR101108641B1 (en) | Optical device using negative goose-hansen shift | |
Wang et al. | Photonic crystal slow light Mach–Zehnder interferometer modulator for opticalinterconnects | |
CN108803091A (en) | A kind of titanium diffusion LiNbO_3 film Polarization Controller and its manufacturing method | |
CN211426847U (en) | Negative refractive index waveguide fast optical device based on Dirac-like point | |
Fan et al. | Optical Buffer Device Employing VO 2 Embedded on SOI Waveguides With Microring Resonator | |
CN118068598B (en) | Film lithium niobate electro-optical modulator based on slow wave electrode and preparation method thereof | |
Yang et al. | High-bandwidth lumped Mach-Zehnder modulators based on thin-film lithium niobate | |
JP2014228640A (en) | Optical filter | |
Wang et al. | Linbo3 based 1× 2 Y-branch digital optical switch integrated with S-bend variable optical attenuator | |
KR20040017535A (en) | Low voltage optical modulator using substrate with low dielectric constant | |
Rawal et al. | Slow light based optical buffer with high delay bandwidth product in silicon-on-insulator photonic crystal waveguides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120919 |
|
WD01 | Invention patent application deemed withdrawn after publication |